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ABSTRACT 

The impact of independent canard and flaperon control 

of the longitudinal axis of a generic forward swept wing 

aircraft is examined. The LQG/LTR method is used to design 

three compensators: two single-input-single-output 

systems, one with angle of attack as output and canard as 

control, the other with pitch attitude as output and canard 

as control, and a two-input-two-output system with both 

canard and flaperon controlling both the pitch attitude and 

angle of attack. The performances of the three systems are 

compared showing the addition of flaperon control allows 

the aircraft to perform in the precision control modes with 

very little loss of command following accuracy. 

THESIS SUPERVISOR: Dr. Michael Athans, Professor of Systems 
Science and Engineering 
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CHAPTER 1: INTRODUCTION AND SUMMARY 

1. 1 Background 

Forward swept wing aircraft were not generally built 

before composite materials became available. The Germans 

designed and built a forward swept wing bomber during World 

War II, but it was captured before it became operational 

[1]. The potential advantages of a forward swept wing 

aircraft are better maneuverability, low stall speed, 

improved low speed handling, increased aerodynamic 

efficiency and shorter takeoff and landing distances [2, 

3]. The problem is that the dynamic pressures associated 

with transonic flight results in the divergence phenomenon; 

the wings twist and bend beyond their structural limits. 

This divergence tends to occur at lower speeds for the 

forward swept wing than for the aft swept wing. Increasing 

the wing stiffness requires adding metal, which increases 

the weight and the wings may still fail. However, 

composite wings can be tailored to give strength in the 

required directions without large weight penalties [4, 5]. 

N.J. Krone showed that a practical forward swept wing 

aircraft can be built using composite materials [6]. The 

X-29 aircraft is, of course, a forward-swept wing airplane, 

built by Grumman, that is currently being flight tested. 
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References 2, 7, 8, 9, 10, and 11 describe work done at 

Purdue University investigating wing divergence and control 

of the forward swept wing aircraft. Dynamic Modeling and 

Active Control of an Aeroelastic Aircraft by M. Gilbert [7] 

contains the development of a linear model of a generic 

forward swept wing aircraft. In addition, in Reference 7 a 

linear quadratic regulator is designed which stabilizes 

pitch rate and dampens the wing bending mode using both the 

canard and flaperon as controls. 

1. 2 Mot i vat ion 

The goal of this study is to investigate the usefulness 

of independent canard and flaperon control. The model of a 

generic forward swept wing aircraft developed in Reference 7 

will be used. The major emphasis is on the coordinated use 

of the canard and flaperon surfaces to independently control 

both the angle of attack and pitch attitude. Most of the 

studies [20] that relate to the longitudinal dynamics of the 

X-29 treat it as a single-input-single-output system either 

using the canard as the sole control variable, or by slaving 

the canard and the flaperons. Although the flaperons may 

have limited control authority, it was felt that it would be 

interesting to design a multivariable control system to 

investigate their effect in controlling small motions in the 

longitudinal plane. An alternate configuration, using the 

flaperon and canard to control pitch rate and wing bending 

rate will be examined briefly. 

-11-



1.3 Research Scope 

The major goal of this thesis is to examine the 

usefulness of coordinated canard and flaperon control 

surfaces, particularly with angle of attack and pitch 

attitude as independent outputs. 

The LQG/LTR multivariable technique [12, 21] will be used 

to design the controllers. Two single-input-single-output 

(SIS0) designs will be examined first. The canard is used to 

control angle of attack in the first S1S0 design, while it is 

used to control pitch attitude in the second S1S0 design. 

The characteristics of these systems are used to gain insight 

into the two-input-two-output (T1TO) system, in which both 

the flaperon and canard are used to independently control 

small commands for angle of attack and pitch attitude. The 

performance of the three designs will be compared in order to 

understand and highlight the impact of flaperon control. 

The design issues involved include the tradeoff between 

good performance and neglected high frequency dynamics. This 

tradeoff is further complicated by the open loop aircraft 

instability, which imposes its own minimum bandwidth 

limitations. 

Also, it should be noted that all the LQG/LTR designs do 

not require sensing of all aircrafts states, only of the 

outputs that we wish to control. 

-12-



The compensators designed in this study are introduced 

to exhibit feasibility of independent flaperon and canard 

control. These feedback control designs are not ready for 

implementation on an actual aircraft. 

1.4 Contribution 

The major contribution of this thesis is the 

investigation of coordinated flaperon and canard independent 

surfaces for control of the pitch attitude and angle of 

attack for a forward swept wing aircraft. The performance 

in the three precision control modes, with and without 

flaperon control, is investigated. An alternate 

configuration, using the canard and flaperon to control 

pitch fate and wing bending rate is briefly examined. 

In addition, the solution to this design problem gives 

an example of how to proceed in multivariable LQG/LTR based 

designs considering an unstable open loop system and lightly 

damped flexible mode. The design is evaluated in terms of 

command-following, disturbance rejection and stability­

robustness considerations when we intentionally ignore high 

frequency wing torsion mode dynamics. From a technical 

point of view, we have used extensively the directional 

information inherent in the singular value decomposition to 

tie the mathematics to the physics of the aircraft. 

-13-



1.5 Outline of Thesis 

Chapter 2 contains a description of the longitudinal 

dynamics of the forward swept wing aircraft model, including 

a brief explanation of how the linear model was developed. 

A description of the linear model is included, explaining 

the states, inputs, outputs, and scaling of the units of the 

variables. 

Chapter 3 is devoted to analysis. The linear model is 

examined in terms of its poles and zeroes, modes, 

controllability, frequency response, and singular values. 

The technique of using model errors for design purposes is 

described, as well as the specific errors for this model. 

The design specifications are developed in terms of 

performance and robustness requirements. These are 

translated to the frequency domain to give performance 

specifications in terms of singular values. 

Chapter 4 contains a brief explanation of the LQG/LTR 

design method, followed by the two S1S0 and the single T1TO 

designs. The performance of the closed-loop systems with 

and without flaperon control are compared in Chapter 5. The 

regulator designed in Reference 7 to stabilize pitch rate 

and increase the wing bending dampening is investigated in 

Chapter 6. Chapter 7 contains the summary, conclusions, and 

suggestions for further research. 

-14-



CHAPTER 2: SYSTEM DESCRIPTION AND MODEL FORMULATION 

2.1 Introduction 

The X29 is an experimental forward swept wing aircraft. 

It was built by Grumman Aerospace Corp. for the U.S. Defense 

Advanced Research Projects Agency (DARPA). In February 

1985, the X29-A completed its first phase of flight tests 

[13]. Figure 2.1 is a photograph of the X29 [14]. 

This study uses a model of a generic forward swept wing 

aircraft developed by M.G. Gilbert in Dynamic Modeling and 

Active Control of an Aeroelastic Aircraft [7]. The generic 

aircraft is roughly the same size as the X29. The wings are 

swept forward at a 30° angle. The model flight velocity is 

1000 ft/s at sea level. 

The linearized aircraft model is described in this 

chapter. The controls are explained briefly and their trim 

settings at the model operating point are listed. A short 

description of the longitudinal coordinates and the flexible 

wing modes is given. Finally, the linear model is analyzed 

from a mathematical point of view and the scaling of 

variables is explained. 

-15-
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2.2 Aircraft Model Description 

The forward swept wing aircraft has four controls in the 

longitudinal axis: flaperon, canard, strake and thrust. 

Figure 2.2 shows the locations of each of the control 

surfaces. 

The flaperons are hinged airfoils on the back of the 

wing, which may be used to generate lift and some pitching 

moment. The canards are the surfaces in front of the wing. 

They also generate lift and pitching moments. The third 

pair of control surfaces are the strake flaps. These are at 

the rear of the aircraft and are used with the flaperon and 

canard to stabilize the aircraft longitudinal axis. The 

strake is used primarily for trimming the aircraft [1]. For 

this reason we shall not use the strake as a dynamic control 

variable, and we shall limit our investigation to the 

dynamic coordinated control of the canard and flaperon 

surfaces. 

The linear model thus uses only two of the control 

surfaces, flaperons and canards. The maximum canard 

deflections are +60° and -30° where a positive canard 

deflection is downward. Since the canards are in front of 

the center of gravity, a positive deflection causes a 

positive pitching moment about the cg. Figure 2.3 

illustrates the effect of a positive canard deflection. The 

maximum flaperon deflections are -10° and +25°. The 

flaperons are behind the cg, therefore a positive flaperon 

-17-
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deflection produces a negative pitching moment. This is 

also illustrated in Figure 2.3. 

The longitudinal outputs of interest are the angle of 

attack and the pitch attitude. The angle of attack, a, is 

the angle between the longitudinal axis fixed to the plane 

and the velocity vector in the xz plane, where x points 

forward and z points downward. Figure 2.4 shows the angle 

of attack. The pitch attitude, e, also shown in Figure 

2.4, is the angle between the horizen and the longitudinal 

axis of the plane. The third angle of interest, which is 

dependent on both angle of attack and pitch attitude is the 

flight path angle, Y. This angle, also shown in Figure 

2.4, is the difference between angle of attack and pitch 

attitude. It is the angle between the horizon and the 

velocity vector in the xz plane. 

Coordinated deflection of the flaperons and canards 

allows limited precision control of the angle of attack and 

pitch angle. The three precision control modes, which are 

illustrated in Figure 2.5 are: 

1. Vertical Translation; which provides control 

over vertical velocity while maintaining 

constant pitch attitude. 

2. Pitch Pointing; where the pitch attitude is 

controlled at constant flight path angle by 

varying the angle of attack. 

3. Direct Lift; in which the angle of attack 

remains constant and pitch angle varies 

[15,16]. 
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2.3 Linear Model 

2.3.1 Model Development 

The linear model used in this study was developed by 

M.G. Gilbert [7]. The model is based on an aircraft with a 

rigid fuselage and flexible wings. The structural motions 

of the aircraft are characterized by the "in-vacuo" 

free-free normal vibration mode shapes and generalized 

structural coordinates using finite element techniques. 

Aircraft kinetic and potential energies and generalized 

forces are used in a mean reference axis coordinate system. 

Lagrange's method is used to obtain the aircraft equations 

of motion. The force terms in the equation of motion are 

written in terms of lift, moment, and drag coefficients 

assuming a quasi-steady aerodynamic representation. The 

non-linear equations of motion are then linearized about a 

steady-state reference flight condition using small 

perturbation theory. The equations of motion are written in 

state variable form in a body-fixed coordinate system [7]. 

The operating point used in this study is at a velocity 

of 1000 ftls at sea level, which is about Mach 0.9. This 

corresponds to a dynamic pressure of 1189 lb/ft 2• Three 

models were given in Reference 7 corresponding to three 

different center of gravity locations. The model with the 

cg in the center position was used in this study. 

-23-



2.3.2 Trim Settings 

The generic forward swept wing aircraft is modelled 

about an operating point of 1000 ft/s at sea level in this 

study. The trim setting which corresponds to this operating 

point for the X29, the actual forward swept wing aircraft, 

is trim angle of attack of 2.51° and trim pitch angle of 

2.51°. Since the flight path angle is the difference 

between angle of attack and pitch attitude, the aircraft is 

in level flight. 

The flaperon trim setting is -3.05°; the canard trim 

setting is -2.8°. Based on these trim values the 

constraints in flaperon and canard deflections about the 

trim setting are 

-6.95° < f(t) < 28.05° 

and 

-27.2° < c(t) < 62.8°. 

2.3.3 State Variable Model 

The model, in state variable form is 

• ~(t) = A ~(t) + B u (t) (2.1) 

where ~(t) is the state vector and ~(t) is the control 

vector. See Table 2.1 for definitions. 

The four states are the usual rigid dynamic state 

variables. The first flexible mode represents the wing tip 

bending; Nl(t) is the wing tip deflection from its 
• 

undeformed position in ft, Nl(t) is its rate of deflection 

in ft/s. The second flexible mode represents wing torsion, 
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N2(t) is the wing rotation about the elastic axis in rad, 
• N2(t) is its rate of deflection in rad/s. Figure 2.6 is a 

sketch showing Nl(t) and N2(t). Appendix 1.1 lists the 

A and B matrices, as well as the vibration mode shape for 

the model with its cg in its center location, two feet in 

front of the wing root. 

The input control vector ~(t) is [f(t) c(t)]T where 

f(t) is the flaperon deflection from trim in radians and 

c(t) is the canard deflection from trim, also in radians. 

The output equation is of the form 

l.(t) = f ~(t) (2.2) 

where y(t) is [a(t) 8(t)]T for the TITO design. Ideal 

actuators and sensors have been assumed for this study. 
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TABLE 2.1 

SUMMARY OF MODEL STATES, 

INPUTS AND OUTPUTS 

STATE VARIABLES (DEVIATION FROM TRIM) 

.!(t) : 

v(t) Velocity 

a (t) Angle of Attack 

8(t) Pitch Attitudes 

q(t) Pitch Rate 

Nl (t) Wing Tip Deflection 
• 
Nl (t) Wing Tip Rate 

N2(t) Wing Rotation . 
N2(t) Wing Rotation Rate 

INPUTS (DEVIATION FROM TRIM) 

~(t) : 

f (t) 

c (t) 

Flaperon Deflection 

Canard Deflection 
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2.3.4 Scaling 

Scaling is very important in multivariable control as it 

influences the relative sizes of the variables. For 

example. comparing some variables in degrees with others in 

radians does not make much sense. It mayor may not be 

reasonable to compare variables in degrees with variables in 

feet. 

The eigenvalues will not be changed when a system is 

scaled. however the eigenvectors and the singular values 

will change. 

The scaling was done in two steps. The first step was 

unit conversions; angle of attack. pitch angle and pitch 

rate were converted from radians to degrees. The second 

step was based on the physical limits of the controls. The 

canard and flaperon commands were scaled to make the 

deflections comparable to each other. Ideally the inputs 

would have the same range. i.e. from -1 to +1. Since the 

negative deflection range is smaller than the positive 

deflection range. the scaling was done to make them nearly 

uniform. The flaperon deflections were scaled down by 12 

making the allowed commands from trim 

-0.58"< f(t) < 2.34. 

The canard deflections were scaled down by 30 making the 

allowed commands from trim 

-0.91 < c(t) < 2.09. 

The procedure for scaling is based on similarity 

transformations. The original system is 

• 
~(t) = A ~(t) + B u(t) 

y(t) = .Q ~(t). 
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The scaled variables ~'(t), y'(t) and ~'(t) are related to 

x(t), y(t) and ~(t) as 

x'(t) = S x(t) - -x-
u'(t) = S u(t) - -u- (2.3) 

y , (t) = .§.yy ( t) 

Substituting (2.3) into (2.1) and (2.2) results in 

x'(t) = S AS-1 x'(t) + S BS-1 u'(t) - -x--x - -x--u- (2.4) 

y'(t) = S CS-1 x'(t) + S DS- 1 u'(t) -y--x - -y--u- (2.5) 

Since these are scaling conversions Sx' Sand S are - -u -y 
diagonal and the inverses exist. 

The scaling matrices for the linear model of the FSW 

aircraft used in this study are given in Appendix 1.2. The 

scaled A & B matrices are also listed. Figure 2.7 is a 

block diagram which shows how the scaling matrices fit in 

with the original system matrices. 

2.4 Summary 

The forward swept wing (FSW) aircraft has been described 

in this chapter. The method of development of a linear 

model was briefly explained. A more detailed linear model 

development is described in reference [7]. 

The state variables, inputs and outputs of the linear 

model were all specified and units listed. Finally the trim 

setting was given and scaling explained. 

Chapter 3 describes the analysis of the linear model in 

terms of modes and singular values. 
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CHAPTER 3: MODEL ANALYSIS AND DESIGN SPECIFICATIONS 

3.1 Introduction 

The linear model of Chapter 2 will be analyzed in this 

chapter. The analysis will be used to provide insight into 

the system dynamics and to form reasonable design 

specifications. In this chapter the pole/zero structure of 

the open loop system, as well as the modes, controllability, 

frequency response and singular value decomposition will be 

examined. The open loop transfer matrix, relating inputs to 

outputs will also be studied. 

In addition to the analysis of the linear model, this 

chapter contains a brief explanation of the procedure for 

using model errors in the design process. The specific 

model errors based on a design model and a "truth" model, 

are also given. The design specifications are derived in 

terms of singular values based on performance requirements 

and robustness considerations. 

It is worthwhile to remark at this stage that the "truth 

model" is that described in Chapter 2. For purposes of 

design we have defined the "design model" so as to include 

the wing tip bending mode but exclude the wing torsional 

mode. Our design procedure will then be based on 

stability-robustness constraints that will not destabilize 

the neglected wing torsional mode dynamics. 

-31-



The major conclusions based on the analysis of the 

linear model are: 

1) The flaperon (as expected) has much less command 

authority than the canard. 

2) The bending and torsion modes are relatively 

unobservable when pitch attitude and angle of 

attack are used as output variables. 

3) The maximum singular value direction of the open­

loop plant at DC is primarily from the canard to 

angle of attack; while at a higher frequency it is 

from canard to pitch attitude. 

Three design models will be examined: the S1S0 system 

with only canard as control and angle of attack as output, 

which will be referred to as Design Model A, the S1S0 system 

with canard control and pitch attitude output which will be 

referred to as Design Model B, and the TITO system with both 

canard and flaperon controls and the angle of attack and 

pitch attitude output, which will be referred to as Design 

Model C. 

3.2 Truth Model Analysis 

3.2.1 Pole/Zero Structure 

The linear truth model has eight states, the four rigid 

body states v, ~, e and q, and four flexible states for the 

wing bending and torsion modes. Table 3.1 lists the eight 

eigenvalues of the ~ matrix which are the aircraft model 

open loop poles. Three of the modes are very easy to 
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TABLE 3.1 
OPEN LOOP POLES AND ZEROES OF TRUTH MODEL 

POLES: 

MODE FREQUENCY 
(Rad/Sec) 

Short 
Period 
Mode 

Phugoid 0.0492 
Mode 

Wing 59.94 
Bending Mode 

Torsion 

ZEROES: 

212.7 

DESIGN A 
(SISO C& ) 

Phugoid 8.913 X 10-5 

+ j 0.0514 

DAMPING 

8.455 X 10-4 

0.165 

7.95 X 10- 5 

DESIGN B 
(SISO e) 

EIGENVALUES 
(Rad/Sec) 

7.3079 
-11. 918 

-4.16 X 10-5 

+ j 0.049226 

-9.871Y + j 59.117 

-0.0169 + j 212.7 

DESIGN C 
(TITO) 

Wing -10.49 + j 59.301 -10.05 + j 59.05 1 -7.068 ± j 65.04 
Bending Mode 1 

1 
Wing 0.1106 + j 213.11 
Torsion 1 
Mode 1 

119.6 1 

-0.0252 + j 212.81 -0.0267 ± j 2.29 

4.0859 X 10-4 

-2.8304 
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identify: the low frequency phugoid mode at - 0.05 rad/s, 

the first wing bending mode at -60 rad/s and the first 

wing torsion mode at - 213 rad/s. The fourth mode in more 

traditional airplanes, corresponds to the short period 

mode. The poles are at 7.308 and -11.918 rad/s. The 

unstable pole at 7.308 rad/s corresponds to the short 

period mode. 

The phugoid mode is typically a low frequency lightly 

damped mode. It manifests itself as slowly varying speed 

with constant angle of attack over a long distance. When 

dealing with conventional aircraft, the short period mode 

is typically highly damped and at high frequency. It shows 

up at constant speed with varying angle of attack over a 

short distance. Figure 3.1 illustrates the short period 

and phugoid modes [17] of a conventional aircraft. The two 

flexible modes were described in Chapter 2. 

There is an eigenvector associated with each 

eigenvalue. The modes of the system described by the 

eigenvectors govern the natural response of the system. 

Any motion can be described as a linear combination of the 

modes. One way of picturing the modes is to look at which 

state variables contribute to each eigenvector. In Figure 

3.2 the components of the eigenvectors are shown as 

fractions of the total normalized to one. The actual 

eigenvectors are listed in Appendix 1.3. It should be 

recalled that the eigenvectors change with the scaling, 

thus the results of modal analysis may change with scaling. 
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Figure 3.2 shows that the phugoid mode does indeed 

consist primarily of velocity components. The wing bending 
# 

mode is primarily Nl and the torsion mode is a . . 
combination of Nl and N2• The so called short period 

mode is decoupled from the wing torsion mode, however it 

has a large component in Nl and smaller components in v, 

q, and Nl • This indicates the wing bending mode plays an 

important part in the rigid dynamics. 

The system zeroes for the three truth models are also 

listed in Table 3.1. Since all the zeroes of Design Model 

C are in the left half plane, the system is minimum phase. 

This is important as it guarantees recovery with the LTR 

method. One of the zeroes is virtually at O. This will 

cause problems with the DC ryerformance; in order to have 

good steady state command following, the surfaces must 

continue to deflect until eventually they will saturate. 

The two pairs of complex zeroes are very close to complex 

poles corresponding to the flexible modes. Ths indicates 

that the flexible modes are unobservable when angle of 

attack and pitch attitude are the outputs. 

Design Model A also has zeroes at the flexible modes. 

In addition, this system has a pair of zeroes at the 

phugoid mode and another zero in the right half plane at 

120 rad/s. This indicates that the phugoid mode and both 

flexible modes are relatively unobservable when only angle 

of attack is output. 
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Design Model B has zeroes near the flexible modes. In 

addition it has two low frequency zeroes, one virtually at 

o and the other at 2.83 rad/s. In this system, the 

flexible modes are almost unobservable, but the phugoid 

mode is observable. The relative controllability and 

observability of the three design models is examined in 

more detail in the next section. 

3.2.2 Controllability and Observability Analysis for 

Truth Design Models 

One method of looking at controllability and 

observability is to diagonalize the system using a 

similarity transformation. The matrix of eigenvectors of A 

called T will cause T-1AT to be a diagonal matrix with 

the eigenvalues of A on the main diagonal. 

The transformed system is 

i(t) = (T-1AT)~(t) + T-1Bu(t) (3.1) 

1. ( t ) = CTz ( t ) (3.2) 

thus the states of z(t) belong to easily identifiable 

modes. The columns of T-1B give the relative weights of 

the controllability of each mode using the correspo~ding 

control. The rows of CT give the relative observability. 

As with the modal analysis, the results of controllability 

and observability analysis are scale dependent. 

Figure 3.3 is a bar-chart showing the observability and 

controllability of the modes of the scaled truth model. 

Figure 3.3a shows that the wing bending mode is the most 

easily controlled using the flaperon and the short period 
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mode is the most easily controlled using the canard. This 

suggests a possible output configuration of either pitch or 

angle of attack and wing tip bending rate in which flaperon 

control could be used effectively. The phugoid mode is 

somewhat controllable with either the flaperon or the 

canard as indicated in 3.3a. The wing torsion mode is 

virtually uncontrollable. 

The observability analysis in Figure 3.3b shows that 

the short period mode shows in the angle of attack, pitch 

attitude, wing bending and wing torsion. The phugoid mode 

only shows up in pitch attitude. 

3.2.3 Open Loop Freguency Response of Truth Model 

The S150 system frequency response is often represented 

with a Bode plot. The frequency response for multivariable 

systems is usually represented by a singular value plot. 

Figures 3.4, 3.5, and 3.6 are the frequency responses of 

the three systems we are interested in. Design Model A is 

the 5150 system with canard input and angle of attack 

output. The scaled and unsealed Bode magnitude plots for 

the open loop truth model of this system are shown in 

Figures 3.4 a & b. The 5150 system with canard input and 

pitch attitude output will be referred to as Design Model 

B. Figure 3.5 shows the Bode magnitude plot for the scaled 

and unsealed open loop truth model. The TITO design model, 

with canard and flaperon as controls and pitch attitude and 
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angle of attack as outputs is Design C. The open loop 

singular values of its scaled and unsca1ed truth model are 

shown in Figures 3.6 a & b respectively. 

There are several things to note from these plots. 

First, there is the comparison between the scaled and 

unsca1ed systems. The scaling has not changed the shape, 

it has merely increased the overall gain. Second, at low 

frequency all three systems have constant gains -- there 

are no integrators. Third, at w v 10-4 rad/sec, the 

minimum singular value of Design C and the gain of Design B 

start increasing due to the low frequency zero. The peak 

that shows up at w ~ 0.05 rad/sec particularly in Design B, 

Figure 3.5, and the maximum singular value of Design C, 

Figure 3.6, corresponds to the lightly damped phugoid 

mode. The bump near wN 60 rad/sec is due to the first 

bending mode. There are two poles between the frequencies 

5 and 15 rad/sec due to the short period mode. This 

accounts for the corner at w N 10 rad/sec. 

3.2.4 Singular Value Decomposition for Design Model C 

The singular value decomposition provides directional 

information. Essentially, the plant model can be 

diagona1ized so that the inputs map to the outputs through 

the singular values. 
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The original system may be written 

where 

y(s) = G(s).!:!(s) 

1.(s) = output vector 

~(s) = input vector 

G(s) = transfer matrix 

The matrix G(s) can be decomposed, at a given 

frequency, such that 

G(jw) = U(jw)~(jw)VH(jw) 

(3.3) 

(3.4) 

where Q(jw) is the matrix of left singular vectors and 

V(jw) is the matrix of right singular vectors. jl(jw) is a 

diagonal matrix with the singular values of G(jw) on its 

main diagonal. 

Thus, at a given frequency, 

1.(jw) = U(jw) -I(jw)VH(jw)~(jw) 

U-l(jw)1.(jw) = ~(jw)VH(jw).!:!(jw) 

(3.5) 

(3.6) 

The decoupled system has inputs VH(jw)~(jw) related 

to outputs U-l(jw)1.(jw) through the diagonal matrix 

~(jw) • 

Let the input u = ~i' the ith right singular vector 

of G(jw), then 

v. = U (j w) L (j w) VH ( J. w) v. = (J • u. (3. 7) 
L1 - - - -1 1 -1 

where u. is the ith left singular vector. This means 
-1 

that if the input is in the direction of the right singular 

vector associated with the maximum singular value, the 

output will have an amplification of the maximum singular 

value and be in the direction of the associated left 

singular vector. 
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At DC, in two dimensions this is easy to visualize 

since the vectors are real and the geometry is planar. 

Figure 3.7a shows graphically the singular value 

decomposition of the scaled and unscaled TITO Design Model 

C at DC. The inputs are the actuator deflections and the 

outputs are angle of attack and pitch attitude. The inputs 

are in a unit circle. The directions associated with the 

maximum and minimum singular values are shown. The outputs 

are an ellipse whose major axis corresponds to the length 

of the maximum singular value and is in the associated left 

singular vector. The minor axis is in the direction of the 

left singular vector associated with the minimum singular 

value. All the singular value decomposition matrices are 

listed in Appendix 1.4. 

Figure 3.7 a and b shows that the maximum amplification 

direction is primarily in the canard direction and angle of 

attack direction at DC. The scaling changes the direction 

of the input somewhat. The maximum amplification direction 

is more in the canard direction for the scaled system than 

the unscaled system. By scaling the deflections such that 

the range of deflections are comparable, the canard and 

flaperon are being compared on the basis of fraction of 

deflection rather than degree for degree. This is a more 

meaningful comparison. The canard is a more effective 

actuator. 
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We also wanted to examine the singular values at a 

frequency above DC. However, the graphical interpretation 

is not as straight forward since the transfer matrix is 

complex. At w = 1 rad/sec, Design Model C transfer 

function matrix is primarily imaginary; the system with 

angle of attack and pitch rate output is primarily real. 

Since we are mainly interested in a qualitative examination 

of the singular value decomposition, the real part of the 

singular vectors of the system with angle of attack and 

pitch rate output at w = 1 rad/sec was plotted in Figure 

3.7 c and d. 

As can be seen from Figure 3.7 c and d, the direction 

of the input associated with the maximum singular value at 

w = 1 rad/sec is virtually unchanged from the system at 

DC. The maximum amplification direction in the output 

space is quite different; whereas it was predominantly in 

the angle of attack direction at DC, it is almost entirely 

in the pitch rate direction at w = 1 rad/sec. 

3.3 Model Error 

3.3.1 Multiplicative Error 

It is very difficult to quantify modelling errors, 

however an estimate of the size and directionality of the 

model errors is necessary in order to design robust control 

systems that remain stable in the presence of model 

errors. Reference 18 contains a detailed derivation of 
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robustness measures for multivariable systems. A brief 

explanation of multiplicative error will be given here . 
.v 

Figure 3.8 is a block diagram of the true plant, G, 

broken into components G, the plant model, and E, the - -

multiplicative error. 

The true plant may be expressed as 
~ 

G(s) = (1+~(s»G(s), (3.8) 

which may be rearranged to give 
,., -1 

E(s) = (G(s)-Q(s»G (s) (3.9) 

assuming G-l(s) exists. This is an explicit expression 

for E(s) using the true plant and the reduced plant models. 

Once the error is established, the multiplicative 

robustness test, derived in Reference 11 may be applied: 

-1 -)] cr [I +G ( s)] > cr [ E ( s ; s = j w - - - -
(3.10) 

The same test in a slightly different form is 

cr [1+G-l(s)]-l< ~ [E(s)-l]; s = jw. (3.11) 

This requires that the maximum singular value of the closed 

loop transfer function matrix be less than the minimum 

singular value of the inverse of the multiplicative error 

at all frequencies. 

Figure 3.9 is a sketch of the singular value plots of a 

typical plant G(s), the return difference (!+G(s» and the 

closed loop transfer function matrix (!+G(s)-l)-l. 

The multiplicative error does not depend on the 

compensator. Figure 3.Sb shows the plant, compensator and 
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multiplicative error. Based on Figure 3.8b, the 

multiplicative error is 

E(s) = (G(s)K(s) - G(s)f(s»(G(S)K(s»-l 

= (G(s)-G(s»G(s)-l, (3.12) 

which is the same as Eqn 3.9. This E(s) must be compared to 

[I+(G(s)K(s)-l]-l since the closed loop transfer - - -
function matrix does depend on the compensator. 

3.3.2 Model Error 

There are many possible sources of error in a linear 

model. Typically, the model is fairly accurate at low 

frequency, but the high frequency dynamics are not as well 

modelled and are often unmode11ed. 

In this study, the linear model from Reference 7 with 

the cg in its center position will be considered the truth 

model. The reduced model will be the truth model without 

the torsion mode. Table 3.2 presents the poles and zeroes 

of the truth model and the reduced model for all three 

designs. 

Figure 3.10 shows the singular value plots of E(jw)-l 

which was calculated using Eqn 3.9. All three plots exhibit 

a valley at the phugoid frequency w~0.05 rad/sec, which is 

due to the slight difference in the poles of the two models 

at that frequency. The other valley at the wing torsion 

mode frequency is as expected, due to ignoring that mode in 

the reduced models. 
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TABLE 3.2 
POLES AND ZEROES FOR 

REDUCED MODELS VS TRUTH MODELS 

POLES: 

Short Period 
Mode 

Phugoid Mode 

TRUTH MODEL 

7.3079 
-11. 918 

-4.1596 X 10-5 

+ j 0.049226 

REDUCED MODEL 

7.3067 
-11. 912 

-4.1673 X 10-5 

+ j 0.049209 

Bending Mode -9.8719 + j 59.17 -9.8730 + j 59.118 

Torsion Mode -0.016946 + j 212.7 

ZEROES: 

DESIGN A 
(SISO Cl ) 

DESIGN B 
(SISO e) 

TRUTH MODEL 
119.6 
-8.913 C 10- 5 

+ j 0.0514 
-10.49 
±j 59.30 

0.1106 
± j 213.1 

DESIGN MODEL 
119.9 
-8.832 X 10-5 

± j 0.0514 
-10.52 

± j 59.28 

TRUTH MODEL 
4.0859 X 10-4 

-2.830 

-10.05 
± j 59.05 

-0.0252 
+ j 212.8 

DESIGN C 
(TITO) 

TRUTH MODEL 
-7.068 + j 65.04 
-0.0267 ± j 212.9 
-1. 491 10-4 

DESIGN MODEL 
-7.076 ± j 65.03 

-1. 490 X 10-4 
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-2.831 
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3.4 Design Specifications 

The design specifications will be based on the aircraft 

capabilities as reflected in the linear model. In order to 

have a basis for comparison, Designs A, B, and C will be 

designed to the same specifications. 

The design specifications are based on three types of 

requirements: good command following, disturbance rejection 

where the disturbance is wind gusts, and stability robustness 

considerations to model errors. 

First we will address the command following requirement. 

Due to the low frequency zero, it seems unreasonable to 

require zero steady state error. The accuracy requirement is 

that in the frequency range 0.01 < w < 1 rad/sec the error 

must be less than 10% of the reference input. This requires 

the maximum singular value (or the Bode gain) of the 

sensitivity matrix, [l+Q(S)K(s)]-l, be smaller than -20 db 

for 0.01 < w < 1 rad/sec. This specification can be 

approximated by the loop transfer matrix, Q(s)K(s), requiring 

its minimum singular value be greater than 20 db for 0.01 < 

w < 1 rad/sec. 

The second issue is disturbance rejection. Typical wind 

gust disturbances are in the low frequency range, less than 1 

rad/sec. Good disturbance rejection requires that the 

sensitivity matrix [l+Q(S)K(s)]-l be "small"; or 

equivalently [1+G(s)K(s)] be large. For this design we will 

require disturbance be attenuated by a factor of 1.5 for 

frequencies below 1 rad/sec. Again, this requirement can be 
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approximated using the loop transfer matrix, G(s)K(s). In 

this case, the minimum singular value of the loop transfer 

matrix G(s)K(s) (or the Bode gain) must be greater than 3.5 

db for w < 1 rad/sec. 

Finally, we will consider robustness requirements. The 

minimum crossover frequency, dictated by the unstable pole, 

is 7.3 rad/sec. The bandwidth of the system should be less 

than 60 rad/sec in order to avoid exciting the wing bending 

mode. In addition, the model error shown in Figure 3.10 

shows the large downward spike at the wing torsion mode. 

( ( -1 -1 The closed loop frequency response I+[G s)K(s)] ) 

should have its maximum singular value less than -20 db at 

w ~ 200 rad/sec for the TITO design. The robustness 

requirements for the S1S0 designs are 

cr (1+[G(s)K(s) ]-1)-1 { -10 db Design A 

< (SIS0 Cl) 

10 db Design B 

(SISO e) 

for w > 200 rad/sec. 

Figure 3.11 shows the performance, disturbance 

rejection and robustness boundaries for the loop transfer 

function. It should be noted that the requirements are 

consistent; if the minimum singular value is falling at -20 

db/decade and is 20 db at w = 1 rad/sec, the bandwidth will 

be 10 rad/sec which is larger than the unstable pole. The 

requirement that the maximum singular value crossover 

before 60 rad/sec imposes a maximum separation requirement 

On the singular values. 
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3.5 Summary 

This chapter started with a linear model, applied the 

methods useful in understanding the model, and based on 

that understanding developed reasonable design 

specifications. The important things learned were the 

identity of the modes, the location of the unstable pole 

and the existence of the very lightly damped phugoid mode. 

In addition, the low frequency zero gave an indication of 

potential poor DC performance. Finally, the singular value 

decomposition and the transfer matrix showed that the 

canard has more command authority than the flaperon. The 

flaperon has somewhat more command authority at I rad/s 

than at DC. 

The next step was to evaluate the multiplicative error 

based on the truth model and the design model. This 

highlighted the problem with the very lightly damped, low 

frequency phugoid mode. The design specifications were 

formed, based on the desired performance and aircraft 

dynamics. 
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CHAPTER 4: LQG/LTR DESIGNS 

4.1 Introduction 

The goal in this chapter is to design a compensator 

which uses the flaperon and canard to independently control 

angle of attack and pitch attitude. The system must meet 

the specifications given in Chapter 3. As a preliminary 

step two single-input-single-output (SISO) controllers will 

be designed, one for angle of attack output and canard 

input, the so called Design A. The other for pitch 

attitude output and canard input, Design B. These two 

systems will be used to give insight into the 

two-input-two-output (TITO) control problem which is Design 

C. The three controllers will be designed to meet 

essentially the same specifications. Their time-domain 

performance will be compared in the next chapter in order 

to establish the usefulness of the flaperon in this 

configuration. 

Section 4.2 contains a brief review of the LQG/LTR 

method. The SISO designs are described in Section 4.3. 

The TITO design is explained in Section 4.4. Section 4.5 

contains a discussion of the three designs. 

4.2 Review of the LQG/LTR Design MethOd 

The LQG/LTR method is described much more thoroughly in 

References 12 and 21; only a brief description is given 
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here. The compensator is based on the plant model. Figure 

4.1 shows the structure of the plant and compensator. The 

designer controls the gain matrix G and the filter matrix H. 

The design plant model is: 

x(t) = A ~(t) + B u(t) 

I.(t) = f x(t) 

G(s) = C(sI-A)-lB 

The LQG compensator model is: 

~(s) = G(sI-A + ~ G + H C)-l H 

According to the LTR theory, 

0' i [G(jw)K(jw)] - 0' i [C(jwl-A) -lH] 

as q~ 00 for fixed Hand 

G = R- l BTK 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where K is the solution to the control algebraic Ricatti 

equation (CARE): 

K A + ATK + qCTC - K B R-1BTK = 0 
-- ----- (4.6) 

with R = I and a minimum phase system. 

Thus if C(jwI_~)-lH has the desired loop shape, the 

gain matrix can be designed so that G(s)K(s) has the same 

loop shape. H can be designed using the Kalman filter where 

H = ~T ~-l (4.7) 

such that r is the solution to the filter algebraic 

Ricatti equation (FARE): 

and 

rA + ATr+ LLT -1 CTC = 0, 
- -- II 

O'i L£(sl-A) -lH] -;;: 1 
II 
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Thus the problem of designing G and H reduces to 

shaping the singular values of 1 ~(sl-A)-11 by selecting 
II 

Land II and using the FARE. Then using CARE with q large 

enough to recover C(Sl-A)-lH. 

A step-by-step procedure applicable to both S1S0 and 

M1MO design is: 

1) Choose Land II such that 

1 cr i [C ( s I -A) -1 L 1 me e t s 
II 

the specifications. 

2) Use FARE to solve for 

H = -!;. E CT 
- ll-

cr. [C(SI-A)-lH1 should meet the 
1 - - -

the desired specifications. 

3) Use CARE with Q = q fTC and ~ = 1 to solve for 

G = R- l BTK. 

4) Examine singular values of Q(jw)K(jw) to insure q 

is large enough to recover and that the singular 

values of G(jw)K(jw) meet the specifications. 

4.3 Single-1nput-Single-Output Designs 

4.3.1 Design A: Angle of Attack Output 

The basic four steps described in the previous section 

were followed in the designs presented here. The truth 

model is the linear model which includes the wing torsion 

mode. The design model is the scaled version of the 

original model without the wing torsion mode. The only 
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actuator used for this design is the canard. Angle of 

attack is the controlled output. Table 4.1 lists the open 

loop poles and zeroes of the design model. Since one of 

the zeroes is not minimum phase, recovery is not guaranteed. 

TABLE 4.1 
DESIGN MODEL A OPEN LOOP POLES & ZEROES 

Open Loop Poles: 

-4.16 X 10- 5 ± j 0.0492 -9.873 + j 59.12 -11.9 7.31 

Open Loop Zeroes: 

-8.83 X 10- 5 + j 0.0514 -10.52 + j 59.28 119.9 

Following the steps in Section 4.2: 

1) Select L = Band J.l = 1 

2) Solve for H. The magnitude of C (sI-A)-lH - - - -
is shown in Figure 4.2a. The bandwidth is 60 rad/sec and 

the gain is 27 db at w = 1 rad/sec, thus the design 

specifications are met. 

3) Solve for G, with q = 104. The G and H 

matrices are given in Appendix 2.1. Figure 4.2b is a plot 

of the Bode magnitude of the compensator K(s). 

4) Examine the singular values of G(s)K(s). 
~ 

Since the true plant, G(s), is available, Figure 4.2c is a 
~ 

plot of the gain of G(s)K(s). Perfect recovery was not - -
achieved, however the resulting loop does meet the 

specifications. The crossover frequency is 40 rad/sec and 
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the gain is 20 db at w = 1 rad/sec. The upward gain margin 

is 2.5 and the downward gain margin is 0.1. The phase 

margin is 30°. 

It is also important to compare the closed loop 

transfer matrix with the model error to check for 

robustness. Figure 4.2d is a plot of the Bode gain of 

(1 + [G(s)K(s)]-l)-l and ~ut (s)-l. Since the 

magnitude of the inverse error is greater than that of the 

closed loop transfer function matrix, the design is 

guaranteed stable in the face of this model error. 

Table 4.2 lists the closed loop poles. They are all 

stable, as expected. The torsion mode is slightly more 

damped than it was in the open loop system 

TABLE 4.2 
DESIGN A CLOSED LOOP POLES 

-1.08 X 10-4 + j 0.0515 I -9.98 + j 59.24 I -32.38 + j 28.57 
-1.14 X 10-4 + j 0.0513 1-10.54 + j 59.21"1-119.7 -1527 
-0.132 + j 212.6 I I 

Figure 4.3 shows the Bode gains of a) the loop 

sensitivity, (I + G(s)K(s))-l, b) the transfer matrix - - -
from reference input (r) to actuator deflections (u), - -

-1 K(s)(I + G(s)K(s)) and c) the closed loop transfer 

function. 

The loop sensitivity gain below frequencies of 1 

rad/sec is nearly -20 db. Thus the system-should show 10% 

error in command following. We would also expect to 

attenuate disturbances with this frequency content by a 

factor of 10. 
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- --- -- ----

4.3.2 Design B: Pitch Attitude Output 

The same four step procedure was followed for the 

system with pitch attitude output and canard input. As 

with Design A, the truth model includes the wing torsion 

mode, while the design model does not. The design model is 

scaled, as described in Chapter 2. Table 4.3 lists the 

open loop poles and zeroes of the design model. 

TABLE 4.3 
DESIGN MODEL B OPEN LOOP POLES & ZEROES 

Open Loop Poles 

-4.16 X 10-5 ± j 0.0492 -9.873 + j 59.12 -11. 9 

Open Loop Zeroes 

4.08 X 10-4 -10.05 + j 59.04 -2.83 

Following the four step procedure outlined in 

Section 4.2: 

1) Select b = Band II = 0.01 

7.31 

2) Solve for H. Figure 4.4a is a plot of the 

Bode magnitude of C(sl_~)-lH. The crossover frequency is 

60 rad/sec and the gain is 36 db at w = 1 rad/sec, thus the 

loop meets the design specifications. 

3) Solve for G with q = 104• The Hand G 

matrices are listed in Appendix 2.2. Figure 4.4b is a plot 

of the Bode magnitude of the compensator, ~(s). 
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4) Figure 4.4c is a plot of the gain of Q(s)~(s). 

The loop is very nearly recovered; the crossover frequency 

is 60 rad/sec and the gain is 34 db at 1 rad/sec. The 

upward gain margin is 10 and the downward gain margin is 

0.06. The phase margin is 60°. 

Figure 4.4d is a plot of the Bode magnitude of the 

closed loop transfer function matrix and the model error 

inverse. Since the gain of E t(s)-l is always greater -ou 
-1 -1 than (1 + [Q(s)~(s)] ) . The design is guaranteed 

robust with this model error. 

The closed loop poles of the compensator with the true 

plant are listed in Table 4.4. The poles are all in the 

left half plane; the system is stable. The wing torsion 

mode is actually more lightly damped than it was in the open 

loop plant. 

TABLE 4.4 
DESIGN B CLOSED LOOP POLES 

-4.09 X 10-4 + j 2.52 X 10- 5 -9.91 + j 59.13 -2.83 + j 0.0121 
-3.97 X 10-4 + j 212.7 -10.04 ~ j 59.03 -31.14 + j 29.53 

-303 ± j 303 

Figure 4.5 gives an overview of the design 

characteristics: Figure 4.5a is a plot of the gain of the 

loop sensitivity, (l+G(s)~(s»-l, Figure 4.5b is a plot 

of the gain from reference input to actuator deflection, 

K(s)(l+G(s)K(s»-l, and Figure 4.5c is a plot of the 

closed loop frequency response. 
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The sensitivity loop has a gain of less than -30 db in 

the frequency range between 0.01 and 1 rad/sec. The 

command following error for reference inputs in that 

frequency range will be less than 5% and may be as small as 

0.01%. The sensitivity matrix of frequencies below 0.001 

rad/sec is greater than zero; at DC it is approximately 10 

db. This design has not met the low frequency disturbance 

rejection requirements. However, since the performance and 

robustness characteristics are very good, the design will 

be useful to give insight into the impact of flaperon 

control. 

4.4 Design C: Two-Input-Two-Output 

The same four steo procedure followed in the SISO 

design will be followed here. As with the SISO designs, 

the scaled model without the wing torsion mode is the 

design model. The controls are flaperon and canard; the 

outputs are angle of attack and pitch attitude. Table 4.5 

lists the open loop poles and zeroes of the design model. 

TABLE 4.5 
DESIGN MODEL C OPEN LOOP POLES & ZEROES 

Open Loop Poles: 

-4.16 X 10-5 + j 0.0492 -9.873 + j 59.12 -11. 9 7.31 

Open Loop Zeroes 

-1.49 X 10-4 
- 7.076 ~ j 65.03 

-71-



This system is minimum phase, but as with Design B, 

there is a low frequency zero. 

Following the four steps outlined in Section 4.2: 

1) Select L. In this case it was necessary to bring 

the singular values closer together near the crossover 

frequency in order to make the bandwidth less than 60 

rad/sec. Since the expected crossover frequency was near 

10 rad/sec, we tried to match the maximum and minimum 

singular values at that frequency. The idea is to make 

C(jWI-A)-lh = I (4.10) 

at w = 10 rad/sec. Allowing L = Bm where m is the so 

called matching matrix give 

m = [C(jlOl-~)-lB]-l, (4.11) 

which exists, but is complex. In order to find a matrix we 

could use, we took the "best real inverse": 

~ = Re [C(jlOl-A)-lB]-l 

and let L = Bm. The matching matrix, ~, is listed in 

Appendix 2.3. We used ~ = 0.01. 

(4.12) 

2) Solve for H. Figure 4.6a is a plot of the singular 

values of C(sI-A)-lH. The minimum singular value is 18 - - - -
db at w = 1 rad/sec and its crossover frequency is 16 

rad/sec. The maximum singular value has a crossover 

frequency at 60 rad/sec and a gain of 33 db at w = 1 

rad/sec. The specifications are not quite met as the gain 

is 2 db too low at w = 1 rad/sec, however it is quite close. 
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3) Solve for Q with q = 104 . The Hand G matrixes 

are listed in Appendix 2.3. Figure 4.6b is a plot of the 

compensator singular values. 

4) Figure 4.6c is a plot of G(s)K(s) singular values. - -
The f(sl-A)-lH loop is almost perfectly recovered. The 

minimum singular value at w = 1 rad/sec dropped slightly to 

17 db. 

Figure 4.6d is a plot of the robustness test, 
-1 -1 -1 Eout(s) and (! + [g(s)~(s)] ) . The robustness 

test is not passed due to the notch at the phugoid 

frequency, 0.05 rad/sec. However, for this study the 

emphasis is on the high frequency dynamics. In order to 

get rid of the notch, the low frequency phugoid mode must 

be modelled more accurately. The mode is very lightly 

damped. A slight error in the model frequency shows up as 

a very large error in the model. In this case, by dropping 

the wing torsion mode the phugoid frequency was changed 

slightly, from 0.04923 rad/sec to 0.04921 rad/sec. This is 

really a problem with the computation of the eigenvalues of 

the A matrix of the truth model and the design model. 

The closed loop poles are listed in Table 4.6. The 

poles are all stable. The wing torsion mode damping 

happens to have improved slightly. 
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TABLE 4.6 
DESIGN C CLOSED LOOP POLES 

-1.49 X 10-4 1-7.16 + j 33.7 1-17.6 -33.7 + j 25.8 
-1. 90 X 10-4 1-9.46 + j 60.0 1-1623 -221 + j 191 
-0.0314 + j 212.71 

The design is summarized in Figure 4.7: 4.7a is a plot 

of the singular values of the loop sensitivity, 4.7b shows 

the singular values of the transfer matrix from the 

reference input, ~, to the actuator deflections, u, and 

4.7c is a plot of the singular values of the closed loop 

transfer function matrix. 

The loop sensitivity function shows the maximum 

singular value is -18 db in the frequency range 0.005 < w < 
1 rad/sec. The command following error will be less than 

10% for inputs in that frequency range, depending on the 

direction of the reference input. Since the minimum 

singular value is less then -80 db, the error may be as 

small as 0.01%. At very low frequencies the loop 

sensitivity is at -5 db. This indicates that disturbances 

in that frequency range will be attenuated by a factor of 

1. 7. 

4.5 Discussion 

The maximum and minimum singular values of a transfer 

matrix need not be aligned with either angle of attack or 

pitch attitude. It appears, however, that the maximum 
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singular value of the loop sensitivity is in the angle of 

attack direction and the minimum singular value in the 

pitch attitude direction. We plan to illustrate this at a 

particular frequency with a time simulation in which the 

reference input is a sinusoid. 

Figure 4.8 is a comparison of the three designs. 

Figure 4.8a shows the singular values of Q(s)~(s) for all 

three designs, 4.8b shows the loop sensitivity and 4.8c is 

a plot of the closed loop frequency responses. 

There are several things to note from this comparison. 

Both the minimum singular value and Design B (5150 e) have 

a large notch at the phugoid frequency, (0.05 rad/sec) in 

the loop sensitivity. The gains of both for frequencies 

greater than 0.01 rad/sec are very similar. On the other 

hand, the minimum singular value and Design A have very 

similar loop sensitivity functions. The maximum singular 

value of the loop sensitivity appears to be in the angle of 

attack direction while the minimum singular value is in the 

pitch attitude direction, for frequencies above 0.01 

rad/sec. 

In order to illustrate this, sinusoidal reference 

inputs for angle of attack and pitch attitude were used in 

a time simulation of Design C. The commands are 1° peak at 

0.3 rad/sec. The angle of attack and pitch attitude are 

90° out of phase. In other words, the inputs trace out a 

unit circle in the command input ~ , e ) plane. The c c 
minimum singular value of the loop sensitivity at 0.3 

rad/sec is -40 db. The minimum error should be 1%, 
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and we expect it to occur when the reference input is in 

the e direction i.e. 6c = 1°, a c = 0°. The maximum 

singular value of the loop sensitivity at 0.3 rad/sec is 

-18 db. The maximum error should be 12%; it should occur 

when the reference input is in the angle of ~tack 

direction, Le. e = 0° a = 1°. c ' c 

In terms of the time simulation, the reference inputs 

are in the e direction at t = 0 and t = rr/w = 10.5 sec. 

The error should be a minimum at those times. The maximum 

error should occur when the reference inputs are in the 

angle of attack direction at t = 5.25 sec. Figure 4.9 

shows the results of the time simulation. The command 

inputs are shown in 4.9a, 4.9b shows the angle of attack 

ard 4.9c shows the pitch attitude. The plot in 4.9d shows 

the square error; this is the sum of the deviation in angle 

of attack squared and the deviation in pitch attitude 

squared. 

Figure 4.9d shows the peak error occurs t = 5.1 sec, 

slightly before the prediction of t = 5.25 sec. The error 

is 0.13° or -18 db which is the maximum singular value of 

the loop sensitivity. The minimum error occurs at t = 10.3 

sec, again slightly before the predicted time of t = 10.5 

sec. The error is 8 X 10-
30 

which is -42 db, slightly 

less than the minimum singular value of 0.3 rad/sec. 

Figure 4.10 is a plot of the accuracy ellipse in the a,e 

output space based on the time simulation. The length of 

the vectors in each direction corresponds to the reciprocal 
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of the error in db. We see that the most accurate 

direction is primarily in the pitch attitude direction. 

The major axis is 3° above the pitch attitude axis. The 

minor axis is primarily in the angle of attack direction, 

2° off the angle of attack axis. 

For purposes of comparison, the S1S0 designs were also 

simulated with a sinusoidal reference input. Figure 4.11 

shows the results for Design A: 4.lla is the reference 

input, 4.llb is the angle of attack output, 4.llc is the 

pitch attitude output and 4.lld is the deviation of the 

angle of attack output from the reference input. Two 

things to note are the peak error is approximately 0.11° or 

11% as predicted and the pitch attitude has a peak of 20°. 

Design B was also simulated with a sinusoidal reference 

input. The results are shown in Figure 4.12: 4.l2a shows 

the reference Input, 4.l2b shows the pitch attitude, 4.l2c 

shows the angle of attack and 4.l2d is a plot of the 

difference between the command input and the pitch attitude 

output. The maximum error in this case is 0.006° which is 

much smaller than the error in Design A. 

The response of the aircraft to angle of attack 

commands with only canard control, illustrated by Design A, 

is much worse than its response to pitch attitude commands 

as shown with Design B. First, the command following error 

is much larger in angle of attack for Design A than the 

pitch attitude error of Design B. In addition, the 
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controlled output, in pitch attitude for Design A and angle 

of attack for Design B, exhibits much larger excursions for 

Design A than Design B. Comparing the S1S0 designs to the 

TITO designs, we see that here too, the command following 

in angle of attack is much worse than the command following 

performance of the pitch attitude. 

4.6 Summary 

In this chapter, three compensators were designed using 

the LQG/LTR method: 

Design A: 5ISO canard control, angle of attack 

output 

Design B: 5ISO canard control, pitch attitude 

output 

Design C: TITO canard and flaperon control, 

angle of attack and pitch attitude 

outputs. 

The three compensators were designed to meet roughly 

the same specifications. The design process was described 

in Section 4.3 and 4.4. 

The directionality of the transfer matrix from command 

inputs to controlled outputs for the TITO system was 

illustrated using a time simulation. The reference inputs 

were sinsoids at w = 0.3 rad/sec. The SISO designs were 

also simulated with reference inputs at w = 0.3 rad/sec. 
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Commands to the T1TO system in the pitch a~titude direction 

were followed very accurately, as were commands to the 5150 

e system. Commands to the TITO system in the angle of 

attack direction and to the 5150 a system were not followed 

nearly as accurately. This will be further illustrated in 

the next chapter where we simulate the vertical translation 

mode (9c = 0, a. c > 0), the direct lift mode (9c > 0, 

a. c = 0) and the pitch pointing mode (9 c = a.c ~ 0, 

y c = 0). 
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CHAPTER 5: FLAPERON EFFECTIVENESS IN THE PRECISION CONTROL 

MODES 

5.1 Introduction 

The impact of using the flaperon in the precision 

control modes will be examined in this chapter. The 

performance of the two SISO Designs (A and B), which only 

have control through the canard, will be compared with the 

performance of the TITO system (Design C), which uses both 

the canard and flaperon as controls. 

In the previous chapter we established that the TITO 

system exhibits more accurate command following when the 

sinusoidal commands are in the pitch attitude directio,. 

Alternately, the command following performance was not very 

good when the sinusoidal reference inputs are in the angle 

of attack direction. In this chapter, the performance of 

the SISO angle of attack system (Design A), will be 

compared to the performance of the TITO system operating in 

the vertical translation mode, which requires a change in 

angle of attack at constant pitch attitude. The 

performance of the SISO pitch attitude output system 

(Design B) will be compared to the TITO system operating in 

the direct lift mode, which involves a change in pitch 

attitude at constant angle of attack. In addition, the 

performance of the TITO system in the pitch pointing mode 

will be examined. This mode requires the same change in 
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angle of attack as in pitch attitude, leaving the flight 

path angle unchanged. Finally the performance of the T1TO 

system will be examined with the commanded input 8c = 

- a c ' thus the flight path angle should be twice the 

commanded pitch angle. 

5.2 Precision Control Modes 

5.2.1 Vertical Translation Mode 

The loop sensitivity plot (Figure 4.8a) showed the 

maximum singular value of the T1TO system and the gain of 

the S1S0 a system (Design A) are very similar. Since the 

maximum singular value is in the angle of attack direction, 

we expect the command following performance of Design A to 

be comparable to the performance of the T1TO system in the 

vertical translation mode. Both systems should exhibit 

command following error on the order of 10%. However, 

Design A has no control over the pitch attitude, which will 

be allowed to drift off. Figure 5.la is a schematic of the 

aircraft response to the S1S0 command in angle of attack. 

Each sketch represents the aircraft coordinates at 

succeeding time intervals. Figure 5.lb shows the aircraft 

operating in the vertical translation mode. The aircraft 

maintains its pitch attitude as it flies downward. 

The S1S0 system is using the canard to control the 

angle of attack. However, at the same time the deflected 

canard is causing the aircraft to pitch up. When flaperon 

00 
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control is included, the canard deflection can be balanced 

by the flaperon deflection and the desired pitch attitude 

maintained. 

In order to illustrate the systems' performance, 

Design A was simulated with a reference input in angle of 

attack. The commanded angle of attack was ramped-up for 

0.1 sec from 0° to 1° where it was held. Similarly, Design 

C was simulated with the same angle of attack command, but 

a zero command in pitch attitude. Figure 5.2 shows the 

simulation results: 5.2a is the angle of attack responses, 

5.2b is the pitch attitudes, 5.2c is the canard deflections 

for both systems. Figure 5.2d is the TITO flaperon 

deflections. 

As can be seen from Figure 5.2a, the angle of attack 

responses are somewhat different. The SISO system has 

quite a bit of overshoot and after 0.5 sec it is at 1.1°. 

The TITO response is highly damped; after 0.5 sec it is at 

0.93°. The steady state error magnitudes are quite similar. 

The pitch attitudesin Figure 5.2b are very different. 

The pitch attitudes of Design A drifts up to 2.5° after 

only 0.5 sec, with a pitch rate of 3 deg/sec. The TITO 

system, which has commanded pitch attitude of 0°, has a 

steady state error in pitch attitude of only 0.1° after 0.5 

sec. 

The canard deflections, shown in Figure 5.2c are 

similar in that a negative deflection is followed by a 

positive peak in deflection and both level out to a 

constant positive deflection. The transient deflections 

are much larger for the SISO system than the TITO system, 
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however the TITO system has a larger steady state 

deflection. 

The flaperon deflections are shown in Figure 5.2d. We 

can see how the canard and flaperon are working together. 

The positive canard deflection causes positive pitching of 

the aircraft. This is balanced by the positive flaperon 

deflection which generates a negative pitching moment. 

The linear operating range of the aircraft is limited 

by the allowed flaperon deflections. Based on the results 

of the TITO simulation, reference input commands in the 

range of -0.6°( Q c (1.2° in the vertical translation mode 

would not saturate the flaperon. In other words, the peak 

transient of flaperon change in deflection would be within 

the range -6.95° < f(t)< 28.05° when the reference inputs 

are between -0.6° and 1.2°. 

5.2.2 Direct Lift Mode 

The minimum singular value' of the TITO loop sensitivity 

and the gain of Design B are very similar as was indicated 

in Figure 4.8b. Since the minimum singular value is in the 

pitch attitude direction, we expect the command following 

performance of Design B to be similar to the performance of 

the TITO system in the direct lift mode. Both systems 

should exhibit command following errors smaller than 5% and 

possibly as small as 0.01%. Design B has no control over 
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angle of attack, which will be allowed to drlft off. In 

addition, the system has a low frequency zero which means 

the actuator must continuously increase its deflection in 

order to maintain the commanded pitch attitude. 

Figure 5.3a is a schematic of the aircraft response to 

a pitch attitude command with only canard control. The 

direct lift mode is sketched in Figure 5.3b. We see from 

the schematic that in the direct lift mode the aircraft 

pitches up, increasing the flight path angle without 

changing the angle of attack. Without flaperon control, 

the aircraft pitches up, and the angle of attack 

continuously decreases causing the flight path angle to 

increase steadily. 

Figure 5.4 sh0ws the transient response of Designs A 

and C to a pitch attitude command. The reference input is 

ramped-up from 0° to 1° over 0.1 sec after which it remains 

constant. The angle of attack command is 0° for the TITO 

system. Figure 5.4a shows the pitch attitude response, 

5.4b shows the angle of attack response, 5.4c shows the 

canard deflections and 5.4d shows the flaperon deflections. 

The pitch attitude responses in Figure 5.4a are very 

similar as we predicted. The TITO response has slightly 

less overshoot and smaller steady state error. The angle 

of attack responses, shown in Figure 5.4b, are quite 

different. The TITO system has virtually zero angle of 

attack after 0.5 sec, while the angle of attack for the 

5150 system is drifting off at approximately 1 deg/sec. 
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The canard deflections of the two systems are quite 

different. In Design B in order to maintain the commanded 

pitch attitude, the canard must continuously increase its 

deflection and will eventually saturate. This in turn 

causes the angle of attack to continuously decrease and the 

flight path angle to increase. Since the angle of attack 

is decreasing, the additional lift is being generated by 

the canard. The behavior of the TITO system (Design C) is 

quite different. Figure 5.4c and 5.4d show the canard and 

flaperon deflections. Initially the canard has a large 

negative deflection and the flaperon a small positive 

deflection followed by a very large negative flaperon 

deflection and a relatively large canard deflection. After 

some small oscillations, both acutators virtually return to 

their trim deflections. In this case, once the aircraft is 

pitched up to its commanded attitude by the coordinated 

flaperon and canard deflections, only a slight change in 

deflection is necessary to generate the additional lift 

needed for the aircraft to continue to fly up. All the 

action takes place in changing the attitude, very little is 

needed to maintain the new attitudes. 

In order to follow these commanded inputs the flaperon 

had to deflect beyond its allowed range. The maximum 

change in deflection in the negative direction is -6.95°. 

Based on this simulation, the allowed input commands in the 

direct lift mode are in the range -1,;)< e c < O. 5°. Larger 

commands will cause the flaperon to saturate. 
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5.2.3 Pitch Pointing Mode (Design COnlY) 

The pitch pointing mode requires the simultaneous 

command of angle of attack and pitch attitude. The same 

commands are given in both channels, thus the flight path 

angle does not change. The pitch pointing mode is neither 

in the angle of attack direction or the pitch attitude 

direction, but at 45° in the a c ' 8 c plane. Based on 

the directionality ellipse in Figure 4.10, we expect the 

command following error to be approximately 9%. 

Figure 5.5 shows the simulation results for commanded 

pitch and angle of attack inputs which were ramped for 0.1 

sec up from 0° to 0.7071° where they remained. Over the 

simulation 8 c = a c and Y = 0°, and for t > 0.1 sec) 

8 c = ac = 0.7071°. Figure 5.5a shows the angle of 

attack response, 5.5b shows the pitch attitude, S.Sc shows 

the canard deflections and 5.5d shows the flaperon 

deflection. 

The square root of the sum of the squared angle of 

attack deviation and the squared pitch attitude deviation 

is 0.082° or 8%, which is near the predicted error of 9%. 

Figures 5.5a and b show that the steady state angle of 

attack is slightly below the commanded input while the 

pitch attitude is slightly above it. 

The coordination of the flaperon and canard can be seen 

in Figures 5.5c and d. Initially, the canard deflects 

negatively and the flaperon positively followed by positive 

canard deflection and negative flaperon deflection. The 

maneuvers give the aircraft a positive pitching moment and 
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a positive angle of attack. In order to maintain the 

commanded pitch attitude, both actuators deflect 

positively, balancing their pitching moments about the cg. 

In order to maintain the flight path despite the increased 

angle of attack, the control surfaces must also generate a 

negative lift. 

The allowed command inputs, in the pitch pointing mode, 

which will not saturate the f1aperon are -0.8°< a = 
c 

8c < 1.2°. Larger command inputs will require too large 

a change in the f1aperon deflections. 

5.2.4 Alternate Mode (Design COnly) 

For completeness, we also examined a mode whose 

reference inputs are 90° from the pitch pointing mode in 

the a ,e plane. In this case a = - e and the c c c c 
flight path angle is twice the commanded pitch attitude. 

Figure 5.6a is a sketch of the aircraft coordinates in this 

mode. 

The reference inputs were ramped for 0.1 sec from 0° to 

their final values of -0.7071° for pitch command and 

+0.7071° for angle of attack. The responses are shown in 

Figures 5.6b and c, angle of attack and pitch attitude 

respectively. The canard and f1aperon deflection are shown 

in Figure 5. 6d. 

The mean square error is 8%, as it was in the pitch 

pointing case. This is consistent with the singular value 

directionality analysis. Since both this mode and the 
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pitch pointing mode are halfway between the maximum and 

minimum accuracy directions as shown in Figure 4.10, the 

command following error should be the same, and it is. 

Figure S.6b shows that the angle of attack does not reach 

the commanded value of 0.7071°. Comparing the angle of 

attack response in this mode to the angle of attack 

response in the pitch pointing mode (Figure 5.5a), we see 

that after 0.5 sec, both have reached the same angle 

0.66°. The pitch attitude in Figure 5.6c does not quite 

reach its commanded input, but levels off at -0.64°. 

Figure 5.6d shows both the canard and flaperon 

deflections. In this case, both actuators have a large 

positive deflection initially and settle out at smaller 

positive deflections. The positive canard and flaperon 

deflections balance each other thus the net pitching moment 

is zero. As in the pitch pointing mode, the actuator 

surfaces must also generate a negative lift in order to 

balance the increased lift due to the larger angle of 

attack. This explains why the steady state actuator 

deflections of this mode and the pitch pointing mode are so 

similar. In both cases, the pitching moment must be zero 

and the same increase in angle of attack (0.7071°) must be 

offset by negative lift generated by the control surfaces. 

The initial transients are somewhat different due to the 

different pitch attitude commands. 

In this case, the allowed range of reference input 

commands, which will not cause the flaperon to saturate, 

are -1.2° < (- e =a ) < 0.3°. Larger commands will c c 
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require the flaperon to deflect beyond its allowed range of 

-6.95° < f(t) < 28.05°. 

In addition to the coordinates, the response of the 

flexible wings was plotted for this mode. Figure 5.7a is 

the wing tip deflection and 5.7b is its bending rate. The 

peak deflection is '" 6 inches; after 0.5 sec the wing is 

still bending, but the amplitude is less than 0.5 inches. 

The peak rate is less than 15 ft/sec; after 0.5 sec the 

rate drops to 0.5 ft/sec. Figure 5.7c shows the wing 

rotation about its elastic axis, and 5.7d shows the rate of 

rotation. The wing is twisting at its natural frequency of 

212 rad/sec with a peak to peak amplitude of approximately 

0.013° and a rate of 2.9 deg/sec. The wings displayed 

similar behavior in the other modes, but it was decided not 

to show their transients. 

5.3 Summary 

The usefulness of coordinated canard and flaperon 

control was demonstrated in this chapter. The 5150 sytems 

with only canard control and either angle of attack (Design 

A) or pitch attitude (Design B) output were compared to the 

TITO system (Design C) in which both angles are 

controlled. The main conclusion is the TITO system can do 

what each 5150 design could do as well as control the other 

output. 
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The performance of the TITO and SISO systems were 

compared based on time simulations. Since the maximum 

singular value is in the e direction, the SISO 8 design was 

compared to the TITO design in the direct lift mode. 

Alternately the SISO a design was compared to the TITO 

design in the vertical translation mode. In both cases, 

the command following accuracies are comparable. The SISO 

systems could only control one output, thus the 

uncontrolled output tended to drift off. Any commands to 

the SISO systems could only be held for a short time before 

retrimming the aircraft. 

Finally, the ranges of reference inputs which would not 

saturate the flaperon were estimated for the three 

precision control modes and the alternate mode: 

vertical translation mode: -0.6°< a c <1.2° 

direct left mode: -10<8 c <0.5° 

-0.8°< a =8 (1.20 c c pitch pointing mode: 

alternate mode: -1.2° < (- 8 c =a c ) < 0.3° 

The small command range is due to the low flaperon command 

authority which was noted in Section 3.2.5. If the 

flaperon was redesigned to have more authority, the ranges 

would increase. 

Thus, by adding flaperon control, the aircraft is able 

to perform in the precision control modes. The direct lift 

mode can be followed very accurately, while the vertical 

-104-



translation mode cannot be followed with much better than 

10% steady state accuracy. The command input range is 

somewhat restricted due to the low command authority of the 

flaperon. 

An alternate use for the flaperon is to control the 

wing tip bending rate. This will be briefly investigated 

in the next chapter. 
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CHAPTER 6: CONTROL OF WING TIP BENDING RATE 

6.1 INTRODUCTION 

The only outputs considered up to this point in the 

TITO design have been angle of attack and pitch attitude. 

It may be that the flaperon control is more effective in an 

alternate configuration. One such possibility is to use 

the flaperon and canard to actively control the wing tip 

bending rate and another output. The controllability 

analysis in Section 3.2.2 indicated that the short period 

mode could be controlled by the canard and the bending mode 

by the flaperon. 

A full-state feedback (not LQG) regulator, designed to 

stabilize the pitch rate and control the wing tip bending 

rate, was described in Reference 7. The performance of 

this design will be examined more closely. In addition, 

its performance will be compared to the performance of 

Design C. First the performance of the two systems will be 

compared in the face of a wind gust, which is what the 

regulator in Reference 7 was designed for. Next, we will 

look at the regulator design from a command following point 

of view, examining its singular values in the frequency 

domain and its response to a command in pitch rate. 
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6.2 Control of Pitch Rate and Wing Tip Bending Rate 

6.2.1 Regulator Design 

The regulator design henceforth referred to as Design 

D, described in Reference 7 will be considered in this 

chapter. The design goals (in [7]) were to stabilize pitch 

rate and actively control the wing tip bending rate; thus 

no attempt was made to design a command following system. 

The design model used is what we have been calling the 

truth model. The torsion mode was not ignored. In 

addition, the system was not rescaled; the original system 

described in Section 2.3.3 was used. We should also 

emphasize that the compensator design was a standard LQ 

regulator; the LQG/LTR method was not used. 

The feedback gains are listed in Appendix 2.4. Table 

6.1 lists the closed loop poles. The wing bending mode 

damping ratio has been improved from 0.165 in the open loop 

plant to 0.31 in the closed loop system. The wing torsion 

mode damping has also increased slightly, although the mode 

is still very lightly damped. The plant has been 

stabilized. In terms of pole locations, the design goals 

of [7] were met. 

TABLE 5.1 
REGULATOR CLOSED LOOP POLES DESIGN D 

Freguenc.:z: Damping 
Phugoid -0.0104 + j 0.0456 0.047 0.22 
Short Period -5.256, -18.243 
Bending Mode -18.5 + j 57.2 60.1 0.31 
Torsion Mode -0.0174 + j 212.7 212.7 8 X 10- 5 
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6.2.2 Wing Gust Response 

The responses of Designs C and D to a wind gust are 

examined next. The wind gust was modelled as an 8.73 

ft/sec vertical impulse. This translates to an initial 

angle of attack of 0.5°. 

Figures 6.la and b show the pitch rate response of 

Designs C and D. Notice, first of all, the scales are 

very different. Design D yields a peak pitch rate of -0.5 

deg/sec, while the peak pitch rate for Design C was -0.1 

deg/sec. Within approximately 0.3 sec, the pitch rate is 

virtually zero for Design C, although there is some 

overshoot. Design D exhibits a more highly damped 

response. The pitch rate returns to zero in about 1 sec 

without any overshoot. 

Figure 6.lc and d show the wing tip bending rate 

response for Designs C and D respectively. Again, note the 

different scales, the wing tip for Design D reaches a peak 

rate of -3 ft/sec. The wing tip for Design C reaches a 

peak rate of -0.4 ft/sec. As with the pitch rate, the 

Design D response is more damped than Design CIS response. 

Figures 6.2a and b show the angle of attack responses 

for Designs C and D. The angle of attack is back to zero 

within 0.3 sec for Design C while it takes slightly more 

than 1 sec for the Design D angle of attack to return to 

zero. 

Finally, Figures 6.2c and d show the flaperon and 

canard deflection for Designs C and D. Note once more the 
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different scales. Design C has much larger and more rapid 

deflections than Design D. Within 0.3 sec the actuators 

return to their trim setting, while Design D takes nearly 1 

sec. On the other hand, the f1aperon must deflect to -12° 

(which is beyond its limit of -6.95°) and the canard 

deflects to _7° with Design C. The maximum deflections for 

Design Dare _1° for the canard and 0.4° for the flaperon. 

We have seen that the design of Reference [7) does 

indeed stabilize the pitch rate and damp the wing tip 

bending rate with relatively gentle f1aperon and canard 

control. While Design C stabilizes the pitch rate and 

dampens the wing tip bending rate more rapidly than Design 

D, quite large f1aperon deflections are required and the 

respons~s tend to be more oscillatory. 

6.2.3 Design D Adapted to Command Following 

The regulator, Design D, must be rearranged in order to 

force the regulator to perform command following. Figure 

6.3 is a block diagram of the regulator altered for command 

following. The system still requires full state feedback. 

The output states are compared to the reference commands 

and an error signal is generated. 

Figure 6.4 shows the singular value curves for Design 

D. Figure 6.4a is a plot of the singular values of the 

loop broken at the plant input. This plot should be 

examined with respect to robustness considerations. The 

minimum singular value never has a gain greater than 0 db. 
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The bandwidth is 10 rad/sec. The system should be robust 

to unmodelled high frequency dynamics. 

Figure 6.4b is a plot of the singular values of the 

loop broken at the plant output. This is where we have 

been breaking the loop in the previous designs to 

understand command following performance. The outputs are 

pitch rate and wing tip bending rate. This plot, along 

with Figure 6.4c, the loop sensitivity, is useful when 

considering the command following performance. Again, the 

minimum singular value of both loops is never greater than 

o db. In terms of command following, the maximum singular 

value of the loop sensitivity has a gain greater than 1 

only in the frequency range 0.1 < w < 103• 

The closed loop transfer function is shown in Figure 

6.4d. The crossover frequency is approximately 1000 

rad/sec. In order to actively control the bending mode at 

60 rad/sec, it is necessary to have a bandwidth greater 

than 60 rad/sec. The high bandwidth is reasonable from 

that standpoint, but may cause difficulties with respect to 

high frequency noise or other unmodelled flexible wing 

modes and actuator dynamics. 

Figure 6.5 shows the system response to a reference 

input in pitch rate. The pitch rate command was ramped-up 

from 0 to lO/sec over 0.1 sec and remained lO/sec after 0.1 

sec. The wing tip bending rate was commanded to zero. 

Figure 6.5a is a plot of the pitch rate response and 6.5b 

is a plot of the wing tip bending rate response. The wing 
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tip bending rate reaches virtually zero within 1 sec. 

However, the pitch rate settles at 0.65 deg/sec, which is 

35% in error. 

6.3 Summary 

The full-state feedback regulator design, taken from 

Reference 7, is fine in terms of closed-loop pole 

locations. The plant is stabilized and the wing tip 

bending mode damping ratio is increased. However, when 

considering command following, the design is inadequate. 

The response to a wind gust disturbance is fairly good; the 

disturbance is damped out within 1 sec without violent 

actuator deflections. Design C responds much more quickly 

to wind gust disturbances; the disturbance is damped out 

within 0.4 sec. However, the canard and flaperon must be 

deflected quite rapidly and in the case of the flaperon, 

beyond its saturation limit. 

Active control of the wing tip bending rate by the 

flaperon presents an interesting possibility. However, it 

is not a trivial matter to design a compensator to 

independently control one of the attitude coordinates (i.e. 

angle of attack, pitch attitude or pitch rate) and the wing 

tip bending rate as we have seen in this chapter. In the 

first place, an accurate high frequency model is necessary, 

at least the first two flexible modes must be included. 

Furthermore, there's approximately a decade 
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separation between the maximum and minimum singular 

values. It may be more desirable to preserve the fast and 

slow loops, by designing a fast loop compensator with 

flaperon input and wing tip bending rate output and a slow 

loop compensator, with canard input and an attitude angle 

output. [19]. 
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CHAPTER 7: SUMMARY, CONCLUSIONS AND DIRECTIONS FOR FURTHER 

RESEARCH 

7.1 Summary and Conclusions 

7.1.1 Summary 

The goal of this study was to determine the 

effectiveness of independent flaperon and canard control. 

The main emphasis was on control of angle of attack and 

pitch attitude, the so called precision control modes. In 

order to examine the usefulness of the flaperon, two SISO 

systems with canard control only were compared to the TITO 

system with canard and flaperon control. 

The linear model of a generic forward swept aircraft 

which included two flexible modes was developed in 

Reference 7. The design model used here is based on the 

original model. The model was rescaled and the torsion 

mode was dropped. The model error, used to form a 

stability-robustness test, is based on the relationship 

between the design model and the truth model. The designs 

were tested on the truth model. 

Prior to the actual compensator design, the linear 

model was analyzed. The model analysis showed the unstable 

pole at 7.3 rad/sec is in the short period mode. The 

controllability analysis indicated that the first bending 

mode is controllable through the flaperon. This suggested 

an alternate output configuration, using the flaperon to 
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control the wing tip bending rate. The transfer matrix 

from the controls to the angle of attack and pitch attitude 

output revealed that the flaperon has relatively little 

authority to deal with large commands before it saturates. 

The design specifications are about the same for the 

three systems: SISO with canard control and angle of 

attack output (Design A), SISO with flaperon control and 

pitch attitude output (Design B), and TITO with both canard 

and flaperon control and pitch attitude and angle of attack 

output (Design C). The design specifications are based on 

performance and robustness considerations. The LQG/LTR 

design methodology was used to design the three 

compensators. 

7.1.2 Conclusions 

The main conclusion is that the TITO system can do what 

the SI50 systems could, and more. The command following 

performance of the SISO systems' controlled output (a for 

Design A and e for Design B) is comparable to the command 

following of the TITO system in the appropriate mode. 

While the TITO system was able to maintain a small pitch 

attitude due to the flaperon control, the pitch attitude of 

the SISO system drifted off at a rate of approximately 3 

deg/sec. The performance of the TITO system in the direct 

lift mode was compared to the Design B's performance. In 

this case, the error in pitch attitude for the SISO system 
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was about 2% while the T1TO system had an error of less 

than 0.5%. Furthermore, while angle of attack drifted off 

at a rate of -la/sec with the S1S0 system, the flaperon 

enabled the T1TO system to maintain its angle of attack 

heading. 

Due to the limited command authority of the flaperon, 

the command inputs must be limited in order to avoid 

saturating the actuator. 

An alternate use for independent canard and flaperon 

control is to actively control the wing tip bending rate 

and an attitude coordinate such as pitch attitude or angle 

of attack. The actual design of such a compensator is not 

trivial. An additional difficulty is that an accurate 

model of the high frequency dynamics is necessary. 

Flexible wing modes are quite difficult to model accurately. 

7.2 Suggestions for Future Research 

This study has examined the independent canard and 

flaperon control of angle of attack and pitch attitude. 

Other uses for the flaperon control should also be 

investigated, including active control of the wing tip 

bending rate. Furthermore, the impact of sensor and 

actuator dynamics should be examined. 
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APPENDIX 1; LINEAR MODEL ANALYSIS 

1.1 Truth Model, A and B Matrices 

V~brat~on Mode Shape for Flexible Wing 

1.2 Scaling Matr~ces 
Scaled A and B Matr~ces 

1.3 E~genvectors of Scaled Model 

1.4 Singular Value Decornpos~tion at DC and w=l rad/sec 
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1 -N 
~ 
1 

.... '-

Gener1C Forward-Swept W1ng Model 

A Matrix 

5 2660E-04 5 3150E+00 -3.22ooE+01 -1 4530E+01 -1 4050E-01 1 5070E-03 

-6.4380E-05 -2.8810E+00 -4 6720E-04 oo60E+00 7 6270E-02 -8 1820E-04 

0.0000[+00 o OOOOE+OO O.OOOOE+OO 0000[+00 o oooOE+OO o OOOOE+OO 

2.0330E-06 7.9560E+01 1.4750E-05 -8.3110E-01 -1 0550E+00 1.7620E-02 

o OoooE+OO o 0000[+00 O.OOOOE+OO O.ooOOE+OO o 0000[+00 OOOOE+OO 

-9 4390E-Ol -3. 1160E+04 -6.7790E-05 6.6400E+Ol -3 6240E+03 -2 0640E+Ol 

o OoooE+OO o OOOOE+OO O.OOOOE+oo o oooOE+oo O.ooOOE+oo O.ooooE+oo 

3.3630E-03 7 5090E+Ol -1.5640E-05 -6 43OOE-Ol -7 6250E-02 -8 1300E-04 

B matx"l.X 

5 8710E+00 9.4070E-01 

-4 6270E·Ol -5 1080E-Ol 

o OooOE~OO 0.0000[+00 

-1 9440EIOI 6 1330E+Ol 

O.OOOOEIOO o 0000[+00 

-6 2oo0EI03 2.8170E+02 

o OOOOE+OO O.OOOOE+OO 

1.3380EIOO 6 4990E+01 

2 7430E+00 1 9840E-05 

-1.4890E+00 -1.0770E-05 
:r-

o ooooE+OO o ooooE+OO '0 
'0 
(1) 

2.5010E+01 4580E-03 ::l 
0.. 
I-' 

O.oooOE+oo O.oooOE+OO X 

I-' 
-2.8050[+04 3 8550E-02 . 

I-' 

0.0000[+00 OoooE+OO 

-4 5240E+04 -3.6000E-02 



V~brat~on Mode Shape (Reference 7) 

Parameter Mode 1 Mode 2 

Frequency Wi (rad/sec.) 6g.53 212.g4 

Gen. Mass Mi (slug) 14.0 113.0 

Gen. Stiffness ~ (lb/ft) 67680.0 5124000.0 

Node lPz eft) tP~ (rad) tPz (ft) tPp (rad) 

1 (w~ng root) -0.041 0.002 -0.003 -0.002 

2 -0.025 -O.Oog -0.001 0.154 
,I 

3 0.023 -O.Olg 0.000 0.307 

4 0.098 -0.027 0.000 0.453 

S O.lgS -0.034 0.000 0.587 

6 0.309 -O.03g 0.000 0.707 

7 0.436 -0.042 0.000 0.80g 

8 0.572 -0.045 0.000 0.8g1 . 
g 0.713 -0.046 -0.001 O.gSl 

10 0.856 -0.046 -0.002 O.gSS 

11 (w~ng tip) 1.000 -0.046 -0.003 1.000 

'" 
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Append~x 1.2 

Sca1~ng Matr~ces 

S 
x 

1. 

S 
u 

57.3 

57.3 

57.3 

o. 

o. 

1. 

1. 

1. 

1. 

[

57.3 J [1/12 = 
57.3 1/30 1

4.775 l 
1.91 

Sy S 
x 
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I 
~ 
N ..... 
I 

Scaled A and B Matrices 

A Matrix 

5. 2660E-04 9 2764E-02 -5 6200E-01 -2.5360E-01 

-3.6887E-03 -2 8810E+OO -4.6720E-04 1 0060E+OO 

0 OOOOE+OO O.OOOOE+OO O.OOOOE+OO 1.0000E+OO 

1648E-04 7 9560E+01 1. 4750E-05 -8 3110E-01 

O.OOOOE+OO O.OOOOE+OO 0 OOOOE+OO o OOOOE+OO 

-9.4390E-01 -5.4384E+02 -1 1832E-OS 1. 1589E+OO 

O.OOOOE+OO O.OOOOE+OO 0 OOOOE+OO O.OOOOE+OO 

3.3630E-03 1 3106E+OO -2.7297E-07 -1.1222E-02 

B Matr1x 

1.229SE+OO 4.9255E-01 

-5.5524E+OO -1.5324E+01 

o OOOOE+OO O.OOOOE+OO 

-2.3328E+02 1.8399E+03 

O.OOOOE+OO O.OOOOE+OO 

-1.2985E+03 1 4750E+02 

O.OOOOE+OO O.OOOOE+OO 

2.8023E-01 3 4029E+01 

- 1 4050E-01 1 5070E-03 2 7430E+OO 1.9840E-05 

4. 3699E+OO -4.6879E-02 -8 5313E+01 -6. 1708E -04 

O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 

-6 0447E+01 1 0096E+OO 1 4330E+03 8 3537E-02 

O.OOOOE+OO 1.0000E+OO O.OOOOE+OO o OOOOE+OO 

-3.S240E+03 -2 OS40E+01 -2 8050E+04 3.8550E-02 

O.OOOOE+OO O.OOOOEtOO O.OOOOE+OO OOOOE+OO 

-7 6250E-02 -8. 1300E-04 -4.5240E+04 -3 6000E-02 



'v ... .. 

Scaled Model 
(Note: Complex numbers are written w1th 1mag1nary part 

beneath real part.) :t"' 
'tl 
'tl 
CD 
::s 
0. 

Eigenvalues 
/-' 
X 

7 3019E+00 -4.1612E-05 -4.1613E-05 -1.6952E-02 -1 6952E-02 -9 8119E+00 I--' 
-9.8119E+00 -1.1918E+OI . 

w 
0.0000E+00 4.9226E-02 -4 9226E-02 2 1210E+02 -2 1210E+02 5 9111E+Ol -5.9111E+OI O.ooooE+oo 

I .-
N 
CD 
I 

E1genvectors 

4 2981E-02 -1.0604E-01 -1 0604E-01 -2.2836E-05 -2 2836E-05 I 1808E-04 1. 1808E-04 1.1869E-02 
o ooOOE~OO -1 0216E-01 1 0216E-Ol 5. 1164E-05 -5 1164E-05 -5 6448E-05 5.6448E-05 o ooooE+OO 

-9. 1830E-02 9 9125E-05 9.9125E-05 -9 9191E-05 -9 9191E-05 -8 1336E-04 -8. 1336E-04 -1 1750E-Ol 
o OOooE+OO 9.6173E-05 -9.6113E-05 -1.4982E-03 1 4982E-03 1 5099E-03 -1 5099E-03 o oooOE+oo 

-1.3421E-01 -6 0910E-02 -6 0910E-02 1 1813E-04 1613E-04 -4 1910E-04 -4.1910E-04 -8.0935E-02 
O.OOOOE+OO 6.246IE-02 -6 2461E-02 -I 1862E-05 1862E-05 I 8360E-05 -1 8360E-05 o OOOOE+OO 

-9.8124E-01 -3.0122E-03 -3 0122E-03 2.5226E-03 2 5226E-03 3.0519E-03 3 0519E-03 9 6457E-Ol 
O.OOOOE~OO -3.ooI0E-03 3.0010E-03 2.5261E-02 -2.5287E-02 -2 4957E-02 2.4957E-02 O.ooooE+oo 

I. 2156E -02 I. 6837E -04 1.6831E-04 -2.5936E-03 -2 59J8E-03 -1.0499E-02 -1.0499E-02 1.8495E-02 
O.oooOE+OO 1.6798E-04 -I 6198E-04 3 2846E-04 -3 2846E-04 -I 2958E-02 1.2958E-02 o OOOOE+oo 

9.3217E-02 -8 2109E-06 -8 2109E-06 -6.9819E-02 -6 9819E-02 6.6965E-01 8.6965E-Ol -2.2042E-Ol 
o OOOOE+OO 8.265IE-06 -8.2851E-06 -5.517IE-01 5 5111E-01 -4.9274E-01 4.9274E-Ol O.OooOE+oo 

-2.4339E-06 -4.9115E-08 -4.9115E-08 -3 7953E-03 -3.1953E-03 -2 6457E-08 -2.6457E-08 -3.6515E-06 
O.OOooE+OO -4.8992E-08 4 6992E-08 9 2159E-04 -9.2159E-04 8 6431E-08 -8 6431E-08 O.OOOOE+oo 

-I 1788E-05 2.5420E-09 2.5420E-09 -I 9596E-01 -1.9596E-01 -4.8482E-06 -4.8482E-06 4 3587E-05 
O.OOOOE+OO -2 2864E-09 2 2864E-09 -8 0726E-01 8.0126E-Ol -2 4112E-06 2 4112E-06 O.OOOOE+OO 



Appendl.x 1. 4 

transfer 
matrl.X 

sl.ngular values 

U matrl.X 

V matrl.x 

Transfer Matrl.ces used for sl.ngular value decomposl.tl.on 

at DC 

SCi'iled 

gO 

Nt/mber of rows· :2 
Number of columns = 2 

2 5460E-OI -7 7450E-OI 

-6 8457E-02 3 3517E-01 

gO sigma 

Nt,mber of rows • 
Nllmber of columns. 2 

8 8338E-OI 3 6582E-02 

gO II 

N\lmber of rows· 2 
M,mber of columns 2 

9 2277E-OI -3 8536E-01 

-3 8536E-OI -9 2277E-01 

gO v 

Number' of rows" 2 
Number of columns· 2 

2 9582E-OI -9.5524E-01 

-9 5524E-OI -2 9582E-OI 
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Unscaled 

gl)s 

~~ber of rows· 2 
N~/",be,' 0 f co lumns· :2 

1 0,,2E'OO -2 3215E'OI 

-8 21'18E-OI 0055E.OI 

gOs sigma 

NlImbe,' of ro~'s .. 
r~lImbp., of co I umns = 2 

'5510EIOI 4 560~E-01 

gOs \I 

thllllhe,' of ,'ow", = 2 
IJ\IIlIhe, of Lollimlls' 2 

9 lar,2E-01 -J 9513E-OI 

-3 95IJE-OI -9 1862E-OI 

"OS ., 

Ntlllll'C'1' of row'! ~ 2 
Nllrnher' of columllS' 2 

2274E-01 -9 92~4E-OI 

-9 92~4E'OI -I 2214E-01 

, 

u 

I, 

'I 



" 

transfer 
matr~x 

singular values 

~ 

~ 

U matr~x 

V matr~x 

) 

Transfer Matr~ces used for s~ngular value decompos~t~on 

at w=l rad/sec 

aq 

Number of rows • 2 
Number of columns • 2 

Enter xmln, xmax, xdel 

x • 0.000 

2 0818E-01 -7 0042E-OI 
I 8157E-02 -3.0914E-02 

I 3060E+00 -I.9316E+OO 
2 6719E-OI -7 9965E-01 

aq.slgma 

Number of rows • 
Number of columns· 2 

Enter xmln, xmax, xdsl 

x • 0.000 

2 577:1E~00 2 0159E-OI 

2Iq U 

Number of rows· 2 
Numbel ot columns· 2 

Entsl' xmtll, xmax, xdel 

)( . 0.000 

2 72a1E-OI 9 0700E-01 
-2,7634E-02 -a.2006E-01 

9.4065E-01 -2.7360E-01 
2 0063E-01 7 6531E-03 

aq.v 

Number of rows· 2 
Number 0' columns· 2 

Entel' xmlll, X,"I\)(, xdel 

)( . o 000 

5 t927E-01 -8 5461E-01 

-B 4094E-QI -5 1097E-01 
1.5226E-Ot 9.2514E-02 

aqs 

NI.llbei of rows . 2 
Number of columns s 2 

Entel' >emtn, )(","lC. >edpl 

>e . o 000 

2 "'" R 2 E - 00 - 2 tot J E - 0 I 
2 17ME-OI -9 27"?E-OI 

I 5G72E'OI -5 79"9\:101 
:I 20GJE+00 -2 aQn9F-OI 

af'\'i sigma 

Numb~r of rows 
Number of columns· 2 

Enter xmln, xmax. xdel 

)( 0000 

6 B049E~Ol 2 74B5E~OO 

aqs u 

Number of rows· 2 
Number of columns· 2 

Enter xmln, xmax, xdel 

)( . o 000 

3 0634E-01 8.960BE-01 
-a 9690E-02 -3.1879E-01 

9 2966E-01 -3 0890E-01 
2 0078E-OI 7 7754E-05 

aqs v 

Numbel' of rows· 2 
Number of columns· 2 

Enter xmtn. xm2lX, xdel 

)( . o 000 

2 34fi9E-QI -9 7207E-QI 

-9 5652E-01 -2 3093E-01 
I 7319E-01 4.IBI2E-02 

(Note: 1mag~nary part 1S below real part) 
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Append~x 2.1 
Compensator Gain Matr~ces 

Des~gn A (SISO a.) 

H: -6.3199E+00 

6.0050E+Ol 

7.7656£+01 

1.9516£+03 

-4. 1610£+00 

-3.0103E+02 

G: 

-62036E-03 9.6310E+Ol -7.6274£-04 1.6964E+00 6.7647£+00 -4.6306E-03 

Append~x 2.2 

Deaign B (SISO 6) 

H: 
-2 6705£+01 

4.4277£+01 

6.0459£+01 

1.9276E+03 

-2.0931£+00 

-2.1941£+02 

G: 

-1.4509E-Ol 3.8431E-02 9.9968E+Ol 3.2932£-01 -3.3809£-02 5.4979E-04 

-132-



Append~x 2.3 
Compensator Ga~n Matr~ces 

Des~gn C (TITO) 

m: match~ng matr~x 

H: 

G: 

-2 9000E-Ol 6.5000E-02 

-7.9000E-02 -5.0000E-02 

-8.0485E+OO -9.4231E+OO 

3.3078E+Ol 1 9598E+Ol 

1.9598E+Ol 4 6351E+Ol 

3.9795E+02 1.2662E+03 

1.0179E+Ol -1.0721E+Ol 

3.5161E+02 2.5209E+02 

4.9393E-04 -7.6933E+Ol -6.3529E+Ol -4 8729E-Ol -5 5159E-Ol 5 1513E-03 

5.6533e-05 -6 3450e+Ol 7.7227E+Ol 2 9781E-Ol -1 3466e-Ol -2.211ge-04 
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Appendix 2.4 

Regulator Feedback Gains (Reference 7) 

[

3.S700E-06 -7.S100E-O~_ -1.4200E-03 -1.2400E-01 -1 4~OOE-02 -2.6400E-03 

-1.0800E-05 1.8730E+OO 9.3800E-03 2.9200E-01 1 4200E-02 2. 2600E-04 
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