
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



j

NASA GRANTEE SEMI-ANNUAL PROGRESS REPORT

DYNAMICS AND CONTROL OF FLEXIBLE SPACECRAFT

DURING AND AFTER SLEWING MANEUVERS

Period Covered:	 November 1, 1985 to April 30, 1986

Principal Investigator: Dr. Yogendra P. Kakad
Associate Professor,
Electrical Engineering Department

Grantee Institution:	 University of North Carolina at
Charlotte,
UNCC Station, Charlotte,
N. C 28223

Research Grant:	 No. NAG-1-535

Technical Officer:	 Dr. Ernest Armstrong
Spacecraft Control Branch
NASA Langley Research Center
Hampton, VA 23665

(NASA-CR-177027) DYNAMICS ANE CONTROL OF	 N86-28983
FLEXIBLE SPACECRAFT DURING AN' AFTER SLEWING
MANEUVERS Seaia.nnual Progress Report, 1
Nov. 1985 - 3C Apr. 1966 (North Carolina	 Unclas
Univ., Charlotte.) 25 p	 CSCL 22B G3118 43290

y



Many future NASA missions would utilize significantly

large and flexible spacecrafts and would require very

stringent pointing and vibration suppression requirements.

The active controller that can achieve these objectives will

have to be designed with very accurate knowledge of the

dynamic behavior of the spacecraft to ensure performance

robustness to a variety of disturbances and uncertainties.

In the past few years, several design approaches were

proposed for vibration c6-itrol during and after slewing

maneuvers. NASA Langley Research Center initiated the

Spacecraft Control Laboratory Experiment (SCOLE) program [1]

to promote direct comparision and realistic test of various

control design techniques against a common laboratory

article. The article was intended to resemble a large space

antenna attached to the space shuttle orbiter by a long

flexible mast.

The primary control objective of SCOLE is to direct the

RF line-of-sight (LOS) of the antenna-like configuration

towards a fixed target under the conditions of minimum time

and limited control authority.

This problem of directing the LOS of antenna-like

configuration is studied as being composed of two control

phases during this research period. In the first phase, the

LOS of antenna-like structure is to be changed according to

a prespecified target (slewing) together with minimization

of vibration amplitudes to ensure stability. The second

phase is to achieve the total vibration suppression at the

end of slew maneuver with an augmented control law.

BRIEF SUMMARY OF MAJOR ACCOMPLISHMENTS

(a) Nonlinear Model Development:

The focus of the earlier part of the research was in

upg r ading the dynamics of the SCOLE model to reflect all the
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kinematic nonlinearities in the previous dynamical model.

The dynamical equations of slewing maneuvers of this large

flexible spacecraft were developed by formulating Lagrange'

equations using an 4nertial co-ordinate system and a body-

fixed coordinate system at the point of attachment of the

flexible beam to the shuttle. The generic model used for

this analysis consisted of distributed parameter beam with

two end masses. The three dimensional linear vibration

analysis of this free-fvza beam model with end masses [2]

was incorporated together with rigid-body slewing maneuver

dynamics [3] to yield the final set of highly nonlinear and

coupled equations.

(b) Slew Maneuvers

The slew maneuvers were analyzed using this enhanced

dynamical model in terms of both pure rigid-body slew

maneuvers and rigid-body slew maneuvers together with the

suppression of the first two flexible modes. The dynamics of

the motion during this phase was derived in terms of four

Euler parameters, and using the method of nonlinear

decoupling, this nonlinear slew maneuver control problem was

reduced to calculating a pair of constants for each of the

first three Euler parameters and the flexible modes in

implementing output feedback.

(c) Vibration Suppression at the End of Slew Maneuver

Since the oscillations of the beam at the end of the

slew maneuver were considered to be small, the problem of

vibration suppression was considered to be a linear control

problem. Thus it was formulated as an infinite-time

regulator problem with control spillover and observation

spillover terms incorporated into the performance index

te rm. The resultant optimal state feedback- control law
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achieved total vibration suppression. However, the coupling

among the modes was found to be a significant problem.

A paper describing some of the details is included in

the appendix. This paper is to be presented at the AIAA

Guidence, Navigation and Control Conference in Williamsburg,

Va. August 18-20, 1986 and is to be published in the volume.
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Abstract:
In this paper, the dynamics and control of slewing

maneuvers of a large flexible spacecraft namely, NASA-
Spacecraft Control Laboratory Experiment (SCOLE) test
article are studied. The dynamical equations obtained
for slewing maneuvers are highly nonlinear and coupled.
The maneuver is expressed in terms of four Euler
parameters and is specified as the angular displacement
about an arbitrary axis. The slew maneuver control
problem is developed in terms of rigid-body slewing and
suppression of two elastic modes	 is analyzed using
the method of nonlinear decoupling.

Nomenclature:
a(z) -	 Position vector of mass element on the beam
—	 from the point of attachment
c	 -	 Position vector from the point of attachment

to the mass center
d(z,t) - Displacement vector of mass element in the

body- fixed frame
FO (t) - Force applied at the orbiter mass center

F (t) - Force applied at the reflector mass center

Go(t) - Moment applied about the orbiter mass center

1 1	 -	 Mass moment of inertia matrix of the shuttle

I2	 -	 Mass moment of inertia matrix of the
reflector

L	 - The length of the beam

m	 - Total mass of the flexible beam
ml	 - Mass of the orbiter

m 2 	 - Mass of the reflector

R	 - Position vector of the mass center of the
orbiter in the inertial frame

r	 - Position vector from the orbiter
mass center to the point of attachment

u x(z,t)- The beam deflection in x direction referred
to the body-fixed frame

U ^(z,t)- The beam deflection in y direction referred
to the body-fixed frame

u s (z,t)- The torsional	 deflection about z axis in the
body-fixed frame

V	 - Velocity vector of the mass center of the
orbiter in the body-fixed frame

Vp	 - Velocity vector of the point of	 attachment
in the body-fixed frame

P	 - Mass per unit length
- Vector representing the axis of rotation
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W	 -	 The angular velocity of the orbiter in the

body-fixed frame
-	 Angle of rotation

Introduction:
Many future NA9 m ions would utilize

significantly large and flexible spacecrafts and would
require ve^y stringent pointing and vibration
suppression requirements. The active controller that
can achieve these objectives will have to be designed
with very accurate knowledge of the dynamic behavior of
the spacecraft to ensure performance robustness to a
variety of disturbances and uncertainties..

In the past few years, several design approaches
were proposed for vibration control during and after
slewing maneuvers. NASA Langley Research Center
'initiated the Spacecraft Control Laboratory Experiment
(SCOLE) program [l.] to promote direct comparison and
realistic test of various control design techniques
against a common laboratory article. The article was
intended to resemble a large space antenna attached to
the space shuttle orbiter by a long flexible mast.

The primary control objective of SCALE is to direct
the RF Line-of-Sight (LOS) of the antenna-like
configuration towards a fixed target under the
conditions of minimum time and limited control
authority.

The dynamical equations of slewing maneuvers of
this large flexible spacecraft are developed by
formulating Lagrange's equations using an inertial co-
ordinate system and a body-fixed co-ordinate system at
the point of attachment of the flexible beam to the
shuttle. The generic model used for this analysis
consists of a distributed parameter beam with two end
masses. The three dimensional linear vibration analysis
of this free-free beam model with end masses [2] is
incorporated together with rigid-slewing maneuver
dynamics [3] to yield the final set of highly nonlinear
and coupled equations.

The problem of directing the LOS of antenna-like
configuration is being viewed as two phase control
problem. In the first phase, the LOS of antenna-like
structure is considered to be changed according to a
prespecified	 target	 (slewing)	 together	 with
minimization of vibration amplitudes to ensure
stability. The second phase is to achieve the total
vibration suppression at the end of slew maneuver with
an augmented control law.

The first phase of the control law is studied both
in terms of pure rigid-body slewing and in terms of
rigid-body slewing together with the suppression of the
first two flexible modes. The dynamics of the motion
during this phase are derived in terms of four Euler
parameters, and using the method of nonlinear
decoupling, this nonlinear slew maneuver control
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r
problem is reduced to calculating a pair of constants
for each of the first three Euler parameters and the
elastic modes in implementing output feedback.

The second phase of the control is implemented at
the end of the maneuver to achieve total vibration
suppression, and this is performed by incorporating a

	

state feedback control law derived from an infinite-	
1

time regulator problem formulation.
Analytics:

Kinetic Energy.
The dynamics of slew maneuver are developed using

two sets of co-ordinate systems and Lagrange's method.
The body-fixed frame origin is located at the point of
attachment of the flexible beam or mast (Fig.1). The
second co-ordinate system is an inertial co-ordinate
system.. "The transformation from the inertial frame to
the .body-fixed frame is given by the matri x,C as

cose2GOS63	 -cose2sine3	 sine2

C (sine l sine2cose 3•(-sine l sine 2sine 3 °Sin9,cose2

+sine1cose r )	 +cose11cosel ) 	 (1)

(-coselsine2COSe3 (coselsine2sine3 COS61cos82

+ sine3sine l )	 +cose3sinel)

tt ->
where if i,j,k represent the dextral set of orthogonal
unit vectors fixed in the body-fixed frame, then 8 1 is
the rotation.}of T, e 2is the rotation of j and e 3 is the
rotation of k.

The angular velocity of the orbiter can be
transformed from the inertial frame to the body-fixed
frame for the body-three angles as

w = M Ta	 (2)

The total kinetic energy expression of the system
can be given as [4]

T = To + T l + T 2	(3)

where To is the kinetic energy of the shuttle and is
given as

To 1/2 m 1 V T V + 112 wTI 1 W	 (4)

The kinetic energy of the flexible beam is T l and it
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i

u
li

r

can be shown to be equal to

T I . 1/2mV T V^ 1/2wTJw- MIT w+ 1/2 d'Td'dm

+ V UT d dm + wTIaai dm + 1/2 Cu 
X 
	 ]dI

x
u '
Y	

(5)

u

where t _ c x and J is the mass moment of inertia
matrix for the beam. The foregoing kinetic energy
expression can be further simplified by using the
three-dimensional modal analysis as

T1 = 1/2mVoT V + l/2w TJw - m_, cm + mill q i2	 +V0 a
+wT^ + 1/4p C E P .q2+ E P 6ig 2 	 (6)

i=1 5i .

2

 i =1
where

n

u  =41Oxi(s)gi(t)

n
u y ` i1 yi(s )gi(t)

	
(7)

n

u ,y = i =l *i (s)gi(t)

and

I

)

p li

L

J 
Oxi(s) ds

P 2,i
L

=	 f Oyi (s) ds
0

P31
L

=	 f	
SO xi (s) ds

0

p
l:

= f	 s	 (s) ds
4i 0	 Yi

p si = 0f (s^xi	 )gds

L

phi =	 f (SOy i	 )gds

0

(3)
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i ll p li qi

(t)	 41 P2  Qi	 (9)

0

4 (t) = 41 P4  qi

	

P 41 p 3i qi	 (10)

0

The kinetic energy T 2 , of the tip mass (the reflector)
is

T = 1/2 m,,VT0 V-0 - m 2 V0T a(L) w + m VT d (L)2	 ..- -— —	 2-0 —

- 1/2 m 20" (L)a(L)w + m 2 r,Ta(L)d(L)

+ 1/2 m 2 d'(L)d(L) + lid` n TI 2n 	 (11)

where

ux '(L)

s^ = w +u y '(L)	 (12)

u	 (L)

Equation (11) can be simplified as

T = 1/2 m2 VoTVo - m 2Vo a(L) w + m 2Vp d(L)

1/2m2wT (L)a(L) w + m, Ta^L)SL)

+ 1/2 m 2 [ i KI •Et xi ( L ) oxi(L)q iqi+ .  	
y 

j (L) q iqj7

T 	 T	
^ 4 1=

y^-L)

1/2 P 1 2 P + 1/2w 1 2 w	 (13)

where

= C rlxi( L ) q i (t ) i "ly(^L ) q i( t ) i li *y-L ) q i ( t )]	 (14)

Substituting To, T, and T2 from the foregoing equations
into equation (3), the total kinetic energy expression
can be written as

T= 1/2moV , V+wT HV+ 1/2wT 1 0 w+ VTAI^

+ `ET A	 + 1/2 q A 3 q	 (15)

where
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I^
m o =m l + pL +m 2 (16)

H = ( p L + N jr + m	 aCL) + p Lc* (17)

1p 1 1 + J+ 1 2 (18)

and also

Al	 q ¢ a+ 
m2

d(L) (19)

Az q r a + 8	 + m 21d (L) + mza( L ) d (L) (20)

7 
**.%

0

Aa ;. p L+m 2 +p51 +p61 + tT ( L)12 o(L) (21)
0 "IN

The matrix OT (L) is given as

fix (L)
0 0

0 # 1y (L) 0

0 0 1^ (L)
T (L) _ ... ..................... (22)

^ 1 z (L) 0	 0

0 y(L) 0

0.0 0 ^4(L)
Equations of motion:

Lagrange's equations for the case of independent
generalized co-ordinates ak are

d	 a T - a T	 Qk - a V (k = 1, 2'....)
dt a9 k a q k	 a q k	 (23)
where T(q,q) is the kinetic energy, V(q) is the
potential— energy and Q k are the generalized forces
arising from nonconservative sources.

However, the kinetic energy developed in equation
(15) is given in terms of nonholonomic velocities &^
and generalized velocities S. Using the chain -ru T'e-a T/a V
be expressed in terms of generalized velocities. Also,
if F(t) represents the total applied forces where

F( t ) = f O (t) +_F 2(t)	 (24)

—12
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then the generalized forces are given as CF(t). Thus,
using the Lagrange's equations the translational
equations can be obtained as

dt ( a ) + CT C ( BT ) _ F( t )	 (26)

which can be simplified as

nbN H^ + A 11 = t^ I + F(t)	 (26)

where the nonlinear term N 1 is given as

N1= -CT C ( moV'. H w+ A1 q )	 ( 27)

_ ! (m. O.L- H ca+ A1.Q

Similarly, using equation (2) and the chain rule in the
Lagrange's equations, the rotational equations are
obtained as

HV + i i^+ A 2 q = 9( t ) + N 2	 (28)

where G(t) is the net moment about the mass center of
the orfiiter and is given as

G	 G Q + (r + a ) x F2	 (29)

and the nonlinear term N .., 	 is given in terms of
transformations M and C, and , y and e_ The vibration
equations of the beam can be obtained by again using
Lagrange's equations and the potential energy function

U = 1/2 q T 1% q	 (30)

where the stiffness matrix K is given as

Elf a? 1•
K =	 L 3	 (31)

The vibration equations are

A i l+ A2 TW + A 3 q= -Kq	 (32)

Slew Maneuver Dynamics: Considering the translational
velocity and acceleration to be negligible during the
slew maneuver, the rotational equations and vibration
equations are

Io ` + A 
2q = G(t)  + .N 2 ( a)	 (33)

AJi + A3 q = - Kq	 ( 34)

1.
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w	 = I0
-1 ^ 

G+N2	 A 2	 (35)

The first three Euler parameters are defined as

el

C	 e2	 =	 sin 02	 (36)

ea

eri	 cos 02	 (37)

ds	 112 ( e4 w+ e x m)	 (38)
dt

R

deq	 = -1/2 w. a	 (39)
dt

w= 2 ( E 4!- e 4 e- e x dc )	
(40)

de	 dt

= a° = h ( E .	 (41)

Defining the output vector as

L' = e	 (42)

^° e"h( e •)	 (43)
y = a h	 ah •

	

e +	 w	 (44)
FE	 5W

Y = Q( a W ) +P ( e. w.q )G 	 (45)

Choose G as

G=P-1{-k+T}	 (46)

It can be shown that Oalways exists.

Then

Y. =E =T	 (47)

form a system of uncoupled equations and they can be
expressed in terms of output feedback as

y= Kr p 1 y + 
C 

K v y	 (48)	 M
1.	 ^	 ^	 c

The elements of these gain matrices can be chosen for
desired system response.	 r

Results
In figures 2 and 3 , the slewing maneuver of 20 is

shown in roll plane. The maneuver shown in figure 2 is
for a pure rigid-body slew maneuver whereas figure 3 is
the some maneuver with suppression of two first

-14-
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flexible modes. The corresponding case in the pitch
plane is shown in figures 4 and 5. A rigid-body slew
maneuver is shown about an arbitrary axis in the
remaining figures. The effect of first four flexible
modes are incorporated in this slew maneuver and
figures 6, 7 and 8 in this case represent the moment
components to perform this maneuver.

Conclusions
The equations of moi of n of-SCOLE model are highly

nonlinear and coupled and this results into the
excitation of higher flexible modes when the lower
modes are being controlled during the slewing maneuver.
Although for this study the beam vibrations at the end
of slew maneuver are controlled using Linear Infinite-
time Regulator Problem formulation, analysis of higher
uncontrolled modes indicates serious control spillover
problem due to coupling among the modes.
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