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ABSTRACT

In this study, the wake shape under symmetrical flight
conditions and its effects on aerodynamic characteristics are
examined. In addition, the effect of wake shape in sideslip and
discrete vortices such as strake or forebody vortex on lateral
characteristics is presented. The present numerical method for:
airplane configurations, which is based on discretization of the
vortex sheet into vortex segmcncs, verified the symmetrical and
asymmetrical roll-up process of the trailing vortices. Also the
effect of wing wake cn tail planes is calculated. It is concluded
that at high 1ift the assumption of flat wake for longitudinal and

lateral-directional characteristics should be reexamined.
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1. INTRODUCTION

In the past, consi&erable interest'has been shown in
computational methods of analyzing the roll-up characteristics of
alrcraft trailing vortices and their effect on tail surfaces.
Although the general viscous flow problem is quite complicated and
requires further research, it is possible to calculate the main
effect of wake roll-up by a potential flow model. Considerable
progress has been made in the latter.

The occurrengé of ‘a vortex sheét whichjtrails from a finite
aspect-ratio wing is a consequence éf the nonuniform 1lift |
distribution on the wing sections. The roll-up of this sheet into
discrete vortices, as a resuit of a convective motion, was
recognized by Lanchester in 1907 (Reference 1l).

Westwater (1935) modeled the continuous vortex sheet (assumed
two-dimensional) trailing from a wing with an elliptical load
distribution by discrete vortices, and computed the time development
of the configuration by use of a complex potential. He assumed that
the sheet extended to infinity upstream and downstream of the wing;
and the effect of the wing itself was ignored. That 1is, no attempt
was made to incorporate the effect of the solid body in the flow.
This assumption 1is sufficiently valid if the spatial development of
the sheet 1s slow enbugh for a quasi~two—dimenéiona1 situation to
hold at any downstream location (Reference 2).

This two-dimensional time-dependent model of Westwater was

further investigated by many others with the purpose of improving



the numerical stability in the calculation. For example, Moore
(1971) used a point vortéx representation to study numerically the
evolution of an initially plane vortex sheet by using a very
accurate time integration procedure and two to four times the number
of point vortices used by Westwater for vortex sheet

representation. He found that the paths of vortices near the edges
of the sheet were extremely contorted. This motion is convincingly
shown to be due to propensity of close line vortices to rotate about
each other (Reference 3). |

Clement and Maull (1973) used a method similar to that used by
Westwater to represent the rolling up of a trailing vortex sheet
(Reference 4). The investigation was oriented towards determining
the effect of span loading distribution on the roll-up
characteristics of trailing vortices.

Hancock (1970) questioned the validity of applying these two-
dimensional results to finite wings when the 1lift coefficient is
large because of the significant effects of wing circulation
(Reference 5). To improve the two-dimensional model, Butter and
Hancock (Reference 6) replaced the wing by a single lifting-line
bound vortex which represented the circulation distribution around
the wing. The trailing vortex sheet was approximated by a number of
discrete line vortices, and the downwash and sidewash velocities:
wefe calculated at midpoint of each vortex element. The induced
velocity of each vortex element on itself was ignored because the

gself-induced velocity at any point is infinite. A similar approach



was also employed by Hackett ;nd Evans for high-lift wings
(Reference 7).

In all these investigations, the wing circulation distribution
was assumed unchanged during the wake roll-up process.' In other
words, the interaction between the wing loading and the wake roll-up
was not accounted for. The latter can be important for a
configuration with a canard, or an aft tail, or both, under high
11ft conditions. Numerical methods to determine these interaction
effects are available and have been applied in the past mostly to
caiculating longitudinal ioading on slendér wings with edge-
separated vortex flow (see, fo? example, References 8 and 9). The
solution was calculated in an iterative manner by satisfying the
flow tangency condition on the wing surface and the force-free
condition on the free vortex sheets.

In the present three-dimensional study, in addition to
longitudinal characteristics, the effect of wake shape in sideslip
and discrete vortices (such as strake or forebody vortex) on lateral
characteristics will be investigated. The computational method is
similar to that of Reference 9 in that a lifting-surface method is
used to represent the wing, not just a lifting line.

The wing boundary conditions are formulated by the Quasi-Vortex
Lattice Method (QVLM) of Lan (Reference 10).

The trailing vortices in the wake region are represented by
discrete free vortex segments which are aligned with the local

velocity vector at their midpoint to satisfy the force-free



condition as described in detail in Section 2.5.2. The flow
tangency condition is satisfied on the wing including the trailing
edge. Due to the nonlinear nature of Interaction between the wake
shape and wing loading, the problem is solved in an iterative
manner.

Chapter 2 presents the theoretical method. In Chapter 3,
numerical results are preseﬁted and discussed. Conclusions are made

in Chapter. 4.



2. THEORETICAL METHOD

2.1 PROBLEM DESCRIPTION

For a wing with a positive 1ift, the sectional loading
decreases to zero toward the wing tips, producing a circulation
variation around the wing. This circulation variation causes an
inward deflection of the streamlines above the wing and an outward
deflection below the wing. Then the stpeamlines that converge
behind the wing are in different directions and form a surface;of
vorticity. This surface of vorticity teﬁdé'to roll up farther:
downstream, forming two distinét vortices of opposite directién.

The wing can be represented by a horseshoe vortex distribution which
consists of bound vortices and trailing vortices to create pressure
differences used to model wing aerodynamic characteristics. .The
wake region is modeled by force-free vortex sheets (continuations of
wing ﬁrailiﬁg vortices), across which there is no pressure
difference. In the present method, the code based on the QVLM
(Reference 11) that incorporates the wing, fuselage, canard, and
tail surfaces 1s modified to determine the wake shape in
longitudinal and lateral directions and its effects on tail

planes. It can also determine the effect of canard wake on wing and
tail planes.

The following boundary'conditions are imposed on the flow
model:

a) The flow must be tangent to the wing camber surface.



b) The trailing-edge Kutta condition is to be satisfied.

c) The vortex segments in the wake region are force free.

In general this nonlinear problem has three sets of unknowns:

a) strength of the‘wing horseshoe vortices,

b) strength of the free vortices in the wake,

c) the location of wake vortices.

For simplicity and saving in computing time, the following

assumptions are made;

a) The wake vortex strength is assumed equal to wing trailing
vortex strength. Decay in vortex strength is not
considered.

b) The vorticity organizes 1itself into two or more centers of
vorticities behind the airplane. This initial roll-up of
the trailed vorticities behind an airplane is a relatively
rapid process and generally complete within a distance
equal to several spans of the wing. For this reason and
for praétical purposes, the part played by viscosity in
this initial organization is assumed small and the roll-up
process may, to the first order of éccuracy, be computed

as an inviscid process (Reference 1).

2.2 GEOMETRY OF WING AND VORTEX WAKE SYSTEM

In the Quasi-Vortex Lattice Method (Reference 10), for the
purpose of satisfying wing boundary condition, the continuous vortex

distribution over the wing 1s replaced by a quasi-continuous one,



being continuous chordwise but stepwise constant in the spanwise
direction. Thus, the wing surface can be divided into a number of
vortex strips with the associated trailing vortices (Figure 1). The
chordwise location of bound elements is given by the cosine law and

is illustrated in Figure 1 (Reference 10).

X, = X, +5 (1 - cos[(2k - 1)n/2N]) (1)

k =1,2,¢..,N
where
Xjo: leading-edge X;coordinape
c chord length
N : number of bound elements in a chordwisé direction.
A wing may be divided into a number of spanwise sections. In
each section, the spanwise locations of trailing elements are given
by the following relation (Reference 10):

-Y

Y. =Y k6 + 82 _ sl [1 - cos(giii—l)n] (2)

M : number of legs of trailing vorticity, which is one
larger than the number of spanwise strips of bound
elements

: Y coordinate of the inboard edge of a spanwise
section

Yg9: Y coordinate of the outboard edge of a spanwise
section



The location of control points where the flow tangency
condition is satisfied is also based on the cosine law, as

illustrated in Figure 1. The control point locations are as

follows:
c . .
= J - in
X, Xe 5 (1 - cos 5 ) (3)
i h|
i= 1,...’N
Y., ~-Y
_ s2 sl _ Jm
Yc. =Y, (1 cos(M )) (4)
J
i=1L2,...(M - 1)
where
Xze, : leading-edge X coordinate at Y.

cy * chord length at ch

The wake vortex system is made up of wing trailing vortices.
' Each trailed vortex from the trailing edge of the wing is divided
into a number of segments up to two span lengths behind the wing
(Figure 2) to form thesﬁnitial location of the wake vortex system.
Each segment is a;sumedito have a length equal to

AX = .25cR | (5)

These segments have the following charadﬁeristics:

a) All segments have equal 1engtﬁé.

b) The length of each segment is preserved throughout the
iteration process. |

c) In the final converged position these segments are aligned

in the direction of the local velocity vector.



The initial location of wake vortex segments are

x=xe+1Ax . (6)

i %t
1=1,.e.,L
Yy = Yee | : | (D
%= 2 @
where

L: number of segments in each element.

oy

2.3 INDUCED VELOCITY DUE TO WING

As described in Section 2.2, the wing surface is covered with a
number of vortex strips with the associated trailing vortices. In
any strip, consider a vortex element of ydX with a direction E.

The induced velocity due to all bound elements in the ith strip at

R = (X, Y, Z) is given by (see Appendix A)

vk 82 te | a x I B al >
= b X - . 2')dx!
Le (9)
and due to the associated trailing vortices by (Reference 10),
2 X o (K - ﬁ)xdi
i, ® =L [t yan( ) s (10)
2 XZe X': R 8 i

where symbols 3, %, etc., are position vectors of a vortex element
relative to a field point, R = (X, Y, Z) , and are defined in the

list of Symbols and Appendix A.



If the integration variable X' in Equations (9) and (10) is

C

(¥) (1 - cosd) , then Equations (9)

replaced by 6, where x' = xze + =5

and (10) can be reduced to

2 ! .
, _ B7e(Y)
Vil(i) ‘Té G,(0)v(8)sin0do | (11)
and
v, _ 8 (" (8)v(8)sined (12
1, == é 5(8)7(0)sin6de )
where
¢ (o) = f"‘iz b T (13)
|arx £11° |B']  |a'|
w (RI - R xdf
&,(0) = | 3 (14)
X' R
B
o(¥) = X, - X, (15)
v(8) = y(X")

Let 5'2 and E"z be EZ for the left and right trailing vortices
of a bound element, respectively. The total induced velocity due to

the ith strip of vortex distribution is then given by

2 T
Y
¥, ® =£‘§fr—)£ & (6)y(0)ainede +

2 o
ﬁ—gfrl)—(f) E'z(e)y(e)sinede +

10



BZC(Y)

™
5 | &,(0)v(0)sinedo - (16)

.0
where the first term is due to bound elements, the second due to the
left leg of trailing vortices, and the third due to the right leg of

trailing vortices. The above integrals are reduced to finite sums

through the midpoint trépezoidal rule (Reference 10),

2

v,y = B0 z <a + &, + &) dyeing a7
_ e k k

Note that the integration for 62 (Equation 14) can be difectly
performed. However, it can also be derived by using Equatior

(13). This is indicated in Equation (A.4) of Appendix A.

2.4 TINDUCED VELOCITY DUE TO WAKE VORTEX SYSTEM

The wéke vortex system, as described in Section 2.2, consists.
of M vortex elements, each of which is divided into a number of
.smaller vortex segments. Assﬁme that the nth element has L small
segments. The induced velocity at a poiﬁt (X, Y, 2), due to the mth

segment of the nth element is given by (see Appendix A)

Br ] +l .
V(i)—h".+a"}2{g _f}.i' (18)
m lar x 2'1° 3] |37
where
R=xi+yy+z (19a)
a = (Xm - X1 + (Ym - Y)j + (Zm - 2)k (19b)

11



B-(x,, - X1 + ¥, - ] + z_,, - Z)k o (19¢)
=, - xm)i (Y - Ym)3 +(z_ -2k (194)
av=(x_ - X1 + B(Y_ - Vi + B(Z_ - Z)k (19e)
b=, - X)i + BY_,, - Vi + B(Z_,. - Z)k (19£)
o= (X, - XL+ B, - Y] +8(Z, - 2Z)k (19

th

Pn: vortex strength of the n*" element.

The subscripts m and mt+l correspond to the end points of
the mth vortex segment.
Now, the induced velocity due to the nth element can be written
as
L
V(@ = 7 @B (20)
n n
m=1 m

Therefore, the induced velocity due to all elements is

M
YW = T @ ; (21)
n=1 :

2.5 BOUNDARY CONDITIONS

As mentioned before, the boundary conditions that are imposed
on the flow are
a) The flow must be tangential to the wing camber surface.

b) The trailing-edge Kutta condition is to be satisfied.

12



c) The vortex elements in the wake behind the trailing edge

must be force free.

2.5.1 Formulation of Wing Boundary Condition

The bound elements and the corresponding control points'of the

wing surface are numbered from fhe leading edge to the trailing edge

and from root to tip. Thus there are K = N(M - 1) bound elements

and corresponding control points. The flow tangency condition can

be written as (References 12 and 13)

dz

[Dij]{Yj} = {cos¢ Ezsfcosa - cos¢sina} ‘22)

(D', 14y',} = {gsting + P(g7z Siné + pr7 c0s6)

where

3

- T singb(wxi)} (23)

is the induced normal velocity under symmetrical
flight conditions at the 1th control point of
wing due to a unit horseshoe vortex density at j

is the vortex density of the jth bound element

is the camber slope of the ith control point

is the dihedral angle
is the induced normal velocity under

antisymmetrical conditions at the ith control

13



point of wing due to a unit horseshoe vortex
density at j
Y'j 1s the vortex density of the jth bound element

under antisymmetrical conditions

B is the sideslip angle
= Pb
T
T =Xb_
20

The right hand side of the first equation is the boundary condition

" for symmetrical loading at a given angle of attack.

2.5.2 Formulation of Vortex Force-Free Condition

Control points iIn the wake are chosen at midpoints of vortex
strips (Figure 2). To satisfy the force-free condition, the vortex
segment should be aligned in the direction of local velocity vector
calculated at the control point. For this condition to be
satisfied, a linear interpolation is used to find the induced
velocity component at the midpoint of each vortex segment.

Consider thelnth and (n + 1)th vortex elements and their mth

th

vortex segments. The end point coordinates of the m'® vortex

" segments are given by (Xn,m’ Yn,m’ Zn,m)’ (Xn,m-i-l’ Yn,m-l-l’ Zn,xln—i-l) ‘

and (Xn+1,m’ Yo+l ,mo Zn+1,m)’ (Xp+1, mtl> Yo+, wHl» Zn+l, w1

The control point locations are then

14



(Xn,m + xh,m+1) + (xh+1,m + xh+1,m+l)

( 3 5 ]

tad
]
N

cp

[(Yn,m + Y mel) . 1 ,m + Yor1 ,me1?

2 2 ] (24)°

(ST

_Cp

(z + 2 ) (Zn+l;m + Zn+1,m+1)]
2 2

1
Zep =3 |

Assume the velocity at the control point of a segment at a

given iterative step is given by

v

(ui + v3 + wﬁ) (25)

where

e
]

U cosa + u
© 1

| s V=V, for symmetfical flight condition

<
it

vy + Umsins , In sideslip

w=Usina+ w
@ 1

u1 is the induced backwash velocity “.
vy is the induced sidewash velocity

w1 is the induced downwash velocity

U is the free-streanm veiocity.

-

Then, the new location of the (m + 1)th end point will be

AS (26a)

Y =Y + % AS ' (26b)

15



- w :
zn’m+1 zn'm + g AS (26c)
where
vV = /u2 + v2 + w2 (27)
2 2 2
A8 /(Xn,m+1 - xh,m) + (Yn,m+1 Yn,m) + (Zn,m+1 Zn,m)
(28)

Before Equations (26) are used,‘it should be noted that the
length of each segment is to be preserved. For numerical stability,
Equations (26) will be modified as follows by including a relaxation

parameter.

Consider the same nth segment. If this segment moves "a"

percent (of the initial location) only according to the velocity

computed at its control point, then Equations (26) can be modified

to be

av
AY = 5~ a8 + (1 a)(ifn,m_,_1 Yn’m)
= &v - -
AZ = v AS + (1 a)(Zn’m+1 Zn,m) (29)
AX = /ASZ - AYZ - AZ
where "a" represents a relaxation parameter.
It follows that
= +
xn,m+1 xn,m AX (30a)
Y =Y + AY (30b)

16



A = Z + AZ (30c)

2.6 SOLUTION PROCEDURES

The basic sets of unknowns of the problem are the bound vortex

density of the wing, and the location of wake vortex elements. The

problem 18 nonlinear because the locations of the vortex system are

unknown a priori. Therefore, the problem will be solved by an

iterative process described below.

1)

i1)

ii1)

iv)

The vortex lattice for the wing surface and the initial
location for the wake elements are first prescribed.'

By satisfying the winé boundary conditions, the bound -
vortex density of the wing is obtained.

The free elements of the wake vortex system are adjusted
to be in the local velocity direction as described in
Section 2.5.2.

Steps (ii) through (iii) are repeated until a converged

solution is obtained.

After the longitudinal wake shape is obtained, the flow is then

perturbed by a sideslip angle if lateral characteristics are needed.

The following procedure 1is used to find the new asymmetric wake

shape and

a)

b)

aerodynamic forces and moments. ‘
Initially, calculate_YB'(vortex density in sideslip) due
to Bsin¢g using the symmetrical wake shape.

Sum the antisymmetrical and symmetrical vortex densities

to find a new wake shape under the B perturbation through

the iterative process.

17



c) Calculate the new downwash oh the wing with the new
asymmetrical wake shape.

-d) Subtract the downwash calculated on the wing, with the sum
of antisymmetrical and symmetrical vortex densities from
the downwash of symmetrical vortex density to get the
influence of the new wake.

e) Add step (d) to 8sin¢g to find new boundary conditions.

f) With the new boundary conditions, calculate new vortex
density.

g) Calculate all aerodynamic forces and moments.

The initial locations of the free vortex elements are assumed
to be in the wing plane. In the iteration process, the force-free
condition 1is satisfied on the free elements.from the root to tip in
a row énd row by row in the downstream direction. A similar
approach with different control point locations was used by Butter

and Hancock (Reference 6) with success.

2.7 DISCRETE FOREBODY AND STRAKE VORTICES

Experiments show that for slender bodies and lifting surfaées
tPe flow always separates from the surface and rolls up into spiral
vértex sheets. The effect of this separated—-flow or vortex—flow
phenomenon is quite important at subsonic speed because of its large
contribution to the total aerodynamic characteristics.

The leading-edge and side-edge vortex systems induce additional
velocities at the wing upper surface and produce an additional 1ift

force which depends nonlinearly on the angle of attack.

18



In addition, when the leading-edge vortex system passes over an
. area downstream of the leading-edge tip, additional vortex lift is
developed. This component of 1ift has been called the augménted |
vortex 11ft. Also for a straked wing, the strake voftex not only
produces the augmented vortex lift but also induces downwash inboard
and upwash outboard of the strake-wing juncture. To account for
this effect, a discrete vortex starting from the juncture to
downstream infinity is introduced. The strength of this vortex is
calculated by equating the vortex 1lift to the Kutta-Joukowski force

(Reference 11):

2 '.
oU_ cSch = prwzedz‘ ‘ (31)

] —

where

cg is the sectional leading-edge suction coefficient

r is the equivalent circulation per unit length of
the leading edge

wle is the upwash at the leading edge

df is the length measured along the leading edge.

The total circulation, rt, of vortex strength is given as

follows (Reference 11)

r 1 €s¢ gy
I, =[ =—ds =51 — 5= dg (32)
t e Um | 2 e w7Um|2e dg

where the Integration is performed along the leading edge and w is

evaluated at the 1eading.edge.

19



The average vortex strength, Ft’ per unit length of the leading

edge 1s therefore

_ r
T, == (33)
Le
where 8ge is the length of leading edge on which the vortex is
produced.
Note that
1 b cge 11 T cge
a) 5 f ;/'ﬁ—'l—— dY = 7 [-2-(b - a) IWI— sin¢d¢]
a ! ge 0 ' fe
M c.C
1 b S
=—(b-a)g ¥ sing
4 M 1=1 w/UwIZe i
' (34)

b) Sincg both cg and wze depend on ft , the circulation
is determined iteratively.

A similar approach to that in Section 2.5.2 is used to find the
position of the discrete vortex element from the wing junction to
distance of two spans behind the wing trailing edge. Also the
position of discrete vortex element for ;mall\sideslip perturbation
can be calculated.

The méin objective of finding the location of discrete vortex
elements 1s to determine the location ofithié vortex relative to the
vertical tail, and to determine 1its effect on directional

stability. Additional discussion will be given in the next chapter.
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3. NUMERICAL RESULTS AND DISCUSSIONS

The present numericél method, which is based on discretizaéion
of the vortex sheet into vortex segments, is used to verify the
roll-up process of the trailing vortices. Also for any surface Qith’
a kinked leading edge, the tfailing vortices from the kinked
location 1is calculated and demonstrated clearly.

The following points should be considered in applications of
the me;hod:

a) The accuracy of the methodlfor determining longitudinél
and lateral—difectional de;ivatives and wake shape in’
sideslip depends somthat on the length of each free
vortex segment and the number.of trailing vortices. If
the length of free vortex segment decreases, the me;hod
tends to be more accurate; bu; the computing time will be
increased.

b) | The complete trailing vortex system is calculated by the
step-by-step pfocess described in Chapter 2. Generally
the roll-up 1s completed between fhe fifth and tenth
iterations. | |

The longitudinal wake shape by the present method is compared
with the numerical solution of Bloom and Jen, where they applied the
artificial viscosity method of Kuwahara and Takami to a rectangular
wing with aspect ratio of eight and the 1lift coefficient equal to
one (CL = 1; Reference 14). The results of the presenﬁ method were

calculated by using 15 spanwise vortex strips and each trailing
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element divided into twenty segments. The length of each free
vortex segment was 25 percent of the root chord. It took
approximately 10 iterations for the complete roll-up process. The
predicted wake shape is plotted in Figure 3, which shows a good
agreement between the two methods.

The longitudinal roll-up process of trailing vortices of a
twin-jet fighter airplane, at two different angles of attack, from
the wing trailing edge up to two spans behind the tralling edge, is
calculated. The fuselage 1s represented by a body of revolution,
and nacelles are not modeled. The results indicate that at low
angles of attack, the roll-up process 1s slow because of small
loading as well as weak interaction among trailing vortices (Figure
4). At high angles of attack, the loading is increased and the
roll-up process is much faster as is shown in Figure 5. For o = 20
degrees, the roll-up is completed within two spans behind the
trailing edge. The rapid change in wake shape at Y/(b/2) =~ 0.35 in
Figure 5(g) is due to change of dihedral angle in the tip section
and discontinuity in the wing leading edge. This point will move
inboard as the roll-up process is completed.

The aerodynamic characteristics of the tyin—jet fighter
airplane configuration are compared with‘the.experimental data of
Reference 15 and QVLM (Reference 11; inviscid, flat wake assumption,
and with vortex breakdown) 1in Figure 6. The results are in good
agreement up to an angle of attack of about 15 degrees. The
disagreement with experimental data above 15 degrees is perhaps due

to viscous effects.
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The predicted longitudinal aerodynamic characteristics of tail
plane by the presentAmethod is compared with the QVLM results in
Figure 7. The results show some disagreement at high angles of
attack. This is becauée, with roll-up, the wake tends to mer away
from the low tail at high angles of attack so that the induced
downwash is reduced. |

The effect of wake in sideslip for the twin-jet fighter
airplane is calculated and the results are shown in Figure 8. It is
seen that the wake is nOF symmetrical any more and moves in thg
direction of sideéiip. |

The predicted lateral-directional characteristics of the fwin-
jet airplane in sideslip are compar;d with the QVLM results
(inviscid, flat wake, and with vortex breakdown) and experimental
data of Reference 16 in Figure 9, The present method shows a small
deviation from the QVLM results, which is due to the effect of wake
roll-up on the vertical tail.

The longitudinal and lateral wake shape of a straked-wing
configuration in sideslip 18 determined and the results are given in
Figures 10-11. It appears that the strake vortex tends to move
outboard and stay close to the tip vortex as it moves downstream.

The predicted longitudinal and lateral-directional aerodynamic
characteristics of a straked-wing configuration in sideslip are'
compared with the QVLM results (inviscid, flat wake, and without
vortex breakdown) and experimental data of Reference‘17 in Figures

12-14. Significant changes in longitudinal aerodynamic
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characteristics due to tail plane and lateral-directional stability

derivatives are observed as follows:

a)

b)

The longitudinal vortex wake of the straked-wing
configuration is rolled up within a distance of less than
one span behind the trailing édgé. The presencé of the
strake vortex introduces some effect on the downwash field
at the horizontal tail. For this reason, some éhanges in
aerodynamic characteristics of the tall plane calculated
by the present method relative to the QVLM results
(inviscid, flat wake, and without vortex breakdown) are
observed (Figure 12). The C, and CDi résults from QVLM
and the present method for the complete configuration,
show good agreement with experimental data (without
horizontal talil) of Reference 17 at low angles of

attack. At high angles of attack, because of inviscid
assumption, the above methods failed to predict the
aerodynamic characteristics accurately (Figure 13(a)).

Due to change of downwash field of the tail plane by the
roll-up wake, the predicted pitchiné moment coefficlent
(cm) by the present method is slighﬁly better than tﬁe
QVLM prediction (inviscid, flat wake assumption, and
withoﬁt voftex breakdown) as shown in Figure 13(b).

The predicted C, is more negative than the data show. The
calculated results indicate that this 1s mostly due to the

contribution of augmented vortex lift. Since the latter
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is assumed to be uniformly distributed along the wing-
strake junction, further research on its distribution is
needed to improve the modeling.

c) Due to the presence of asymmetrical vortex wake roll-up of
straked wing in sideslip, the flow pattern around the
vertical tail changes and introduces a side force which
causes significant changes in directional stability
derivative (Cn ) and also cY derivative of the.
airplane. Thergfore for airplanes with high wing
loadings, the assumption of flat wake in calculating the
lateral-directional derivatives should be reexamined
(Figure 14).

Figures 15 and 16 show the position of discrete strake vortices

for the straked-wing configuration at the vertical tail location.

No numerical or expefimental data are available for comparison.
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4. CONCLUSIONS

A theoretical method has been developed for predicting the wake 1f;fh”

shapes in symmetrical flight conditions and with sideslip, including
their effect on tail planes. The present method has been shown to
work satisfactorily for most configutations withontvenconntering any
numerical instability in the solution. The results indicate that
for a wing with high 1ift, the assumption of flat wake is
inaccurate; and the effect of vortex wake roll-up on longitudinal
and lateral-directional aerodynamic characterigtics of airplanes
needs to be examined. Note that in the present method the effect of

fuselage vortex wake roll-up was not accounted for.
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APPENDIX A: EVALUATION OF INDUCED VELOCITY DUE TO A HORSESHOE
VORTEX AND LINE VORTEX SEGMENT

The velocity field induced by a line vortex element of strength

I' is given by (Reference 10)

2 (R, - R) x dg
V(ﬁ) = zwr'f 1 3

R
. B

(A. 1)

where
2

B =Vl -M
B=xX + Y]+ zk

* ~ -~ A
R o= X'+ Y'3+2'%

RZB = (x- 2%+ g%y - ¢% + g%z - z)?

where (X', Y', 2') is the point on the vortex element.

The horseshoe vortex consists of a bound element and two
trailing vortices (Figure 17). The induced velocity due to the
bound element with end points (Xl’ Yl, Z1 ) and (XZ' Yz, ZZ)’ as
indicated in Figure 17, is obtained by substituting

ﬁl— R=32+ 1% , With t representing a fraction of the vortex

element, into Equation (A.1) as follows:

2 1
W =ELixi g dt
b 0 (A2 + Br+ 632
2 .
= %;E axi { 28

32 - skeyet/?
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2(2A + B)
(82 = 4AC)(A + B + ©)

7} » B2

- 4AC + O (A.2)

where

>

A= |32 B=23" .3, ¢=la'l®.
Further it can be shown that (Reference 10)

8% - 4AC = -4]3" x %

v|2
2A+8=2B" Q'

E+B+ =52

where
3= (x, - X1 + (¥, - )i + (z, - Z)k
b = (x, - )i + (¥, - )i + (z, - Z)k
=, - xl)i + (Y, - Y1)5 +(z, - zl)ﬁ
a' = x, - 01+ B(Y, - Vi + B(Z, - Z)k
b= (x, - x)i + B(Y, - D] + B(z, -!z)ﬁ
3= (X, - xl?i + B(Y, - )] + B(zZ, - zl)ﬁ

On rearranging, Equation (A.2) becomes

2 » ' e
e s 1 S L VRN § (A.3)
ERENEE A R S A
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For the right trailing vortex element, Equation (A.3) becomes

(1if the trailing legs go to infinity)

A ~

> o,
V (ﬁ) ] BZT »a2 x 1 a - a 9 i} ) 82r &
2 41! i;' % i|2 l;' l 41\’ 2
2 2
where
3y = (x, - X1+ (¥, - Vi + (z, - )k

3'2 = (%, - )i + B(Y, - i + B(z, - Z)K

(A.4)

For the left trailing vortex of a bound element, Equation (A.4) is

still applicable except that a negative sign is needed and the

subscript "2" in 3 and 3' is replaced with "1".

Note that for the induced velocity of free vortex segments,

Equation (A.3) is also applicable.
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APPENDIX B: GEOMETRY DATA FOR EXAMPLE CONFIGURATIONS

Three different configurations used in this study are as
follows:

l. Rectangular wing (Reference 14)

2. Twin-jet fighter airplane (Reference 16)

3. Straked wing (Reference 17)

The geometry of the above configurations 1is presented as
follows:

a) For the rectangular wing, see Figure 18.

b) For the twin-jet fighter airplane; see Table I.

c) For the straked wing configuration, refer to Figure 19

and Table 1I.
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TABLE 1

Twin-Jet Fighter Airplane Geometry (Taken from Ref.- 16)

' . DIMENSIONAL CHARACTERISTICS OF AIRPLANE

Overalllength . ¢ ¢ v o ¢ o ¢ o o 0 6 6 ¢ 6 ¢ 0 05 060060000
Wing:

SPAN v ¢ v 4 o 6 o o v 6 s s e s e s o e s s e eue e e s e e e e e e 38411t (11.71 m)
Area (including leading-edge extension) . « « « o « o+ « + . . . 538.34 {t2 (50.01 m2)
ROOL ChOTA 4 v v v v v e o o o o o o o o o s o o o oo oo .o 282001in, (716.28 cm)
Tip chord I 47.00 in. (119.38 cm)
Mean aerodynamic chord, € . « o ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o 0o s o0 o« 192,501in, (488.95 cm)
Leading edge of T rearward of leading edge .

ofrootchord . ... « v v e e vt sve v e s v 0 0 s e 00 e 110,76 in, (281.33 cm)
ASPECt TALIO v v 4 4 ¢ ¢ o 4 b b e s s e e s e s b e e s e e e e se e s e e e e e 282
TAPET TAO o « + o « « 4 o o oo o o o o o s o s o s o s o s s e e n e ae e 0,167
Sweepback of 25-percent Chord . + « « ¢ ¢ o ¢ o ¢ ¢ o o e o o s s s 00 e 4. 4500°
Dihedral (inboard 69.5percent B/2) . ¢ v v v v v o ¢ o o o o s s o 0 o s s s s 0 e o0°
Dihedral (outboard 69.5 percent b/2) . ... e e e e e e e e e e e, 12,000
INCIAENCE & v v v v e h e e e e e e e e e e et e e e e e e, 1,000
Airfoll section:

ROOt . o s o t oo o s st oo s s assnsesssasss NACA0006.4-64 (modified)

TIP ¢« ¢« ¢ e e ¢ e ottt s et e e eeeeeeess. NACA 0003.0-64 (modified)
Alleron: "

Area (one side) rearward of hinge line ... ¢« ¢ ¢ v o o ¢ o . . . 13.08{t2 (1.22 m2)

Span (one aileron) (from 44.5 to '

67.0 percent b/2) . .. ... 00 . 0. ... 43510 (1.33m) (22.5 percent b/2)
Inboard end chord (base line ' .

103.244in, (262.23cm)) « « ¢ ¢ v ¢« v o . . 37.811n. (96.04 cm) (21.3 percent T)
Outboard end chord (base line ' '
155.44 in. (394.82 cm)) . . .
Spoileré:_ : '
Area (one B1de) + + v 4 4 4 4 e e b e e e e F s e e s e e e ... 5.441t2 (0.50 m2)
Span (from 45.3 to 67.0 percent B/2) . + v v v v 0 o e 0 0 .. ... 4,181t (1.28 m)
Inboardend chord. . . v ¢ ¢ ¢ ¢ ¢ ¢ ¢ o 0 o 0o 0 o 0 o s 06 0s oo 1,398t (0,42 m)
Outboard end chord . . & ¢ 4 ¢ 4 ¢ s ¢ o ¢ ¢ o ¢ o o s ¢ 0o 000600, 1041t (0.32m)
Horizontal tail: . _ '
Area (Inchord plane) . .« o v o v o ¢ ¢ o s o e o s v o oo o oo« 94.701t2 (8.80 m2)
MOVable 8T€2 + v v v v v s s a s s u b s st e e s e e e e e s .. TT401t2 (7.19 m2)

Spa-n . . . L] . L] * (] [ ] L] L] [ ] L[4 (] [ ] L] '. L] ) . . . L] . . . . L] L ] L] L] L] L) 17.705 tt (5040 m)
Mean aerodynamic chord of horizontaltail . ... ......... 6.143ft (1.87m)
ABpect ratio » L] » [ ] L] L] L] . L) . 1 ] L] . L] . L] . * [ L] . . . L] L] . . L] . L] L] L .. L] . [ . » 3.30

... 57591t (17.55m)

.
3
.
.
.
.
.

34.38 in. (87.33 ecm) (27.6 percent ¥)
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TABLE I
Twin-Jet Fighter Airplane Geometry (Taken from Ref. 16 )

-DIMENSIONAL CHARACTERISTICS OF AIRPLANE - Concluded

TapPer TRHO &« « ¢ ¢ v ¢ o v o ¢ o o o s s o ¢ s s o o o o s s o s oo s e 0.20
Sweepback of 25-percent chord . .« v ¢ v e s e v b e e s b e e e s o0 0. .35.500
Dihedral. . & v ¢t ¢ ¢ v o ot o v 0 s e o s e s e e s e s e s s s e e e e e . '=23.00°
Root chord (at airplane center 1ine) . « « « « « « ¢ o « « « « » . 107.00 in. (271.78 cm)
Tip chord (theoretical) . . « ¢ + ¢ v ¢ s+ « ¢ o s s o s ¢ o o o s o » 21,40 in. (54.36 cm)
Airfoil section: _

Root (airplane center line) . . . . « + « + ¢ v v ¢« . ... NACA 0003.7-64 (modified)

Tip (theoretical) . . . . v ¢« ¢ ¢ ¢ ¢ s s s e s s o0+, NACA 0003.0-64 (modified)

Hinge-line location, percent Tp .« e v v.o v v o v v e v v oo e oo oo . 41.00

Vertical tail: , .
ATER. . v it i et s .. B7.50(ft2 (6.27 m2)

SPAn .+ ¢ v e b e e e Gt e e s e e s e s s e e e e e e e, 6.38ft (1.94 m)
Taperrato . v o v ¢ 4 o o b b bt e e e e e e e et s e e e e e e . .. 0.227
Rootchord . .. ... ¢ . vt vt eooenn e e e e e e e 207.15 in. (526.16 cm)
Tipchord . . . . v ¢ v v v o o o o v o e o s e s s e s e 47.104in. (119.63 cm)
Sweepback of 25-percent chord . .. ... ... .. e e e e e et e e 58.30°

Airfoil section:

ROOt. o o 3 & & & » o 5 8 o o o s c.o ® o o o s o s e o .' NACA0004.0-64 (modi.fied)

Tip . L[] » L] L] . - . . L] . L] L] L] L] L] L] L . L] . » 1 ] » [ ) L] L ] L] NACA 0002I 5-64 (mwuied)
Rudder:

Area (rearwardof hinge line) . . . . . ¢« v v ¢ v v ¢ v o s o o+ . 11,07 £t2 (1.03 m2)
Hinge-line location, percent of water-linechords . . . . ... .......... 80.00
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TABLE II

Strake-Wing Geometry (Taken from Ref. 17)

b4
AD 191_————"" X
x f . y
em in. em. | in.

0.000 | 0.000]| 0.000{ 0.000
0.455 | 0.179(l 0.229 | 0.090
1.115{ 0.439] 0.ks57 | 0.180
1.935( 0.762( 0.686| 0.270
2.8931 1.139} 0.91L | 0.360
3.980 | 1.567|{| 1.243| 0.450
5.189 | 2.0L3)l 1.374 ] 0.541
7.968 | 3.137(f 1.831] 0.722
11.247 | L4.k28| 2.289 | 0.901
15,085} 5.9391 2.746 ] 1.081
19.558 [ 7.700| 3.203 | 1.261
2u,491 | 9.642( 3.660 | 1.4k
30,170 {11.878)| k.120 | 1.622
38.892 | 15.312{f k,577 ] 1.802
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"G — Present Method (Without Artificiol Viscosity)
3 — Bloom & Jen Method with Artificial Viscosity Coeff.=.006
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Fig. 4(a) The Wake Shape of a Ving-Body-Tail

Configuracioh at Alpha = 0.5 deg.
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Fig. 4(b) The Wake Shape of a Wing-Body-Tail Configuration

at Alpha = 0.5 deg.
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Fig. 4(c) The Wake Shape of a Wing-Body-Tail Configuration

at Alpha = 0.5 deg.
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Fig. 4(d) The Wake Shape of a Wing-Body=-Tail Configuration

at Alpha = 0.5 deg.

42



Z/(b/2)

2/(b/2)

3— Wake Shape at X=4.9%(b/2.) (m)
G — Wake Shape at X=5.2s(b/2.) (m)

0.50

0.30
0.10
-0.10

-0.30

-0.50

0.50

0.30

0.10

-0.10~

-0.30

_0'50 1 L 1 L i | ) S l - L
0.00 0.20 0.40 0.60 0.80 1.00

Y/(6/2)

Fig. 4(e) The Wake Shape of a Wing-Body~Tail Configuration

at Alpha = 0.5 deg.
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Fig. 4(f) The Wake Shape of a Wing-Body-Tail Configuration

at Alpha = 0.5 deg.
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Fig. 5(a) The Wake Shape of a Wing-Body-Tail Configuration

, vat Alpha = 20.0 deg.

45

20



2/(b/2.)

2/(b/2.)

@ — Wake Shape at X=2.20s(b/2.) (m)
Q— Wake Shape at X=2.50¢(b/2.) (m)
1.5
uk
Q.7 :-
0.3 '-—'
-0.1 ;o—e—e—e-—e—e—eeee—efg
-0.5 -
1.5}
1.0~
0.5
0.0 aaa®
-0.5l . 1 . L a ! L
Q.0 0.5 1.0 1.5

Y/(b/2.)
Fig. 5(b) The Wake Shape of a Wing-Body-Tail Configuration

at Alpha = 20.0 deg.

46

2.0



2/(b/2.)

2/(b/2.)

3-— Wake Shape at X=2.80s(b/2.) (m)
O —Wake Shape at X=3.11s(b/2.) (m)

1.5
1.1 —

0.7 o

0.3
—0.1 M

-0.5

1.5

_4L5E . ! . ! . L ,

0.0 0.5 1.0 1.5
Y/(b/2.)

Fig. 5(¢) The Wake Shape of a Wing-Body-Tail Configuration

at Alpha = 20.0 deg.
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Fig, 5(e) The Wake Shape of a Wing=-Body-Tail Configuration

at Alpha = 20.0 deg.
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Fig. 5(g) The Wake Shape of a Wing-Body-Tail Configuration

at Alpha = 20.0 deg.
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Fig. 6(a) Static Longitudinal Characteristics of a

Wing-Body-Tail Configuration
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Fig. 8(a) The Wake Shape of a Wing_Body_Tail Configuration
at Alpha = 20 and Beta = 5 degq.
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3— Right Wing Wake Shape at X=2.3%(b/2)
O— Left Wing Wake Shape at X=2.3%(b/2)
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Fig. 8(b) The Wake Shape of a Wing_Body_Tail Configuration
at Alpha = 20 and Beta = 5 deg.
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@— Right Wing Wake Shape at X=2.6%(b/2)
O — Left Wing Wake Shape at X=2.6+(b/2)
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Fig. 8(c) The Wake Shape of a Wing_Body_Tail Configuration
- at Alpha = 20 and Beta = 5 deg.
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3— Right Wing Wake Shape at X=2.8+(b/2)
O — Left Wing Wake Shape at X=2.8«(b/2)
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Fig. 8(d) The Wake Shape of a Wing_Body_Tail Configuration
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@3- Right Wing Wake Shope at X=3.0%(b/2)
O— Left Wing Wake Shape at X=3.0«(b/2)
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(3— Right Wing Wake Shape at X=3.3#(b/2)
O— Left Wing Wake Shape at X=3.3%(b/2)
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3— Right Wing Wake Shape at X=3.5+(b/2)
O— Left Wing Wake Shape at X=3.5¢(b/2)
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Fig. 8(g) The Wake Shape of a Wing_Body_Tail Configuration
at Alpha = 20 and Beta = 5 deg.
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3@ - Right Wing Wake Shape at X=3.8+(b/2)
O — Left Wing Wake Shape at X=3.8«(b/2)
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Fig. 8(h) The Wake Shape of a Wing_Body_Tail Configuration
at Alpha = 20 and Beta = 5 deg.
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3— Right Wing Wake Shape at X=4.0¢(b/2)
O~ Left Wing Wake Shape at X=4.0+(b/2)

Z/(b/2) N
1.5 — *
1.0
(e] g B
C] GG 0.5 a a3
(¢]
e c]
G o Q%%g a [3
| ] l | 1 ] : ] : L ]
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Y/(b/2)

Fig. 8(i) The Wake Shape of a Wing_Body_Tail Configuration
at Alpha = 20 and Beta = 5 deg.




99

(@— Right Wing Wake Shape at X=4.2#(b/2)
O~ Left Wing Wake Shape at X=4.2¢(b/2)
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33— Right Wing Wake Shape at X=4.5+(b/2)
O— Left Wing Wake Shape ot X=4.5¢(b/2)
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3 Right Wing Wake Shape at X=4.7#(b/2)
O — Left Wing Wake Shape ot X=4.7«(b/2)
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Fig. 8(1) The Wake Shape of a Wing_Body_Tail Configuration
at Alpha = 20 and Beta = 5 deg. :
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[3— Right Wing Wake Shape at X=5.0+(b/2)
O — Left Wing Woke Shape ot X=5.0¢(b/2)
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Fig. 8(m) The Wake Shape of a Wing_.Body_Tail Configuration
at Alpha = 20 and Beta = § deg.
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[3— Right Wing Wake Shape at X=5.2%(b/2)
O — Left Wing Wake Shape.at X=5.2«(b/2)
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Fig. 8(n) The Wake Shape of a Wing_Body. Tail Configuration
at Alpha = 20 and Beta = 5§ degq.
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3— Right Wing Wake Shape at X=5.7#(b/2)
O— Left Wing Wake- Shape at X=5.7+#(b/2)
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of a Wing_Body_Tail Configuration
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———————— Wake Shaps at X=3.3«(b/2)
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Fig. 10(a) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29, deg.
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Fig. 10(b) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29, deg.
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Wake Shape ot X=4.1s(b/2)
------ Wake Shope at X=4.3«(b/2)
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Fig. 10(c) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29. deg.

76

1.5



Wake Shape gt X=4.6¢(b/2)
------ Wake Shape at X=4.80(b/ 2)

—

" Strake Vortex

[WE SN}

.
\

0.0 | 0.5 | 1.0
Y/(6/2)

Fig. 10(d) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29, deg.
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Woke Shape at X=5.1¢(b/2)
------ Woke Shape ot X=5.3+(b/2)
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Fig. 10(e) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29. deg.
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Wake Shape at X=6.1#(b/2)
------ Wake Shape at X=6.3¢(b/2)
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Fig., 10(g) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29. deg.
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Wake Shape ot X=6.6¢(b/2)
------ Wake Shape at X=6.8+(b/2)
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Right Wing Wake Shape at X=3.3¢(b/2)
------ Left wing Wake Shape at X=3.3¢(b/2)
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Fig, 11(a) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29 and Beta = 17 deg.
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Right Wing Wake Shape at X=3.5¢(b/2)
------ Left wing Wake Shape at X=3.5¢(b/2)
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Fig. 11(b) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29 and Beta = 17 deg.
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Right Wing Wake Shape at X=3.7+(b/2)

- - -Left wing Wake Shape at X=3.7+(b/2)
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Right Wing Wake Shape at X=3.9¢(b/2)
------ Left wing Wake Shape ot X=3.9+(b/2)
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Fig. 11(d) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29 and Beta = 17 deg.
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Right Wing Wake Shape at X=4.2¢(b/2)

------ Left wing Wake Shape at X=4.2¢(b/2)
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Fig. 11(e) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29 and Beta = 17 deg.
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Right Wing Wake Shape ot X=4.4+(b/2)
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Fig., 11(f) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29 and Beta = 17 deg.
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Right Wing Woke Shape at X=4.7+(b/2)

------ Left wing Wake Shape at X=4.7+(b/2)
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Fig. 11(g) Wake Shape of the Straked Wing~Body Configuration
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Right Wing Wake Shape ot X=4.9¢(b/2)
------ Left wing Wake Shape at X=4.9+(b/2)
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Fig. 11(h) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29 and Beta = 17 deg.
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Right Wing Wake Shape at X=5.2¢(b/2)
- - -Left wing Wake Shaps at X=5.2¢(b/2)
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Fig, 11(i) Wake Shape of the Straked Wing-Body Configuration
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Right'Wing Waoke Shape ot X=5.4¢(b/2)

- - Left wing Wake Shape at X=5.4¢(b/2)
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Fig. 11(j) Wake Shape of the Straked Wing-Body Configuration
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Right Wing Woke Shape at X=5.7¢(b/2)
------ Left wing Wake Shape at X=5.7¢(b/2)
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Fig. 11(k) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29 and Beta = 17 deg.
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Right Wing Wake Shape at X=5.9¢(b/2)
------ Laft wing Wake Shape at X=5.9¢(b/2)
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Fig. 11(1) Wake Shape of the Straked Wing-Body Configuration
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Right Wing Woke Shape at X=6.1#(b/2)
------ Left wing Wake Shope at X=6.1¢(b/2)
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Fig. 11(m) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29 and Beta = 17 deg.
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Right Wing Woke Shape at X=6.4s(b/2)
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Right Wing Waoke Shope at X=6.6¢(b/2)
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Fig. 11(o) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29 and Beta = 17 deg.
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Fig. 11(p) Wake Shape of the Straked Wing-Body Configuration

at Alpha = 29 and Beta = 17 deg.
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Fig, 12(b) Static Longitudinal Characteristics of the
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Fig. 16 Effect of Strake Vortex on Vertical Tail for Straked

Wing-Body Configuration at Alpha = 29 and Beta = 17 deg.
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Figure 19 Three-view drawing of typical wind-tunnel model.

Shaded area is associated
with forebody balance; linear dimensions are in centimeters (inches).
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