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NONLINEAR DYNAMIC ANALYSIS OF DEPLOYING FLEXIBLE SPACE BOOMS

by

Paul E. McGowan and Jerrold M. Housner

SUMMARY

A fundamental investigation of the planar deployment and lock-up of
two flexible boom-type appendages which have attached tip masses and are
connected to a central rigid body through a rotational spr'ing is presented.
Nondimensional parameters are identified and it is shown that, in general;
the solution depends only on two mass ratios and one nondimensional stiff­
ness parameter. Results are presented for boom tip deflections, deployment
time and root moments at lock-up. A threshold value of the nondimensional
stiffness parameter is identified beyond which boom deflections become
large. Also, a thorough examination of the effect of nonlinear terms in the
equations governing the deployment pnase is performed. Nonlinear terms in
the deployment equations due to kinematics and structural deformation are
required to predict more accurately boom deflections, but retention of an
inconsistent set of nonlinear terms leads to erroneous results. In par­
ticular, retaining nonlinear kinematic terms while neglecting nonlinear
structural terms can produce inaccurate results even below the threshold
stiffness value.

INTRODUCTION

Many space structure designs require the on-orbit deployment of the
entire structure or the assembly of various deployable components. The U.S.
Space Station for example may be predominantly composed of interconnected
deployable subassemblies. Other examples include antenna feed masts, solar
arrays, radiators, robotic manipulator arms, and space platforms.
Constraints on packaged volume and weight lead to very complex packaging and
deployment schemes which require reliability in all phases of the
deployment. Since ground testing of many of these concepts may not be prac­
tical, dynamic analyses will be relied upon much mor~ than in past projects
for verification of deployment concepts.

Two metho~s proposed for deploying large space structures are exten­
sion (or telescoping) and unfolding. Some literature exists on the analysis
of extensional deployment (e.g., references 1 - 3). However, as noted in a
recent review of dynamic analyses for deploying space structures (reference
4) much less attention has been given to unfolding. This is a shortcoming
in deployment analyses because, as proposed space structures grow larger, it
is likely that deployment will take place via unfolding or a combination of
extension and unfolding. Thus, it is imperative that efficient, verified
deployment analyses be developed.



Until recently, much of the research conducted in unfolding deployment
has been limited to cases in which the individual elements were assumea to
be rigid during deployment (references 5-8). Reference 9, however,
presented results of a convected finite element analysis treating the two­
dimensional unfolaing of slender, flexible beams. This analysis allowed for
many interconnected beams and accounted for large rotations and nonlinear
deformations. Considerable insight into the behavior of these types of
structures was gained; however, the very general nature of the analysis
method used makes extensive parameter studies on a computer impractical.
Therefore, it is desirable to perform fundamental deployment studies to
verify general analysis computer programs, to determine the effect of cou­
pling between nonlinear kinematics and flexiblity, and to gain insight into
the unfolding deployment process.

The purpose of this paper is to present results of a fundamental study
on the dynamics of deployment, examining the effects of various nonlinear
terms arising from different analysis assumptions. The problem used to il­
lustrate these effects is the planar symmetric deployment and subsequent
lock-Up of two flexible boom-type appendages which are elastically connected
to a central rigid body through a rotational spring. The equations of mo­
tion are formulated for the deployment and post-lack-up phases and general
nondimensional parameter's are identified. The deployment phase is analyzed
with nonlinear equations, while the post-lack-up phase is analyzea with
linear equations. Limiting cases are examined in closed form and the
general equations are solved numerically.

Solution accuracy as it pertains to the retention of nonlinear terms
is also addressed. Typical results are presented for boom tip deflections,
deployment time and peak root bending moments and comparisons are made with
results obtained from a finite element deployment code.

SYMBOLS
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E
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J

F

damper coefficient

vector of problem degrees-of-freedom; d = (8, v/L, w/L)

reduced vector of problem degrees-of- freedom when mR goes to
infinity; a = (8, w/L)

m

reduced vector of problem degrees-of-freedom when boom is assumed
to be rigid; d (8, v/L)

I"

damping matrix

Young's modulus

jth approximation to the vector of nonlinear terms given by
eq. (4a)

vector of external force
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ith component of the vector of nonlinear kinematic and structural
Corces fr'om eq. (3); i=l, ~, 3, 4

dimensional inertial coefficients which are functions of mR and
m

T
as provided in the Appendix; 1=1, ... ,6

boom cross-sectional area moment of inertia

nondimensional inertial terms which are I I functions of mvw' Sw' R
and mT as provided in the APpendi~

-
kL

nondimensional stiffness parameter, k = EI

dimensional rotational spring constant

nondimensional linear stiffness matrix

boom length

mass of boom

one half the root mass

tip mass

mass matrix

bending moment at boom root

average axial load along the boom due to centrifugal acceleration

nondimensional coordinate along the boom

applied moment at boom root due to rotational spring and viscous
. damper

time

axial displacement of boom tip as shown in figure 2

axial displacement along the boom as shown in figure 2

vertical motion of the boom root as shown in figure 2

transverse deflection of the boom tip as shown in figure 2

transverse deflection along the boom as shown in figure 2
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orthogonal axis system shown in figure 2

rigid boom pendulum frequency,

2 k

8

1

_ 2

Lm
T

+ (1/3) m
B

JL

nondimensional frequencies given by eqs. (12) and (13)

uncoupled vi bration fr'equencies gi ven
in eq. (6)

rotational degree-of-freedom as shown in figure 2

nondimensional time = twp

nondimensional deployment time at which 8=n/2

value of 1 0 for a rigid boom

displacements parallel to the x and y axes respectively

critical damping ratio in pendulum

mode, l;,

c w
p

ANALYSIS

The planar unfolding deployment of two boom-type appendages which have
attached payloads and are connected to a central rigid body through a rota­
tional spring is depicted in fig. 1. Assuming symmetric deployment, the
mathematical model of fig. lb is applicable. The deployment mechanism con­
sists of a linear prestressed rotational spring, which drives the deployment
and is at its neutral positon at lock-Up, and a linear rotational viscous
damper which can be used to control the motion during deployment. Thus, the
applied moment at the root during deployment is

- .
T = k(n/2-e) - c8

-
where k is the rotational spring constant and c is the rotational viscous
damping constant. When the boom root has deployed through a 90 degree angle
the root joint is assumed to lock-up and become perfectly rigid (herein
referred to as lock-Up), and the boom vibrates in the post-lock-up phase as
depicted in fig. lb.

The analysis presented herein is divided into two parts, a deployment
phase and a post-lock-up phase. The solution of the deployment phase
prOVides the intial conditions for the post-lock-up phase.

4



Deployment Phase

The motion and deformation of the boom, (see fils. 2), may be
described bye, the rotation of the boom root; v/L, the nondimensional
translation of the boom root along the y axis; U/L, the axial displacement
of the boom along its length; and w/L, the transverse deflection of the boom
along its length. Also shown in fig. 2 are u, the axial displacement of the
boom tip and w, the transverse deflection of the boom tip.

The equations of motion describing the deployment phase (i.e., from
rest, 8=0, to lock-up, e=n/2) are highly nonlinear due to the presence of
kinematic centrifugal and Coriolis forces , the large angle rotation terms
inherent in the mass matrix and the moderate deformations of the boom. An
approximate solution to these equations may be found by assuming that the
transverse boom deflection, W, and the axial boom deflection, U, have cubic
and linear variations respectively along the boom; that is,

2

W(s)=ws (3-s)/2 U(s)=us (1)

where s is a nondimensional coordinate along the boom, going from zero at
the root to one at the tip, w is the value of W(n and u is the value of
U( 1) •

In addition, axial deflections of the boom may be eliminated by impos­
ing the simplifying assumption that the boom is inextensional. To first
order nonlinear terms, this implies that the average strain over the boom
length is zero and yields,

u/L = -(3/5)(w/L)
2

(2 )

/II

As a consequence of eqs. (1) and (2), the vector d containing the
reduced system degrees-of-freedom has three entries, namely,

d =) ~/L1
l_ w/L

Then the equations of motion governing the deployment phase may be ex­
pressed in the form,

4
Md + Dd + Kd + I g. = F

i= 1 1

where the initial conditions on d and d are zero, and Where M, 0 and K are
the mass, dissipation and stiffness matrices,respectively, the sum of the
g. 's is the vector of nonlinear kinematic and structural forces and F is the
v~ctor of external forces. The derivation of M, 0, K, g. and F is provided
in the Appendix. 1



The matrices M, D, and K are given by,

-I sine -I
ev ew

11 '" -I sine 1 I sineev vv vw

-1 I sine Iew vw ww

[2, 0

~]D = 0 0
0 0

K·n 0

3~]0
0

wher e 1 ,1 ,I ,
. . wWth :fv d'iWglven In e fippen lX,

mass to the boom mass,
as,

-
kL

k = El

I and 1 ar e nondimensional inertial properties,
i~~olving 3Xl y the ratios of the tip mass and root
and k is a nondimensional stiffness parameter defined

Also, s is the percent of critical damping in the pendulum mode of the boom
due to the presence of the linear viscous damper at the boom root

C w
p

S = 2r;-
and w is the pendulum frequency of a rigid boom with a rotational spring
and pfn at its root, namely,

2 k
2

Em
T

+ (ll3)m
S

]L

The complete nonlinear force vector in eq. (3) contains many nonlinear
kinematic and structural terms. In order to assess the importance of these
terms the following approximations to this vectbr are introduced,

j
f. = L. g. ; j =1, 2, 3, 4 ( 4a)

J i= 1 1

Where each of the f. represent varying levels of approximations to the com­
plete nonlinear fo~ce vector, and each of the g. are given in the appendix.
These approximat ion levels correspond to var ious 1 assumptions that ha ve been
used in the past by different investigators.

When considering only the nonlinear terms arising from purely
kinematic considerations of a flexible boom, the first approximate force
vector f 1 may be written as,
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.2

- I e case Jev
.2

-I (w/L)eww

I (w/L)(v/L)cose
vw

• 2 • :2 •II {e(w/L)cos8 -8 (w/L)sin6 + 28(w/L)cos8}vw
(4b)

(4c)

(4d)

,

where in this equation all terms involving products of the boom transverse
deflection have been neglected. This order of approximation is equi valent
to that used in ref. 10.

When the deflection terms which were neglected in eq. (4b) are
included, the force vector f 2 takes the form

2 o.

f, + {[Iww{(wiLl e:+2(w/Ll (wiLl 6J J }

This order of approximation is the one most often used when nonlinear ef­
fects are included;i.e., a linear structural representation is used, often
in the form of a summation of modes, and the resulting nonlinear kinematic
terms are retained.

The next level of approximation to the force vector is obtained by in­
cluding differential stiffness along with the nonlinear kinematic terms of
eq. (4c), thus, f

3
is written as,

f

2
+ {(6/5l(:/LlG'}

where the differential stiffness effect is the term in the third row of the
vector added to f

2
.

As a final level of approximation, when along with the nonlinear
kinematic and differential stiffness terms, a complete set of first-order
nonlinear structural terms are retained, the nonlinear force vector, f 4; is
defined. In accordance with eq. (4a), f 4 is assembled using eqs. (A7)
tnrough (Al0) in the Appendix.

The effects of the various levels of approximations to the nonlinear
force vector on the solution accuracy are examined in a later section.

Also from eq. (3), the vector F in dimensionless form may be expressed
as,

f
TI 121

Eo' = 0
o
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Furthermore a dot (.) as used in eq. (3) indicates differentiation with
respect to a dimensionless time parameter, 1, which is related to time t
as,

An examination of eq. (3) reveals that, for given values of root and
tip mass to boom mass ratios, only one parameter, namely k, is required to
determine the nondimensional vector d.

Equation (3) may be solved by direct numerical integration using any
of a large selection of explicit integrators. In addition, certain limiting
cases of eq. (3) may be solved in closed form when the nonlinear force vec­
tor is neglected, such as when eq. (3) is an uncoupled set, when the boom is
rigid and when the root mass is very large. Each of these limiting cases is
discussed in the following sections.

Uncoupled Equations - Equation (3) represents a coupled set of
equations~--C-ouplinii-s-Providedthrough the mass matrix and through the
nonlinear force vector. If it is assumed that eq. (3) can be approximated
as an uncoupled set of three equations, the nondimensional natural vibration
frequencies with nonlinear terms neglected are,

•

w
w

I 3/k (6 )

where w is associated with the pendulum mode of a rigid boom, w is as­
sociate~ wi th the fundamental cantilever boom frequency since the d~flection
W(s) has been chosen such that its gradient is zero at the root, and wv is
associated with the rigid body freedom of the system in the v direction.
The dimensional frequencies are found by mUltiplying the nondimensional fre­
quencies by wp '

Rigid Boom - Equation (3) may be readily reduced to the limiting case
of a rigid boom. This is accomplished by setting w to zero and striking the
third row and column of M, D, and K, and the third row of F. Note that the
nonlinear force vector vanishes when the boom is treated as rigid. The
resulting equation is

[
-1 1 Sina-Iav:inaJ

Bv vv

Where,
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As revealed by eq. (7), all non9imensional results are independent of the
rotational spring uonstant, k. For example, as the root mass goes to
infinity, (or equivalently v goes to zero), a limits to ar , where

and the nondimensional deployment time, to (the time to achieve lock-up,
a=n/2) limits to tOr' where

n
(8)

Infinite Root Mass - Equation (3) may also be reduced to the limiting
case or-an infinite root mass or equivalently to the case of a constrained
boom root in the v direction. This is accomplished by striking the second
row and column of M, 0, and K and the second row of F. The resulting equa­
tion is,

where,

d
m

+[1 0] d = rn/ 21
o 3/k m L 0

(9)

and where the damper and nonlinear terms of eq. (3) have been neglected.

The solution of eq. (9) is

a

w/L

where,

[b -"""-z- cos Wit + (1-b)

2

W ­2

---.rz- cos W2t J
W2

( 10)

( 11)

2
[I +(2) - AI - 2

2 12 2

Wi 2 ) + - I J
2(1 -I ) ww k ww k k aw

ww aw

2
[I + (1) AI - 3 2 12 2

W2 2 + ) + ~ lewJ
2(1 -I ) ww k ww k

ww aw

9
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Shown in fig. 3 are the variations with k of Wl and Wz. Equation (9)
indicates that these frequencies reflect the coupling of the 8 and w de­
grees-of-fre~dom through the mass matrix. The effects of this coupling on
the solution can be seen from fig. 4, which depicts the root rotation 8 ver­
sus the nonaimensional time, 1 for flexible booms with two values of the
stiffness parameter k. Also shown in fig. 4 is the 8 history for a rigid
boom (recall that this is independent of k). Both curves of fig. 4 for
k=O.10 and k=O.90 exhibit the oscillatory motion of 8, however, the number
of oscillations for the two cases are very different since the Wz frequency
fr'om fig. 3 associated with the k=O.90 case is much lower than that of the
k=O.10 case. Furthermore, as k increases, the degree of coupling between M 1
and Wz increases such that the solution for 8, and hence the deployment
time, changes.

Provided the amplitude of the oscillations associated with Wz are
small, the nondimensional deployment time is essentially TI/2. However, as
boom deformation increases, the amplitude of these oscillations increases
and as can be envisioned from fig. 3, the deployment time can change
abruptly as the boom locks up due to these oscillations.

Referring again to fig. 3, the coupled nondimensional frequency Wl

limits to W as the stiffness parameter k goes to zero, (i.e., the rota­
tional spr~ng stiffness vanishes or the boom becomes rigid), and limits to

the cantilever boom frequency, I 31k as k approacrleS infinity, (i.e., the
boom root becomes oantilevered or the boom stiffness vanishes). Since WI is
very close to we for k less than about one, it is natural to refer to Wl as
the coupled penaulwn frequency.

*For small values of k, the coup~ed frequency Wz limi ts to W r37k
and for large values of k limits to W where,

* z 1/ Z
W = [I / (I -I e )]ww ww w

If the tip mass to boom mass ratio were allowed to approach infinity, Wz

would approach the nondimensional frequency of a beam with a rotational
spring at the root. and a simple support at the tip, and if in addition, k
were allowed to go to zero, Wz would approach the nondimensional frequency
of a simply supported beam. It is thus reasonable to associate Wz with boom
flexure.
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Post-Lock-Up Phase

The solution of eq.(3) at 1= 1 D provides the initial conditions for
the post-lock-up analysis. Whereas the deployment phase is analyzed with
nonlinear equations, the post-deployment phase is analyzed with linear equa­
tions with nonlinear initial conditions on Wand W. It is solved herein
using modal superposition where the modes of a beam with a guided root and
masses at each end are used. In terms of the nondimensional parameters used
herein, the beam equation for the post-lock-up phase is,

W,ssss+ [k/(1/3 + mr)](w) =0

with boundary conditions,

W,~~~ (1/2)mRkW(0)/[(1/3)+~rJ

WJO) 0

W,ss(1) 0

W,U~ = - (1/2)m
T

kW(1)/[(1/3)+m
T

J

( 14)

,

where, m and m are the ratios of the tip mass and root mass, respectively,
T R

to the boom mass.

DISCUSSION OF RESULTS

Accuracy

The accuracy of the equations of motion (3) is considered in this
section. Accuracy is especially important in the deployment phase which is
analyzed with nonlinear equations. The nonlinear terms arise from boom
flexure and enter the equations of motion through both kinematic and struc­
tur'al considerations. It is often difficult for the analyst to decide which
nonlinear terms should be retained in the analysis so as to generate a con­
sistent formulation which produces accurate results. When, as is often
desirable, the nonlinear equations of motion are linearized about a given
state in order to assess stability, an inconsistent set of nonlinear terms
retained in the equations can lead to erroneous results.

Accuracy of deployment time, '[ , (which is a measure of the accuracy
in computing e), and transverse deflec~ion of the boom tip at lock-up, w/L,
are examined for the case of the root mass to boom mass parameter, mR, ap­
proaching infinity and the tip mass to boom mass parameter, mT,equal to
1.0. It is anticipated that the general conclusions for this case are also
valid for other values of mR and mT.

Discussion of accuracy is divided into two parts. First, in figs. 5a
and 6a the solutions given by the linearized equations of motion (nonlinear
force vector neglected) and the equations of motion with the nonlinear force
vector (given by 1'4) employed are compared to the exact solution taken as
the converged finite element results of ref. 9. Second, various levels of
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approximations to the nonlinear solution as given by 1'1 through 1'4 are com­
pared in figs. 5b and 6b.

Comparison of Linear and Present Nonlinear Solutions to Exact
Solution - The exact. linear and present nonlinear solutions are referred to
and discussed as follows:

(1) Exact nonlinear> kinematics/exact nonlinear structure
(2) Linear kinematics/linear structure
(3) Exact nonlinear kinematics/approximate nonlinear structure. 1'4

Exact nonlinear kinematics/exact nonlinear structure - The converged results
from the general finite element nonlinear deployment code of ref. 9 are
taken to be exact. This program allows for unlimited deformations and rota­
tions with the assumptions herein relaxed.

Figure 5a displays the variation in the nondimensional deployment
time. 1

0
, wi th the nondimensional stiffness parameter. k. Increasing v,alues

of k can be interpreted as either increasing the value of the rotational
spring constant or as decreasing the bending stiffness of the boom.
Similarly. fig. 6a displays the variation in the boom tip deflection at
lock-up. wiLt with k.

For small values of k the deployment time is approximately that of the
rigid boom case. 1 =n/2; however, as k increases a threshold value is
reached. near one. a~rWhich the deployment time decreases rapidly. As k ap­
proaches infinity the deployment time goes to zero. In addition. as k
increases beyond the threshold value the boom tip deflection of fig. 6a also
increases and limits to L as k approaches infinity;i.e .• no axial extension
of the boom occurs. Sketches of the boom's deformed shape at look-up are
provided in fig. '6a to allow the reader to visualize what occurs to the
physical boom as k is increased.

Linear kinematics/linear structure - The solution for 8 and w when only
linear terms are retained is given by eqs. (10) and (11). The deployment
time 1 is found from the transcendental equation which results from setting
8 to n92 in eq. (10). Also shown in figs. 5a and 6a is the variation of 1 D
and w/L with the nondimensional stiffness for this solution.

The value of 1
D

depends on Wi. associated with pendulum motion of the
boom. and W2. associated with flexural vibration of the boom. Recall from
fig. 3. that at small values of k, W2 is much higher than Wi and thus does
not couple with Wi to affect deployment time. Consequently. the linear
solution from fig. 5a is very close to the rigid boom pendulum deployment
time (l D =n/2) when k is small. as was the exact solution. Furthermore. as
shown in fig. 6a. the boom tip deflection magnitude at lock-up is small
provided k is small. As the value of k increases. however. the two modes
associated with Wl and W2 couple together. This coupling appears to produoe
the threshold dropoff noted with the exact solution. For k above the
threshold value of about one, the deployment time decreases rapidly to a
val ue of about 0.2. (the linear equations do not permi t the curve to go to
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zero as k goes to infinity as in the case of the ~xact solution), and the
tip deflection magnitude as seen in figure 6a gets large; limiting to about
1.6L as k goes to infinity compared to L for the exact solution. Thus the
linear equations are in error for predicting tip deflection for very large
values of k•

Exact nonlinear kinematics/approximate nonlinear structure, f 4 - When, along
with linear terms, the nonlinear inertial, differential stiffness and first­
order nonlinear structural terms are retained, the nonlinear vector as given
by f 4 is employed. These nonlinear terms are derived in the Appendix by al­
lowing axial motion of the boom in such a way as to constrain the average
aXial strain in the boom to vanish to first-order nonlinear terms.

The predicted deployment time and tip deflection magnitude for this
solution are also given in figs. 5a and 6a respectively. The results indi­
cate that for very small k the inclusion of the nonlinear terms has little
effect and results are close to those of the rigid boom and linear equations
solution. For deployment time, this solution also indicates a threshold k
value of 1.0 and follows the linear and exact solutions closely. For .tip
deflect i on at lock-up, the nonl inear sol ution approaches a deflection of
about 1.25L as k becomes large. This implies that there is still some inac­
curacy in computing the boom tip deflection at very large k even though the
boom axial strain has been constrained to first-order nonlinear terms,
however, the error is considerably less than that given by the linear
solution.

In light of these results it appears that a threshold value of k ex­
ists beyond which considerable deformation of the boom results and that the
1 inear solution predicts the existence of this threshold. For the case of
mR very large and m equal to one, the threshold value is about one. It is
expected that results for other mass ratios will exhibit the same character
wi th different threshold values.

Various Approximations to Nonlinear Force Vector, f i - Consideration
is now given to how the various levels of approximations to the nonlinear
force vector, eqs. (4a)-(4d), affect the solution accuracy. For comparison,
the results from figs. 5a and 6a for the complete nonl inear force vector
(exact nonlinear kinematics/approximate nonlinear structure, f 4) are
repeated on figs. 5b and 6b. Each of the approximations are referred to and
discussed as follows:

(1) Approximate nonlinear kinematics/linear structure, f 1
(2) Exact nonlinear kinematics/linear structure, f 2 .
(3) Exact nonlinear kinematics/linear structure with differentlal

stiffness, f
3

Approximate nonlinear kinematics/linear structure, f 1 - When only the non­
linear inertial terms arising from purely kinematic considerations are
retained, the nonlinear force vector is giVen. by fl. Some reference. s (e.g.
ref. 10) retain only terms of this type by neglect ng products of the defOr­
mation (w/L), which is assumed small. Curves for deployment time and tip

13



deflection magnitude at lock-up with the f
1

veotor employed are given in
figs. 5b and 6b respeotively.

The results indioate that this level of approximation predicts a con­
siderably lower threshold value of k=O.02 than the linear and nonlinear
solutions from fig. 5a. Furthermore as the threshold value of k=0.02 is ex­
oeeded, the tip deflection prediotion grows without bounds.

Exaot nonl inear ki nematics/linear structure, f 2 - When the kinematio terms
which were neglected in obtaining f 1 are retainea, the force vector is given
by f 2 . Note that the deployment t~me prediction from fig. 5b for this oase
peaks at a large value after the threshold value of k=1.0 is exoeeded and
then rather than dropping to zero levels off to a value higher than the
rigid deployment time. In addition, the tip deflection prediction from fig.
6b grows without bounds as the threshold value of k=1.0 is exoeeded. Thus,
this level of approximation is in poor agreement with the exact results.

The unbounded growth in the tip deflection for the f 1 and f 2 oases may
be traced to the presenoe of the term in the third row of both veotors. If
the boom were rotating at a oonstant velooity, this term would enter the
stiffness matrix of the system as a negative linear term on the diagonal;
thus subtracting from the boom bending stiffness. Clearly, for a suffi­
ciently large angular rotation rate, boom deformation would grow without
bound.

This physically impossible result occurs due to the neglect of boom
stiffening from oentrifugal forces which become signifioant when the angular
rate gets large. Examination of this stiffening term shows it to be of the
same order of magni tude as the inertial term whioh is usually retained by
analysts and consequently the stiffening term should also be retained.

Exact nonlinear kinematics/linear structure with differential stiffness, f~

~hen, in addition to the exact nonlinear kinematic terms of f 2 , differential
stiffness is inoluded, the nonlinear force veotor is given by f

3
. From eq.

(4d) the ooefficient of the term in the third row may be shown from the
definitions in the Appendix to always be positive. Thus inolusion of dif­
ferential stiffness prevents the deformations from growing unboundedly as
shown in fig. 6b. The tip defleotion magnitude is seen to limit to about
1.2L as k becomes very large. Although there is still some inaccuracy in
computing the boom deflection at the upper limit of k, the error has been
significantly reduoed by the addition of the differential stiffness term.

Also, for k above the threshold value of 1.0 the deployment time from
fig. 5b increases somewhat above the rigid boom solution rather than drop­
ping off rapidly as did the linear solution. Therefore, the retention of
the differential stiffness term in the w equation improves the prediction of
boom tip defleotion, yet it still does not yield an accurate prediction of
deployment time, whioh is assooiated with the 8 equation.

l"rom the foregoing, it thus appears that retaining only some of the
nonlinear terms arising in the equations of motion can lead to inconsistent
results. This is especially true for the two cases (f1 and f2) when only

14



the nonlinear inertial terms arising strictly from kinematic considerations
are retained.

Deployment Time

As displayed in fig. 5a, the nondimensional deployment time of a
flexible boom, whose value of k is less than the threshold value, is closely
approximated by that of a rigid boom. This is generally true independent of
whether or not nonlinear terms are retained. Although threshold values for
various mass ratios are not provided herein, it is expected that in many ap­
plications typical values of k will be quite small and less than the
appropriate threshold value. For example, if a rotational spring constant
were sized to rotate the upper and lower arm booms of the Space Shuttle RMS
(ref. 11) through a 90 degree rotation in 15 seconds while carrying a
32,000 pound payload, the value of k would be 0.10 or one order of magnitude
below the threshold value found in figs. 5 and 6. Thus rigid boom deploy­
ment times should provide reasonably accurate approximations for typical
flexi ble booms.

Figure 7 displays the deployment times for rigid booms with various
values of the two mass ratios. From eq. (7), the dimensionless deployment
time 'D depends only on the terms I and I which in turn depend only on
the two mass ratios. The actual de~YoymentV~imemay be computed via eq. (5)
by dividing 'D by the pendulum frequency wp '

Effect Of Root Damping

The effects of a rotational viscous dampe~ in the deployment mechanism
for controlling rotation rate during deployment is examined in this section.
Displayed in fig. 8 is the root rotation history during the deployment phase
for the case of k=0.16 and for the same mass ratios used in fig. 5. The
curve denoted as the rigid assumption is the solution to eq. (8) and repre­
sents the rotation of a rigid boom wi th 2% damping applied. The solid curve
provides the undamped rotation of the boom root accounting for flexibility.
This solution is seen to oscillate throughout the deployment due to the boom
flexural vibrations associated with the W2 frequency from eq. (13). The
dashed curve represents the root rotation for a flexible boom with 2% of
critical damping added at the boom root. Note that the root damper at­
tenuates the boom flexural vibrations. This effect is due to the strong
coupling between rigid body rotation and boom flexure.

Post Lock-Up Root Moments

Of interest in the post-Iock-up phase is the peak root bending moment
following lock-up. Shown in the solid curve of fig. 9 is the variation of
the peak root moment MR normalized by EI/L with the nondimensional stiffness
parameter k for the same mass ratios used in fig. 5. For these results the
range of k was limi ted to be below the threshold value where the 1 inear and
nonlinear solutions are in good agreement and the boom deflections are
small.
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Also shown by the dashed curve in fig. 9, is the peak lock-up moments
under the a~sumption that the boom remains perfectly rigid during the
deployment phase, and then is allowed to become flexible in the post lock-up
phase. The trend of the dashed curve shows that the root bending moment is
proportional to the square root of the rotational spring constant. The dif­
ference in the two curves of fig. 9 indicates that neglect of boom
flexibility during deployment leads to nonconservative predictions of root
lock-up moments for essentially all values of the stiffness parameter.

CONCLUDING REMARKS

A fundamental investigation of the planar deployment and lock-up of
two flexible boom-type appendages which have attached tip masses and are
connected to a central rigid body through a rotational spring has been
presented. The equations of motion were formulated for the nonlinear
deployment phase and the linear post-lock-up phase. Nondimensional
parameters were identified and it was shown that the solution depends only
on two mass ratios and one nondimensional stiffness parameter'.

Accuracy of the deployment equations was examined through com par i son
with converged results from a finite element deployment code and a threshold
value of the nondimensional stiffness parameter was identified beyond which
the boom undergoes large flexural deformations. The linear solution
produces accurate deployment times, but beyond the threshold does not
produce accurate boom deflections.

For more accurate boom deflection predictions above the threshold
value, nonlinear effects need to be included. However, it was shown that
great care must be exhibited in retaining nonlinear terms, for an inconsis­
tent choi ce led to erroneous results even below the threshold value. In
partiCUlar, the retention of only nonlinear inertial terms derived from
purely kinematic considerations can lead to erroneous results.
Unfortunately it is only these nonlinear terms which are retained in many
analyses. Retention of a complete set of nonlinear terms as derived herein
were generally in good agreement with converged results from a general
finite element deployment program.

Typical booms have small stiffness parameter values and it was found
that for booms with stiffness parameters less than the appropriate threshold
value, deployment times are accurately predicted under the assumption of a
rigid boom deployment. Deployment times for rigid booms with various mass
ratios were presented.

It was found that a damper used to control rotational rate during
deployment also suppresses boom flexural vibrations during deployment. This
effect is due to the strong coupling between rigid body rotation and
flexural deformations.

Results were also presented for post-Iock-up peak root bending
moments. While the assumption of a rigid boom during the deployment phase
led to accurate prediction of deployment times for small stiffness
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parameters, the same assumption made in conjunction with allowing
flexibility following lock-up led to underpredicting the peak root moments .
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APPENDIX

The equations of motion may be derived using the principle of virtual work,

of +of +of +6f =0a SID
(A1)

where, fa' f , f and f D are the energies
associated wTth t~e boom, the rotational spring, the inertial forces and the
damping forces respectively, and 0 is the variational operator.

or =a

From
tual

ref. 12, the contribution of the internal boom forces to the total vir­
work may be expressed as,

1

J P EI 3

o {[-I w,ss + (r-) w,ssss]ow

+PoU }ds+{[ -LP W + (EIL)3 W JoW} -1 (A2), s , s , sss s-

where, P represents the average axial load in the boom.

SUbstituting the assumed deformation shapes of eq. (1) into eq. (A2) yields,

3EI 6p
of =[---3 w + -- wJow + Poua L 5L

The contribution of the rotational spring to the total virtual work is,

'IT -or =(- -e)koeS 2

and that of the damper is,

6r
D

=cWp6oe

The contribution of the inertial forces to the total virtual work is,
1

ofI = maW; oj [~on + ~o~Jds + mT[non + ~o~JS=1

where,

~ = [sL+U(s)Jsine - W(s)cose

n = v + [sL+U(s)Jcose + W(s)sine

(A4)

(A5)

After differentiating eqs. (A4) and (A5) with respect to dimensionless time
t, utilizing the assumed shape functions of eq. (1) and SUbstituting the
results into eq. (A3), the virtual work of the inertial forces can be
rewritten as,

_ 2 2 2

ofI/(mawp )= {[H1L +H2w + H1uL(2+u/L)Je

+ (H
5

WCOSe-H 4Lsine)v + 2H1L(1+u/L)ue
.. ..

- H
3
WL(1+u/L) + H

3
WU + H4vu}oe
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+ {-H 1L6
2

+ H3W~ + H1U + 2H3~e -H 1e
2

u

+ H4vcos fj } 6u

+ {-H L(1+u/L)e +H w + H
5
vsine

3 . 2
.2 ••

- H2we - 2H
3

ue}6w

+ {(H
5

WCOSe-H 4sine)e + HSwsine + H6V

.2

+ (H4cose-H
5
wsine)e + 2H56~cose

•• ·2

+H 4[u(esine+6 cose) + 28usine + ucose}ov

where,

+ m
T

+ m
T

H2=33/140 + mT; H
3
=11/40 + mT;

H5=3 / 8 + mT; H6=1 + mT+ mR

Substituting the virtual work contributions into eq. (A1) and setting the
resulting coefficients of the variational terms, oe, ou, OW and ov, to zero,
yields the equations of motion. The equations of motion involve the de­
grees-of-freedom e, w, v, uand the boom tensile load P. The equation of
motion associated with axial motion, ou, provides the value of Pas,

_ 2.2 •• .2

p=m
B
wp (H

1
Le -H

3
we -2H

3
we -H

1
u +H

1
e u

where the right hand side of eq. (A6)
the centrifugal force in the boom.

(A6)

is recognized as an approximation to

..

•

A simplifying assumption is now made that the boom is inextensional.
To first order nonlinear terms this implies the relationship of eq. (2).

As a consequence of eqs. (A6) and (2), the equations of motion as
gi ven by eq. (3) are produced where the terms of the system mass matrix are
gi ven by, .

I ww=H
2

/H
1

I
vv

·H
6

/H
1

I
vw

·H
5

/H
1

lew=H/H 1 lev=H 41H 1

Grouping the nonlinear terms in accordance with eq. (4a), the gi vec­
tors can be written as

where the nonzero components are
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g(e)= I (w/L)(v/L)cose
1 vw

g1(V) I [e(w/L)cose -S2(w/L)sine + 2S(w/L)coseJvw
.2

-Ieve cose

g(w)= -I (w/L)~2
1 WW

• 2

-(3/5)Iew (w/L)[(w/L)(w/L)+2(w/L) J
•• 2

-(12/5)(w/L)(w/L)e[1-(3/5)(w/L) ]
2 .,

+(3/5)I ev (w/L) (v/L)sine
(V) 2 •• .2

g4 = l ev [(3/5)(w/L) (esine + e cose)

+(12/5)S(w/L)(w/L)sine
• 2

-(6/5)L{(w/L)(w/L)+(w/L) cose}]

g~w)= (18/25)(w/L)2[2(~/L)-~2(w/L)+2(W/L)2/(w/L)J

-(6/5)Iev(v/L)(w/L)COS8
•• 2

-(315)Iewe(w/L)

(A8)

(A9)

(A10)

where the superscripts (e) I (v) and (w) refer to the degrees-of-freedom
which the components of the gi vectors are associated with.
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