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ABSTRACT

Free wake techniques for performance prediction and
optimization of hovering rotor are discussed. The influence
funétions due to vortex ring, vortex cylinder, and source or
vortex sheets are presented. The vortex core sizes of rotor
wake vortices are calculated and their importance is
discussed. Lifting body theory for finite thickness body is
developed for pressure calculation, 'anq hence performance

predicti?n' of hovering rotors. NumFr%cal optimization

t
techniqué based on freer>wakenwligtiﬂQ““ltne*—theory—;”is Y

—_——
M

presented and diséussed. It is!démonstrdtéd that for%ai

~ . o

D ) , o ,
optimization can be used with the implicit and nonlinear

— —_——

.objective or cost function such as‘the performance of hoverihg
.- § . ’

) S

rotors 'as Iused in this reporf.
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LIST OF SYMBOLS

A : Hessian matrix
a : 1lift curve slope

: normal velocity influence coefficients due to source

A..  : normal veloclty influence coefficients doe to vortex

\
B11
+ ¢ direction cosines of t
12 X
Sk
Ao )
' =+
A - : direction cosines of t_
22 y
Raz |
B3 )
rs 1] - _)
A32 +  : direction cosines of tz
B3z )
bpk : potential influence coefficients due to source
Cpk : potential influence coefficients due to doublet

C : blade chord

C : normal force coefficient

CP : pressure coefficient or power coefficient

Cij- : tangential velocity influence coefficient due to source
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:'tangential velocity influence coefficient due to vortex
: drag coefficient
: 1lift coefficient

3 fhrust coefficient

: torque'coefficient

vortex core diameter or size

elliptic integral of first kind

: azimuthal unit vector

+ radial unit vector

elliptic integral of second kind or objective function

force acting on lifting body.

value of objective function F at oo = 0

i
» M5 <

: value of objective function F at o
: value of objective function F at o
gradient vector of objective function
abpfoximate inverée of Hessian matrix

spacing between. ring vortices

moment acting on lifting body
position where induced velocity is computed
: position of vortex

normal force acting on blade section

unit normal vector to body surface

)
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B : axial momentum
Q : torque acting on rotor
R

: blade radius

r : radial coordinate of ring vortex
rpq : distance between singularity and field point
rp : penalty parameter
S : search direction for minimization
T thrust produced by rotor
= 3\
t
b'4
gy ¥ : unit vectors of panel center coordinate
_)
t
z )

U : total velocity with respect to blade

U : free stream velocity
W : potential influence coefficient due to doublet

W : wake surface

w : downwash |

Xc : position of control point

X position of concentrated vortex
X. : design variable vector

2 : axial coordinate of ring vortex

Greek Symbols

o : angle of attack or move parameter in search direction

8§(z) s delta function
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€

:Akronecker delta

: vortex core radius

e

‘normalized blade radius

normalized bound circulation

: bound circulation

: blade pitch angle

¢! normalized downwash

azimuthal angle or velocity poténtial
air density | |

solidity or source strength

Stokes stream function

swirl angular velocity or vorticity

rotation velocity of rotor
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CHAPTER 1
INTRODUCTION

1.1 Purpose

The best aerodynamic design of hovering helicopter
rotor blades, propeller blades or wind turbine rotor blades
can be achieved by the accumulated performance data, the
engineering experience, and good performance analysis and
design codes. A reliable aerodvnamic performance analysis
can be carried out by computational fluid dynamics.
However, heuristic parametric analysié of many different
configuration of biades by CFD 1is an expensive means of
achieving good aerodynamic design.

A systematic method to achieve the best desiqn is to
set up a suitable quantity to maximize or to minimize. This
quantity is combined into the objective function. When
there are constraints which <the best design should not
violate, these‘constraints can be grouped into the penalty
function with the objective function. When the penalty or
cost function which the design should pay is minimized, the
best design is achieved.

Usually the penalty function is a nonlinear function of
a number of independent design parameters. Searching the

best combination of the design variables to achieve the



s
minimum ‘cost can be done numerically by various metﬁods.
Methods such as-the steepest descent, conjugate direction,
variabie metric or quasi-Newton; and Newton’s method can be
used to minimize a function. The function mnminimization
_ requires a performance analysis code to evaluate the penalty
functién at each design combination, the gradient or
sensitivity calculation for methods such as conjugate
direction or quasi-Newton method. and Hessian calculation
for Newton’s method. Hence the design computed-by the
combination of CFD and function minimization can not be
better than the accuracy of the code. The codes used may be
potential, Euler, or Reynolds averaged Navier-Stokes ones.
Among potential flow codes one may distinguish between
surface singularity type methods such as 1lifting 1line,
lifting surface, panel method, and small disturbance or full
potential finite difference method.

The optimum design of hovering helicopter or propeller

blades can be achieved by minimizing the required power to

—

sustain induced{waﬁa pfééile%érag %hile keeping the

thrust constant: fhe penaity\funct;on fof this problem is a
combination of the objective function which is the required
power and the constraint function which is thé given thfust.
This penalty function 1is suitable for converting a
constrained function minimization to an unconstrained

- function minimization. In function minimization the



{

1
i

gradieht calculation by direct perturbation of design
variables can usually be done with less than 7 wvariables.

Hence.’ a performance analysis code can be combined with a

numeriéél-épfimizafiéﬁ code, thatiis;>fuﬁctiég 7ﬁinimization
code to determine the best combination of design variables.
With more than 10 design variables the analvtic gradient
calculation éode is a more powerful and accurate method for
determining which design variables are best than finite
difference methods.

The objective of this research 1is to compute the
optimum chord and twist distribution of a hovexing rotor.
The methods used are 1lifting 1line and lift{ng surface
theories coupled with a fast free wake model developed by
Miller(ref.s 7-11). The profile drag is calculated by blade
element theory using the effective angle of attack obtained
from lifting line or surface theory. The objective function
is the power due to induced and profile drag and the
constraint function is the given thrust. Thé optimizétion
code used are quasi-Newton method or conjugate gradient
method. ONMDIF, the optimization code of aquasi-Newton
method developed by Kennely at NASA Ames, is used. This
optimization code is combined with the performance analysis
code of' lifting 1line and lifting surface theories coupled
with fast free wake model. Only the optimization wusing

lifting line is performed and presented. During



ocptimization 'iteration the obijective and constraint

functions are computed by free wake lifting line theory

exactly. In all optimizatiodﬁ the penalty function is used

to convert the constrained optimization to the unconstrained

optimization.

1



1.2 Technical Approach

The hovering rotor performances predicted by 3-D
momentum and by free wake lifting line theory are compared
in section (2.1). The bound circulation distribution
obtained by 3-D momentum theory is very different from that
found from free wake theory. The influence functions for a
vortex ring, a vortex cylinder, a trailing vortex filament,
and a rectangular vortex sheet or source are given in
section (2.2). Also, 1in section (2.2) the swirl loss
correction method is derived. In section (2.3) the free
wake 1lifting 1line theory is shown to predict the results
which are in good agreement with the experimental results of
ATB tilt rotor of Ref.(6). The vortex core size of a
hovering rotor is calculated and is shown to grow as the
vortex ring moves further away from the rotor plane in
section (2.4). |

In section (3.1) vortex lattice and wvortex panel
lifting surface theories are derived and their applications
to the hovering rotor are discussed. In section (3.2) the
surface singularity method is shown to be the solution of
Green’'s function applied to the rotor or the wing probleﬁs.
The superposition method of sources and vortex sheets is
derived for the pressure calculation and hence the.

performance prediction of any lifting body in section (3.3). .



In section (3.4) the free wake geometry is computéé‘ b§
intedgrating * the 1local velocity on the wake element with
respect to the time after its generation by the blade. The
overall resuits obtained by the application of the free wake
surface singulafity method to the hoveriﬁg rotor and wings
are shown and compared with past results in section (3.5).

| In sectién (4.1) sevefal different choices of the
- objective function and gquadratic penalty functions are
derived and the chosen seven different set of design
variables are discussed. The direction of the function
minimization is presented as the Quasi-Newton and Conjugate
gradient method in section (4.2). Once the minimization
direction 1is determined, the mﬁlti-dimensional problem
‘becomes an one- dimensional minimization one. The parabolic
line search technique is presented in section (4.3). In
seqtion (4.4) three types of rotor blade geometries are used
for the formal optimization of the hovering performance.
They are the rotor of Ref.68, which has the straight twist
and a_constant chord, a modified rotér, which - has the
straight twist and a téper ratio of 0.3. The rotor of
Ref.68 is chosen because the experimental and theoretical

results on bound circulation are available. The third rotor

/
is: a double twisted and tapered rotor.

e
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1.3 Review Of Past Work

The vortex roll-up, or core size of the resulting
vortex, and vortex motion are treated in
Ref.sf1,2,3,4,5,30,311. Free wake lifting line or surface
theory was applied to the performance prediction of hovering
rotor in Ref.s [7-14,24,28,29,35]. Surface singularity
methods were wused for the_analysis of wing and rotor blade
in Ref.s £15-22,27,33,34,36,55-631. The review and
applications of formal = optimization techniques were
presented in Ref.s [25,37,39,40,41,42,43,44,45,46,47,481.
The theoretical basis of numerical optimization was
formulated in Ref.s [49,50,51,52,53,541]. The detailed
review of all previous work are handled in the introduction
to each chapter. |

From all previous work the vortex hotion, interaction
to roll-up, the effect of vortex position on the rotor
performance are well developed theoretically and the results
are 1n good agreement with experimental data. Surface
singularity methods were successful for the calculation of.
pressure field for the wing or rotor blade with fixed wake
geometry. ©Several optimization program such as CONMIN,
ONMDIF, or others were used to improve the aerodynamic and
dynamic performance of wings, or rétors, or structures. In

most cases the optimized results were only as good as the



f}

heuristic and parameter optimization. Several theories on

numerical .optimization were presented and tested for the

several explicit nonlinear objective functions.
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. CHAPTER 2
FREE WAKE LIFTING LINE THEORY AND VORTEX CORE
SIZE OF ROTOR WAKE VORTICES

2.1 FREE WAKE MODEL

N The wake of rotor blades is piled below the blades‘ as
shown 1in figure (2-1) unlike the wake of an ordinary wing
which moves away from the wing; Since the effect of free
wake vortices on the performance is very profound, a free
wake analysis is necessary for the flow prediction of a wing
which has leading or side edge vortices. For such wings the
free wake results can be used as boundary conditions for the
near field solutions of Euler or Navier-Stokes equation as
done in Ref.(32). |

The fast free wake model developed in | Ref.s
£L7,8,9,10,11] are discussed in this section and was used for
the formal optimization of hovering performance with lifting
line or surface ﬁheory. The work done by the induced dragA
of rotor or wing' appears as the kinetic energy due to
trailing vortices as discussed in section (2-4). The study
of the motion of trailing vortices is necessary for the
determination and reduction of the induced drag and for the
minimizatioin of the wake hazard to the following aircraft.

As developed in Ref.(7) the free wake is divided into

three sections : the near wake attached to the blade on the

19



.plane of rotation, an intermediate wake of rolled—ué ring
vortices, a far wake of semi-infinite vortex cylinders. The
near wake is cqmposed of a series of circular arc vortex
filaments which span the half of the blade spacing. After
leavihg the blade as a vortex sheet, this distributed wake
.rolls ué quickly according to the conservation of linear and
angulaf momentum into helices which are approximated by
vortex rings. The tip»vortex is formed from the tip to‘the
point of maximum bound circulation. A second roll up is
assumed between this point of maximum circulation and the 15
percent spahwise position. The remaining circulation to the
rqot rolls up into a third vortex. The effect of root
§ortex is neglected during the actual free wake calculation
since ité effect on the performance is negligible ,while
making the solution converge slowly. The existénce of the
root vortex is doubtful for the hovering flight. There are
four vortex rings in axial direction to represent the
intermediate wake. The far wake consists of semi-infinite
vortex cylinders starting at a distance from the rotor one
vortei spacing below the 1last intermediate vortex. The
geometry of this wake model is shown in Figure (2-1) Ké&ign”\
from Ref.(7). Figure (2-2) shows ‘tﬂe differenéevrgn
predicted bound circulations between 3-D momentum theory and
free waké lifting 1line theory.: Table (1) an& (2) present

the results obtained by momentum theory and free wake

20



lifting 1line theory. In table (1) 10 spanwise divisions
were used and in table (2) 15 spanwise divisions were used.
In both tables CT and CP are thrust and power coefficients.
CPI is the power coefficient due to the induced drag. FM is
the figure of merit, CTR and CPR are thrust and power

coefficients with wake rotation effect included.



2.2 DERIVATION OF INFLUENCE COEFFICIENTS AND MATRIX SOLUTION

(a) The velocities due to vortex ring or cylinder.

Ref.(?) gives the induced velocity due to a ring
vortex derived by using the Biot-Sarvart law. The rihg
vortex has a radius of rR and an axial distance of z
from the rotor blade of radius R as shown in figure.
"The vertical components of velocity.induced at n due to

a ring vortex of radius r is

27

w = T I r{(r - ncoso) do - T I
. 4TR- 2 2 2 _ Zrncosgfz | 47TR ~1

0 (n” + r° + z

ol



The radial component of induced velocity at n is

A '
u = I J zr cos¢ de¢ T I

47R o (nZ + r2 + 22 _Zrnc058§2 47IR 2

From ref.(7), Il and I2 are given as follows.

l 2
= %ﬁ K - E{1—0.5k2(1+r/n)}/(l—kz)J

—
|

1
z k2 2 2
I, = =— |—C E(2-k7)/({1-k7) - 2K3
2 2n Jrn
where kz = 4rn

(r + n; + z2

2,2

2y 4 (3/16)(F-1-1/12)(1-k%)%+ ...

E =1 + 0.5(F-0.5)(1 - k

K=F+ 0.25(F-1)(1 - k2)+(9/64)(F—l—l/6)(lfk2)2+ oo

and F = 1n ( ———37— ]
_ J1-k

The vertical velocity due to the far wake of semi-infinite
cylinder at n is obtained by integrating equation (2-1) from z

to o ,

o 27

w2 = gk 47

dar r(r - ncos¢) 4o
41IR dz

Z ‘o (nz + r2 + 22_ Zrncosgfz




2

| QQJ r(r -ncos¢) ., _ z 3do
4IR dz 0ﬂ2+ r2_ 2rncoso (n2+ r2+ zz-Zrncos${
27
_ _1 4ar
= IIm zf I(e) do
0
1 ar ¥ 21 o1
W2=4—ﬁ—zi§ I(¢i)N—,¢i=ﬁ-(21-l)

The radial velocity due to the far wake of semi-infinite cylinder is

© 27
u2 = 1 QEI [ zrcosp do-dz
4IR dz 2 0 (nz + r2 + zz—Zrncoséfz

2m

o 1 QLI rcos¢p do

4IR dz 0 (n2 + r2+22— 2rncos${2
..l drafr -k2) -
= ¥R az kin CK(2-k™) -2E]

(b) The velocity due to the trailing vortex filaments.

The Velocity induced by a element of strength
-+ x’
r=T7T/(1 + i ) and length AS = 24x at point M(x,y,z)
is given in ref.(28) as follows.

M(x,y,2)
. _




¥ - - g MM x a1 +x) 3

- ﬁ R3 dx'
-AX
AX >
_o_ 1 M'M x Ti ,
Let ﬁs = 4HI 'R3 @x
-AX -
AX
= _ _ _1f M'M x T'x’i /
W, = 4HI 23 dx
-A% '
Then, Wxs =0
W, = - 3+ AS-z-T-I
ys 4l s
W =% aS-y-T-I
zZ5 41T s
H = 0
Xv
W = - -2 ASz:-T-Ax- X
yv 41 ' v
W = —=% pS-y-T-ax-I
zZv 41 Y v
where I = 3 1 > £x ; ox
20x(y” + z° ) 1
R2 + XAX R
I = 1 [ 0 __0
v 2Ax2(y2+ 22) R1



2

R, = \(x + Ax? + y2+ z

and R3 = J (x - Ax? + y2+ 22

The velocity induced by an vortex element of circular

arc in near wake is given in ref,(29),

(c) The velocities due to a rectangular panel of vortex

sheet or source.

The velocity induced by a rectangular vortex sheet
is given in ref.(28) and one by a source in ref.(27)
as follows. These velocitie; will be required later for
a lifting body solutionﬂ?
| - M(x,y,z)

e &Y — By —

7

A% 5 ]
=3 .

L

_ _ R
The velocity induced at M by a constant vortex panel is fﬁC(M

26



U
WC(M) ch = I Jl
W = 0.0
yc
N
Wee = 3w 2
The velocity induced at M by
= 9
ﬁs(M) Wxs T 41 J3
= 9
Wos = a1 Y4
= 9
W,s = 21 "1
-H
Here, Jl = R

4
+ arc tan(;——) - arc tan(zﬁz]

2 3
arc tan (E_—] - arc tan(EﬁZj

a constant source panel is . ﬁé(M)

(y + ay) + Rl (y - oy) + R4

J2 = 1in [(y - Ay) + R3 (y + ay) + Rz]
1o [R1 + R3 - 24y ) R4 + R2 + 24y ]

3 Rl + R3 + 20y R¢ + Ra - 248y

+ + + -2
and J, = 1n [23 ¥ §4 -zzz ’ 22 ¥ :l +§2z ]
3 T Ty 2 7 L
Here, 'Hl = (y + 4ay) - (X + Ax)

4
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X
"

2 (y - 8y) « (x + AX)

ja o
"

3‘ (y - oy) « (x - AX)

H, = (y + 8y) - (x - &x)

Rl = J(x + Ax)2+ (y + Ay)2+ 22
R2 = j(x - Ax)2+ (y + Ay)2+ 22
R3 = ]fx + Ax)2+ (y - Ay)2+ 22
R4 = J(x -Ax)2+ (y - Ay)2+ z2

The induced velocities with respect to a reference coordinate
are obtained from the velocities with respect to panel center

coordinate. Let three unit vectors of panel center coordinate

be gx R gy and ?z with respect to a reference coordinate.

Then, the-three unit vectors are given in terms of direction

cosines, A__.

nm
-
ty = (Byg » Byp s BAyg)
4
ty = (Bay v Ay By3)
-
€ = (Ay , A A )

327 733
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The velocity, V with respect to a reference coordinate is

obtained by transforming the velotity, A with respect to

panel center coordinate.

Vx = All Wx + A21 wy + A31 Wz

Vy = AlZ Wx + A22 WY + A32 Wz

Vy, = By Ay + Ay W+ Ay W,

(d) Matrix solution
The 1ift is related to the bound circulation

by Kutta-Joukowski law.

L

0.5 p U2a o C=pUT —_— (2-2)

0.5 ( 8%r2 + w2 /2 4 ¢ (0 + ) — (2-3)

3
]

where & 1s the rotational velocity, r is the radius, w is the
downwash, © 1s the pitch angle, a is the 1ift curve slope, C
is the chord, T is the bound circulation, and o is the local

blade angle of attack.

L = v = 0.5¢( nz + xz }/Za c

A
Ay —_— (2-4)
QR? n

)

where n 1is the normalized radius and A is the normalized

downwash. Then,



A, = A, Y, — (2-5)

A Aij are the influence coefficients which are the induced
velocities on blade station, i, due to all trailing vortices

of unit circulation on blade station, j.

k+l _ C .k k+1 ' _
s 05 ag Ul o +aL YT M) — e
c k +1 C k
LI-0.5agh; Uf/n 3 {yj5 = 0.5ag Uro, (2-7)
K 1 }
[ogy 3 £yj5 = 18, k | (2-8)

Here, I 1s the unit matrix. The above linear system of

equations are solved until { y. } converges for the fixed
q i s L _

wake geometry. Then a new wake geometry is obtained‘ﬂf.
integrating the local velocities on all wake vortiées

aﬁd a new influence coefficients are calculated from the
new wake geometry. This procedure is repeated until the
bound circulation distribution and the wake geometry are

converged.
(e) Correction of the swirl loss to matrix solution.

By applying linear and angular momentum balance to a

blade element of dr we obtain the following.

dT = dm w’ = 2 dm w, where dm = p w 27r dr
_ 2

dT = 4 mp w'r dr

dQ = dm w'r = 2 dh wWr X ¢

30



dg = 4 1p W wr3 dr

Here, dT and dQ are the blade element thrust and torque.

w is the local angular velocity due to swirl.

4 1P w2r dr 4 2

dC.. = = A% n dn
T o RZQZRZ
4 Tp W W r3 dr w 3 v
ac, = =4 X s n dn
Q on RZQZRB Q
For uniform A, C, = 2‘A2 and C, = X @
i § Q fe
- w 3
dCQ-,4 A g n dn
_ . : 2 2, .
= 0.5 0o [CZ sin(@ — a) + Cd cos(® — o)1 n(n™ + A7)dn
we _ 1 (6 — _ n,x
= o [Cz sin(© o) + Cd cos(© )] (A + n)

R 8
Here, o is the local solidity. The angle of attack correction

due to swirl is, to first order,

W

=06+ r(fi — w)

oy
This new angle of attack is used in computing the performance.

Usually the swirl loss is negligible for the hovering flight

and was neglected during the formal optimization.
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2.3 APPLICATION TO JVX

A recent paper (ref.6) has presented experimental
results on the hovering performance and wake geometry of a
highly twisted rotor. It is the4purpose of this section to
show that the fast free wake model suggested in Ref.(10) and
described more fully in Ref.s(7) and (B) appears to predict
the obsérved wake geometry and the rotor performance over
the operating range. Figure (2-6) shows the blade shape of
ATB tilt rotor wused in the calculation. Figure (2-3)
compares the predicted radial contraction of tip vortices
with the experimental results of Ref.(6). In Figure (2-4)
the predicted axial positions of tip vortices are a 1little
above the experimental results. This discrepancy is
expected to disappear if the induced velocity below the
following blade is computed behind the following blade. The
average of the induced velocities on the blade 'and on the
position below and behind the following blade represents the
influence of the near wake of ﬁhe following blade better
than. the average of the velocity immediately below the
following blade. Fig.(2-5) compares the figure of merit
obtained from present analysis with the experimental results
in Ref.(6). The hovering performance of ATB tilt rotor is
well predicted by the present free wake lifting line theory.

The good agreements with experiments show that the

‘N
~No



present technique can be used for a parameter optimization
or for a formal optimization of hovering performance. The
executioﬁ time of the present program is about 10-20 secbnds
on VAX 750. The hovering condition has no free stream, that
is, all flow quantities are the perfurbations. Hence, it is
the most severe test of the vortex theory. It is knéwn that
the vortex far(wake) geometry determined by following the
local velocity satisfies the Eﬁler equation. Hence, the
strict calculation of the vortex position is important for

the analysis of the flow field.



2.4 VORTEX CORE SIZE AND ITS IMPORTANCE

Vortex core size 1is a physical parameter which
determines the potential flow region and the rotational flow
region , or the inviscid flow and the viscous flow region in
subsonic flow. In rotor aerodynamics the vortex core size
is needed for the determination of the self induced velocity
of a vring vortex which is given by Lamb (ref.66). For the
representation of shear flows by vortices the vortex core
size 1is needed to avoid the infinite velocity and hence the
infinite kinetic energy in the flow field. 1In this section
the work done by the induced drag is shown to be the kinetic
energy carried by the vortices in the flow. A model for the
lprediction of the core diameter of a rolled-up far wake
vortex of a lifting three dimensional wing was proposed by
Spreiter and Sacks (ref. 1). They equated the downward
momentum and the kinetic energy generated by the wing to
those of the flow after roll-up to determine the spanwise
position of the vortices and their core diameter. Ferziger
(ref. 2) determined the vortex spacing to diameter ratio of
the vortex array modelling an infinite free shear flow. He
conserved. the circulation and kinetic energy of the flow
before and after roll-up; Landahl (ref. 3) obtained the
radial position of vortices and the far wake core diameter
of rotor wake vortices by conserving momentum and kinetic

energy during roll-up and by using Prandtl’s planar wake or
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doubly infinite vortex ring model. Widnall (ref. 4f showed
the invariants of vortex motion as conservation of momentum,
angular momentum and kinetic energy. Wu et. al.(ref. 5)
rélated the changes in the .first ‘and second moment of
vorticity in the .flow to the férce on the body which
generated the vortices. In the following the semi-infinite
array of vortex rings is used to determine the core diameter
of the interminate wake vortex ring. . The momentum and
kinetic energy by one revolution of the rotor were equated
to those 1in the wake' flow of one‘vortex ring spacing. The
vortex ring was considered to be in solid-body rotation with
potential flow outside the core (Rankine vortex).
' The force and moment on the body are related to the

derivative of the fifst and second moment of vorticity‘

in the wake by Wu et. al.(ref. 5).

. pd (=27 d__f —_ (9~
P 2dtijrdv +p oo Ef_dB (2-9)
v B
- p d - - d 2.0
M=——jrx(wxr)dv+p—jrx dB — (2-10)
3at ), at ) g |

where w is the vorticity and U is the velocity of the body.

The volume V is the entire vortical region and the volume B
i3 the fegion inside the solid body. When the solid body is
steady, the moment of vorticity is equal to the momentum due
to the rotor according to equation (2-9). To determine the
moment of vorticity in the wake, a circular vortex sheet is

considered which is generated by a rotating blade.
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The second moment of vorticity due to a circular vortex sheet
is found to be zero by straightforward application of equation

(2-10). The axial momentum associated with each vortex ring is

) 2
3& = 7P Fo R
Ry
2 2 -
R® = 2 j r T'(r) dr — (2-12)
070

To determine the kinetic energy of the ring vortex system
we use the solution given by Lamb (1932) art. 161, for
Stokes stream function for the potential flow outside the

core of a single vortex ring.

+r2

) € K(k) - E(k)] —~—— (2-13)

,where K and E are the complete elliptic integrals of the

first and second kinds, respectly, and where

r, = J z2 + (r - ro )2

2

2
]

J z2 + (r + ry )
k = (r2 - rl )/(rz + rl)

The velocity components are given by

- -1 3% —_— -
u = T 32 . | (2 14)
. 13y - -
w o= T 3¢ (2-15)

For the semi-infinite vortex ring system we thus have
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r o0
p=—-—5=Z%L F — (2-16)
27 0

n
.where F_ = (ry +r, ) [Kk) -E (k)] — (2-17)
v =z -mnl+ (r -RZ  — (2-18)
in
r,. = | (z - nm? + (r + R)2 — (2-19)
n
kn = (an RS )/ ( For * Tin ) S — (2f20)

The kinetic energy in one vortex spacing is

K = mp II (w® + w2 ) dz r dr - — (2-21)
= 7p fr (w %% - u %% ) dz dr
o  h/2 h/2 '
= fp J wy l - TP uyp dz - mp IJ Yyw dz dr
0 =-h/2 -h/2 'r=0

-71py T by Lamb art. 162-1 (ref. 66)

oo
= —% r“sz F —_— (2-22)
0

To determine the kinetic energy generated by the rotor, we
compute the work done by the rotor to form one vortex ring.
Each blade moves through azimuth ¢ = 27/N to form one vortex.

Thus the total work done to produce one ring is :

27/8 Ro .
K, =N j j pUT ¥ r do dr — (2-23)
0 0 u
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For uniform downwash w and circulation T,

R.

0
K, =pT w I r 2n dr = mpwl R> — (2-24)
i 0 : 0

Here, w is the downwash on the rotor plane. Since w is doubled
in the far wake,

''=2wh ) — (2-25)

Thus, K; = -5 —p— , — (2-26)

,where h is the vortex spacing in the far wake.
To determine Fo , we use the kinetic energy given by Lamb

art. 163-6 due to a vortex ring at z = 0.

2

. ert _ 8 _ 715 (5
KO 5 RO C &n E/Ro 7 J (2-27)
8 7
FO —Ro L &n W_T] — (2-28)

0
where € is the radius of the vortex core and Ro is the

radius of the ring vortex on the plane of rotor. Equating

equations (2-22) and (2-26) with the use of equation (2-28) gives

2,2
7T'"R ©
0 _ _pp2 8 __ 7 :
2 " h =3 "0 Ry &n I g ) + LF, 3
' R R
E _ o, __7__°90 —_— (2=
RO = 8exp [ G ( h ) 2 L ] (2-29)
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, _ 1 -
;where G = RO § Fn (R0 , 0) , 2e = d
d R R R
0 . Y O, __7__.°20 - (7-
< = 16 - expl G( h) m ] (2-30)

4 h
In equation (2-30), 4 is the diameter of the ring vortex and

d, /h is the diameter to spacing ratio for the immediate vortex

0

ring behind the blade. For the first vortex ring

N | - 8 _17 —_ (2-
P = 57 ‘§1 Fn ’ FO = th &n =7R A ] {2 31)
For the second vortex ring
00
P = 57 ?2 Fn ’ Fo, R2 C&n =R 3 ] (2-32)
Likewise for the first vortex ring
6. ==L £ F(R ,0) +=* F. (R ,0) —— (2-33)
1 R n~1/’' R -1 17
1 1 1
and for the second vortex ring
1 1 "2
G,=%=—2% F_(R,,0) + = & F_ (R,,0) — (2-34)
2 R2 1 n 2 R2 -1 n 2
In general, for the ith vortex ring
d; R R. R
i _ i Ry _7_,00 o (2-
5 - 16 - exp C Gi (h) 2 T 5 : ] (2-35)
. 1 o 1 -i.
.where Gi = ﬁi § Fn (Ri ,0) + ﬁ; —§ Fn (Ri ,0) — (2-36)



;
(
From equation (2-35) the core sizes of ring vortices are
computed using the free wake model in Ref.(7) and semi-rigid
wake model. They -are shown in fig.s (2-6) and (2-7). In
the far wake the vortex core size approached that of Landahl
(ref. 3). As the ring vortex moves away from the rotor,
kinetic energy propagates outside the core due to the
interactions between ring vortices and hence the core size
grow. The core size grows to the value given by Landahl
which is the possible maximum. The free wake model gives
the smaller core size than the semi-rigid wake because the
former contains the energy in smaller spacing than the
latter. The bursting of the core will give larger core size

than the Rankine core due to the conversion of kinetic

energy into possible turbulent energy.
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2.5 LIFTING LINE VS LIFTING SURFACE

Lifting line theory is based on Kutta-Joukowski 1law
which 1s the relation betweeﬁ lift and circulation. The
effective aﬁgle of attack can be defined when the trailing
and 'shed vortices are trailed from the trailing edge of
wing, blade, or airfoil. That is, lifting 1line theory is
valid when there is no seperation from the side or leading
edge of a lifting body. The free wake lifting line couples
the exact relation between 1lift and circulation with the
nonlinear motion of the vortices trailed from the trailing
edge. Free wake 1lifting 1line theory gives the far field
solution of Euler equation. Hence this solution can be used
for the célculation of the pressure distribution around the
blade, that is, for the near field solution. The near field
can be obtained bj lifting body theory, Euler or potential
equation for inviscid flow and lifting body theory coupled
with boundary 1layer calculation or Navier-Stokes equation
for viscousAflow. For low aspect ratio wings the vortices
are trailed from the side or leading edge. In this case
lifting surface theory uses the flow tangency Eondition on
the surface with the free vortices from the side or leading
edge.

Lifting 1line theory can not model the seperated

vortices over the wing. But the lift used in lifting line

12



theory includes the 1leading edge suction and thickness
effect. in the 1lift. Lifting surface can not model the
singularity on the leading edge or the leading edge suction.
But the éressure distribution around the wing can be
obtained by the 1ifting surface theory. The separated
vortex can be placed on the surface for lifting surface
theory. For the performance anélysis of the rotor blades
lifting 1line theory 1is better than lifting surface theory
when there is no leading edge or side edge sepefation of any
importance. For the close encounter of the blade with the
strong tip vortex the effective angle of attack for the 1lift .
calculation may not be wvalid. In present study lifting
line, surface, and body theories were used. The 1lifting
iine solution wés in Dbetter agreement with lifting body
solution than lifting surface solution. In the comparison
the distance between the blade and tip vortex was about 5 %
of the blade radius. Lifting line appears to be better than
lifting surface for the overall performance prediction of

the rotor because of the use of the- exact 1lift-circulation

relationship of Kutta-Joukowski.
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Table 1. Comparison of 3-D momentum theory and Free wake-theory.
with 10 snawise division,

3-D MOMENTUM THEORY

NO. OF BLADES = 2

' SOLIDITY =0.0382

CT =0.00408 CP =0.000279 FM =0.660 Cf/CP =14.61

CTT =0.00400 CPI =0.000190

CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500

CTR =0.00408

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975
NB =
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB

B wuw o nn g ndnRNNR RN B BTN E KN E N H

z
- @
]

'

c

HORD

.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600

LN NONRNRNRORNRNPNNONNRNDRNONRNNONNNRODONONRNNDNONNDNONN

KIT
K1T
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT

[CRCECRCE SRR CR RN

CPR =0.000281

THETA
1713E402
. 15918402
.1469E402
.1347E402
11638402
.9800E+01
.8883E+01
.8272E+01
.7661E+01
.7@50E+01
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
10 RES.
11 RES,
12 RES.
13 RES.
14 RES.
15 RES.
16 RES.
17 RES.
18 RES.
19 RES.
20 RES.
21 RES.
22 RES,
23 RES.
24 RES.
25 RES,
26 RES.
27 RES.
28 RES.
29 RES.
30 RES.
31 RES.
32 RES,
33 RES.
34 RES,
35 RES.
36 RES.
37 RES.
38 RES.
39 RES.

DONOIOTODOAGN =

POOOPOPOOO®

'QQOGQQQQGQGOOQQG@OQQOQQOOQQ@Q@QQIQOO@QQO

ALPHA

.7566E+01
.8275E+01
.8277E+01
.7947E+01
.7124E401
.6081E+01
.5511E401
.5118E+01
.4717E+01
.4310E401

.2487E-02
. 6850E-03
. 1086E-03
.1156E-03
.1097€-03
.1103E~83
.1099E-03
. 1090E-03
.1077E-03
.9794E-04
.1010E-03
.1004E-03
.9947E-04
.9824E~04
.9674E-04
.9583E-04
.9693E-04
.97B2E~04
.984BE-04
.9899E~04
.9932E-04
.9945E-04
.9944E-04
.9928E-04
.9893E-04
.9851E-04
.9790E~04
.9722E-04
.9633E~04
.9531E-04
.9431E-04
.9301E~04
.9176E-04
.9033E-04
. 8866E-04
.B727E-04
.8539E-04
.8348E-04
. 8202E-04

WLA

.2448E-01
.3281E-01
.3872€-01
.4297€E-01
.4693E-01
.4845E-01
.4836E-01
.47939E-01
.4737E-01
.4648E-01

OO ®

ut

.1520E£+00
.2521E400
.3521E400
.4520E+00
.6018E+00
.7516E+00
.8264E+00
.8763E+00
.9262E+00
.9761£+00

COVOIDOOC®

CcL
.8453£400
.9064E400
.9001E+00
.8611E+00
.7696E+00
.6560E+00
.5841E+00
.5516E+00
.5083E£+00
.4643E+00

GAM

OO OOOO®

.3854E-02
.6857E-02
.9509E-02
.1168E-01
.1390E-01
.1479E-01
.1473E-01
. 1450E-01
.1412E-01
.1360£-01



Table 1. -cont‘inu'ed:..'

NO. OF BLADES = 2

SOLIDITY =0.0382

CT =0.00397 CP =0.000276 FM =0.639 CT/CP =14.35

CTT =0.00400 CP] =0.000188

CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500

CTR =0.00397

PO

CPR =0.000278

THETA

. 17138402
.1581E+02
. 1469E+02
.1347E402
.1163E+02
.9800E+01
.8883E+01
.8272E+01
.7661E+01
.7050E+01

CHORD = chord width :
= blade pitch angle ( =8 )
ALPHA = angle of attack in degrees
= normalized downwash ( = A)

ETA  CHORD
.150 .0600
.250 .0600
.350 .0600
.450 .0600
.600 .0600
.750 .0600
.825 .0600
.875 .0600
.925 .0600
.975 .0600
ETA

' THETA
WLA
UT

CL = lift coefficient N
normalized bound circulation (= I'/QR )

GAM =

[CRECECREORCRECE R R R

- = normalized radius

ALPHA

.8377E+01
.9175E401
.8859E+01
. 78B7E+01
.6112E+01
.5192E+01
.4930E401
.5203E+01
.5840E+01
.4858E+01

(=mn
=C)

(=c¢c )

45

-0.
-0.
-9.
-0,
-9.
-0.
-9.
-0.
-0.
-0.

WLA

2229€-01
2882E-01
3514E-01
4345£-01
5760E-01
6014E-01
5675E-01
4668E-01
2922&-01
3714E-01

( =0 )

OO

urt

.1516E+00
.2517E400
.3518E+00
.4521E+00
.6028E+00
.7524E400
.8269E+00
.8762E+00
.9255t+00
.9757E+00

= normalized total velocity with respect to blade(

CcL

QOO PEROOOO

il

.9310E+00
. 1003E+01
.9616E+00
.8519E+00
.6590E£+00
.5607E+00
.5327E+400
.5608E+00
.6259E+00
.5217E+00

}UT/QR )

GAM

[WEVECR SRR R R

.4236E-02
.7570€E~-02
.1015E-01
. 1155E-01
.1192E-01
.1266E-01
.1322E-01
.1474E-01
.1738E-01
.1527€-01



Table 2. Comparison of 3-D momentum theory and Free wake Theory

with 15 spanwise division.
3-D MOMENTUM THEORY‘

* NO. OF BLADES = 2 SOLIDITY =0.0382
CT =0.00408 CP =0.800279 FM =0.668 CT/CP =14.62
CTT =0.00400 CP1 =0.000198
CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500

CTR =0.00408 CPR =0.000280
ETA  CHORD THETA ALPHA WLA utT

.150  .@600  ©.1713E+02  ©.7566E+01 -0.2448E-01  0.15206+00
.225 .0600 ©.1622£+62 ©.8189E+01 -0.3100E-01  ©.2271E+00
.275 .0600 ©.1561E402  ©.8320E+01 -—0.3448E-01  ©.2772E+00
.350 .0600 ©.1469E402  ©.8277E+81 ~0.38726-01  @.3521E+00
.500 .0600 ©.1286E+02 ©.7707E+01 -0.4458E-01  ©.5020E+00
.67 .0608 ©.1078£+02 ©.6657E401 —0.4792E-01  ©.6717E+400
.760 .0600 ©.9678£+01  ©.6007E+01 —0.4847E-01  0.7615E+00
.808 .0600 ©.91B3E+81  ©.5704E401 —0.4845E-01 ©.BO15E+00
.840 0600 ©.8700E+01  ©.5394E+01 -0.4828E-01  ©.8414E+00
.88 .0600 ©.8211E+@1  ©.507BE+01 -0.4794E-01 - 0.8813E+00
910 .@600  ©.7844E+81  0.4838E+01 -0.4758E-01  ©.9112E+00
930 .0600  ©.7600E+1  ©.4676C+01 —0.4729E-01  ©.9312E+060
.958 .060@  ©.7356E+01  ©.4514€+01 —0.4696E-@1  ©.3512£+00
970 .0608 ©.7111E+01  ©.4351E401 —0.4658E-01  ©0.9711E+00
.990 .B6@®  ©.6B67E+01  ©.4186E401 —-0.4616E-01  ©.9911E+00
NS = 2 KIT = 1 RES. = ©.4570E-02

NB= 2 KIT= 2 RES. = ©.6544E-03

NS = 2 KIT= 3 RES. = 0.8440(-03

NB= 2 KIT = 4 RES. = ©.19356-03

NB= 2 KIT= S RES. = ©.1094E-03

NB= 2 KIT= 6 RES. = ©.1090E-83

NB= 2 KIT = 7 RES. = ©.1084E-083

NB= 2 KIT= 8 RES. = ©.1076E-083

NB= 2 KIT= 9 RES. = @.10656-03"

NB= 2 KIT = 1@ RES. = ©.1051E-83

NB= 2 KIT =11 RES. = ©.1003E-83

NB= 2 KIT = 12 RES. = ©.1006E-83

NB= 2 KIT = 13 RES. = ©.9953E-04

NB= 2 KIT = 14 RES. = ©.9831E-84

NB= 2 KIT = 15 RES. = ©.3686E-04

NB= 2 KIT = 16 RES. = ©.9604E-04

NB= 2 KIT = 17 RES. = ©.9538E-04

NBe 2 KIT = 18 RES. = ©.9463E-04

NB= 2 KIT = 19 RES. = ©.9361E-04

NB= 2 KIT =28 RES. = ©.9266E-04

NB= 2 KIT = 21 RES. = ©.9134E-04

NB= 2 KIT =22 RES. = ©.9015E-04

NB= 2 KIT =23 RES. = 0.8873E-04

NBw 2 KIT = 24 RES. = ©.8718E-04

NB= 2 KIT = 25 RES. = ©.85726-04

NB= 2 KIT =26 RES. = ©.8396E-04

NB = 2 KIT = 27 RES. = ©.8235E-04

NB= 2 KIT =28 RES. = ©.8038E-04

NB= 2 KIT =29 RES. = ©.7878E-04

NB = 2 KIT = 30 RES. = ©.7666E-24

‘NB = 2 KIT = 31 RES. = ©.7478E-04 _

NB= 2 KIT = =  0.7271E-04 .

32 RES.

cL

[RGB R I RS B S B

.8453E+400
.8998E+00
.9092E+00
.9001E+00
.£340E+00
.7186E+@0
.6479E+00
.8150E+00
.5815E+00
.5473E+00
.5214E400
.5039E+00Q
.4864E+00
.4687E4+00
.4510E+00

GAM

DAV OIRPOIIRE®

.3854E-02
.6131E-02
.7560E-02
.9509E-02
.1256E-01
.1448E-01
.1480E-01
.1479E~-01
.1468E~-01
.1447E-01
. 1425E-01
. 1408E-01
.1388e-01
.1366E-01
.1341E-01



ORIGINAL Proz i
| OF POOR QuatiTy
Table 2, -continued.

NO. OF BLADES = 2  SOLIDITY =@.0382

CT =0.00394 CP =0.000277 FM =0.630 CT/CP =14.19
CTT =0.00400 CPI =0.000190 ‘
CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500

CTR =0.00394 CPR =0.000279

ETA  CHORD THETA ALPHA WLA uT CL

.150 .0600 0.1713E402 0.8372E+01 -—0.2230E-01 2.1516E+00 ©.9306E+00
.225 .0600  ©.1622E+02 0.9085E+401 -0.2742E-01 ©.2267E400  ©.9954E+00
.275 .0600 ©.1561E+02 0.9322E+01 -0.2961E-01 0.2766E400 2.1016E+01
.350 .0600 0.1469E+02 0.8949E+01 -0.3458E-01 ©.3517E+00 ©.9710E+00
.500 .0600 ©.1286E+02 8.7216E+01 —0.4890E-01 0.5024E4+00 0.7776E40Q0
.670 .0o600 0.1078E+02 0.5658E+01 -0.5968E-01 0.6727E+00 ©.6107E+400
.760 .0600 ©.967BE+01 ©.5181E+01 —0.5948E-01 0.7623E400 ©.5595E+00
.800 .0600 ©8.9189E+01 2.5040E+01 -0.5776E-01 ©0.8021E+00 0.5446E+4+00
.840 .06020 ©.8700E+01 0.5002E+01 -0.5404E-01 0.8417E400 2.5405E+400
.880 .0600 ©.B211E+01 ©.5351€401 —0.4374E-01 9.8811E+20 ©.5760E+00
.9190 .0600 ©.7844E+01  ©.5699E+01 -—0.3389E-01 ©.9106E+4+00 2.6114E+4+00
.930 .0602 ©.7600E+01 0.5703E401 -—0.3062E-01 ©.9305E+00 ©.6115E+00
.950 .0600 ©.7356E+01 0.5399E+01 —@.3227E-01 0.9505E+00 2.5793E+00
.970 .0600 ©.7111E+01 ©.4777E401 —-0.3936E-01 ©0.9708E+00 0.5129E+00
.999 .0600 2.6867E+01 ® ©.9916E+00 ©.3876E+00

.560BE+01 —0.5618E-01

by

GAM

OO

.4234E-02
.6769E-02 -
.8433E-02
.1825€E-01
.1172E-01
.1232E-01
.1280E-01
.1312E-01
.1365E-01
.15228-01
.1670E-01
.1707E~-01
.1652E-01
. 1494E-01
.1153E~01
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fig.2-1. Geavetry of nodel using vortex rings and cylinders to represent
the viake, |

Q)

B)
)

Side view of rotor wake model showing intermediate and far
wakes formed fram vortex spiral - 2 blades. Tip vortex only
shown,

Blade One . ____ Blade two

—————

Plan view showing near wake
Formation of intermediate wake
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Figure 2-2, Comparison of Bound Circulations from Momentum Theory

and Free Wgke Lifting Line Theory.
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CHAPTER 3
SURFACE SINGULARITY METHODS FOR COMPUTING THE POTENTIAL

FLOW OF HOVERING ROTOR WITH FREE WAKE GEOMETRY

In this chapter 1lifting 1line, 1lifting surface, and
lifting body theories are applied to the aerodynamic
analysis of hovering helicopter rotor with the calculation
of free wake geometries. For 1lifting 1line theory the
relationship—of Kutta-Joukowski between bound circulation
and downwash is solved iteratively untill the wake geometry
is converged. ~ The spiral wake of hovering rotor is
represented by vortex rings and cylinders. Implicit-type
ﬁake geometry calculation is used_to enhance the stability
and convergenée of wake geometry calculation. The radial
and axial movement of intermediate ring vortices are
computed exactly by integrating the downwash velocities on
them directly below the blade while near wake is  fixed on
the plane of rotation and far wake of vortex cylinders is
the continuation of intermediate wake.

For 1lifting suf%ace' and 1lifting body calculation
intermediate and far wakes are tréated as lifting line
problem and the influence of near wake is treated as iifting
surface or 1lifting body problems. For 1lifting surface

solution vortex lattice method is used and for lifting body
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golution the superposition method of sources and vortek'

sheets on the body surface of Hess and Smith (ref. 34) are

applied. This means that the influence of wakes are
computed on a quarter chord position of the blade for
lifting 1line theory and on control point of each body
surface element for lifting surface or body theory. In the
analysis the rotor used by Johnson (ref. 35) is used for
the comparison with Miller’'s results (ref. 7). Also, the
wing of Boeing TR 17 of aspect ratio 2 is used to compare
with the results in Ref. (33).

In section (3.1) vortex lattice method and vortex panel
method are formulated for lifting surface solution. Also,
the pressure coefficient formula for lifting surface theory
is presented. In section (3.2) the mathematical basis of
lifting surface and lifting~body theory are formulated by
applying Green’s second identity to flow field. The matrix
equations for unknown surface total potentials or
perturbation potentials are derived which are the strengths
of doublets on body surface. 1In section (3.3) lifting body
theorf of Hess and Smith using source and vortex are derived
into a matrix equation which is. the relationship between
boundary cénditions, Kutta conditions, and unknoﬁn
strengths. The matrix equation is formulated from a system
of 1linear equations obtained from descretiziné Green’'s

integral solution or from the superposition of surface



singularities. In section (3.4) the tecﬁnique of free wake
geometry calculation are discussed. In section (3.5) the
engineering calcualtion of skin friction drag is derived for
laminar or turbulent boundary layers of airfoilp

Miller, R.H. (ref. 7) used the simplified free wake
model of infinite line vortices or ring vortices below the
rotor to vreplace helical vortices. In both cases the
semi-infinite near wake was attached to the blade on the
plane of rotation for the rotor of two blades. He had three
line or ring vortices 1in intermediate wake and three
semi-infinite vortex sheets or vortex cylinders in far wake
and used the Betz roll-up for line vortices. These two or
three dimensiénal simplified free wake model predicted tip
vortex  positions in close agreement with experiments.
Miller, R.H. (ref. 8) investigated the effect of bound
circulation and the extent of intermediate_wake on vortex
posi;ion. He found that the wake contracted, then expanded,
and became wavy when far wake was eliminated. Simplified
"models was in agreement with the more complete solutions.
Miller, R.H. (ref. | 9) showed that ideal figure of merit
decreased when vortex core size was decreased, or when wake
rotation was included, or when number of spirals in the far
wakelwas increased. Miller, R.H. (ref. 10) suggested the
simplified approach for the first time in which the spiral

wake was replaced by line vortices or ring vortices which



were shown to have a closed form solution for the induced
velocities at any location.

Brower, M.(ref. 12) compared lifting surface (vortex
Lattice) and 1lifting line .solutions for the Dblade
interactions with curved or straight vortex liﬁes. He found
that lifting surface solutioh predicted 1lower bound
circulation than lifting line solution. Brower, M. {ref.
13) computed the bound circulation of hovering helicopter
rotor using lifting line theory and free wake model of
filament vortices. The wake was divided into near wake of
70 dearees, intermediate wake of three filament vortices
over 740 dedrees, far wake of three semi-infinite vortex
cylinders. His predicted thrust coefficients were a 1little
lowerA than the experimental results. The calculated wake
contraction was less than the experiments, which he
suggested was due to inner line vortices. Tanuwidjaija, A.
(ref. 14) investigated the effects of free wake models on
hovering performnance prediction. He used vortex sheets in
near and intermediate wéke regions. He found that the free
wake model which used vortex sheets in near wake and four
line vortices in intermediate wake was in better agreement
with experiments than one which used vortex sheets in near
and intermediate wakes. Also, he neglected the distortion
of inner sheets in near wake of that model.

Kocurek,J.D. et. al. (ref. 15) computed the
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hovering performance with circulation coupled prescribed
wake l1ifting surface theory. The axial and radial settling
-rates of tip and inner vortices were expressed as a function
of the tip vortex sttenéth and the number of Dblades. They
also computed liftiﬁg line and lifting surface sclution and
found that leading edge suction obtained by 1lifting surface
solution was higher than one obtained by lifting line
solution near the blade tip region. Lifting surface theory
with higher 1leading edge euction underpredicted the 1lift
coefficient compared to liftihg line theory. Shenoy, K.R.
and " Gray, -R.B. {ref. 16) computed the surface vorticity
distribution of thick bladed hovering rotors. They used
lifting 1line theory with a prescribed wake to calculate the
effective ahgle of attack. From sterting the
two-dimensional airfoil surface vorticity at the effective
angle of attack they soived the three dimensional potential
flow by iterating until the surface vorticity strength
became the total surface vorticity due to blade surface
vorticity, prescribed wake vortices, and free stream.

Djdjodihardjo, R.H. and Widnall, S.E. (ref. 17)
developed a numerical method wusing only doubleﬁ (or
vorticity) distribution for the calculation of wunsteady
potential flow. They used a quadratic distribution ef

doublet onlyialong the chord and computed two kinds of

influence coefficients for the surface velocity and
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-potential, Although they gave results about the impulsive

starting of airfoil and wings, they did not give formulas

for two-dimensional problem. Preuss, R.D. et. al. (ref.
18) developed the potential flow solution for wind turbines
and hovering helicopter rotors wusing Green’s function
method. For 1lifting surface problem the unknowns were
potential discontinuities and for a lifting body problem the
unknowns were sufface potential strengths. They found that
lifting surface solution underpredicted the blade 1lift,
compared to 1lifting body solution and that 3 chordwise and
10 spanwise lifting surface elements were enough to achieve
the required accuracy. For the lifting body configuration
solution the strengths of surface sources were known and the
strengths of surface doublets, that is, the perturbation
. potential strengths were unknowns to be determined by the
normal flow boundary condition. They féund that the
airloads acting on wind turbine blades due to shear wind was
oscillatory in the same form as the shear wind. Clark, D.R.
(ref.19) reviewed the previous potential flow panel code
with :seperated region modelled by constant vorticity panel.
A bluff body was modelled by diétribution of sources and
linear vorticity and the body surface vorticity was zero
after the seperation line with all vorticity going into the
flow field.

Johansson, B.C. (ref.20) showed that the effect of
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compressibility for a helicopter rotor in vertical climb,
hovering, and for a propeller was a Prandtl-Glauert
correction on a 1lift curve slope with the effective angle of
attack‘computed by the compressible flow downwash for a
lifting 1line theory; Johnson, W.(ref. 21) defived the
lihearized equation for the acceleration potential 1in a
coordinate where an oblique convecting vortex interaction
with an infinite wing appeared as steady flow. As a
function of free stream Mach number and the skew angle of
the convecting line vortex he derived elliptic kernal which
related the acceleration to the downwash. He calculated
peak section lift for incompressible flow as a function of
vortex height from an infiniﬁe wing. Bristow, D.R. et.
al. (ref.22) combined 3-D surface panel method with
multiple geometry perturbations 'to compute the potential
flow for a series of different geometfies. ‘Their surface
panel method used the constant source of known strength and
a gquadratic doublet on each panel with zero interior
perturbation potential condition. From the linear
relationship between the doublet(potential) strength andAthe
boundary condition on each control point they obtained the
derivative matrix of the surface potential with respecf to
geometry perturbations.

Tai,T.C. et. al. (ref.25) computed the optimum round

trailing edge geometry for the highest 1lift of circulation

o



control airfoils. In their analysis the potential flow was
computed ‘by surface vortex panel method with the Kutta
’condition of specified circulation due to blowing. Three
baseline geometries of round trailing edge were used as
design variables for the search of the higheét lift. The
viscous effect of blowing formed a separation bubble at the
trailing edge. At the upper and 1lower ends of the
separation bubble the zero pressufe difference determined
the circulation around the airfoil. But the predicted 1lift
waé dependent on panel arrangements and hence thé
cifculation was not uniquely determined. It is unlikely
that circulation control airfoils are as effective as
airfoils of chord change even though the 1lift to drag ratio
is high due to the r-eduction in drag by jet flow. Mcveigh,
M.A. et. al. (ref.23) showed that the tapered tip had the
highest figure of merit for hovering performance among
tested tip shapes. They found that low solidity rotor had
the higher 'figure of merit than the high solidity. one for
the same thrust coefficient and the same tip Speed. But as
the tip speed 1is decreased, it is expected that the high
solidity rotor has a higher induced power, hence a higher
figure of merit than a low solidity one.

Roberts,T.W. and Murman,E.M. (ref. 24) derived the
potential finite difference equation for axisymmetric flow

beneath hovering rotor by using mass conservation with

63



-potential jumps due to vortex branch cuts. By subtracting
the local potential due to a ring vortex they computed the
.velocity induced on that ring vortex due to all other
vortices and then they addgd the self induced velocity to
get the convecting velocity. Therefore the convecting
velocity of a ring vortex was not dependent on the grid
sizé. They found that relatively a feﬁ vortices were
required to adequately determine the downwash on the rotor.
Liu, et. al. (ref. 26) solved the vorticity-stream
function equation in cylindrical coordinate, while
neglecting Eircumferential variations, for the vortical flow
beneath the rotor plane. They found that the roll-up and
inboard movement of vorticity occured very rapidly and that
the maximum vorticity decayedvto 0.8 from 1.0 after 180

degree rotation.



3.1 VORTEX LATTICE AND VORTEX PANEL

LIFTING SURFACE THEORY

Vortex lattice method places the concentrated vortex on
a quarter pbint of each panel and the control point on a
three quarter point of each panel. This arrangement of
vortex and control points will give the exact value of the

overall circulation as follows.

T _ -
2M (x - x_) -7 V’w- n = - Vo
L = 21V, o(x_ - X)) = 21V od - (3-1)

The circulation distribution of the plate airfoil at angle
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of attack o« 1is y(x).

Y (x) = 2V S | — (3-2)
The overall circulation is T.

T = Vallc . ——— (3-3)
By equating equations (3-1) and (3—3)-we obtain the vortex

position to give the same circulation for vy = constant panel

as flat plate.

X, - X = —5 — (3-4)

In ref.(36) it was pointed out that vortex lattice method

underestimated the strength of vortex near the leading edge

N\
f— ——— -

compared to equation (3-2). Therefore,&let us consider the vortex
panel method. Insted of concentrated vortex, we distribute

a constant vortex sheet.




C.

1 Y = - A o= -
ZHI X - % )dx = Vw n = V&
0 c
c
10y Y ¥~ €
f?f x - x. ¥ =327 ln{ -x }
0 c c
c - xC
¥ In(5—=] = -V a2r
c
—Vwm 27
-Y= C - % ‘_—"—(3—5)
in ( pe c ]
c
27 Vwa c
Y.c:f‘:- e~ x (3“6)
ln(—————g) .
X

By equating equations (3-3) and (3-6) we obtain

x = —S_ = 0.8808 c

c 1
1+—§
e

(3-7)

The vortex sheet strength predicted by vortex panel method

should represent the strength to match equation (3-2). Hence

y (x,) - ¢ =2V, —Y . ¢c=T — (3-8)

By eqhating equations (3-3) and (3-8) we obtain the

6/



- vortex position.

X = —"C—z_ = 0.2884c —_— (3-9)

The vortex strength predicted by equations (3-1) or (3-6)

shouid be used as the strength at the location X, = 0.2884c¢

Then the underestimation of vortex strength by vortex lattice

method is expected to disappear.

The sensitivity of the vortex strength on control point

location for one panel is obtained from equations (1) and

(6).
Ffom equation (1),
al . vy a2 T
ax_ - 00
c
From equation (6),
2
ar ) - 27 V°° oC
: - —
dXC XC {C - XC ) { C—Xc } J
A in
xC

'Vortex lattice method is less sensitive to control point

location than vortex panel method for one panel. But as the
number of panels increases, the vortex panel method is less
sensitive to éontrol point location than vortex lattice
method. Hence ,vortex panel method is expected to give
better results for three dimensional filow, for example, for
hovering rotor, than vortex 1lattice method. Both method
satisfy the Kutta condition implicitly.

The pressure coefficient, Cp , 1s calculated as follows.
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p + 0.5 pU% = p_ + 0.5p0°r? —_— (3-10)

f is the rotational speed of the rotor and r is the radius.
On the suction surface U = u + 0.5 v and on the pressure
'surface U=u-0.5v. uis the total tangential velocity
on the surface and Yy is the local strength of vortex sheet.

C . =1 - ( u_ o, Y \2 —_— (3-11)
+ men o R

where mn 1s the normalized radius. By integrating the preSsure

distribution the normal section fofce,'N , of lifting surface

is calculated as N = C_ .0.5p0°%¢%c., Since C, = a &, &, = C_ /a

as a first approximation where o is the angle of attack, a is

the lift curve slope, and Cx is the lift coefficient.

arc tan(ﬁgé) =0 -0 from the figure

w / (r) = A/n = tan(® — )
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Al= n tan(o — ml)

By Kutta-Joukowski law normal force N should act perpendicular

to the velocity UT‘

C. = N = n
X 0.500% ¢ 1 + a2

Then the new angle of attack is o = Cz /a. The power coefficient

of rotor is C_.
P

1

_ . oy 4 _ 2 2
Cp—O.ScI ECQ sin(0© o) + Cd cos(© ®)3} nin

+ A%) dn —(3-12)
Np

‘The thrust coefficient of rotor is CT'
1

_ ' o _ 2 2
CT—O.SOJ [C,c08(0 — &) - C 51in(® — a)}(n + X

) dn — (3-13)
N
Here, o 1s the solidity and A is the inflow ratio.

Also, _ 2 _ 2
Cd = Cdo + Cdk a” = 0.014 + 0.5 o
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3.2 DERIVATION OF METHOD

The second form of Green’s theorem is

[[[ co,9%, = 0,9%,) av
R
- II n.C 01V 0,— 0,7 0,) d5 — (3-14)
5

where R is the region bounded by the closed surface S and

- . : o T, .
n is the outward unit normal. . Let us consider the region

Al

outside a wing as shown in figure.

Let ¢, = ¢ and 0, = x = 1/r. Then v°0,=0 in region R and

'3
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from the region R. Then the first integral in equation (3-14)

is zero. At a point P

5 1 1
Il R.Covp - 290 as
- 13 1 o o
=un [ (2, - oo ran=-ame, — (35
r-o r r

- 11 _
fj n.(-0Vy + 2V0)dS = -4l
5

,1f p is inside of R.

0 , if p is -outside of R.

S =Body surface + Wake B + NW.

On the wake surface W,

Jj 3.0 3ve ) as =
r .
5

On the wake surface the normal velocity is continuous. Hence,

R S O P P e ¢
0" 4HJ] (9o ~ ovd).1 as
B

1 1

- . — .
+ o JJ ( o, = 05)9% .7 dS — (316
W

Let"'\\\cpl be the velocity potential inside of the wing.
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0 = 2 [[ (tvp.— o.v1).7 as — ;
i Vb~ ¢1Vy).n (3-17)
B

Adding equations (3-16) and (3-17) we obtain

S 1 - 2
¢p = 77 II - (Vo V¢l).n das
B

=
i

1 1 - g
= - = _ = — (3-18)
+ T Jj(¢ ¢1)Vr .nds + JJ(¢ ml)vr'nds ( _
B W '

If we set ¢ = ¢1 on the body surface, we get potential due -

due to source distribution and circulation T = ¢u - ¢x .
1 g 1 1 -
op = ~13 [[ 2(V0 — V9,).0dS + g7 II(@U ~ 0g)VE.7dS
B W
. 1ffe _1 1, 2 |
0, = 4HII Zas + 4HIIFV(r).ndS (3-19)
B W
Here _L ﬁ_(l) is the potential due to a doublet
47 dnr :
90
—P = #.n_ - ——lIJo—é (—2-)as
o ‘ 411 2]
p P g ppg 2
lIJ 3 3 1 . .
+ = Iz =— (=—)ds - :
4 8 d ‘ - -20)
I a np Ng rpq q (3_' 4

The velocity due to doublet can be replaced by the velocity
due to vortex. Then the vortex of circulation of I' can be

distributed on the wing surface or on the <camber surface.
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If we let V¢ ‘n = le-g, then we get the potential due to

doublet distribution only.

__l _ l -~
¢p = 4HJI (¢ — ¢;)V(Z).ndS
B
1l ‘ 1, - ; X
+ Zﬁj] (0, — 05)9(3).NdS (3-21)
W

When the wing has zero thickness, the normal velocity across
the wing is continuous. We get the potential due to doublet only.

From equation (3-16) we can get the expression for the total

potential @&.

By = Oy - ;%II(%V¢‘— ov2) . nds
B

1 _ 1, = —_— (3-22) .
*Zﬁ]f (o, ~ 0)9(3).1 ds _(3-22) _
"

Here ¢m is the potential due to the free stream. Let ¢ . be the

total potential ¢. THen V¢ - 3 = 0 on body surface.

i} 1 1, 2
6, = 0, + 4HIJ 3v(2).7 ds
B
1 1, =2 T (3=
+ 4HII (8 — 85)9(3).7 ds (3-23)
W

Let p be the point on the wing surface. Then equation(3-23) becomes

4



- 20 r

1 1, -2 1 1, 2 -
——II@V(;).ndS + ——II(@U - QB )V(=).ndS Qp + 2¢mp =0 —(3-24)
-p W

For a numeriéal solution of equation (3-24), we represent the
surface and wake by a number of flat quadrilateral panels and
we assume the singularity distribution is constant over each

panel. Equation(3-24) is applied at a central control point on

the under side of each surface panel.

E8.k ~ Cok ~ Wok 1183 = {20, ——  (3-25)
where Spk is the kronecker delta.
= & 1 :
Cop = € an 3n(F)48, 2 P Xk
-r +—1[ 3 /1
Wy =L :znj 2(1ds_ 3
S
w
Wék = 0 for the segments not in contact with the trailing edge.

From equation (3-23) we obtain

3
—P-9¥ .0 + —ljjéé— 8 (lyas
an ’ 41 9 3
p = F "p Mg &1
B
1 3 o 1 . -
am) |Gy - %05 an, {r' % —  (3-26)

W 9

Since doublet is equivalent to vortex, the surface distribution
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of vortex can replace the doublet distribution. The strength of

vortex is the surface tangential velocity since & is the

total potenfial.
When P is the point 6n the wing surface, equation (3-16)

becomes

‘ g 1 .
[[ o, = 0gr9¢pr.Ras = Z0, — (3-27)
Using the same approach as equation (3-25) we obtain

LS, -C, -W

= 3% : ‘
pk = Cpk 7 Wpi 1 {03 =Cby, Iig) 3 —— (3-28)

pk = ZHJ 3n r)ds 1. p * k

1 1
ka = [iﬁj E(;) dS 1

S
w

ka=0 for the segments not in contact with the trailing edge.

S Y §
Doy = [ 2nj 1 as 3
5

k

In equation (3-24) we set & = ¢, + ¢.
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-p_ + o + —lfj<¢ + 9937 as
p ©p 21 o0 r'’

B-p
1 - 1, 2. _
+§ﬁ[I(¢u 0g)V(y).nds = 0
w
1 1, = 1 _ l" _
L iiJI¢V(;)-nd5 -3 II<¢U 0p)V(3).ndS ——(3-29)
B-p )
=9+ jfm v(i).n ds
©p o r
B-p

The numerical implementation of this equation is

cspk - C - ka J£¢k} = C§

Pk pk © CprPui? —— (3-30)



__3 .3 - LIFTING BODY THEORY.

Among the various formulations presented in section
(3.2) the method of Hess and Smith in ref.(34) was used in the
lifting body potential flow computation of wings and rotor.
The method of Hess and Smith can be derived from equation
(3-20) as follows. There are N normal flow boundary conditions
to determine N source strengths, cj , for N surface panels of the
lifting body. There are also K Kutta conditions of equal pressure
on lower and upper panels nearest to the trailing edge to
determine K Qortex sheet strengths, Y v for K spanwise sections

of the lifting body. The normal velocity at control point i

can be expressed in matrix form.

v e

CAy . Ay ] ( cj] = w3 i=1,:40,N (3-31)
Y | -
_r_ 1 > SN
where A, = ( [ Vi(;jj)dsj } n, [ (3-32),
S. *+J
]
—)
. _ _ 1 rik x ?k * .»‘ ~v -
and A, = [ 11 | . dsk} n, —— (3-33).
- r.,
Sk ik

The magnitude of Fk is unit for the surface panel Sk » increases
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linearly along the side edge of panels according to Helmholtz law,
and stays constant in the wake. The perturbation tangential

velocity at control point i is { vi}.

{ vy 3 =C Cij v Cik 3 { aj } —_— (3734):
Yi
where o~ [ - —ljj v.-(—l—) dS.J»?. - (3-35)
ij 4T i \r.. J i -
S . 13 .
3
-
r.. x T
1 ik k =
I N § . — (3-36)
C\ [ 4ﬂjf r3 ds } g, — 3

- -3 . .
ny and ti are the normal and tangential undt vectors on

control point i. The Kutta condition gives X additional

equations in addition to N eguations given by equation:iB-él)

-

-
L Ciu,5  Ciu,x 2 ( £ } ¢ Tt
\ Y

" E i,y 7 Cagx { %5 } + T, - By (3-37)

Here, i is the control point of the panel touching the

trailing edge.

LCiy 5~ Cip.5 ) Ciyy ™ Cig,i? ( cj}



Let Aij = Ciu,j - Ci%,j" A, =C, - C,

4 —’ . 5 - > o o
and wi = ﬁm . tiz ~ 6@ . tiu for i = N+1, ,N+K.
Thenr - ! = PR — -
C Aij ’ Aik ] {zj} = { wi} , 1 =1, ,N+K (3-38)
k

The solution of this matrix equation gives N source and K
vortex strengths. For the rolled-up vortex trailed between

station k and k+p, the strength of this vortex is fk— rk+p'

The influence coefficients at control point i due to this

rolled-up vortex is Bik . Then Cik= Cik + Bik and Ci,k+p
= Ci,k+p - Bik . Equation (3-34) gives the perturbation

- tangential velocity at control point i. From Bernoulli’s

equation we can determine the pressure distribution.
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3.4 CALCULATION OF ROTOR FREE WAKE GEOMETRY

For rotor performance analysis wusing 1lifting 1line,
lifting surface, and 1lifting body theories, the wake
‘geometry is divided into near wake, intermediate wake, and
far wake. The near wake consists of concentrated circular
vortex filaments attached to the blade trailing edge and
spans to the half of.the blade spacing from each blade on
the plane of rotation. The number of vortex filaments in
near wake depends on the number of spanwise divisions of the
blade. The intermediate wake usually consists of four ring
vortices in axial direction and three inner ring yortices in
radial direction with the root_vortex suppressed. The far
wake cbnsists of semi-infinite vortex cylinders whose number
depends on the inner ring vortices in intermediate wake.
During 1lifting surface and lifting body representation of
the rotorvblade, the blade bound circulation is considered
to Dbe concentrated on a quarter chord line of the blade for
the»calculation of free wake geometry. During ffee wake
geometry computation the near wake is considered to roll-up
instantaneously on the plane of rotatién according to the
conservation of linear momentum. The radial positioné of

rolled-up vortices are determined as follows.
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where R is the radial position of rolled-up vortex, Arj the
strength of the trailing vortex filament, and r the radial

. ]
coordinate of the trailing vortex filament.

- From the root to 15 % radius of the blade span the root
vortex 1is conSidered to be formed and then is suppressed.
From 15 % radius to the position of the maximum bound
circulation a second inner vortex is rolled-up. From the
ﬁosition of the maximum bound circulation to the blade tip
the tip vortex is formed. The rolled-up near wake was used

to compute the induced velocities on the rolled-up near wake

‘vortex, while the entire near wake was used to compute the

induced velocities on the blade or intermediate wake. The



induced velocities on the blade and beneath each biade are
computedf The average of these two velocities multiplied by
the Dblade spacing determines the position of intermediate
ring vortex. Since thé influence of near wake vortex
filaments is computed only on and beneath the blade,the near
.wake is extended to form ring vortices and the half of the
velocity due to ring vortex is the induced velocities on

blade and wake.

On the position, i, of the quarter chord line of the blade,

or intermediate wake the induced velocities are (€ w{ ﬁ + vi?”).
n+l_.n n+1l n+1_ n n+1
Vi T Bai,g Yy Vi T i Yy
~ where Yjare the strength of bound circulation, Ayi,j and Azi,j

are the y- and z- direction induced velocities due to all
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trailing vortices from bound circulation, j, of unit strength.
i covers all spanwise stations of the blade and all positions
of intermediate vortices. The influence coefficients Azi,j
and Ayi’jare computéd from the wake geometry of (n)th iteration.
The bound circulation of (n+l)th iteration 1is computed by
applying the boundary condition of no flow normal to body
for lifting surface and lifting body theory or
Kutta-Joukowski 1law for 1lifting 1line theory. The wake
geometry of (n+l)th iteration is. computed by interérating
the dqwnwash on wake positions. When the variation of the
bound circulation is 1less than 0.5% for all sections
independently, the iteration stops. For the computation of
free wake geometry by lifting line theqry the initial wake
geometry is generated from semi-rigid wake model obtained by
local momentum theory. For lifting Surface and lifting body
theory the wake geometry starts from the 1lifting line
results. The influence coefficients on a quarter chord line
due to intermediate and far wakes are taken to be those over
all chordwise panel points. This means that the blade is

treated as 1lifting 1line for intermediate and far wakes

during lifting surface and lifting body calculation.



3.5 RESULTS AND DISCUSSION

In this section we discuss lifting body solution for a
thin airfoil and wings, and lifting line, lifting surface,

and lifting body solutions for :the rotor used in Ref.(68). 1In

1

figure (3-1) to (3-5) lifting body and Euler solutions for a
thin airfoil of 1% thiékness‘ and vortex panel and 'exact
solutions of a plate are compared. As the thickness
approaches zero, source and sink of the 1lifting body
solution become of .equal strength and approaches doublet.
Figure (3~1) shows that suctipn side pressure near the
leading edge are _overpredicted compared tov the exact
solution of figure (3-2) as the thickness approaches zero.
Euler solution of Ref.(32) ‘in figure (3-3) is in good
agreement with figure (3-2). Vortex panel solution in-
figure (3-4) is in good agreement with the exact solution in
fighre (3-5). Lifting body solutions from figure (3-6) to
figure (3-9) for a rectangular wing of Boeing TR 17 of
aspect ratio =2 demonstratéd that they are in good agreement
with the solutions ,Of Ref.(33). In Ref.(33) doublet
distribution on camber surface and source distribution on
body surface were used iﬁstead of one vortex and source

distribution on body surface used in the present method.
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Figure (3-10) to (3-13) show lifting body solutions for a
rectangular'wiﬁg of NACA 0012 of aspect ratio of 6 which are
/in close agreement‘with experiments in Ref.(67). But at the
wing tip region the rolling-up vortex from the side edge

passes above thé wing surface slightly inboard from the tip.

Hence the experimental results are different from the
theoretical results of the fullj attached flow near the wing

tip. Figure (3-10) to (3-12) shows that the boundary layer

growth gives higher negative préssure near the wing leading

edge. Figure (3-14) to (3-23) compares lifting surface and

lifting body solutions of NACA 0012 sections for a rotor

used in Ref.(68) with wake geometry computed by free wake

lifting 1line theory. In all figures thickness give rise to

higher surface velocities compared to 'surface of zero
thickness and hence 1lowers the surface pressure. Also,
thickness gives «higher leading edge suction and hence
increases the bound circulation. Vortex lattice lifting

surface theory underestimates the leading edge suction,

while‘ lifting body theory using chordwise panels less than

50 panels overestimates the leading edge suction. Figure

(3-24) shows fhe wake geometry computed by free wake 1lifting

line, 1lifting su;face, lifting body theories, and one

computed in Ref.(7). Excepé foé-fhe-frée wake-iiftingrbédy soiuticn,
wake geometries are in close agféement ‘with eachr éther.

Higher circulation due to thickness and due to the finite
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number of panels was coupled to wake geometry to mo&e -ring
vortices further downward for lifting body solution; Bound
 circu1ation distributién are shown in figure (3-25), which
are obtained by lifting line, lifting surface, lifting body
theory with ﬁhe same wake geometry compufed by free wake
lifting 1line theory. The peak bound circulation due to
lifting body is the highest among the three solutions and
lifting 1line shows the higher peak circulation than lifting
surface solution.  From the figure this différence seems to
be due to the different. leading edje suction due to
thickness and due to the finite number of chordwise panels
for the 1lifting body solution. In figure (3-26) bound
circulation obtained by free wake lifting line and free wake
‘extended lifping iine*are in close agreement except -the peak
circulation. Free wake lifting body solution gives much

ihigher circulation than' two other solution partly due to
nonlinear coupling of thickness with free wake geometry.
Figure (3-27) compares the bound circulation obtained in
Ref.(7) with one obtained by the present hethod and by using
the éame geometry used in Ref.(7), and with one obtained by
the present mgthod with free wake geometry. They are in
almost exact agreement. Figure (3-28) shows the effect of
far wake and intermediate wake on bound circulation and
performénce coefficients. Far wake has a about 10 % effect
on the performance coefficients and intermediate wake has

* . . .
Singie panel lifting surface solution (Weissinger)
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very strong influence on the performance of the rotoé. When
there ;s only near wake, the thrust coefficients increases
and the required power coefficients decreases very much.
Figures (3-29) and f3—30) compares the bound circulations
obtained by lifting liﬁé, surface, and'body theories coupled
with free wake calculationé. Lifting body solution gives
about 10 % higher bound circulation due to the thickness
effect coupled with free wake geometry. As the number of
panels wused in lifting body solution is extrapolated to an
infinite number, the thickness effect gives about 7 % higher
circulation than lifting line solﬁtion which used the lift
curve slope of 0.98*6.283. In Figure (3-31) the induced
drag for the wing of NACA 0012 and‘aspect ratio =6 converges
as the chordwise number of panels increaseé to 50. Hence,
thé differences between 1lifting 1line and lifting body in
figure (3-24) to figure (3-30) will become less than those
shown in figures if the chordwise numbe; of panels becomes

above 50.
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‘ . . CHAPTER 4 . :
NUMERICAL OPTIMIZATION OF HOVERING PERFORMANCE

in this 'bhépter the review -of the papérs on the
optimization theoriés _and of their épplications on the
aerodynamic design of rotor blade and winq are presented.
Theories on the 6ptimization are formuiatedl and these.
.théoriés are extended to’fhe‘numerical éolution of nonlineé;
Asimultaneous' equations ’in.Appendix C. Finallj the resulig
‘of "the optimizétion for'hdverihg rotor blade are‘diécussed;
| Liebst,ﬁ,s.. (ref.37) deriVed the .kinetié energy 6fA
'wiﬁd turbiné blade from the coqfdihqfe transformatidn bf ﬁhe
inertial coordinate to the blade coordinate to,obtain blade
.veiocities “during fiéppinq; lagging, and'pitchinq-moﬁion.
He obtained the full ﬁoﬁiinear.biade.equétion of motion by.
using - Lagrange’s equation with the system kinetiél aﬁd
§otential.énergyAdetérmined..'-To obtain the' optimum tip .
Sectidn pitch controller he used the penalty ihtegral which
Qas tﬁe_sum 6f a.§uadratic in'the state andAa quadratic in
ﬁhe' control, ‘took the variations of this integral, and
equated all coefficients of variations to be zero for thé
globalkminimum condition. By implementing the pitch control

he decreased the blade bending moments and noise, A&hile
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increasing average powervoufput of wind turbine. McCormick,’
B.W. (ref. 38) computed the optimum bound circulation
distribution of several swept propellers by applying the
constant pitch condition in the far wake. He.foﬁnd that the

‘swept _propellef__has é higﬁer bound circulation than the
straight propeller for the optimum condition of the constant
_piﬁch -in the far wake. Chang, L.K. and Sullivan, J.P.
(fef. 39) computed the optimum-'twist of the  seéeral_
propellérs of given $hépe using the penalt& fuﬁction with
'_Davidon—Fletcher—fowéll{s method for the search direction

. and with the éxtended lifting line theory.z Ashley (ref, 40)V
'réviewéd.many papers on aeronautical uses . Qf optimizatiqn»
.such as . aerodynamics v,structgres, and flight trajectory

optimizaﬁions;“ He mentioned that the usé of aerodynamic’
- optimization was less successfui _than. those df' flight
trajectbry, or structural optimization.

Murman, E.M.  and Chapman;‘G.T.(réf; 41) méﬁtioned how
to select the objective function, constraint function, and
design. variables. fo; aerodynamic - design by numerical
optimization. They reviewed many papers on aerodynamic
optimization and cited the CONMIN opti@izatigq algorithm
which was <_a " gradient typé constrained minimizatioh'
algorithm. Vanderplaats. ,et.  al. (ref. 42)  cons;dered
. the problem of maximizing the 1ift with a wave drag’

constraint at transonic speeds using the combination of

21



conjug&te qiadienﬁ di;eétion- and feasible direction
_\algOgithm. Petéers, M.F. (ref.  43) considered the ptobiem'
6ff f?educing " the combutation time for the éradient'
célculation during optimization. He was able to re@uce the
.éomputation time by reducinq'the sizé of the computational
domain for aérodynaﬁic analysis during the grédient
caiculétioh. ’He; reduced the computafion time by usihg the
sméll'disturbancé pofential sblver'and ﬁhe“ abové mentionéd
méthod but 'wés ‘nbt' able to do So by the full'paﬁéntial
_equatién solver for aeréfoils. Larson, GrégA(ref' .44) was
able to redUCé the computation  time 'by resﬁricting'thé
’nuﬁber of aérodvnamic_analysiS'itetationsv éer opﬁiﬁizatioﬁ
.‘; ifération _qsinq a full potential ééuationA salver fof
.‘trénsoniclairfdii design. He uged an o?timizer ONMDIF
developed by Kennelly at NASA Ames which used a quasi-Newton
method fdr thé séaréh_ directioh calculatipnl durinq:. a
function minimization.A
~Miura, H. (ref. 45) reviewed - aéplicatibns'_ of
multivariable search te¢hniqués in five categories of
helicopter desigh‘ problems; conceptual and 4‘preliminary'
désiqn,-rbtor'systém design, airframe structureé design; énd
Afiight trajectory planning. 'Friedmann, P.P. and
Shanthakuﬁaran, P. (ref. 46) applied formal optimization
technique to vibration reduction of helicobter'rdtor blades

in forward flight. _ The maximum peak to peak value of the



‘oscillatory vertiéel- hub ‘shears or the, escillatbry hub
ﬁement'.due ‘téi biade flapwise bending was used as an
objective function. Tﬁe ~ sequential . uncenstrained
' minimization vtechniques.,based on extended-interioripenalty:
function and a modified Newton method, was used. They found
' thet the_-modification of section properties near blade tipv
‘and the.addition of nonstructu}al mass at the elastic axis
feeulted in considerable .teduction of vibratory hub 1eads
‘and blade mass, cempered to the blade of uniform properties.
Walsh, - J.L., et. al. (ref. 47) applied a fbrﬁal
Aeptimizatien for helicopter rotor blade : deeigﬁ - u;ing
momentum theory for the hover eﬁalysis;and'toto;craft flight
simulation computer prograﬁ; Cfal,'ifof forward flight_r
.aﬁalysis. ,'Theyv cpmbined_thefanélysis.pfoqramsvﬁith.CONMINj
l'*optimizerrprqgram‘of ref; *(53). The objective functien’wes“
the -reqﬁifed' horeepower for the ﬁover and the constraints
'were the drag eoefficients and hbrsepdwer required ‘dufinqi
forﬁatd flight and pull-up maneuver. :They were éble_to
obtain the‘rotor geometry which:had the perfofmaneebas good
-as thatuqf heurisﬁie design withvten times shorter time‘then
the heuriéﬁic'deéign; For AH-64 rotor the hover ‘horsepewe:
wae Aéoverned bylthe,horsepOWer required fof forward flight.
For UHel helicopter the hover horsepower with the given
design' gress ,weiqht' was governed'by the drag coefficients

for the forward-flight'and the pull-up maneuver. In both



designs the rotor ~had 290 RPM with the blade radius of 24
feet for AH 64 and 324 RPM with the blade radlus of 24 feet
for UH-1. Consentlno, G.B.. and Holst, T.L. (ref. 48)
combined a transonic w1nq flow analysis érogram with a'
"qua31—Newton unconstralned optlmlzatlon algorlthm QNMDIF
for the numerlcal optlmlzatlon of =transon1c wing
eohfigurations., The 1ift to drag was increased by 27'64:%
for Lockheed C- l4lB wing and by 85.72 % for Cessna model 650
w1ng 'by changlng the_upper surfaqe wing qeometry.' At each'

PN

spanwise sectioﬁs of the wing there were three' or four a

- ‘'movable p01nts with ell the rest of the p01nts flxed Cubic

~spllnes were used through 1mmovable and movable p01nts. The
vertlcal p051t10ns of the movable p01nts at three spanw1se
fstatlons became twelve or nine de51qn varlables.':»

Broyden, C.G. (ref | 49) deflned Oua51 Newton method”
‘as methods in which the search dlrectlon'for mlnlmlzatlon
‘ approéches,tojfhe.directioh~of Newton method as the mihimum
ziqf the function is ,approached. » he .propQSed several'
Quasi-Newton methods which are exact if the. Hessian hma#rix
:is symﬁeﬁric _and‘Anonsinguler. Fletéher,,R.; and Reeves..
C.M. (ref. 50) prepqsed _éuadraticaily convergent method
uhich pused'.enly they gradiehti vectors ‘for the search
directron in contrast to Quasi-Newton method which used the
‘appreXimatien for -theV inverse {of Hessian matrix at>eachV'

search directibn~calculation. Eletcher, R. " and --Powell,

_



M.J.D. .(ref. 51) gave the. search direction vectorAwhich '
waquuédratically convefgent and approached Newton’s method
ﬁear the minimum. “He wused cubic inte:polation given by -
Davidon to dbtain a minimum along the search line. Topping,
B.H.V. and Robinson, D.J. (ref. 54) éave brief

descriptions of Ehfee mathematical proqramiﬁé methods for
nonlinear optimization ,techniques. These are sequéntial.
iinear programing (SLP), feasible direction method (FDM),’
..énd sequentiai unconsttainéd minimizatiop technique (SUMT).‘
.They,applied the above three téchniques td ﬁhe- minimization
4df portal frame weight and ~found that FDM was‘the host

" inefficient technique.



4.1 Objective Function Formulation And Design Variables
Hovering performance of helicopter rotor can be measured by

the thrust produced from unit horsepower, that is, T/P. Then,

When F = CP /CT is used, the optimization code produces the

result of negative thrust, that is, downward thrust for some design

variables. When F = - CT /CP is used, the optimizer produces

the result of zero power coefficient, that is, zero disk loading.
In both cases, if the design variables are two tip pitch angles
and two tip chords or five ti? pitch angles which were the cases
run here, the optimizerbéroduceS‘the minimum of the objective |
function, F, with respect to design variables.

When design variables are chosen to give the overall
minimum of F, the negative thrust, or, the zero disk loading is
obtained by the 6ptimizer, depending on F. Hence, the constraint
on the thrust coefficient is needed. With the nonlinear constraint
of fixed thrust coefficient the problem becomes the constfained

optimization. The problem can be stated as follows..

Find the minimum of F(Xi )
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,where Xi , 1 =1,'--- N ; design variables

X ix( X i 4 X_iu ; side constraints

and h k(X i) = 0 ; k nonlinear equality constraints.

The constrained optimization can be converted into a unconstrained
optimization usingvthe penalty function method. The ordinary

quadratic penalty function P (Xi ) is given by

N 2
P X =r & £ xp 3

Then a new objective function, & (Xi), is

@ (Xi) = F (Xi) + P (Xi)

® (Xi,rp) = CP /CT + rp (CTT - CT )

,where CTT is the given thrust coefficient, CT is the current
thrust coefficient, and rp is the penalty parameter. rp is
determined by the requirement that F (Xi) and P (Xi) should

be the same order of magnitude. For example, if Cp/CT is

-1 -3 . 5
0 (10 7) and (CTT - CT ) is 0 (10 ), then rp,ls 0 (107).

The various formulations of the penalty function
are given in Ref.(52). If we use a small penalty parameter,
C' /C is minimized while the equality constraint of

P T

CT = CTT is violated. If we use a large penalty parameter,
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P

CP /CT goes to a suboptimal value while the constraint

is satisfied. Hence, we vary rp during-the optimization from a
small value to a large value. With the variable penalty parameter
this approach is called the sequential unconstrained minimization
technique (SUMT). During the initial run of the optimizing program

rp is fixed, that is, rp= ry = 10000. or 100000. Then, rp is varied,

that is, tp+1

= v rp and v = 1.3 where p is the iteration count.
The first category of design variables considered are pitch
angle ,or chord width, or both at each spanwise station. With
ten divisions of the blade span there are ten pitch angles as
.design variables fér the given chord or ten chord widths as
design variables for thé given pitch distribution. From the tip
section to any specified station of the blade, pitch angles

and chord widths are design variables.

(1) Xi = Ci for i =1, -, N

(2) Xi = ei for i =1, -+, N
(3) Xi = Ci for i =1, .-+, N/2
Xi = ei' for i = N/2 +1, -+, N

For a second category of design variables a double twisted
and tapered blade was chosen for the optimization with 5 design

variables. For this blade the initial blade geometry is as follows.
(4) X1 = Ael = 0.25 ; root twist.

XZ AGZ = 0.15 ; tip twist.

"

128



X3 = Npoist™ 0575 ; position of taper and double twist.

X4 = Croot = 0.0729 ; root chord.

= 0.3 ; taper ratio.

XS - Ctip/ Croot‘

A

K- %3
. Lo
Definition of Design Variables for Category 2

Then the blade pitch and chord distribution of the second try

are obtained as follows.

For n <« X3 , C = X4
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- (1 - n

o X
_ {1 X3) 2
The side constraints are
Xl ’X2 ,X4 ’XS > 0 and 1.0 > X3 > 0.1

Here C and 6 are each the chord and the pitch angles and n is

the normalized radius.

Then, for a third design proﬁlem, three set of design
variables are used with the initial geometry of rotor of Ref.(68).
First the collective éitch and the straight twist are used
as design variables. Second the collective pitch, straight
twist, taper ratio, and the position of the taper are used
as four design variables. Third the collective pitcﬁ, tip
twist, root twist, taper ratio, and the position of taper
and double twist are used as five design variables. |
These are summarized as follows.

(5) X

1 ® ; collective pitch.
X2 = AB ; straight twist.

(6) X

1 6 ; collective pitch.

P
i

) A8 ; straight twist.
X3 = ntapér; position of taper.
x4 = Ctip /Croot ; taper ratio.

(7) Xl = 8 ; collective pitch.

X2= Ael ; tip twist.



‘X3' = ntaper ; position of taper and twist.

X4 = Aez';.root tw1§t.

X. = C

5 C

rootﬁf taper ratio.

tip’

(8) X, to X

1 5 are the same as the case (7).

Xé = root chord

The side constraints are same as the case (4).

=t
1’< - X, '_“"-"“—"-ﬁ —

Definition of Design Variables for Category 3



' 4 2 Search Directlon Calculation 051ng Quasi Newton

or Conjugate Gradlent Method

‘The éearch‘direction vectbr of a quasi-Newton method is
'given‘iﬁ Ref,(49). HWe define A as a Hessian matrix of the
objedtive function F. Then A is given aé follows.

) 2 2 1

A - 3°F 2% . _a%F
. oK 0%, XK, axlaxN
J2p . 2F
| OEyaXp ¥y |

We'define G as the gradient vector of the objectiﬁe function.
and S as the search direction vector for the.minimizétion.
's. = - A71G ; Newton method.

1

‘But A"~ -1is approximated in the quasi-Newton method-as.H and 1is

" given . in Ref (51) as follows. In the following P is the

'~1terat10n count.

s = -al? -He

- Hp+lA= HP + aP 4+ P

,where AP = o~ ><o |
| PiyP o
,Bp = _'leyp ><yp| Hp
<y®| HP ]yp >

13



JoP > = kPt - %Py = PSP s
and = |y® > = 16F* - 6Py

"lo > iS‘a-vector_while (OPL is the transpose of |¢P >.

ONMDIF ,which is used for the optimization, is a parameter

optimizing program with complementary'Davidon-Fletcher—Powell update.

The updating formulas are given for the approx1mated Hessian

matrix or for the 1nverse of the Hessian matrix in Ref. (44)ﬂ

The - method of conjugate gradlents is given in Ref. (50) ‘as

”follows.
Pl L el 1PhZ
PSARIE 1S

fm'is chosen such that F(Xp + o Sp ) glves 1ts minimum

with respect to p051t1ve o '
The.momehtum theory gives the uniform do&nwash to'be

the optimum condition for the minimum induced power. The E

'constaht oownwash can be obtained Withhthe free wake

liftinghline theorf by varying the chord or pitch as follows.

The circulation is related to the pitch and the.downWash.

. N ’ w
I‘_—1rC.Q.,r(®+ —SE)

4 e WML ddalne 6 ahes e ALl ok miie @ dm e o®

ORI L L



doe + —=2 =0

de
an

_dae — p
dx (A A_)

p+l_ P
Then, - © = O '+ opt

From the momentum theory, A = .CT /2
r _ =amCORn(o_ ., +-2)
. opt T nt % n
: A
~dC (. © +—= ) +C = =0
S N » .
dc. ' 1

L — = - C

dx - no + A

or . SE } = -C < :
dx Y= TnoO_ .+

opt' opt

To get a uniform downwash _@p or CP is updated until

P o : .
DY bgcgmesA Aopt
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4.3‘40ne Dimensional Line Search To Find A Minimum.

tihe search is_to find o which minimizeS‘the»value of -
objéctive'function, F (XP + a Sp ), with respect to positive
‘value of - o for the fixéd'directi@n of the descent S.
In-QNMDiF ;he line search procedurevisAto fit'§ parabolic
curve th?ough_three points of o or~two_poin£s and‘a slope
of‘F withArespeét to o. When the program sfa;ts the line
search érocedure,<it'eétimateS'm’és follows. |

| P . . &P, _ P, P. P _ ¢
F(’X.+0LS)-F_(X)___+,OL»VF s = Fope

,whére'j S| =1, Fopt 1s the input which is considered
to be the minimum, and VF is the gradient of the function'F'

. at'pfth iteration.

dr

)/ e

F. is the current value of F.

The minimum is obtained as follows when there are two

values of F and a slope-of F.
‘The notations used in ONMDIF are used here.

F-=0u? +25a +R
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= =20a +28
- In order that F has a minimum Q should be positive.

. F = FW at o= W .

dF

L =GP at a =W
do ‘
F =FMIN at o =0
Then, FW =Q W’ +2SHW +R
GTP = 2 QW + 2 W

FMIN = R
' From the above three relations,

Q.= - —%= (FW - FMIN - W - GTP)
We o - .

25= —£ ( FW - FMIN ) - GTP

'F has a minimum at o = - S/Q.
When there are three values of F, the minimum'is obtained

as foilbﬁs.-:

"FW  at o = W.

F =
-' F=FV ataoa=V.
F = FMIN at o = 0.
2

Then, . FW =Q W“+ 2 S W +R
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FV =QoVZ+25V +R

FMIN = R
Let x =QVW +2S5VMW andy = Q WV + 2 S VW,
. Then, - S ' | A
| ). _y-=x
TWm -
S“= XW - yV
2 VW (W= V)
%pin = - S/Q

If F has decreased sgfficientlyror'aMiN is very smail afterfr.'
any decrease of F then the 11ne search is successful

QNMDIF goes to the search dlrectlon calculathn after the
success of the line search If the line search has failed
:iw1th the forward dlfference calculatlon of the gradlent it
- dQes the central difference calculatlon of the gradlent and
goes back to the line search If the llne search was a
failure with ‘the :central dlfference calculaticn of the
..gradient, ONMDIF stops with the message of the 1line _Search»
failure. - The._ccnvergence criteria for the~optimization is
the.COnditfon.that'the norm of the gradient is very ~small
In scme(‘cases”the norm of the gradlent vector was not zero
whi;e the'objective function_ did' not decrease._ But the
signs of all components of the gradient vector were changed
during .the previous two iterations. This means the

objective function had a steep valley.
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4.4 .ReSults And Discussion

To test the optimization program the momentum theory is
used for the performance analysis. The design variables are
10 pitch angles at all spénwise stations with the objective
function F = -0.1 CT/CP. Table 4 shows the output of the
optimization program which converges after "5 iterations.
The downwash and the circulation are nearly constant over
the span as expected. The initial blade geometry for the
results - of Table 4 is the rotor of Ref.(68) shown in Figure
(4-1). Figure (4-2) shows the optimum chord distribution
obtained from the momentum theory with profile drag where 10
chord widths are the design variables while .the linear twist
is given and fixed. Here the chord bulges towards the root
because the linear twist is not the optimum pitch.. In
figure (4-2) CT went up and CT went down from the initial
values., Fig.s (4-3) and (4-4) show the efféct of profile
drag on ﬁhe optimum pitch distribution obtained from 3-D
momentum theory. The effect of the profile drag is to
reduce the pitch angle near the blade root. By momentum
theory there is a clear optimum pitch distribution for fixed
chord distribution and optimum chord distribution for fixed
pitch distribution, while zero loading by-having zero chord

is the optimum by vortex theory. Therefore the constraint



on thrust was not needed in the momentum calculction but was
required for vortex theory.

The optimum ;otor to give the minimum induced power is
the rotor which has a constant circulation or a constant
downwaéh according to the classical vortex theory using the
rigid wake geometry. Table 3 shows the results for constant
downwash obtained by changing the pitch distribution for the
free wake lifting 1line theory. The resulting pitch
distribution is shown in Fig.(4—5). The bound circulation
distribution is shown in Fig.(4-6). The summary of tables
are shown in Table of Optimization with thrust to power
coefficient ratios and thrust coefficients (CT/CP, CT). The
CT/CP from momentum theory for a straight 1linear twisted
rotor (Ref; 68) was 13.8 at CT=0.00471 (Table 3). The.
optimized pitch (say 1/r) for constant downwash gave
CT/CP=14.4- at CT=0.00328 (Table 4), but when compared at
same CT, there is very little difference from the initial
rotor. The constant downwash results from free wake theory
gave CT/CP=13.4 at CT=0.00376 ,which was constrained to have
same déwnwash as the one by momentum theory (Table 3).

We will now consider results dsing the free wake
lifting 1line theory with the QNMDIF optimizer. Constant
chord and variable twist results (Table 5) gave CT/CP=14.25
at CT=0.00422. Since this is at higher CT compared to the
constant downwash result of CT/CP=13.4 and CT=0.00376, when

lower CT 1is expected, obviously constant downwash is not
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optimum. This 1s also qualitatively evident from Fig. 74-17

(Table 5). Table 5 shows the result of optimization where 5

section pitch angles near the tip are used. The initial
blade geomeiry is the rotor of Ref.(68) shown in Fig.(4-1).

The objective function(OBJ) is F = CP/CT. The pitch angles
near the 'tip has decreased as a result of the optimization
as shown in Fig.(4-17). But the thrust coefficient is

decreased while CP/CT 1is decreased from 0.073 to 0.070.

Therefore, in table 6 the thrust coefficient is added into
the objective function 1in the form of a quadratic penalty
function. The given and fixed thrust coefficient is CT=
0.00422 and the initial thrust coefficient is CT= 0.00459.

The design variables are 5 section pitch angles near the
tip. The objective function is F =-10.CP/CT + 100000.*%(CTT
- CT)*%2. The objective function has decreased from 0.7454
to 0.6467 in Table 6. The downwash on the tip section is

.reversed, that ié, becomes upwash.

Adding taper gave 14.7 for CT/CP at CT=0.00416 close to
one of Table 5 in Table 7 and Fig. (4-18). With constraint
on thrust CT/CP=13.9 in Table B. Table 7 shows the results
of optimization where the 1initial blade geometry is the
rotor of Ref.(éB) and the design variables are two section
pitch angles and two chord widths near the blade tip. In
table 7 the objective F (now =- CT/CP) has 'decreased from
-13.67 to —14.74‘ with the result of a tapered and double

twisted rotor as shown in Fig.(4-18) by optimization. In
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table 8 the same trend is shown with the constraint on the
thrust.In Table 9 switch to more stations gave similar
results as Table 8;

As a result of previous unpublished heuristic studies
the blade geometry of taper and double twist shown in Fig.
(4—7) was found to be optimum and is used for the heuristic
parameter optimization. Fig.s (4-8) and (4-9) show the
bound circulation distributions at various thrust
coefficients obtained by varying the root chord width while
keeping the twist and taper ratio constant. CT/CP increases
as a result of the decrease in the root chord. Fig.(4-10)
compares the bound circulation distributions at the same
‘thrust coefficients between the tapered and double twisted
blade and the constant chord and linear twisfed blade. The
bound circulation distribution which has the peak near the
tip has the higher power coefficient than that .having the
peak around the center of the blade. The downwaéh of the
tapered and double twisted blade has become the upwash near
the blade tip. That is, the blade is in vortex ring
condition at the tip. In vortex ring condition the maximum
residual in bound circulation does not decrease below the
convergence criterion which réquires that the change in
circulation between iterations should be less than 0.5 %-of
local circulation.

Fig.(4-11) shows CT/CP for the rotors shown in

Fig.(4-1) and in Fig.(4-7) with various pitch and fixed

* Ref. 69
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chord. Fig.(4-11) shows that there 1is an optimum pitch

which gives the maximum of CT/CP with a fixed chord, while

zero loading is the optimum with zero chord. Fig.(4-12)
compares CT/CP for the tapered and double twisted rotor of
Fig.(4-7)'with that for the tapered and straight twisted
rotor of Fig.(4-13). Both blade chords used.in Fig.(4-12)
are varied to get different thrust coefficients. The
taperéd and straight twisted rotor is shown to be better
than the double twisted and tapered rotor. With the initial
geometry of the rotor of Fig.{(4-1) the optimized rotor is
computed by using the design variable sets of (5), (&), (7)
and (B) in section (4.1). For the sets of design variable
(5) and (6) rotor of Fig.(4-1) does not change with the
constraint on CTT = 0.00459 of the initial geometry and with
objective function F = Cp/CT + rp*(CTT—CT)**Z,'
rb=1.3*qL1,and ¥, =100000.0. For the case' of ‘5 design
variables of the set (7) tip pitch angles are reduced, that
is, the blade 1is double twisted as a result of the
optimizationvas shown in Fig.(4-20) and in Table {(11). For
the cése of 6 design variables of the set (8) root chord is
reduced, that is, the fotor has a lower solidity and a
higher ratio of thrust to power coefficient as a result of
the optimization as shown in Table 9. In Fig.(4-14) the
tapered and double twisted rotor of Fig.(4-7) is as good as
the straight twisted and constant chord rotor of Fig.(4-1).

Fig.(4-15) compares CT/CP of the rotor of Fig.(4-7) to that
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obtained by the prgsent obtimization with the ’design
variables set (4) in section (4.1). The rotor of Fig.(4-7)
is 1in vortex ring condition and hence the gradient
calculation tend to be inaccurate. Hence, only one
optimization result is better than the initial rotor used.
The rotor blade which produces the better performance than
the initial rotor has only the slightly decreased root twist
compared to the initial rotor. Fig.(4516) compares the
bound circulation distributions for the rotors of Fig.(4-7),"
Fig.(4f13) and that obtained by the formal optimization.
Among them the Dbound circulation result of the formal
optimization has the peak circulation at the middle of the
span and the best CT/CP. Double twisted and tapered rotor
gave CT/CP=15;946 but at CT=0.0035 (Fig. 4-19 and Table 10)
compared to 15.78 for heuristic rotor (Fig. 4-7) by the
formal optimization with design variables set (8) of the
section (4-3). Fig. (4-11) shows that the effect of going
to CT=0.00416 reduces CT/CP very slightly. This is clearly

optimum and gives about 5% difference;



. Table 3.
(@) Momentum Theorv Results for Rotor of Fia, (4-3)

NO. OF BLADES = 2

Results Obtained to Give Constant Downwash,

CT =0.00471

SOLIDITY =0.0464

CP =0.000342

CTT =0.00459 CPI =0.000234

CVT1(LOCAL) =0.8005¢ CVT2(GLOBAL) =@.20508

ETA

.150
.250
.350
.450
.600

.75e

.825
.875
.925
.975

- CHORD
.0729

.0729
.0729
.0729
.0729
.0729

.0729 .

.0729
.0729
.0729

OO0

THETA

7136402
.1591E+02
. 1469E402
.1346E+02
.1163E+02
.9798E+01
.8881E+01
.8274E+01
.7660E+01
.7047E+01

0O

. 7310E+01
. 7932E+91
. 7928E+01"
.7610E+01
.6823E+01
.5821E+01
.5271E+01
.4895E+01°
. 4507401
.4113E+01

ALPHA

b8446448444

(b) Free Wake Results to Give Constant Dowrmnsh
NO. OF BLADES = 2 .

cT =0.00376

SOLIDITY =0.0464

CP =9.000281

CTT =0.00458 CPI =0.000181

CVT1(LOCAL) -Q.éOOSO CVT2(GLOBAL) =@.00500

_ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

. CHORD

.8729
.0729

0729

.0729
.0729
.0729
.0729
.0729
.8729

.0729 .

OO0 OOOOD

THETA

.3350E4+02
.2177E402
.1561E4+02
.1171E4+02
.8016E+01
.6069E+01
.6644E+01
.8331E+01
.9235e+01°
.7697E+4+01

. 1608E+02
.1107E4+02
. 7930E+01 -
.5727E+01
.3545E+01-
.2473E401
.3323E+01
.5131E+01
.6212E4+01
.4851E401

0000000000

ALPHA

NSNS IPYNE

1y

WLA
.4708E-01
.4723E-01
.4722E~01
.4716E-01
.4691E~01
.4714E-01
.4787E-01
.4892E-01
.4885E-01
.4B46E-01

L 0000000

ut

WLA

.2597E-01  ©.1522E+00
.3504E-01  0.2524E400 .
.4150E-01  ©.3525E+400
.4614E—-01  0.4524E+00
.50476-01  0.6021E+00
.5214E-01 0.7518E+00
.5204E-01  ©.8266E+00
.5165E-01  ©.8765E+00
.5096E-01  ©.9264E400
.499BE-01 0.9763E+400

,h&j¥;/(ﬂ)ﬁ2"‘

ut

.1572E+00
.2544E400
.3532E+00
.4525E+00
.6018E+00
.7515E4+00
.8264E+00
.8764t+00
.9263E+00
.9762E+00

COOOOOOOO®

- CL .
.7751E4+00 .
.8469E+00
.8486E+00 -
.8157E+00 -
.7320E+00
.6249E+00
.5660E400 -
.5257E4+00
.4840E4+00
44178400

CL

OPOOOOOCOS

.1615E+01
.1160E+01
.8356E+00
.6030E+00
.3697E+090
.2593E+00
.3574E+00
.5600E+00
:6742E+00
.5247E+00

OO OOOOOO®

GAM

OO0

.4300E-02
.7791E-02
. 1090E-01
. 1345E-01
. 1606E-01
A712E-01

. 1705E-01
. 1679E-01
. 1634E-01
.1572E-01

GAM _

.8254E-02
.1076E~01
.1075E-01
.9944E-02
.8108E-02
.7100E-02
.1076E-@1
.1788E-01
.2276E-01
.1867E-01



Toble 4, Optlmlzotlon Results Obtained by Using Momentum Theory

——CT / (10, C ), Design Variables =

OO0 6

NO. OF BLADES = 2 = SIGT =0.0464 SIG =0.0464
CT =0.00471 CP =0.000342 OBJ = -0.1379E+01
CTT =0.00471 CPI =2.000234 CVT1(LOCAL) =2.00050
ETA CHORD THETA ALPHA WLA
.150 ©.728BE-01 17.1314 7.3097 -0.2597E-01
.250 ©.7288E-01 15.911@ 7.9320 -0.3504E-01
.350 ©.7288E-01 14.6906 7.9278 —0.4150E-01
.450 8.728BE—01 13.4645 7.6102 —0.4614E-01
.600 ©.728BE-@1 11.6310 6.8227 -0.5047E-01
.750 ©.728BE-@1 9.7976 5.8210 -0.5214E-01
.825 ©.7288E-01 B8.8808. 5.2714 —-0.5204E-01
.875 ©.7288E-01 B8.2735 4.8953 -0.5165E-01
.925 ©.7288E-01 7.6604 4.5071 —-0.5896E-01
.975  ©.7288E-01 7.0474 4.1129 -0.4998E-01
NO. OF BLADES = 2 SIGT =0.0464 SIC =0.0464
CT =2.00333 CP =0.000232 O0BJ = -o 14sse+o1

 CTT =0.00471
ETA CHORD
.150  ©.7288E-01
250  ©.7288E-01
.35¢  0.7288E-01
.450 0.7288E-01
.600  ©.7288E-01
.750  ©.7288E-01
.825  0.7288E-01
.875  ©.7288E-01
.925  0.7288E-01
.975  0.7288E-01

CPl =2.000138 CVT1(LOCAL) -0 00050

THETA ALPHA WLA

17.2873 7.4040 -0.2613E-01
16.1258 - 8.0758 -0.3536E-01
14.7296 7.9552 -0.4158E-01
13.0258 ° 7.2937 -0.4517E-01
8.3132° 4.4334 -0.4069E-01
6.6077 3.5152 -0.4052E-91
6.9414 3.8539 -0.4450E-01
6.1685 3.3660 -—0.4283E-01
5.4661 2.9248 -0.4105E-01
4.8598 2.5488 -0.3935E-01

SIGT =0.0464 SIG =9.0464

NO. OF BLADES = 2

CT =0.00325 CP =0.000226 O0BJ = -9.1438E+01

CTT =0.00471
ETA -CHORD
.150 ©  0.7288E-01
.250 ©.7288E-01
:350 - ©.7288E-01
.450  ©.7288E-01
.68  ©.7288E-01
.750  0.7288E-01
.825 ©.7288E-0!
.875 ©.728BE-01
.825  ©.7288E-01
.975 0.7288E-01

00000000

‘CP1 =0.000133 CVT1(LOCAL) =0.00050

X X X NN -N-N.-X. N.]

THETA ALPHA WLA
17.4918 7.5283 -0.2635E-01
16.3755 8.2437 -0.3572E-01
14.6951 7.9309 -0.4151E-01
12.4158 6.8567 -0.4380E-01
8.3520 4.4604 —0.4082E-01
6.6673 3.5567 -—0.4076E-01
6.0248 3.2075 -0.4060E-01
5.6020 2.9695 -0.4023E-01
5.3732 2.8601 -—0.4060E-01
5.3176 2.8669 -0.4173E-01
SIGT =0.0464 SIG =0.0464 .

"NO. OF BLADES = 2
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CVT2(GLOBAL) =0 .00509

ut

.1522E+00
.2524E+00
.3525E4+00
.4524E4+00
.6021E+00
.7518E+00
.8266E£400
.8765E4+00
.9264E400
.9763E+00

CVT2(GLOBAL) =0.00500

ut

.1523E4+00
.2525E+00
.3525E+00
.4523E4+00
.6014E400
.7511E4+00
.8262E+00
.8760E+00
.9259E400
.9758E+00 -

CVT2(GLOBAL) =0.00500

T

.1523E4+00
.2525E400
.3525E+00
.4521E+00
.6014E+00
.7511E400
.8260E+00
.8759£+00
.9259E+00
.9759E4+00

X X N N N X N.N. X.]

CL

.7751E+00
.8469E+00
.8486E+00
.8157E+00
.7320E+00
.6249E+00
.5660E+20
.5257E+00
.4840E+00
.4417E1+00

CL

.7850E+00 -
.8622E+00
.8515E+00
.7818E400 -
.4758E+00
.3774E4+00
.4139E+00 -
.3615E4+00
.3141E400
.2738E400

CL

.7981E+00
.8800E+00
.8489E+00
.7350E4+00
.4787E400
.3819E+00
. 3445E+00
.3189E+00
.3072E+00
.3079E+00

OO0

OO0

lO Pltch Angles.

GAM

.4300E-02
.7791E-02
. 1090E-91
. 1345E-01
. 1606E-01
.1712e-01
.1705e-01
.1679E-01
.1634E-01 -
.1572e-01

GAM

.4356E-02

.7933E-02 -
. 1094E-01
.1288E-21
. 104301
.1033E-01
.1246E-01
. 1154E-01

. 1060E-01
.9736E-02

GAM

. 4430E-02
. 8099E-02
.1090E-01
.1211E-01
.1849E-01
. 1045E-01
.1037E-01
.1018E-01
.1637E-01
.1085E-01



Table 4, -Continued.

CT =0.00322 CP =0.000224 OBJ = -0.1440E+01
CTT =0.00471 CPI =0.000131 CVT1(LOCAL) =2.00050 CVT2(GLOBAL) =0.00500

ETA CHORD ' THETA ALPHA WLA ut ' CL ~ GAM

.150° ©.7288E-01 17.9782 7.8252 -0.2686E-01 ©.1524E4+00 0.8294E+00  ©.4606E-02
.250  ©.728BE-@1 16.9416 8.6264 —-0.3654E-01 ©.2527E+00 ©.9207E+00  ©.847BE—02
.350 ©.728BE-01 14.6120 .7.8725 -0.4136E-01 ©.3524E4+00 ©.8427E+00  ©.1082E-01
.450 ©.7288E-01 11.3615 6.1111 —0.4135E-01 ©.4519E+00 ©.6552E+80  ©.1079E~01
.600 - ©.728BE-@1 8.4465 4.5263 -0.41126-01 0.6014E400 ©.4858E+00  ©.1065E-01
.750 ©.7288E-01 6.7574 3.6194 -0.4112E-01 0.7511E+00 ©.3886E+00  ©.1064E—01
.825 ©.7288E-01 5.8173 3.0637 -0.3968E-01 ©0.8260E+00 ©.3200E400  ©.9904E—02
.875 ©.7288E-01 5.7425 3.0671 -0.4089E-01 ©0.8760E+00 ©.3204E+00 - ©.1052E-01
.925 ©.7288E-01 5.5202  2.9626 -0.41326-01 ©.9259E+00 ©.3182E+20 - 0.1074E-01
.975 ©.728BE-01 4.9392  2.6035 -0.3977E-01 ©.9758E+00 ©.2797E+00  0©.9945E-02
NO. OF BLADES = 2 SIGT =0.0464 SIG =0.0464
CT =0.00322 CP =0.000223 OBJ = -0.1440E+01
CTT =0.00471 CPI =0.000131 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500
ETA = CHORD THETA ALPHA - WLA ur cL - _GAM . -
.150  ©.728BE-01 18.5747 8.1927 -0.2748E-01 ©.1525£+00 - 0.8681E+00  0.4824E-02
.250  ©.7288E-01  17.5915 9.0693 -0.3746E-01 ©0.2528E400 ©.9679E+00  ©.8916E-02
-.350 .@.72BBE-01 14.5244 7.8110 -0.4120E-01 0.3524E+00 ©.8361E+00  ©.1074E-01
.450 ©.728BE-01 10.6263 5.5992 -0.3958E-01 ©0.4517E400 ©.6004E+00 ©.9883E-02 .
.600 ©.728BE-01 8.3329  4.4471 -0.4075E-01 ©.6014E+00 ©.4773E400  ©.1046E-01
.750  ©.7288E-01° 6.6519 3.5459 -0.4070E-01 0.7511E+00 ©.3807E+00 ~ ©.1042E-01
.825 ©0.7288E-01 6.1276 3.2791 -0.4105E-01 ©0.8260E+00 ©.3521E4+00  ©.1060E-01 <
.875 ©.728BE-@1 5.8515 3.1432 -0.4139E-01 0.8760E+00 ©0.3376E+00  @.1078E-01 .
.925 ©.728BE-01 5.4310 2.9004 -0.4088E-01 ©.9259E+00 ©.3115E+00  ©.1051E-01
.975 ©.728BE-01 5.2236 = 2.8011 -0.4125E-01 ©.9759E+00 ©.3009E+00  ©.1070E-01
NO. OF BLADES = 2 SIGT =0.0464 SIG =0.0464
CT =0.00328 CP =0.000227 OBJ = -0.1441E+01 o
CTT =0.00471 CPI =2.000134 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =2.20500
ETA CHORD THETA . ALPHA WLA TuT cL . -GAM’
.150  ©.7288E-01 20.0915 9.1422 -0.2902E-01 ©0.1528E+00 0.9680E+00  ©.5389E-02
.250  ©.7288E-01 19.0338 10.0648 -0.3946E-01 ©.2531E+00 0.1074E+01  0.9903E-02
.350 . ©.7288E-01 14.3678 7.7012 -0.4091E-01 ©.3524E+00 ©.8244E+00  ©.1059E-01
.450  ©.72B8E-01 10.6785 5.6354 -0.3971E-01 ©0.4517E+00 ©.6042E+00  ©0.9947E-02
.600 ©.7288E-01 8.5778 . 4.6182 -0.4153E-01 ©.6014E+00 ©.4956E+00 ° ©.1086E-01
.750 ©.7288E-01 6.8692 3.6976 -0.4156E-01 ©.7512E+00 ©0.3970E+00  ©.1087E-01
.825 ©.72B8E-01 6.4358 3.4952 —-0.4238E-01 ©.8261E+00 0.3753E+00  0.1130E-01
.875 ©.72B8E-01 5.4642 2.8742 -0.3958E-01 ©.8759E+00 0.3087E+00  ©.9854E-02
.825 ©.7288E-@1 5.3924 2.8735 -0.4069E-01 ©0.9259E+00 ©.3086E+00  ©.1041E—01
975 © 5.1622 2.7583 -0 0.9759E+00 © o

.7288E-01 .4093E-01 .2963E+00 .1054E-01
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Table 5. Optimization Results Obtained by Using Free Wake Theory.

0BJ = CP/CT

NDV = 5 PITCH ANGLES WITH WAYNE JOHNSON ROTOR

NO. OF BLADES = 2 SIGT =0.0464  SIG =0.0464

'CT =0.00459 CP.=0.000336 OBJ = ©.7316E-01 _

CTT =0.00459 CPI =9.000229 cvr1(LocAL) =0.00050 CVT2-(GI..OB.AL) =2.00500 . -

ETA CHORD ~ THETA ALPHA WLA ut : CL . GAM

.150 ©.7288E-01 17.1314 7.7205 -0.2486E-01 ©0.1520£400 ©.8242E+00 ©.4567E-02
.250 ©.7288E-01 15.9110 8.5295. -0.3239E-01 0.2521E+00 - ©.9142E+00 = ©.8399E-02
350 0.7288E-01 14.6906 8.3062 -0.3916E-01 ©.3522E+00 ©.8903E+00 ~©.1143E-01
.450 ©.7288E-01 13.4645 7.5166 -0.4688E-01 ©0.4524E4+00 - ©.8042E400 ©.1326E-01
.600 ©.7288E-01 11.6310 5.8676 -0.6056E-01 ©.6030E+00 ©.6266E+00 0.1377E-01
_.750 ©.728B8E-01 9.7976 ~4.8186' -0.6534E-01 0.7528E+00 - 0.5173E+00 0.141SE-01
.825 ©.7288t-01 8.8808  4.5787 -0.6206E-01 0.8273E+00 ©.4932E+00 ©.1487E-01
.875 ©.7288E-01 8.2735 5.2142 -0.4677&-01 ©.8762E+00 0©.5605E+00 0.1790E-01
.925 ©.7288t-01 7.6604 5.8348 -0.2948E-01 ©.9255E4+00 0.6250E+00 - ©.2108E-01
.975 ©.7288E-01 7.0474 4.6705 -0.4047E-01 ©.9758E+00 0.5009E+00 ©.1781E-01
NO. OF BLADES = 2  SIGT =0.0464 SIG =0.0464
~ CT =0.00442 CP =0.000314 O0BJ = ©.7114E-01
CTT =0.00459 CPI =0.000210  CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500
ETA CHORD THETA | ALPHA WLA ut - CL ' GAM~
.150 0.7288E-01 17.1314 7.4460 -0.2560E—01 ©.1522E+00 ©.7897E+00 '0.4379E-02 -
.250 ©.7288E-01 15.9110 - 8.3851 -0.3303E—901 0.2522E+00 = ©.8961E4+00 . ©.8235E-02
- .350 ©.7288E-01 14.6906 B8.2564 -0.3947E-01 . ©.3522E+00 ©.8841E4+00  ©.1135E-01-
.450 ©.7288E-01 13.4645 7.5668 -0.4648E-01 '0©.4524E+00 '~ ©.8107E+00 ©.1336E-01
.600 0.7288E-01 11.6310 -6.0030 -—0.5913E-01. ©.6029E400 . 0.6428E+00 ©0.1412E-01
.750 - ©.7288E-01 9.4344 4.6476 -0.628B0E-01 ©.7526E4+00 ©.4979E+00 0.1366E-021
.825 ©.7288E-01 8.8605 4.4548 -0.6356E-01 0.8274E4+00 0.4775E+00 ©.1440E-01
.875 - ©.7288E-01 8.3073 5.1869 -0.4770E-01 ©.8763E+00 ©.5567E+00 0.1778E-01
.925 - 0.7288E-01 7.1922. 5.4767 -0.2770E-01 ©0.9254E+00 ©.5884E4+00 0.1984E-01
.975° ©.728BE-01 4.7098 3.6192 -0.1856E-01 0.9752E+00 ©.3889E+0@ ©.1382E-01
'NO. OF BLADES = 2  SIGT =0.0464 SIG =0.0464
CT =0.00442 CP =0.000313 O0BJ = 9.7085E-01
CTT =0.00459 CPI =0.000209 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =9.80500
ETA CHORD THETA ALPHA WLA . . Ut CL GAM
150  ©.7288E-81 17.1314 7.4745 -0.2552E-01 ©.1522E+00 - ©.7946E+00 0.4486E-02
-250 ©.7288BE-81 15.9110 8.4042 -0.3294E-01 ©0.2522E+00 ©.8994E+00 ©.8265E-02
.350 ©.728BE-01 14.6906 - 8.2726 -0.3937E-01 ©.3522E+00 ©.886SE+00 ©0.1138E-01
.450  ©.728BE-91 13.4645 7.5872 -0.4632E-01 0.4524E+00 0.8139E+00 ©0.1342E-01
.600 ©.7288E-01 11.6310 6.0342 -0.5880E-01 ©.6029E+00 0©0.6474E+00 0.1422E-01
.750 ©.728BE-01 9.4242 4.6636 -0.6246E-01 ©.7526E+00 ©.5006E4+00 ©.1373E-01
.825 ©.7288E-01. 8.8527 4.4588 -0.6339E-01 0.8274E+00 ©.478BE+00  ©.1444E-01
.875 ©.7288E-01 8.2881 5.1769. -0.4756E-01 0.8763E+00 0.5563E+00 ©.1777E-01
.925 0 7 5.4605 -0 ©.9254E+00 ©.5861E4+00 ©

.7288E-01" . 1482 .2725E-01 .1976E-01
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Table 5, -Contihued.

.975

©.7288E-01

NO. OF BLADES =

4.6219

2 SIGT =0.0464

3.5849

CT =0.00431 CP =0.000305 O0BJ =

CTT =0.00459 CPI =0.000202 CVT1(LOCAL) =0.00056 CVT2(GLOBAL) =0.00500

ETA

.150

.250
.350
.450
.6ee
.750
'.825
.875
- .925
.975

~ No.

CHORD
.7288E-01
.7288E-01
.7288E-01
.7288E-01
.7288E-01
.7288E-01
0.7288E-01

OO0 e

©.7288E-01

©.7288E-01
©.7288E-01

OF BLADES =

W Oy 06 00 ©

THETA
17.1314
15.9110
14,6906
13.4645
11.6310
.2859
.6752
.0866
.7378

2 SIGT =0.0464

.8324

ALPHA
.6227
.5099

.6603
.0920
.8155
.3239
.8187
.1065
.1679

GO LbOONODON

CcT =é.00422 CP =0.020296 OBJA-

CTT =0.00459 CPI =0.000194 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500

ETA

.150
.250
.350
.450
.600 .
.750
.825
.875
.925
.975

-CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E~-01
0.7288E-01
©.7288E-01
©.7288E-01
©.7288E-01"
0.7288E-01 |

THETA
17.1314
15.9110

14.6906

13.4645
11.6310
9.1590
8.5053
7.9072
6.3274
3.0588

ALPHA
7.5981
8.4854

- 8.3222

7.5991
6.0573
4.5814
4.2667
4.7948
4.8796
2.8007

.3584 -

b84848b4484

-2.1765E-01

SIG =0.0464

0.7070E-01

WLA
.2512E-01
.3247E-01
.3884E-01
.4574£-01
.5819E-01
.6127E-01
.6277E-01
.4996E-01

.1131E-01

SIG =0.0464

©.7008E-01

WLA
.2519E-01
.3258E-01
.3906E-01
.4623E-01
.5855E-01
.6005E-01
.6114E-01
—0.4758E-01
-0.2338E-01
—0.4391E-02

d484448
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.2634E-01 -

0.9752E+00

- Ut

0.1521E+00
0.2521E+00
©.3521E+00
0.4523E+00
0.6028E+00
0.7525E+00
©.8274E+00
©.8764E+00
©0.9254E+00
0.9751E+00

ut
©.1521E+00
0.2521E+00
0.3522E+00
0.4524E+00
0.6029E+00
©0.7524E+00
©0.8273E400
©.8763E+00

©.9253E+00 -

©.9750E+00

| ©0.3842E+400

CL

0.8131E400

0.9126E+00
0.8980E+00
0.8242E+00
0.6561E+00
©.4964E+00

©0.4645E+00 -
. 0.5158E+00
0.5480E+00.

0.3403E+00

CL
©.8096E+00
0.9096E+00
©.8939E+00
0.8176E+00
0.6521E+00
0.4929E+00
0.4590E+00
0.5153E+20

©0.5240E+00"

0.3008E+00

0.1365E-01

GAM
0.4506E-02
©.8385£-02
.1152E-01
.1359E-01
.1441E-01
.1361E-01
. 1400E-01
.1648E-01
.1848E-01
. 1209E-21

OO0

GAM

' ©.4488E~-02
0.8357E-02

0.1147e-01
©.1348E-01
0.1433E-01
0.1351E-01
0.1384E-01
©.1645e-01
0.1767E-01
0.1069E-01



Table 6, Optimization Results From Free Wake Lifting Line Theory

with the Constraint on CT

OPT.DAT;2 17-JUN-1985 17:23

0BJ = 10.+CP/CT + 100000.¢(CTT-CT)ss2
DESIGN VARIABLES = 5 TIP PITCH ANGLES
SIG =0.0464

NO. OF BLADES = 2  SIGT =0.0464

CT =0.00459 CP =0.000336 OBJ = - 0.7454E+00

CTT =2.80422 CPI =0.000229 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500

ETA ~CHORD. THETA ALPHA WLA
.150 ©.7288E-01 17.1314 7.7205 -0.2486E-01
.250 ©.7288E-01 15.9110 8.5295 -0.3239E-01
.350 - ©.7288E-01 14.6906 8.3062 -—0.3916E-01
.450 ©.7288E-01 13.4645 7.5166 -0.4688E-01
600 - ©.7288E-21 11.6310 5.8676 -0.6056E-01
.75  ©.7288E-01 9.7976 4.8186 -0.6534E-01
.825 ©.7288E-01 8.8808 4.5787 -0.6206E-01
.875 ©,728B8E-01 8.2735 5.2142 -0.4677E-01
.925 ©.7288E-01 .7.6604 5.8348 -—0.2948E-01
.975 ©0.7288E-01 7.0474 4.6705 -—0.4047E-01
NO. OF BLADES = 2 SIGT =0 2464 SIG =0.0464
CT =0. 00409 CP =0.000286 OBJ = 0.7008E+00

CTT =0. 00422 CPI =9.000185 CVT1(LOCAL) =9,00050 CVTZ(GLOBAL) =0. 09500

ETA CHORD THETA ALPHA WLA
. .150 - ©.7288E-01 17.1314 7.2817 -0.2604E-01
.250 ©.7288E-01 15.9110 8.2775 -0.3351E-01
.3506 ©.7288E-01 14.6906 8.1825 -0.3993E-01
.450 ~©.7288E-01 13.4645 7.5223 -0.4684E-01
.600 ©.7288E-01 11.6310 5.9566 -0.5962E-01
.750 ©.7288E-01 7.6008 3.5196 -0.5351E-01
.825° ©.7288E-01 7.9392 3.6599 -0.6173E-0t
.875 ©.7288E-01 7.4016 = 4.3872 -0.4608E-01
.925 '9.7288E-01 6.2938 5.1088  -0.1913E-01
.875 ©0.728BE-01 5.4271 3.8443 -0.2694E-01
NO. OF BLADES = 2  SIGT =0.0464 SIG =0.0464"
CT =0.00409 CP =9.000276 OBJ = 0.6765E+00

CTT =0.00422 CP1 =0.000174 CVT1(LOCAL) =2.00050 CVT2(GLOBAL) =@.00500

ETA

CHORD THETA ALPHA WLA

.150 ©.7288E-01 17.1314 6.9606 -0.2691E-01
.250 ©.728BE-01 15.9110 8.0774 —0.3440E-01
.350 ©.7288E-01 14.6906 8.0663 -0.4065E-01
.450 ©,.728BE-01 13.4645 ~7.5024 -0.4700E-01
.600 ©.7288E-01 11.6310 6.80393 -0.5874E-01
.750  ©.7288E-01 .8.8853 4.0030 -~0.6406E-01
.825 ©.7288E-01 5.4153 3.3089 -0.3034E-01
.875 9.0101

©.7288E-01 6.1797 -0.4326E-01
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CTT ]

uTt
0.1520E+00
0.2521E+00
0.3522E+00
©.4524E+400

* ©0.6030E+00

©.7528E+00

. 0.8273E400

0.8762E+00
0.9255E+00
0.9758E+00

ut :
0.1522E+00
0.2522E+00
0.3523E+00

" 0.4524E+00

0.6030E+00
©0.7519E+400
0.8273E+00
0.8762E+00
0.9252E+00
0.9754E+00

urt
0.1524E+400
0.2524E+00
0.3524E+00
0.4524E+00
0.6029E+00

©.7527E+00. -

0.8256E+00
©.8761E+00

Page 1

cL
0.8242E+00
0.9142E+00
0.8903E+00
0.8042E+00
.6266E+00
0.5173E+00
0.4932E+00
" 0.5605E+00
©.6250E+00

 ©.5009E+00

CL
©.7722E+00
- ©.8847E+400
0.8762E+00
©.8057E+00

0.6379E+00

0.3781E+00

0.3936E+00
0.4735E+00

©.5489E+00

. ©0.4129E+00

cL -
@.7356E+00
0.8622E+00
.8633E+00
©.8038E+00
0.6474E+00
0.4283E+00
0.3572E+00
©.6648E+00

. GAM
0.4567E-02
0.8399E-02
0.1143E-01
0.1326E-01
0.1377E-01
0.1419E-01-
©.1487E-01
©.1790E-01
©.2108E-01
0.1781E-01

GAM
0.4285E-02
0.8132E-02
0.1125E-01
0.1328E-01
0.1402E-01"
0.1036E-01
0.1187E-01
0.1512E-01
©.1851E-01
©.1468E-01

" GAM
©.4085E-02
0.7929E-02
©.1108E-01
0.1325E-01
0.1422E-01

'0.1175E-01

©.1075E-01
0.2123E-01



"~ Table 6. -Continued.

OPT.DAT;2
.925 ©.7288E-01
.975 ©.7288t-01

NO. OF BLADES =

5.

2.

2.
CT =2.00416 CP =0.000269 OBJ =

4406

6227

SIGT =0.0464

17-JUN-1985 17:23

4.5877 -0.1377E-01
2.5173 -0.1793E-02

0.6467E+00

SIC =0.0464

0

CTT =0.00422 CPI =0.000166 CVT1(LOCAL) =0.00050

ETA

.150
.250
.350
.450
.600
.750
.825
.875
.925
.97

OO0

CHORD

.7288E-01
. 7288E-01
.7288E-01
. 7288E~-01
.7288E-01
.7288E-01
. 7288E-01
.7288E-01
.7288E-01
.7288E-01

THETA

17.
15.
14.
13.
11.

[NELRNRZR

1314

9110 .

6906
4645
6310

.5550
.6253
.6037
7371
.5673

ALPHA
7.8568

NN bOND®

.6675
.5148
.9160
.5186
.5979
.9500
. 4027
.8277
.6123

obbddddddds

WLA

.2450E-01
.3177E-01
.3787E-21
.4371E-01
.5368E-01
.6505E-01
.2413E-01
.3363E-01
. 1468E-01
.7658E-03

OO0

.9251E400
0.

9750E+00

CVT2(GLOBAL) =0.ees5ee

uTt

. 1520E+00
.2520E400
.3520E400
.4521E400
.6024E400
.7528E400
.8254E400
.8756E+00
.9251E+400
.9750E+00

Page 2

00000000

4928E+00
2703E+00

cL

.8356E+00
.9273E+00
.9125E+00
.8489E+00
.6991E+00
.4928E+00
.2095E+00
.5805E+00
.5188E+00
.2807E+00

COOOOOOOOO

.1662E-01
.9604E-02

GAM .
.4628E-02

.8516E-02 .
L1171E-01
.1399E-01
.1835E-01
.1352E-01.
.6302E-02
. 1852E-01
.1748E-01
.9975E-02
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Table 7. Optlmlzotlon Results with Free kae Theory
Design Variables = 2 tip Dltch and 2 chord from 2 t1p sectlons.

OPTIMIZATION OF WAYNE JOHNSON ROTOR

0BJ = —CT/CP . '

NO. OF BLADES = ‘2  SIGT =0.8464 SIG =0.0464

CT =0.00459 CP =0.000336 O0BJ = -0.1367E+02

'-C‘TT =0.00459 CPI =0.000220 CVT1(LOCAL) =0.80050 CVT2(GLOBAL) =0.00500

ETA CHORD ~~ THETA  ALPHA  WLA uUT ‘ cL ' GAM

.150 - ©.728BE-01 17.1314 7.7206 -—0.2486E-01 ©.1520E400 ©.8242£400 ©.4567E-02
.250 ©.7288E-01 15.9110 8.5296 -0.3239E-01 ©0.2521E400 ©.9142E400 0.8399E-02
.350 ©.728BE-01 14.6906 8.3062 -9.J3916E-01 0.3522E4+00 ©.8903E+00 ©.1143E-01
.450 ©.7288E-01 13.4645 7.5166 -—0.4688E-01 = 0.4524E400 ' 0.8042E400 ~ 0.1326E-01
.600 ©.7288E-21 11.6310 5.8676 -0.6056E-01 ©.6030E+00 -0.6266E+00 ©.1377E-01
.750 ©.728BE-81. .9.7976 4.8186 -0.6534E~01 0.752BE+00 ©.5173E400 ©.1419E-01
.825 ©.7288E-91 8.8808 4.5786 -0.6206E-01 = ©.8273E+00 ©.4932E4+00 ©.1487E-01
.875 ©.7288E-e1 8.2735 ' 5.2140 -0.4677E-01 0.8762E+00 ©.5605E400 ©.1790E-01
.925 ©0.7288E~91 7.6604 5.8349 -0.2048E-01 ©0.9255E+00 . ©.6250E4+00 ©.2108E-01
.975 ©.7288E-01 7.0474 4.6706 -—0.4047E-01 ©.9758E400 ©.5009E+00 ©.1781E-01
NO. OF BLADES = 2 SIGT =0.0442 SIG =0.0464
CT =2.00422 CP =0.000286 OBJ = -0.1475E+402 i
CTT =0.00459 CPI =0.000193 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500 -
ETA . CHORD THETA -~ ALPHA WLA : ut - CL " GAM
-.1560 © 0.7288E-01 17.1314  7.2951 -—-0.2601E-01 0.1522E+00 ©.7738E+00 ©.4293E-02
.250 . ©.7288E-01 15.9110 8.2649 -0.3356E-01 0.2522E+00 ©.8B835E+00 - ©.8122E-02
.350 . ©.728BE—01 14.6906 8.1380 -0.4020E-01 = 0.3523E+00 ©.8716E+00 ©.1119E-01
.450 ©.728BE-01 13.4645 --7.4369 ~-0.4752E-01 ©0.4525E+00 - ©.7966E+00 ©.1314E-01
.600  ©.7288E-01 11.6310 .5.9244 -0.5996E-01 ©.6030E4+00 0.6343E+00 ©.1394E-01
.750 .- ©.7288E-01 9.7976 4.8378 —0.6509E-01 0.7528E+00 ©.5187E+00 0.1423E-01
.825 ©.7288E-01 8.8808 = 4.7976 -—0.5889E-01 ©.8271E+00 ©.5143E+00 . 0.1550E-01
.875 ©.7288E-01 8.2735 5.8958 -0.3633E-91 ©.875BE+00 ©.6317E+00 ©.2016E-01
.925 @.6051E-01 7.1375 6.7162 -0.22956-01 ©.9253t+00 . ©.6135E+00 ©.1717E-01
.975 ©.2429E-01 4.2894 5.3775 ©.1852E-01  0.9752E+00 ©.5774E+00 ©.6839E-02
NO. OF BLADES = 2 SIGT =0.0439 SIG =0.0464
CT =0.00416 CP =0.000283 OBJ = -0.1474E4+02 -
CTT =0.00459 CPI =0.000192 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500
ETA CHORD THETA _ALPHA WLA ut CL . GAM
.150  ©.7288E-01 17.1314 7.2562 -0.2611E-81 0.1523E+80 0.7701E4+00 ©.4273E-02
.250 ©.7288E-01 15.9110 8.2440 -0.3365E-01 ©.2523E+00 ©.8817E+00 . ©.8105E-02
.35  0.7288E~-01 14.6926 8.1323 -0.4024E-01 ©.3523E+00 0.8716E+00 ©.1119E-01
.450  ©.728BE-01 13.4645 7.4501 -0.4741E-01 0.4525E+00 . 0.7992E+00 ©.1318E-01
.600  ©.7288E-01 11.6310  5.9485 -0.5979E-01 0.6030E4+00 ©.6375E+00 ~ 0.1401E-01
.750 - ©.7288t-01 '9.7976 4.8172 -0.6536E-01 ©.7528E+00 ©@.5168E+00 - ©.1418E-01
.825 ©.7288E-01 8.8808 4.9472 -0.5673E-01 0.8269E+00 @.5319E+00 ©.1603E-01
.875 ©.7288E-01 8.2735 5.9687 -0.3522£-01 0.8757E+00 ©0.6415E4+00 ©.2047E-01
..925 ©.5858£-01 7.0602 5.6497 -0.2278E-01 0.9253E4+00 0.6070E4+00 ©.1645E-01
.975 0.1715E-01 3.8903 5.5440 0.28156-01 ©0.9754E+00 ©.5956E4+00 0.4981E-02
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Table 8. Optimization Results Obtained by U31ng Free Wake Theory.
with Constraint of CT

3-D MOMENTUM THEORY

NO. OF BLADES = 2
CT =9.00460

SOLIDITY =0.0460

CP =9.000331

CTT =0.00459 CPI =0.000226
CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500

ETA

.150
.250
.350
.450
.600
.750
.825
.875
.925
.875

NB

T
T
ZT

ra\
ra)
T

T
r4g
T
ra)
rag
4l

4
raj

N
-
-EErRsNpRNRNRRERANRNNONEND

CHORD
- .0729
.0729
.0729
.0729
.0729
.0729
.0729
.0729
.0692
.0666

OO

THETA

.1713E+02
.1591E+02
.1469E+02
.1346E+02
. 1163E+02
.9798E+01
.8881E+01
.8274E+01
.7452E+01
.6524E+01

2 KIT = 20 RES. =

$4444484444dbddooss

.0000E+20 RT
.0000E+00 RT
.Q000E+00 RT
.7300E-01 RT
.1837E400 RT
.4927E-01 RT
.1404E+00 RT
.3852E+00 RT
.1778E4+00 RT
.2167E400 - RT
.5896E4+00 RT
.S401E4+00 RT
.2988E+00 RT
.8194E4+00 RT
.5063E+00 RT =
.3810E400 RT =
.1039E4+01 RT =
.6725E4+00 RT =

OO0

0
0
0
0
0
)
]
)
0
0.
o
o
0
0
Q
0
0
0

ALPHA

.7334E401
. 79558401
. 7948E+01
. 7628E+01
.6838E+01
.5834E+01
.5283E401
.4906E+01

dodddddd

©0.7754E-04

. 1000E+00
.5899E+00
.9905E+00
.8236E-01
.5181E+00
.8814E+00
.67S5E~01
.5065E+00
.BOBOE+0Q -

5839E-01

.4836E+00
.7792E+00
.5061E-01
.4552E+00
.7747E400
.5061E-01
.4552E4+00
.7747E+00

Crp

WLA

.2590E-01
.3494E-01
.4138E-01
.4600E-01
.5031E-01
.5197E-01
.5187E-01
.5148E-01
.4363E401 -0.
.3738E+01 0.

4992E-01
4744E-01

OPTIMIZATION OF ROTOR OF REF. 35

0BJ = 100.+(CP+10000.s(CTT-CT)*+2)
2 TIP PITCH AND 2 CHORDS OESIGN VARIABLES

152

OO0

ut

.1522E+00
.2524E400
.3524E+400
.4523E4+00
.6021E4+00
.7518E400
.8266E400
.8765E+00
.8263E+00
.9762E+00

CL

SO0

.7778E+90
.8493E+00
.8508E+00
.8176E+00
.7337E400°
.6263E+00
.5672E+00
.5268E+00
.4685E+00
.4015E+00

GAM

D000

.4315E-02
.7813E-02
.1093E-01
.1348E-01
.1610E-01
.1716€-01
.17@09E-01
. 1683E-01
.1501E-01
. 1306E-01



Table 8. -Continued.

NO. OF BLADES = 2

CT =0,00450

CP =9.000324

CTT =0.00459 CPI =2.000221

SOLIDITY =9.0460

CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =2.00500

“ETA
.150
.250
. 350
. 450
.600
.750
.825
.875

925
.975

CHORD
.0729
.0729
.0729
.0729
.0729
.0729
.0729
.0729
.0692
.0666

00D OOOOOOS

THETA

1713E+02
.1591E+02
. 1469E+02
.1346E+02
. 11636402
.9798E+01
.8881E+01
.8274E+01
.7452E4+01
.6524E+401

0000006660

ALPHA

. 77076401
.8503E401
.8251E401
. T414E401
.5816E4+01
.4860E+01
.4602E4+01
.5176E+01
.5829E4+01°
.4621E4+01

bbbbdddddd

WLA

.2490E-01
.3251E-01
.3951E-01
.4770E-01
.6110E-01
.6480E-01
.6172E-01
.4735€-01
.2620E-01
.3239E-01

SOOI

uT

.1521E+00
.2521E400
.3522E+00
.4525E+00
.6031E+00
.7528E+00
.8273E400
.8763E400 -
.9254E400
.9755E4+00

OO0 OOOO

cL

.8228E+00
.9112E+00
.8840E+00
.7926E+00
.6215E+00
.5220E+00
.4861E+00
.5568E+09
.8244E+020
.4955E+020

X -X. X X N. X NN ¥

GAM

.4559E-02
.8371E~-02
. 1135€-~-01
. 130701
. 1366E~-01
. 1432E-~-01
. 1496E-~01
.1778E~01
. 1998E-01
.1611E~01



ETA CHORD ~~ THETA "ALPHA . WLA utr eL

Toblej9. Ontimization Results Obtained Usina Free Woke Theorv

for Rotor of Fin,(4-3) with Desian Variable Set(8)
'OPTIMIZATION OF ROTOR OF;EIG.(4—3) WITH DESIGN VARIABLE SET (8)
beJ-cp/c7+wrN.(ch—cr).-z. WFN=1.3eWFO, AND.WF(INITiAL)-1G9006;0
N NO. OF BLADES = .2 SIGT -0.0464} SIG =9.0464 , _
CT =0.00452 CP =0.000339 F“ =0.635 CT/CP =13.348 0BJ = 0.7552e-01
CTT =0.20459  CPI =9.000233 CVT1(LOCAL) =9.00050 CYTZ(GLOBAL) =9 ,00500

ETA 'CHORD THETA ALPHA ~ WLA uT cL

.150  ©0.7290E-01 17.1337 8.0549 -0.2397E-01 ©.1519E+00 ©.8658E+00
.225 ©.7290E-01 16.2170 - 8.6486 -0.2990E-01 0.2270E+00 0.9300E+00
.275 ©.7290E-01 15.6058 8.8532 -0.3256E-01 .0.2769E+00 0.9517E+00-
.350 ©0.7290E-01 14.6891- 8.4609 ' -0.3820E-01 ©.3521E+00 ©0.9079E+00
.500 0.7290E-01 12.8556 6.8070 -0.5298E-01 0.5028E+00 0.7261E+00
.670 ©.7290E-01 10.7777 5.3578 -0.6357E-01 0.6730E4+00 ©.5755E+400
,.760  ©,7290E-01 9.6776 4.9156 -0.6331E-01 ©0.7626E+00 ©.5295E+00
.800 ©.7290E-01 9.1888 4.8084 -0.6128E-01 ©.8023E+0Q0 . 0.5187E400
.840 . ©.7290E-01 8.6999 4.8508 -0.5652E-01 0.8419E400 ©.5231E+00 -
.880 ©.7290E-01 - 8.2110 5.2666 -0.4526E-01 0.8812E4+00 . ©.5639E+00
.810 ©.7290E-01 7.8443 5.4927 -0.3737E-01 ©0.9108E+00 ©.5860E+00
.930 - ©.7290E-01 - 7.5998 5.4204 -0.3539E-01 0.9307E+00 ©.5783E+00
.950 ©.7290E-01 7.3554 5.0828 -0.3770E-01 0.9507E+00 ©.5427E+00
.970 ©.7290E-01 7.1110 4.4563. —0.4497E-01. 0.9710E+00 ©.4762E+00
.999 0 6.8665 3.3239 -0.6129E-01 . @ 0.3552E+00

. 7290E-01 .9919E+00

NO. OF BLADES = 2 SIGT =0.0457 SIG =0.0464
‘W¢WQmemym¢momhwmou-@M@m
cm =0.00459 CPI =0.000238 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500

.150 . 0.7177E-01 17.3528 8.2672 -0.2399E-01 0.1519E4+00 ©.8889E+00
.225 - ©.7177E-01 16.4366 8.8607 -—0.2992E-01 0.2270E+00 . ©.9530E+00
275 ©.7177E-01 15.8258 9.0662 -0.3259E-01 ©.2769E+00 ©.974BE+00
.350 0.7177E-01 14.98095 8.6666 —0.3829E-01 ©.3521E+00 ©.9302E+00
.500 ©.7177E-01 13.0771 . 6.9926  —0.5330E-01 . 0.5028E+00 ©.7462E+00
.676 ©.7177E-@01 11.0003 5.5469 -0.6396E-01 ©.6730E+00 ©.5958E+00
..760  @.7177E-01 9.8971 5.0961 -0.6383E-@1 0.7627E+00 ©.5489E+00
.800 ©.7177E-01 9.3931 4.9821 -0.6171E-01 ©.8024E4+00 ©.5374E+00
.840 0.7176E-01° 8.8892 . 5.0195 -0.5682E-01 ©0.8419E+00 . ©.5412E4+00
.880 ©.7176E-01. 8.3853 5.4270 -0.4548E-01 0.881264+00 ©.5811E+00
.910  ©.7176E-01 8.0073 5.6382 -0.3765e-01 0.9108E+00 ©.6017E+00
.930 ©.7176E-01 7.7554 '5.5557 -0.3572E-01 0©.9307E4+00 ©.5928E+00
.950  0.7176E-01 7.5034 5.2075 -0.3809E-01 0.9508E4+00 ©.5561E+00
.970 0.7176E-01 7.2515 4.5667 -0.4549E-01 0.9711E+00 ©.4881E+00
.990 o0 6.9995 3.4089 —0.6212E-01 ©.9919E4+00 O

.7176E-01

NO. OF BLADES = 2  SIGT =0.0453 SIG =0.0464
 CT =0.00457 CP =0.000342 FM =0.639 CT/CP =13.373 O0BJ = . ©.7482E-01
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OO0

‘0000000000000

.3643E+00

GAM

.4794E-02
.7695E-02
.9606E-02
.1165E-01
1331E-01
.1412E-01
.1472E-01
.1517E-01
.1605€-01
.1811E-01
. 1945E-01
. 1962E-01
.1881£-01
.1686E-01
.1284E-01

GAM

.4845E-02
.7762E-02 -
.9687E~02
.1175E-01
.1346E-01
.1439E-01
.1502E-01
.1547E-01
.1635E-01"
.1837E-01 . -
.1966E-01
. 1980E~-01
.1897E-01
.1701E-01
.1297€-01



Table 9, -Continued

CTT =9.00459 CPI =0.000237 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =9.00500

T ETA CHORD THETA ALPHA WLA . utT : cL GAM

.150 ©.7111E-01 17.3806 8.3138 -0.2394E-01 ©.1519E400 ©.8940E+00 ©0.4829E-02
.225  0.7111E-01. 16.4647 8.9087 -0.2985E-01 ©.2270E4+00 ©.9583E+00 ©.7733E-02
.275  @.7111E-01 15.8541 9.1147 -0.3250E-01 ©.2769E+00 ©.9801E+00 ©.9650E-02
.350 @.7111E-01 14.9382 8.7142 -0.3817E-01 ©.3521E4+00 ©.9354E4+00 ©.1171E-01
.500 @.7111E-01 13,1065 7.0345 —0.5319E-01 ©.5028E+00 ©.7507E+00 ©.1342E-01
.670 ©.7111E-01 11.0305 §5.5836 -0.6389E-01 0.6730E+00 0.5998E+00 0@.1435E-01
.7680 ©.7111E-01 9.9270 5.1300 -0.6378E-01 ©.7627E+00 0.5525E+00 ©.1498E-01
-.800 0.7111E-01 9.4209 5.0133 -0.6166E-021 ©.8024E+00 - 0.5408E+00 0.1543E-01
.840 0.7111E-01 8.9149 5.0474 -0.5679E-01 ©0.8419E4+00 ©.5442E+00 ©.1629E-01
.880 ©.7111E-01 8.4088 5.45468 -0.4541E-01 ©.8812E4+00 ©.5841E+00 ©.1830E-01
910  ©.7111E-01 8.0293 . 5.6692 -0.3751E-01 ©.9108E+00 - ©.6050E+00 ©.1959E-01
.930  0.7111E-01 7.7763 5.5876 —0.3554E-01 0.9307E+00 ©.5962E4+00 ©.1973E-01
.95 ©.7111E-01 7.5232 5.2385 -0.3790E-01 . 0.9508BE+00. 0.5595E4+00 ' ©.1891E-01
.970 ©.7110E-01 7.2702 4.5952 -0.4532E-¢1 ©.9711E+00 '©.4911E+00 ©.1696E-01
.99¢ @.7110E-01 7.0172 3.4320 -0.6203E-01 0.9919E4+00 - ©.3668E+00 ©.1293E-01
NO. OF BLADES = 2  SIGT =0.0451 SIG =0.0464 .
CT =0.00457 CP =0.000341 FM =0.640 CT/CP =13.386 OBJ = ©.7480E-01
CTT =0.00459 CPI =0.000237 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =9.00500
"ETA . CHORD THETA ALPHA WLA ut ' CL GAM
.150 ©.7084E-01 17.3843 = 8.3291 -0.2391E-01 0.1519E+00 ©.8957E+00 ©.4819E-02
.225 ©.7084E-01 16.4703 8.9253 -—0.2980E-01 ©.2270E+00 ©.9601E+00 = ©.7719E-02
275 ©.7084E-01 15.8609 9.1320 -0.3245E-01 ©.2769E400 0.9820E4+00 ©.9632E-02°
.350 ©.7084E-01 14.9468 8.7320 -0.3B11E—01 ©.3521E+00 ©.9373E+00 0.1169E-01
.500 - @.7084E-01 13.1187 - 7.0513 -0.53156-01 ©.5028E400 = ©.7526E+00 0.1340E-01
.670  ©.7084E-01 11.0468 5.6020 —0.6386E-01 ©.6730E+00 ©.6018E+00 . 0.1435E-01
.760  ©.7084E-01 9.9445 5.1474 -0.6378BE-01 0.7627E+00 ©.5544E4+00- ©.1498E-01
.800 ©.7084E-01 - 9.4356 5.0287 —0.6165E-01 ©.8024E+00 ©.5424E+00 ©.1542E-01
-840 ©.7084E-01 8.9267 §5.0601 -0.5677E-01 ©0.8419E+00 ©.5456E4+00 ©.1627E-01
.880 “0.70B4E-01 8.4177 5.4662 -0.4537E-01 0.8812E+00 ©.5854E+00 0.1827E-01
.910 0.7083E~-01 8.0361 5.6813 -—-0.3742E-01 ©.9108E+00 ©.6063E4+00 ©.1956E-01
.930 ©.7083E-01 7.7816 5.5994 -0.3544E-01 0.9307E+00 ©.5975E+00 0. 1969E-01
.950 @.7083E-01 7.5272 - 5.2494 -—0.3779E-01 0.9508E+00 ©.5606E+00 ©.1888E-01
.970  ©.7083E-01 ~ 7.2727 4.6048 -—0.45206-01 ©0.9711E+00 ©.4922E+00 ©.1693E-01
- .99 o, 3.4396 -0.6192E-01 ©0.8919E+00 @ o

.7083E-01  7.0183 .3676E4+00 .1291E-01



- Table 10, mntimization Results Obtained bv Using Free “ake Theory

for Rotor of Fia, (4-7) with Desinn Variable Set(8)
OPTIMIZATION OF ROTOR OF FIG.(4-7) WITH DESIGN VARIABLE SET(8)
oea;cp/cr + wrNa(crt-crj‘:z. WFN=1.3¢WFO; AND WF(INiTIAL)f199000.0
_ NO. OF BLADES = 2 SIGT =0.0419 SIG =0.0464 ,
awmwwwmw;mﬁmcmhwmom-mmmm
. CTT =2.00350 CPI =0.000138 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500

ETA CHORD . THETA - ALPHA WLA. -UT CL

.150  ©.7290E-01 20.0535 8.9666 -0.2939E-01 0.1529E4+00 ©.9498E+00 @
.225 9.7290E-01 18.6211 " 9.1570 —0.3751E-01 ©.2281E4+00 - 0.9753E+00 @
.275 ©.7290E-01 17.6662 9.0014 -0.4191E-01 . ©.2782E4+00 ©.8602E+00. ' ©
.350 0.7290E-01 16.2338 8.2461 -0.4911E~01 ©.3534E+00 ©0.8801E+00° @
.500 ©0.7290E-01 13.369¢ 6.9206 -—0.5651E-01 0.5032E+00 ©.7406E+00 O
.670 - ©.7280E-01 10.1223 5.4363 -—0.5492e—01 ©.6722E4+00 ©.5836E+00 ©
.760 ©.7086E-01 - 8.2506 4.7952 -—0.4589E-01 ©.7614E+00 ©0.5150E+00 @
.800 ©.6269E-01 6.8755 4.7642 -0.2949E-01 ©.8005E+00 ©.5099E+00 O
.840 ©.5453E-01 5.5004 4.5124 -0.1449E-01 0.B401E+00 ©.4814E+00 O
.880 ©.4636E-01 4.1253 3.8999 -—0.3461E-02 ©.8800E4+00 0.4159E+00 ©
.910 9.4024E-01 3.0940 3.2755 0.2884E-02 ©.9100E4+00 ©0.3493E+00 ©
.930 9.3616E-01 2.4064 2.7238 ©0.5151E-02 0.9300E+00 ©.2905E+00 ©
.950 ©0.3208E-01 . 1.7189 2.1690 ©.7463E-02 . 0.9500E+00 ©0.2312E4+00 ©
.970 0.2799E-01  1.0313 1.5877 ©.9420E-02 ©.9700E+00 ©.1690E+00 ©
".990 9.2391E-01 ©0.3438 ©.9585 0.1062E-01 ©.9901E+00 . ©.1018E+00 . ©
NO. OF BLADES = 2  SIGT =0.0417 SIG =0.0464 v
CT =0.00332 CP =9.000212 FM =0.638 CT/CP =15.662 OBJ = ©.6711E-01
CTT. =0.00350 CPl =0.000138 - CVT1(LOCAL) =@.00050 CVT2(GLOBAL) =9.00500
ETA . CHORD . THETA - ALPHA WLA ur. - CL
.150  ©.7251E-01 20.6551 8.9866 —0.2934E-01 ©.1528E+00 ©.9520E+00 @
.225 9.7251E-01 18.6231 - 9.1776 -0.3743E-01  0.2281E+00 - 0.9775E+00 0
275 ©0.7251E-01 17.6684 9.0208 -0.4182E-01 0.2782E+00 0.9624E+00 O,
.350 0.7251E-01 16.2364 8.2629 -0.4902E-01 = 0.3534E+00 ©.8820E+00. 0
500 - 0.7251E-01° 13.3723 6.9345 -—0.5642E-01 ©.5032E+00 ©.7421E+00 0O
.670 0.7251E-01 10.1264 5.4477. -0.54B3E-01 ©0.6722E+00  0.5848E+00 0
.760. ©.7048E-01 8.2551 4.8044 —0.4583E-01 ©.7614E+00 0©.5159E+00 O
.800 9.6236E-01 6.8796 4.7726 -0.2943E-01 0©.8005E+0Q0 ©.5108E+00 O
.840 0.5424E-01  5.5041 4.5201 -—0.1443E-01 O©.8401E400 ©.4823E+00 ©
.880 0.4612E-01 4.1286 3.9059 -—0.3421E-02 0.BBOOE+00 ©.4166E+00. @
.910  0.4003E-01 3.0970 3.2798 ©.2904E-02 -0.9100E+0@ ©.3498E+00 @
.930 0.3596E-01 2.4093 2.7270 ©.5158E-02 ©.9300E+00 ©.2908E+00 - O
.950 0.3190E-01 1.7215  2.1713 0.7457E-02 0.9500E+00 . 0.2314E4+00 O
.970  0.2784E-01  1.0338 1.5892 ©.9403E-02 0.9700E+00 ©.1692E+e0 ©
o 0.9593 0.1860E-01 © 0.1018E+00 ©

.990 . 0.2378E-01 . 3461 .9901E+00

 NO. OF BLADES = 2 SIGT =0.0328 SIG =0.0464
" CT =0.00351 CP =0.000221 FM =0.667 CT/CP =15.818 OBJ = ©.6284E-0)

OAM .

.5292E-02
.8109E-02
.9736E-02
- 1134E-01
.1358E-01
.1430E-21
.1389E-01
. 1279E-01
.1103E-01
.8485E-02
.6396E-02
.4884E-02 .
-3522E-02
.2295E-02. -
.1205E-02

GAM

.5275E-02
:8084E-02
.9705E-02
.113eE-01
.1354E~-01
.1425E-01
.1384E-01
.1275£-01
. 1099E-01
.8452E-02
.6371E-02
.4863E-02°
.3507E-02
.2285E-02
.1199E-02 -



Table 10 -Continued |

CTT =0.00350 CPI =0.000152 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =9.20500.

ETA CHORD ' THETA ALPHA WLA ut . cL GAM

.150 0.5671E-01 20.8817 10.6997 -0.2694E-01 ©.1524E400 ©.1139E+01  0.4923E-02
.225 ©.5671E-@1 19.6395 11.1200 -0.3370E-01 ©.2275E400 ©.1189E4+81  0.7669E-02
.275 0.5671E-01 18.8113 11.0855 -0.3731E-01 0.2775E4+00 ©.1187E+01 ©.8336E-02
.350 0.5671E-01 17.5691 10.2567 —-0.4491E-01 ©.3529E+00 ©.1097E4+01 ©.1098E-01
.500 0.5671E-01 15.0846 8.6077 -0.5676E-01 ©.5032E4+00 ©.9213E400 0.1314E-01
.676 ©.5671E-01 12.2689 7.3022 -0.5822E-01 ©.6725E+00 ©.7833E400 ©.1494E-01
.760 0.5671E-01 10.7782 6.5586 -©.5607E-01 ©.7621E4+00 0.7035E4+00 ©.1520E-01
.800 0.5049E-01 9.3121 6.4549 -0.3993E-01 ©.8010E400 ©.6910E4+00 0.1397E-01
.840 0.4381E-01. 7.7846 - 6.2544 —0.2244E-01 0.8403E+00 ©.6674E+00 - 0.1228E-01
-.880 0.3712E-01 6.2571 5.7631 -0.8509E-02 ©.8800E+00 ©.6083E+00 ©.9934E-02
.910  0.3210E-01 5.1114 5.0532 -0.9243E-03 0.9100E4+00 ©.5392E400 ©.7876E-02
.930 0.2876E-01 4.3477 4.4456 ©0.1590E-02 ©.9300E+00 0.4745E400  ©.6345€-02
.950 .0.2541E-01. 3.5839 3.8176 ©.38756-02 0©.9500E+00 ©.4076E4+00 ©.4920E-02
.970  0.2207E-01 2.8202 © 3.1285 ©.5219E-02 0.9700E400 ©.3340E4+00 ©.3575E-02°
.990 0.1873E-01 2.0564. 2.2803 - ©.3868E—02 ©.9900E+00 ©.2433E400 0.2256E-02

NO. OF BLADES = 2 SIGT =0.0328 SIG =0.0464 v

CT =0.00349 CP =0.000219 FM =0.666 CT/CP =15.946 -0BJ =  0.6274E-01 -

CTT =0.00350 CPI =0.000150 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500 .
ETA CHORD - THETA ALPHA WLA ~ - ut CL e - GAM
.150  ©0.5668E-Q1 20.7863 10.6279 -0.2688E-01 ©.1524E4+00 ©.1132E+01 0.4887E-02
.225 ©0.5668E-01 19.5482 11.0516 -0.3361E-01 ©.2275E4+00 ©.1182E+01 0.7618E-02
.275 - ©.5668E-01 18.7229 11.0182 -©.3720E-01 ©.2775E4+00 0.1179E+01  ©.9274E-02
.350 ©.5668E-01 17.4848 10.1926 -—-0.4479E-01 ©.3529E+00 ©.1091E+01 ©.1091E-01 -
.500 0.5668E-e1 15.0088 @ 8.5516 -0.5659E-01 ©.5032E+00 ©.9153E+00 0@.1305E-01
.670  ©.5668E-01 12.2026 7.2534 ~0.5802E-01 ©.6725E+00 ©.7780E+00 ©.1483E-01
.760 ©.5668E-01 10.7170 6.5146 -0.5584E-01 ©.7620E+00 ©.6987E+00 ©.1509E-01
.800 0.5048E-01 9.2574 6.4121 -0.3976E-01 ©.8010E+00 . 0.6864E+00  ©.1383E-01
.840 @.43B0E-01° 7.7349 6.2150 -0.2229E-01 0@.8403E+00 ©.6632E4+00 = ©.1220FE-01.
.880  0.3711E-01 6.2125 5.6658 -—0.8397E-02 ©.8800E+00 0.6043E+00 ©.9867E-02
.910 0.3209E-01 5.0706 5.0173 -0.8477E~03 ©0.9100E4+00 ©.5353E+00 ©.7817E-02
.830 ©.2875E-01 4.3094 4.4112 ©.1653E-02 ©.9300E+00 ©.4708E400 ©.6294E~-02
.950  0.2541E-01 3.5482 3.7851 ©.3927E-02 ©.9500E+00 ©.4041E4+00 ©.4876E-02
.870 ©.2206E-01 2.7876 - 3.0984 ©.5272E-02 ©.9700E+00 0.3307E+00  ©.3539E-02
.990° ©0.1872E-01 2 2.2549 ©.3960E-02 ©.9900E+09 ©.2406E+00 0.2230E-02

.0257

15



Table 11, Ontimizatinn Results Nhtainad bv Usima Free vake Theor

NO

cyT -

OF gr.AGks -

0.,00455- CF

2§18 20,0464

:20,000342

SI6 =0.0464

FH 0,635 CI/CP ~13,309° 0BJ »

'0.7532E-01

CTT #0,00459 CPI <0.0002446 LVTILOCAL) 0.00050 CVT2(GLOBAL) =0.00500

ETA
150
SL22%
0275
2350
.500
8670
740
.800
.840
880
910
+930
L9530
970
990

NO .
Cr -

c1T.

ETA
150
225
w275
350
+ 300
470
2760
.800
+BA0
. 8450
910
» 930
950
970
990

Ni) .

. CY

CHORY
0.72v0% -01
0.72Y0E-01
0.7290t-01
0.72v0E-01
0.72908-01
0.72Y0E-01
0.72Hdk-01

0.728BE-01

V. 7248E-01
0.72€BE-01
0,7248E-01
0.7288E-01
0.7288-01
0.7288E-01
0.7288F-01

OF BLALES

0.004%4 LF

THETN

172.1337
16.2170
15.60u8
14.6891
L22.85U6

10.7777

Y.A7/A
Y.1888
B.A999

£ 2310
7.8443
7.9v98
7438504
741110
6.868%

2 SIGY

-D.,000844

ALFHA

10.1¥22 .

10.0533
9.84621
6.9327

A 4348

g.8762
5.8946
%.2268

CTi.06318

4.9132
4.7560H
A.0963
A.31R7
3.68346
2,707

20,0464

wLE
-0.1826E-01
~0.2430L-01
-0.2764E-01
-0.3L26E-01
=0,5174E-01
-0.5746E-01
~0.5468YF-01
~0.5541E-01
-0.5339E-01
-0.%5071£-01
-0.4902E-01
~0.4880E-01
-0.5040E-01
-0.5553E-01
~0.6854E-01

SI6 =0.0464

[1hs
0.1511E400
0.2263E400
0.2764E 400
0.3518E+00
0.5028BE+00
0.46725E400
0.7621E+00
0.8B019E400
0.8417E400
0.881%E400
0,9113E+00
0.9313E400
0.9513E+400
0.9716E400

0.9924E+00

PH -0.636 Cl/CP 13,298 08J =

cL
0.1103E401

0.1085E401°

0.1063E+401
0.9607E400
0.7344€400
0.6323E400
0.5803E+400

" 0.3616E400

0.5432E400
0.5257€400
0.50B3E+400
0.4900E400
0.4401E400
0.40B3E+00
0.3091E400

'0.7521E-01

GhM
0.6073E-02
0.B951E-02
0.1071E-01
0.1232£-01
0.1346E-01
0.1550E-01
0.1612€-01
0.1641E-01
0.1646E-01
0.1689E-01
0.168BE-01
0.1663E-01
0.1595E-01
0.1446E-01
0.1118E-01

+0.004%%  CH1 -0.00023% CUTI(LOCAL) =0,00050 CVT2(GLOBAL) =0.00500

CHURD
0.7290E-01
0.7270F ~01
0.7290E~01
0.7270t-01
0.7290E~-01
0.72Y98-0V
0.728BE-0)
Q.7288E~04
0.72HEE-01
0.7288E-01
0.7288BE-01
Q. 728HE-01

©0.,728BE-01

0.72818F-01
©0.72881-01

OF Bl ADES -:

20,0044 CF

THETA

17,2022
14,2849
15,8736
14,7564
1z.9201
10,8442
¥.72410
Y.2447
B8.7189
H.2508
7.85608
7.6318
7.4848
7.13458
- 4.8887

2 S1G7

N FHE
10,2497
10,1094
¥.,9158
4.9906
6.8857
.98
.13
.68
%.1019
1,948
12,7921
1,642
4,3124
3.85313

2{91831

~0.04419

WLA

.~0.1829E-01

-0.2434E-01
-0.2771E-01
-0.3%534E-01
~0.5287E-01
~0.%767€-01
~0.%714E~01
~0.5%561€E-01
~0.535SE-01
~0.50R1E-01
-0.4910E-01
~0.448RE-0OL

~0.5049€E~01 .

-0.5Us49E-0O1

-0, 6871E-01

SIG =0.0464

ut
0.1511E 400
0.2243E+400
0.2764E400
0.3518E400
0.502BE+00

- 0.6725E+400

0.7621E400
0.8019E+00
0.8417K 400
0.,8815E400
0.9113E400
0.9313E400

0.Y513E+00

0.9716E+400
0.9924E 400

:0,000332 FH 0.£4%1 " CT/CP ~13.666 OHJ "

cL
0.1109E+01
0.1091E401

T 0.106%9E401
" 0.9470E400

0.7399E400
0.6374E400
0.5851E+00
0.5661E400
0.5473E400
0.3295E400
0.5116E400

0.4930E+400

0. A626E400
0.4104E400
0.3105€400

GAM
0,6107E-02
0.9001E-02
0.1077E-01

. 0.1240E-01

. 0.1356E-01
0.1552E-01
0.1825E-01
0.1454E-01
0.1679E-01
0.1701E-01
0,169YE-01
0.1673E-01
0,1604E-01
0.1453E-01
0.1123E-01

0.7349E-01

. [N
CTT =0.00459 «FI -0.000%7 CVYIT(LULAL) =0.00050 CVT2(GLOBAL) =0,00500

_BUALSLUSER . FLUIDS . CHUNGIOFT . DATHS

-ETA

150
«225
275
+350
«500
670
+760
.800
840
.»8B0
910
»930
1950
970
1990

. CHURD

0.72v0E-01
0.7270E~01
0.7290E-01
0. 7290k -11
0.72%0L-01
0.7170E~01
0.,728RE-01
V.7284E~-018
0.,7281E-01
0.7277€-01
0.727%E-01
0. 7273E-01
0,7271L-01
0., 727001
0.724BE-01}

1HETA
17.2769
16.3692
10,7641
14,8565
13.0412
10.98%9
Y.RITS
v.1630
¥.4864
7.4094
7.3023
&6.Y440
6.462%7
6.2874
‘h.9491

ALFHa
¥.9348
Y.9085
v.7652
8,901
6.9935
6.0710
5.5408
H.2866
5.0427
4.8286
4.40%1
a.3907
24,0630
3.5488
2.6440

wLA

~0.1933€-01
-0.,2%48E-01
-0.2488E-01
~0,35650E-01
-0.5297E-01
-0.3759€E~-01
~0.5713€-01
-0.5421E-01
-0,505%E-03
-0.4591€-01
-0, AZB1E- 01
-0.4180E-01
-0, 4752E-01
~0.4510E-01
-0,5717E-01

158

A

ur
0.1512E+400
0.2264E400
0.274635E£400
0.3U15E400
0.502BE+00
0.6725E400
0.7621E+400
0.8018E+00
0.8415E400
0.8812E+00
0.9110€E400
0.9309€E400
0.,9510E400
0.9711E400
0.9916E400

24-AUG-1Y8BS 20142

. CL

0.1073E401
0.1069E401
0.,1053E401
0.9591E400
“0.7521E400
0.6528E400
0.5954E400
0.5476E400
0.5405E£400
0.5155E400

0.4916£400 -

0.4679E400
0.432BE400
0.37B0E+400
0.2B815E+00

GAM
0.5515E-02
0.8822E-02
0.1062E-01
0.,1230E-01
0.1378E-01
0.1400E-01
0.16538-01
0.1658E-01
0.18656E-01
"0.1653E-01
0.1629€-01
0.1584E-01
0.1196E~01
0.1334E-01
0.31014£-01

ORIGINAL PAGE IS
OF POOR ‘QUALITY



- TABLE OF OPTIMIZATION

Table 4 | Momentum, _ _
~Optimized CT/CP=14.4 |CT=0.00328
Table 3 Constant
Downwash. CT/CP=13.4 |CT=0.00376
Free Hake
Table 3 | Variable ' ~
Downwash. CT/CP=13.8 |[CT=0.00471
| Momentum
Table 5 | Constant CH. _ _ _
Var. Twist CT/CP=14.25 | CT=0.00422
Table 6 | Same as 5, _ _
Constrained CT/CP=15.46 | CT=0.00416
Table 7 | Tapered and _ _
‘ Double Twisted CT/CP=14.7 CT=0.00416
Table B8 | Same as 7, a -
Constrained CT/CP=13.9 CT=0.00450
Fig.4-3 | Johnson _ _
Rotor CT/QP—13.6 CT=0.00459
Table 9 | Same as 8 with _ _
Var. Solidity CT/CP=13.39 | CT=0.00457
Table 10| Same as 9 with| ., _ _
Double Twist CT/CP=15.946| CT=0.0035

% %

* Questionable Result - Optimization Gave Erratic Values

~* Compare to CT/CP = 15.78 at CT=0.0033 from Heuristically

Optimized Rotor Geometry (Fig. 4-7)

159



008

6E8YLL S8-HdV—VZ

0oL

009

o0s T 0O

' g9 *JA¥ 40 HOIOY

sniavy

L . . L

00e . o0z ool 00+30000

“ .

40 A119U039 apD[g T-h 9IN6I4

hhe9'0 =

HHLmz 10 94n614

0€20000 = 14O
9EE0000 = dO
L '657000 = 1O

.. Qm#oo = ALIAINOS
.89 . umm .uo 4030y -

092 o9l " 009 00t~
1SIML ~
160

09E

oot

09s

3dvHS 3avia



.?6@5 WNIUBWOW O-§ BUTSN UOTIDZTWIIdO ,>n_ psuIDnIqo uoIlNngrJasig pJoyd '¢-k 9J4nbld

_ 9E'ES'ET G8-UdV-LL : sniavy . : 4 _ a
008 00L - 009 00s = ooY 00€ 002 - 00L  00*30000
C 1 3 3 ' - 4 ' It . 1 I [4)]
o
o
L O .
o
o
E
o
-
2
.%5
o -
- W
o
o
: . L &
€E€0000 = dD 3
0/¥000 = 10 _
. €€50°0 = ALIQIOS
AHO3HL WNINIFWOW G-€ | o
. ©

3dVHS 3avig

161



008

62Le2L G8-Hdv-22

00L

009

_.moLm a11J0Jd 0437 1D >Lomch E:pcmsoz a-< . |
mcﬁm: Aq uco uLocu pax14 404 coHHONﬁsHHao AQ' omcﬁopoo coﬁpzaﬁgpmﬁo cu“wm m.: mL:mﬁm

005

4

w3_0<m
00p"

00¢e

0'0C ~ ool oowmooo.o

© '

'2€20000 = dD-
 2Lp000 = 1D
y9¥0'0 = ALIIIOS

| © 00=a0
AHOZHL WNINIFWOW a-€

3dVHS JAvE

. Q'Ol—

L

- 00+30000

L)

o0oL

1SIML

002
162

- 00€

oot

- 009



008

ol v_cu + SU au YIIM pJoy) paxid4 Joj
?_omﬁ EBcoEoz a-< Q:m: coSONESao Aq 8588 coﬁzﬂbms Udlid 't - 94n614

90:10:01 S8-Hdv-8l1 : sniavy :
004 009 . 009 ooy 00 -0'02. ) oF , oo+mooo 0]

1 1 A 2 3

00—

009

09l

1SIML

092
163

09t

. ZV€0000 = dO I
0/¥000 = 10 _
Y900 = ALIQIIOS

01°]4

~ AHO3HL WNINJWOW a-€ I

- 099

3dVHS 3avig



008

[ -

 20'8¥'ZL G8-HdV-EZ

004

009"

*SDMUMOQ IUDISUO) Y AT 03 UOTINGTJISIA UdIId 'G-

00S

1

" sniavy’

. ooY

0o

1

002 . 00L  00+3000

h 94nb14

1810000 = IdD -

© 1820000 = dD

© 9L€000 = 1D
¥9v0'0 = ALIQIIOS

VaVsG0 + ¥1L00 = @D

3dvHS 32davig

0
1
—_
o

00+3000°0

00z 00l
1SIML -
164

00¢e

ooy

|

005



D.ou -

“ .~ 07 = D.00375. CP. = 0.0D0281: Constant. Downwash
4 O—LC7 = D.GGQSS CP = 95-0033:23 ' Rotor of Ref. 68

. Flgure 4-o, Comporlson of Bound Circulotlon Between Rotor of Ref 35 .
and Rotor of Constant Downwash.,
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20
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iy
4 )

— T E
0. 80 0.80 : 1.00

. no 0. 20 a.un

- RADIUS - e
Figure 4-8, Bound Circulation bfﬂg‘\e [ﬁouble Twisted and Tapered Rotor
for Different Root Chord. .
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ORIGINAL PAGE IS
OF POOR QUALITY

N
(_‘3'— ............................ e St - ...... e e e
—f- LT = D.00355 CP = 0.000226 CT/Cp = 15,71 -
TD ......... —0O—.LT.=.0.00302 CP = 0.0001B2..CT/(R.=1659.
o —— CT = 0.00200 CP = 0.000108 (J/CP=18.%2 -
e —+—CT = 0.00104 CP - 0.000pug  CI/CP=2L07

. ’ :

. o0 0. 20 0. un 0. 80 a.80 100
RADIUS

Figure 4-9. Bound Circulation of .the Double Twisted and Tapered Rotor

for Different Chord.
18



2D

—3— CT = b.003é7 CP = Dionozéz;Rofor offFiguré 4-7.
- f:{}T.CI = O;QOSQQUHCE”;.OgDOOEZ7JHRQtor“of“Figure 4-1,

BOUND CIRCU
D.D5

%' oo 0. 20 0.un 0. 80 0. 80 1. 00

‘ RADIUS |
Figure 4-10. Bound Circulations of the Double Twisted and Tapered
_Rotor and of the Straight Twisted and Constant .Chord Rotor.
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Figure 4-16. Comparison of Bound Circulations for three

Different Rotors.
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

As a test of the optimization program constant downwash
is obtained by using momentum theory and optimization using
the Quasi-Newton method. The uniform downwash or uniform
circulation is found to be not the optimum condition because
~of the highly concentrated tip vortex for the maximum thrust
to power coefficient of a rotor. The classical vortex or
momentum theory can not be used for the hovering performance
optimization.

. Free wake lifting line théory is found to agree Dbetter
with the experimental results in Ref.(35) than lifting
surface theory for performance-énalysis. The 1lifting body
theory which wuses the superposition of source and vortex
sheets 1is developed and compares well in performance
prediction with other methods suéh ~as Euler solution in
Ref.(32) or panel method solution in Ref.(33) of a wing.

The free wake geometries oﬁtained by free wake 1lifting
line theory 1is in good agreement with experimental results
in Ref.(35).

For the calculation of the self-induced‘veiocity of a

ring vortex the formula given in Ref.(4) is used with the

vortex core size of 2 % of the rotor radius.
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It is shown that the fast free wake techniques used in
Ref.s(7-11) give the real flow field and is necessary to
compute the rotor hovering performance because the free wake
geometry 1is very different from the rigid wake geometry and
hence momentum theory is not accurate. 10 to 15 spanwise
divisions of the blade a;e found to be sufficient for the
analysis and optimization. |

The vortex core size of the ring vortices below the
rotor are calculated by the conservation of the kinetic
energy, circulation, and momentum. The work done by the
rotor is found to appeér as the kinetic energy due to the
wake vortices. The core size is shown to grow because the
flow outside of the core containes more energy as the ring
vortices move downward from the rotor. |

During the formal optimization of the hovering
performance it is found that the sensitive parameter to the
performance is the root chord, the colléctive pitch, the
taper ratio, and the degree of twist in the order of the
relative'importance. When the initially 1linear twisted
blade- is optimized with constant chord and varying pitch
only over the outer 20-% of the blade, the optimization
without constraint on CT gives a double twisted blade. HRith
"design variables of taper and spanwise location of the start
of taper, optimizaﬁion indicated no change in geometry for

the straight twisted blade with the constraint on current
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CT. With design variables of taper and twist and Spanwise
location of the start of taper and twist, the optimization
indicated a doubly twisted and tapered geometry with an
increase in CT/CP of 5%.

It is demonstrated that the formal optimization can be
used with the implicit and nonlinear objective or cost
function such as the performance of hovering rotors. - The
formal optimization can be extended to the performance
optimization of forward flights of rotors with a robust
analysis code. By the addition of the free stream-velocity
and the swirl loss correction the present optimization can
be extended to the propeller or wind turbine. Although the
close blade and first ring vortex encounter occurs outside
of the vortex core, a better definition of the vorticity
distribution from the roli-u§'o§ the near wake is needed..

|
{
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APPENDIX
A. A Surface Singularity Method for Computing the

Potential Flow of Thick Airfoils in Subsonic Flow

For solving the potential flow of two dimensional 1lifting
airfoils a superposition method which uses elementary
singularities at body surfaces is presented. The strengths
of these sinqularities-are determined by the flow tangency
condition on body surface and the Kutta condition.

This method was developed in Ref. (34) for
three—dimensional lifting flows wusing three-dimensional
singularities; source and doublet, distribution on body
surface. There the nonlifting flow was solved first and
then a linearly varying doublet around the wing curve
surface at each section was added to the nonlifting flow to
satify the Kutta condition and hence to create 1lift. The
two-dimensional version of this apprdach was tested in this
analysis. It was found that for the nonlifting flow the
flow velocity at the trailing edge was infinite and
therefore a finite vorticity could not be added to the
nonlifting flow to cancel this infinite velocity. The
lifting flow is solved here independently of the nonlifting’

flow,
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Hess and Smifh (ref.55) computed exactly thé tﬁb,
axisymmetric, or three-dimensional nonlifting flows by using
the surface source distribution. For two-dimensional
lifting flows they used fhree basic flows, that is, the
nonlifting flows due to uniform streams at ol =0 degree and
ol =90 degree and the flow due to a pure circulation about
airfoil, to generate the flows correéponding to a set of
angles of attack or lift coefficients. In Ref.s (56) and
(57) the doublet distribution on camber surface and the
source distribution on 'body surface were used and their
stréngths were determined by the flow tangency condition on
each surface. There linearly varyiﬁg source or
quadratically varying doublet was distributed on curved
panels obtained by fitting a paraboloid to corner points.
Also, the design problem of determining the body geometry to
have a given tangential velocity distribution was considered
first and analysis or design formulation was given by the
Green’s solution of the potential Laplace equation. Basﬁ
and Hancock (ref.58) solved the transient problem of a
sudden airfoil incidence change or an airfoil passing
through a sharp-edged gust. They employed the distribution
6f sources and constant strength vorticity around airfoil
curve. The position of shed vortices were. calculated from
the resultant velocities on free vortices at each time

increment. In Ref.(59) linearly varying vortex panels and a



8

constant source around airfoll curve were employed togethér

with a vortex sheet to represent the seperated region.

There -the boundary 1layer effect was modelled by source
distribution due to the boundary layer displacement and the
shape of the vortex sheet representing the seperated region
was calculated iteratively. Maskew (ref.10) wused the
Green’'s function solution to compute the pressure for four
blade tip shapes which are oscillating in pitch as semi-span
wings. He applied Green’'s theorem outside and inside of the
blade independently and set the potential inside the blade
to Dbe the free stream potential. In Ref.(6l1l) the
two-dimensioanl 1lifting airfoil was solved by Green's
function formula and the superposition of potential due to
circulation and non-circdlatory flow. There the total.
potential instead of the perturbation potential was employed
and hence needed the far field éotential approximation which
used the potential due to uniform flow past a unit circular
cylinder with given circulation. In Ref.(62) constant
source panels on body surface and constant doublets panels
on camber surface were employed with the flow .tangency
condition on each surface. Also, the compressibility
correction method ws given according to Gothert coordinate
transformation. In Ref.(63) the Green’'s function formula
for compressible and steady or unsteady potential flow was

derived. There the strengths of source on body surface were
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known from normal boundary condition and 1linear system of
equation for the potential strength on body surface was
derived by influence coefficient method. Since the
derivative of potential which 1is velocity is relatively
large, the potential which was assumed to be constant within
each element in Ref.(63) varies much from panel to panel.
The accuracy becomes poor as reflected in the comparison of
the calculated results with experiments in Ref.(10). The
approach written in Ref.(64) for the pressure calculation of
two-dimensional 1lifting airfoil was tried in the analysis.
It was found that the vortex panel superposition' to
nonlifting flow was not appropriate.

The method used in this analysis is same as the one
developed in Ref.(34). But the 1lifting flow is‘solved
directly by the superposition of N sources and 1 constanf
vorticity around airfoil curve with the N flow tangency and
1 Kutta conditions. The'compressibility is handled by the
Gothert coordinate transformation used in Ref.(62). The
influence coefficient matrix for N sources and 1 vortex is
same for one airfoil with different angles of attack. Hence
it can be inverted for all angles of attacks at once. This
method was éxtended to three-dimensional wing and hovering
fotor problem with free wake geometry and is applied for the

optimization of performance.
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A.1 DERIVATION OF METHOD

A.l1.1 Green’s Solution of Laplace Equation

The second form of Green’s theorem is
2 2

IJI (019705 = 9,770,) aV

R

: -
= II n - (¢1V ¢2 - ¢2V ¢l) ds - — (A-1)
S
where R is the region bounded by the closed surface S and

'3 is the outward unit normal. Let’s consider the region

outside a two-dimensional airfoil as shown in figure.

Let’s consider the unit length along the axis of airfoil
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cylinder. Then 4V = do dz and 48 = d® dz. Let ¢1 = ¢ and

¢2 =¥ = &n r. Then V2¢1 = 0 in region R and .v2¢2 =0

except at a point P.-

j n(eUX —XVe) dR + [ R - (eUx - xve) dL = 0 — (A-2)
do 5

At the point P Uy = % €, and § = 8. The first integral

in equation (A-2) becomes
0 1
2y £ {eg-tnr-v)rae=--2r9, — a3
)

If the point P is located on the airfoil surface, the first

integral becomes —ﬂ¢p . From equations (A-2) and (A-3),

- 3x _ , 3% - - _

21 0B, J (0 35 -~ x 32 ) dr  where B = 1or 1/2 (A-4)
. ) R

Since Qtotal" @w + ¢ and V?T = Um i +96, ¢ > 0as rr -+ oo,

27 0B = I [ o Sy 20 ] aL + i (0, — 0, ) oL ag
a

an
N
j Vo -dk = o u— =T
2108 = ja[¢ 3y 20 ] 4% + T fw X ar — -5
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For the point in region R,

_ _a R
¢p = ISO(Q)( T &n r ) d + Isp(Q) anQF > &n r) df (A-6)
where 'QS = 7% 2n r is the potential due to a two-dimensional

source of unit strength and 3% (ms) is the doublet. Also,

o (Q) and 4 (Q) are the strengths of sources and doublet each.

For analysis boundary conditions we have

30 I 3 1
2 -5 (0) =2 ( - == 20 dg
anp s anp 2%
+j o & & (lonryax — (a-7)
sp anp anQ 2

For design conditions we have

i‘2=fo<;g>i—(-———1-znr)d;c
s

ot 3t 7
p p i
5 » 1
+ [ & 2 (Eanr)ar — (a-8)
s atp anQ 27

Here, %— is the derivative in a normal direction and %E is
p ' p

the derivative in a selected tangential direction. S includes

the airfoil and the branch cut surfaces.

A.1.2 Methods Using the Continuity of Potential
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We use the equation (A-5) to obtain the linear system of
equations for the body surface potential ¢ . The body surface

S is divided into segmenta S and ¢ is approximated to be

K
constant ¢K on each segment.

3% = > 30
— =0 n + — = 0 on body surface.
an 00 an
_ v _ g .3 (2
T'=00pp 3e=-0,-n | (A.9)

From equation (A-5),

- _ v - ﬂ) — (a_
L8y Cox Woyd €6, 3 = b 1€ [an ’ 3 (A-10)
where Spk is the kronecker delta,

C -clj 2 (#n r) ds, 1 — (A-11)

pk ™ Jg on k

K

b=[—-l-fxnrds] — (A-12)

pk T lg k

K

and ka = 0 for the segments not in contact with the trailing

edge. For the segments in contact with the trailing edge,

1 3
Wy = [ i;r-Js-a—n(R,nr) as,y] — (A-13)

where Su is the surface of the branch cut. The upper (lower)

sign must be used for the upper (lower) side of the airfoil.
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It may be noted that T = A¢T E is the Kutta condition.

A.l1.3 Superposition Method of Source and Vortex or Doublet

We use the equation (A-7) to obtain the linear equations
for source strengths and one constant vortex or one linearly
varying doublet around the body. Since vortex strength is
the derivative of normal doublet, v (Q) = V p(Q), one constant
vortex around airfoil curve is used here instead of doublet.

The body surface S is divided into segments Sk and o(Q) is

approximated to be constant o(k).

o
: k 3
c , C ] . { 86 } for p =1,2,--+,N —— (A-14)
[ P,k p,N+1 { YN+1} anp : ’
where Cp Kk is the normal velocity at p due to source segment

k of unit strength and C is the normal velocity at p

p.N+1
due to the unit constant vortex around the airfoil curve.
One additional equation is obtained from Kutta condition.
That is,

g -%, +2 g . +2¢

o0 1 atl o0 N atN

where 1 is the point on the lower surface of airfoil nearest
to the trailing edge and N is the point on the upper surface

of airfoil nearest to the trailing edge.

[ c. c. ] O + T -t
1.k * C1,841 { YN+1} - Uy, -ty
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Let

and

5

’

C

= C’ , ] ok
[ N,k | N,N+1 {YN-l-l

C =

c

¢ .

8

N+1,k

N+1,N+1=

NN+l

c

-
U, - Ty

). [

1,N+1

1,841 = €

N,k

,

- CN,N+1
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) -

N,N+1

_’
U, - Ey — (A-15)
)] )
YN+1
—— (A-16)

’ p=1r2r' +-N+1

— (A-19)

—(A-17)



A.l.4 Calculation of Influence Coefficients

Let’s drop 27 from equations (A-18) and (A-19).

05 = ijn r;y A5,
=722 + 32 ¢ ds 20
V¢S = Ij axi n rij j 5;; n rij 3 j — (A-20)

- _ _ 2 . _ .
rij = j (gi xj S cosej )T+ (yi Yj S 51n6j )

2

rd s
ASj [(xi—xj Scos Gj) i+ (yi— ¥1 S sinﬁe >3 1 dS

vo = J i
S 2 o Qe 2
0 (xi-xj— chs ej) + (yi— Yj Ssin ej )

1



OS 2 3 - -
- j(AS + B) i + (CS + D) 3 _ . . _
Vo, Io eSS ds = Cpy 4 1+ Chy 5 3 — (A-2D)
where
_ _ 2 _ 2
o = (xi xj )T+ (yi yj)
B = -{ (xi - xj) cos ej + (yi—yj ) sin ej 3
A= -cos 6, , C= -sin 6.
J ]
B = ;- xj , D = y; - yj
N 4 - :
Cp,k = ( Cxp,k i+ Cyp,k j) o np — (A-22)
L, (y, -y, -Ssine,)
o = [ tan 1 = ] ] ds
v . ( x.