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Abstract
A new, advanced system for active control of helicopters and its

application to the solution of rotor aerodynamic and aeroelastic problems is
described. Eaéh blade is individuallf controlled in the rotating frame over a
wide range of frequencies.v Applicafion of the system to gust alleviation,
attitude stabilization, vibration alleviation, blade lag damping augmentétion,
stall flutter suppre#sion. blade flapping"stabilization, stall alleviation,
and perfqrmance enhancement is outlined. The effectiveness of the system in
achieving most of th?se applications is demonstrated by experiﬁéntal results
from wind tunnel tests of a model helicopter rotor with individual-blade-
control. fhe feasibility of achieving many or all of the applications of

individual-blade—control using the conventional helicopter swash plate is

demonstrated, and the necessary control laws are presented.

This research was sponsored by the Ames Research Center, NASA, Moffett Field,
California 94035. Special acknowledgment is due to Robert M. McKillip, Jr.,
and Paul H. Bauver for their contributions at MIT, '



1. INTRODUCTION'

A truly advanced helicopter rotor must operate in a severe aerodynamic
environment with high reliability and low maintenance requirements. This
environment includes: |

(1) atmospheric turbulence (leading to impaired flying qualities,
particularly in the case of hingeless rotér helicopters).

(2) retreating blade stall (leading to large forsional loads in blade
structure and control system).

(3) blade-vortex interaction in transitional and nap-of-the—earth
flight (leading to unacceptable higher harmonic blade bending stresses and
helicopter vibration). |

(4) blade—fuselage interference (leading to unacceptable higher
harmonic blade bending stresses and helicopter vibration).

(5) blade and‘rotor instabilities (leading to structural failure or
loss of control).

The appliéation of feedback technigues.make it possible to alleviate the
effects described in items (1) to (5) above, while improving helicopter
vibration and handling characteristics to meet desired standards. The concept
of Individual-Blade-Control (IBC), inspired by the work of M. Kretz, embodies
the control of broadband electrohydraulic actuators attached to each blade or
to the swash plate, using signals. from s;nsors mounted on the blades to supply
appropriate control commands to the actuators [1-26]. Note that IBC involves
not just control of each blade independently, but also a feedback loop for
each blade in the rotating frame. In this manner it becomes possible to
reduce the severe effects of atmospheric turbulence, retreating blade stall,
blade-vortex interaction, blade—fuselage interference, and blade and rotor

instabilities, while providing improved performance and flying qualities.



It is‘evident that the IBC system will be most effective if it is
comprised of several sub-systems, each controlling a specific mode, e.g., the
biade flapbing mode, the first blade flatwise bending mode, the first blade
lag mode, and the first blade torsion mode [1]. Each sub-system operates in

its appropriate frequency band:

Consider the modal equation of motion
mx + cx + kx = F(t) + AF | . (1)
where the modal control force AF is
AF = Kjmx - Kpcx - Kpkx (2)
Then substituting (2) into (1)
(1+K,)mx + (1+Kg)cx + (1+Kp)x = F(t)
For the case Ky = Kp =Kp =K

mx + cx + kx = [1/(1+K)] F(t)

and the modal response is attenuated by the factor 1/(1+K) while the modal
damping and natural f:eqnéncy are unchanged.

For modal damping augmentation, only the rate feedback AF = —KRci is
required.

The configuration considered in [1-14] employs an individual actuator
Qnd multiple feedback loops to control each blade. These actuators and
feedback loops rotate with the blades and, therefore, a conventional swash
plate is not required. However, some applications- of individual-blade-control
can be achieved by placing the actuators in the non-rotating system and
controlling the blades through a conventional swash plate as described in

Section 9 and in [15, 17].



The following sections describe the design of a system controlling blade
flapping, bending, lag, and torsion dynamics, and related testing of the
system on a model rotor in the wind tunnel. The control inputs considered are
blade pitch changes proportional to blade flapping and bending accelerationm,
velocity, and displacement, and lag and torsion velocity. It is then shown
that helicopter gust alleviation, attitude stabilization, vibration
alleviation, and 1P lag damping augmentation can be achieved using the
conventional helidopter swash plate for an N-bladed rotor where N>3., For N$3,

all applications can be achieved.

2. GUST ALLEVIATION
References [2—4] describe the application of IBC to helicopter gust
alleviation. Ihe‘feedback blade pitch_controlAwas proportional to blade

flapping acceleration and displacement, i.e.,

A8 = K (§I'+ B)
A block diagram of the control system is shown in Figure (1).

Figures (2) and (3) show the effect of increasing the open—loop gain K
upon the IBC gust alleviation system performance. Note that the experimental
reduction in gust-induced flapping response is in accordance with the
theoretic#l closed-loop gain 1/(1+K).

The Lock number of the model blade was 3.0. For a full size rotor, the
inérease in damping due to the increase in Lock number results in the flapping
at excitation frequency becoming the dominant response. Also, with increased
blade damping it becomes possible to use higher feedback gain for the same
stability level, and as a consequence the IBC system performance improves with

increasing Lock number.
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Following the successful alleviation of gust disturbances using the IBC
system, [2-4] showed the theoretical eqnivaience of blade fl#pping response
due to atmospheric turbulence and that due to other low—frequency'
disturbances, e.g., helicopter pitch and roll attitude; therefore these
disturbances can also be alleviated by the IBC system, as shown in the

following section.

- 3, ATTITUDE STABILIZATION
References [13, 15] present an analysis of the effect of the IBC system

on helicopter longitudinal attitude stability for feedback pitch control given

by

. B _ . B_
A0= KA;I Kp o~ Kpb

For small displacements of the rotor tip-pat h—plane from equilibrium,
and not including coupling with lateral flapping that is negligible at low
frequency and for Kp = K, [13, 15] obtain the following perturbation

.relationship between shaft angle a and longitudinal flapping Blc:

By
Aa — AB, =AA_Q.°_ + BAB, . : (3)
[+ (4] ’




3 2 :
where A=201+%K, (1+5)l/gQ1 +-§-p(2))
2 3 2

and the subscript zero demotes trim conditioms. Figu?e 4 indicates that any
effect tending to increase the quantity Aa - ABlmprodnces a stabilizing moment
Th (Aa - ABIQ) about the helicopter center—of-gravity. Therefore, positive
terms on the RHS of equation (3) are stabilizing. It is seen that the IBC
system increases the rotor damping-in-pitch parameter A and tﬁe rotor angle—
of-attack stability parameter B.

| Equation (3) was used to investigate the effect of the IBC system on
hélicopter longitndinal'attitude stability at various forward speeds.
Stability parameters A and B are plotted in Figures § aﬁd 6 as a function of
trim advance ratio pg for helicopter having a blade Lock number y=8 and IBC
open loop gains Ky = Kp = Ké = 0.5 [13, 15]. (See either reference for thé-
effect of KP). For these arbitrary values, it is seen that the rotor disk
longitudinal damping—in-pitch is increased over fifty per cent (Figure 5),
while the rotor disk angle-of-attack dependence changes from unstable to
stable (Figure 6).

The physical origin of these effects is as follows. To precess the
rotor disk yith a longitudinal pitching ?elocity Aéle, the rotor disk must lag
behind the shaft an aﬁonnt (Aa - ABla) to éenerate'the necessary rolling
moment. Since the K, .B./n2 feedback represents an effective increase in blade
flapping inertia; the required lag is increased, thus increasing the
stabilizing moment proportional to t'llc_, i.e., rotor damping-in-pitch. The

rotor angle—of-attack instability is proportional to disk attitude

perturbations Aﬂlc} The Kp B/0 feedback opposes increases in disk attitude ﬁ%ﬁ



(defined positive nose down) throu;h the flapping velocity perturbation

Aﬁ = -Blcg sing which produces an aerod&namic moment opposing Aﬁlct the
tendency of the disk to follow the shaft is redgced, producing a perturbation
lag (Aa - ABlc) and a ;tdbilizing moment proportional to Aﬂlc: i.e., rotor
longitudinal angle—of—-attack stability.

Roll attitude stabilization also results from the IBC system described
above. If it were desired to reduce the roll stabilization due to the
helicopter rolling inertia being less than its pitching inertia, gains could
be varied with blade azimuth angle,

Attenuation of the response to pilot’s control can be prevented by

biasing the feedback signals by a signal proportional to stick displacement.

4. VIBRATION ALLEVIATION

A major sonfce of helicopter higher harmonic vertical vibration is the
biade flatwise.response to the impulsive loading due to blade—vortex or blade-
fuselage interaction. If the blade flatﬁise response is controlled, the
higher harmonic vertical vibration will be correspondingly reduced [8, 9, 19].

This section begins with the application of the IBC concept to control
of the blade first elastic flatwise bending mode. (Control of the flapping
mode is similar in principle.) To achieve this, a servomotor controls the
pitch angle of the blade whose flatwise bending acceleration and displacement
are sensed by ﬁccelerometers. and an integrator yields the flatwise bending
velocity. C;mbinations of these signals are fed back to the blade pitch
.control to effect increases in the effective inertia, damping, and stiffness

of the blade first elastic flatwise bending mode.
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Consider the blade shown in Figure (7) to be responding in both the
flapping mode and the first elastic flatwise-bending mode. The signal from an

accelerometer placed at blade station x is given by

aF/RQ2 = x.B'/Q2 + xf + 'q(x)'g'/Q2 + zn'(x)g ‘ (4)
where R = rotor radius
.Q = rotor rotational speed
x = blade spanwise station r/R N
B(t) = blade flapping angle .
n(x) = first elastic flatwise bending mode shape
g(t) = first elastic flatwise beﬁding mode displacement

It is evident that if three flét%ise-oriented accelerometers are mounted at -
" three different spanwise'statjons, eqﬁation (4) yields three equations '
corresponding to the three spanwise stations., These equations can be solved
for the three quantities (lB‘/Q2 +B), E/Qz. and g. Integration of k?ﬂz then
yields bending rate é/ﬂ. | |

If 'ﬂ'/ﬂ2 and B are required independently, or a hinge offset is present,
then a foufth measurement is required.

ihe above technique provides all the information required to create the
bending feedback signals (g + m§ g), g, and if desired, the flapping feedback
signals (ﬁ + QZB) and/or é.

The design of the control system is based on the root locus of the
overall system, composed of a servomotor controlling_the pitchvmotion éf thé
blade, which is equipped with three accelerometers to provide the requireq

feedback signals as described above.
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The combined accelerometer transfer functions are given by

2 w0 2
_ RQ s,2 g
Al(s) =< (g~ + (—9) ]
2 2
RQ s
and AZ(S) = —G (ﬁ)
where G = acceleration due to gravity

The integrator transfer function is given by
s
(s/3 + 1)2

I(s) =
Note the integrator ldw—freqnency roll-off of 3 rad/sec to avoid the
application of an infinite d.c. gain to any steady-state components in the
accelerometer signal.

From the inner—1loop block diagram shown in Figure (8), the closed loop
transfer function H(s) from gy to g for vy = 8, 8 = 31.4 rad/sec, mg/n =3, and
K = 3 is readily obtained [8, 9]. The corresponding inner-loop root locus is
shown in Figure (9).

Then from the outer—loop block diagram in Figure (10), the findi closed
loop transfer function from gp to g is obtianed. The corresponding outer—loop
locus is shown in Figure (11).

Some preliminary test results are shown in Figure (12). It is seen that
a reduction in bending response to 1/(1+K) = 0.25 of the original value, i.e.,
an attenuation of 75% without significant change in bending natural frequency
can thus be obtained. The control system achieves the désired attennation of
flatwise bending response, and presumably its associated vertical inertial
vibratory shear, as postulated above.

In practice, only certain harmonics of the vertical vibration due to
blade-bending can be transmitted to the fuselage by an N-bladed rotor. These
harmonics can be controlled using blade—mounted accéleroﬁeters as sensors and

a conventional swash plate, as described in Section 9.




It should also be noted that suppression of blade flapping and flatwise
bending responses and their corresponding in-plane Coriolis forces will tend
to alleviate in—-plane vibration as a beneficial by-product of vertical

vibration alleviation.

5. LAG DAMPING AUGMENTATION

For lag damping augmentation, a serQomotor controls the pitch angle of
the blade whose lag acceleration is sensed by two accelerometers, and an-
integrator.yields the lag velocity which is fed back through a compensatér to
the blade pitch control [7, 10]. A blade flaﬁping velocity is thus generated
which in the presence of blade coning angle, results in an in-plane moment due
to Coriolis forces which opposes iag motion and is proportional to lag
velocity (Figure 13).

A series of wind tunnel tests of this system was run utilizing white
noise excitation of blade pitch. The results are shown in Figufe (14) iﬁ
terms of lag acceleration magnitude and phase as a function of pitch
excitation frequency for the rotor at advance ratio 0.27.

The response phase angles shown Figure (14) are conclusive in ’
demonstrating an increase in lag damping due to the control system. The
figure shows a rotation of the slope of the phase angle versus frequency curve
at lag resomance, in the direction of increased lag damping, as KR is
increased. The increase in lag damping ratio due to the control system was
determined to be 0.37 at advance ratio 0.27. This value is incremental to the

open loop value of 0.37 due to bearing friction.
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6. STALL FLUTTER SUPPRESSION

.References [2-4] showed that appropriate feedback to a position control
servo governing blade pitch motion could reduce undesirable blade motions due
to low-frequency gust inputs. Similar methods were.applied to alleviate the
violent torsional motions associated with stall flutter. At high blade angles
of attack and certain reduced frequencies, aerodynamic moment hystéresis
causes a net input of emergy to blade torsional motion, so that any small
blade oscillatiqn grows with time. Such a sitwation is typical of simple
oscillating systems with negative damping; stall flutter can be considered as
a phenomenon caused by a variation in the effective damping of the blade in
pitch: On the advancing side, the blade experiences strong positive damping
at low angles of attack, but on the retreating side the.effective damping can
temporarily become negative, leading to the oscillations described above.

An effective stall flutter suppression system would eliminate this
excursion into negative damping. Oné way to achieve thisvend is to provide
pitch-rate feedback from the blade to the pitch control servo (Figure 15).
The details of this concept, its implementation, and the results of
experiments utilizing it are given in [5, 6].

Typical test results are shown in Figures (16 and 17) for an advance
ratio of 0.33., Note that the stall flutter component is effectively

suppressed with increasing feedback.

7. FLAPPING STABILIZATION AT HIGH ADVANCE RAITO

Since biade flap damping and restoring forces can be controlled using
IBC techniques, the.high—advance-ratio flapping instability of helicopter
blades due to periodicity of these forces can be eliminatéd. The simplest

method would be to increase the mean values of blade flap damping and

[ SUR
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restoring forces by feedback of blade flapping velocity and displacement to
blade pitch contfol as discussed in Section 1, However, this approach would
not reduce the large periodicity of these forces at high advance ratio. A

more sophisticated control technique to control this perioidicity is described‘
below.

Reference; [11, 16] describe the results of an investigation into
methods of IBC controller design for linear periédic systems utilizing an
extension of modern control methods. Trends present in the selection of
various cost functions are outlined, and closed-ioop controller results are
demonstrated for two cases: first, on an analog computer simulation of the
rigid out—of-plane flapping dynamics of a singletrotor blade and second, on a
model helicopter rotorlin the wind tunnel, both for various high levels of
advance ra?io. It is shown that modal control using the IBC concept is
possible over a large range of advance ratios with only a modest amount of
computational power required. |

Typical wind tunnel test results are shown. in Figures (18) and (19) for
open—and cloéed—loop cases at an advance ratio of 1.4. It is seen that
periodic control of rotor blade flapping dynamics is feasible even for extreme
flight conditions.

References [11, 16] also contain an excellent discussion of the unique
advantages of using blade—mounted accelerometers as semsors in designing a

blade modal control system.

8. STALL ALLEVIATTON AND PERFORMANCE ENHANCEMENT
If rotor loading is increased in the fore and aft portions of the rotor
disk and reduced in the lateral portions, the loaded retreating blades will be

operating at higher angles of yaw and higher pitch reduced-frequencies than
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before, with corrésponding benefits in rotor stall alleviation and rotor
performance., Such a change in rotor loading can be obtained with the blade
pitch time history shown in Figure (20). Though a coupleteiy arbitrary pitch
schedule is pgssible with IBC, for ease of description a simple super—position
of 1P, 2P, and 3P pitch is employed [23].

Reference [12] considers only open—loop implementation of this'pitch
time history; subsequent applications may invplve closed-1loop variation of
pitch ampiitude and phase in accordance with some measure of blade stall onset
such as the RMS value of blade lag acceleration.

The pitch time history shown in Figure (20) was tested on a model rotor
in the wind tunnel. Application of 2P and 3P cyclic pitch eliminated high
frequency blade lag accelerations believed to be associated with rotor blade
stall. However, due to blade mechanical pitch limitations, substantial blade
stall was not encountered, and therefore conclusive demonstration of tﬁe
success of 2P and 3P cyclic pitcﬁ in alleviating more extreme rotor blade
stall must await testing with iﬁcreased model blade pitch capability.

Preliminary work has indicated that there are substantial performance
increments to be obtained from the introduction of appropriate higher harmonic
control to the helicopter rotor to reduce induced drag by re—distribution of
blade loading. Since individual-blade—control is a generalization of higher
harmonic control, similar benefits can be expected in this application.

Since it is possible to modify rotor loading distribution using IBC
techniques as described above, it may be possible to reduce rotor moise

signatures using these techniques.
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9. HELICOPTER INDIVIDUAL-BLADE-CONTROL USING A CONVENTIONAL SWASH PLATE

Several important dynamic phenomena of the helicopter rotor occur at
harmonics of rotor rotational speed:

(1) Gust-induced flapping, both quasi-steady and at 1P

(2) Shaft-motion—induced flapping, both quasi—steady and at 1P

(3) Airload-induced vibration at NP and (N¥1)P

(4) Rotor fuselage air/ground resonance at 1P -

(5) Tilt-rotor maneuvering loads at 1P
Sections 2, 3, and 4 bave shown that individual-blade-control can alleviate
items (1) to (3) above. Section 5 demonstrated that blade lag damping can be
augmented using IBC tojsuppress items (4) and (5).

It is now shown that IBC can be implemented through a conventional swash
plate to alleviate items (1) to (5) for N-bladed rotors:

The control requirement for the mth individual blade is

e ’ 20
= -k, 2-KB -k, = -k, o—-kyg - K{
m” Az TRT T T BT T R T
The corresponding contfol requirement for the swash plate is*

6 = 90 + 91c cosgp + O

1 sing + 92

[

Using the mathematics of Johnson*, P, 351, the control laws are

1 N
90 ='ﬁ-m21 Om = 0 unless n = pN
2 N
Olc ='ﬁ'mzl Gm cosy = 0 unless n = pN * 1
2 N
els =N m21 9 sing, = O unless n = pN 1
8, = 0 unless n = pN ¥ N/2 (Johnson*, P. 348)
where p = any integer
n = rotor harmonic number

*Johnson, W., "Helicopter Theory”, Princeton U.P., 1980
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" The physical significance of the above equations is that IBC of an N-
bladed rotor having a conventional swash plate is possible for those IBC
functions involving the zeroth (qﬁasi-steady). first, pNth, and (pN*1)th
harmonics of rotof speed, e.g., gust alleviation (p=0), attitude stabilization
(p=0), vibration alleviation (p=1), and suppression of air/ground resomance
and tilt—-rotor maneuvering loads (p=0).

Note that all harmonics and in general any arbitrary time history of
control are achievable with a three—bladed rotor using a conventional swash
plate.

{The summations of individual blade sensor signals required to obtain the
swash plate collective and cyclic pitch components provide a filtering action
such that only the desired harmonics OP, 1P, NP, and (N*1)P remain after
summation, i.e., no specific harmonic analysis is reduired. In addition, some
smoothing of random noise in the signals may result.

Since all sensing is done in the blades, no transfer matrices from non-
rotating to rotating system are required,; therefore no updating of these
matrices is required, and no non-linearity problems result from the
linearization required to obtain the transfer matrices. Also, blade state
measurements allow tighter vehiéle control since rotor control can lead
fuselage response: this lead should provide mére effective gust alleviation
and permit higher control authority without inducing rotor instabilities than
would be possible without rotor state feedback.

The following equipment is required to implement IBC for gust
alleviation and attitude stabilization of an N-bladed helicopter rotor:

(1) two flatwise accelerometers per blade.

(2) a means of transmitting signals from rotating to non—rotating

system.
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(3) syash plate_actnator bandwidths up to disturbance frequency.

The following equipment is reqnired‘to implement IBC for vibration
allevietion of an N-bladed helicopfer rotor:

(1) four flatwise accelerometers per blade.

(2) a means of transmitting signals from rotating to non-rotating

system.

(3) swash plate actuator bandwidths up to (N+1)P,

The following equipment is required to implement IBC for suppression.of
air/ground resonance and tilt—rotor maneuvering loads of am N-bladed
helicopter rotor:

(1) two lagwise accelerometers per blade.

(2) a means of transmitting signals from rotating to n&n—rotating

system.

(3) swash plate actuator bandwidths up to disturbance frequency.

10. CONCLUSION

The preceding sections have demonstrated that the use of blade-mounted
accelerometers as sensors makes possible the control of the flapping, flatwise
bending, lag, and torsional modes of each blade individually. This control
technique is applicable to helicopter rotor gust alleviation, attitude
stabilization, vibration alleviation, lag damping angmeﬁtation, stall flutter
suppression, blade flapping stabilization at high advance ratio, stall
alleviation, and performance enchancement.

For rotors having three blades, any arbitrary pitch time history can be
applied to each blade individually using the conventional swash plate. Rotors

with more than three blades require individual actuators for each blade for
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some applications; other applications such as gust alleviation, attitude
stabilization, vibration alleviation, and lag damping augmentation (for
suppression of air/ground resonance and tilt-rotor maneuvering loads) can be

achieved using a conventional swash plate.
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FIG. 4 Geometry for Longitudinal Stability Analysis
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