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Boron Determination in Steels by Inductively -Coupled Plasma

Spectometry ( ►CP)*

A. Gomez Coedo ** and M.T. Dorado L6pez**

C.D.U. 543.5:546,27:669.15 = 60

Abstract A method is proposed for boron determination in

steels at ppm levels by inductively-coupled plasma

spectometry. Solutions equivalent to 5 g sample in

100m> were used, a previous separation of iron being

performed,	 in HCL, with ethylic ether.	 The

analytical line used for boron analysis was 2496.78 A

and the results were verified with standard samples

from the British Chemical Standards.

1. INTRODUCTION
/g7***

Boron steel alloys, known for several decades, have been

reintroduced in the past few years, thanks to technological ad-

vances favoring their correct preparation, as well as various

studies concerning their properties (1).

Boron steels have been specified by the various

standardizing agencies: ISO, UNE, AIS1 1 AFNOR, DIN, etc., and

there	 are	 hundreds	 of	 varieties.	 The majority of boron steel's

are	 alloyed with manganese	 (:	 1%) and with chrome (<0.5%) and,	 in

some cases, with nickel and molybdenum.	 Carbon content varies

between	 0.1.5 and 0.45%.	 Aluminum and	 titanium are routinely	 used

r-espectively as	 deoxidizing	 and	 denitriding	 agents, with	 a

*rStud.y received November 29, 1984

** Dr. of Chemical Sciences. Member, CENIM.
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***Numbers in margin indicate foreign pagination.



consequent residual content of these elements in the order of

0.030%.

The considerable interest in these steels is based on the

fact that small amounts of boron (in the order of ppm) improve

tempering to a much higher degree than other alloy elements.

There are various theories to explain the effects of boron

in improving the hardening of steel 's. This effect diminishes as

the carbon content of the steel is increased, and is practically

eliminated in eutectoid alloys.

Because of i is h igh of f in  ty f or n 1 trogen and oxygen, and

its readiness to substitute for the carbon in carbides, it is

accepted that a large proportion of the total boron present in

steei is made up of oxides, nitrides and/or borocarhides. By

selective chemical attack, it is possible to distinguish the two

types of boron present in steels:	 soluble and insoluble boron.

Although the complete separation of the various boron

combinations is difficult, it is generally accepted that:

- the soluble boron component includes the boron of the

solid solution, the borocarbides, M2.3(B,C)6 and M 3 (B,C), and the

boron oxides. This boron component is placed in solution by acid

attack.

- the insoluble boron component is made up of the boron

Piiiri dos , BN. This component is placed in solution by means of

alcaline fusion of the acid-insoluble residue.

It is fully established that there is a direct relationship

between the improved temperability produced by boron and the

amount of the element present in the form of soluble boron. This
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relationship goes through a maximum, in that there is an optimum

soluble boron content at which temperability is highest, compared

to an identical material without boron (2 and 2)(Fig. 1).

As can be observed in Figure 1, all the authors find an

optimum soluble boron content, located between 5 and 30 ppm. The

differencess among these values can be attributed both to

variations in analytical methods and to different levels of

oxidized boron, taken to be soluble boron, although it exerts no

influence whatever on temperability.

There are certain clearly established facts with respect to

insoluble boron:

- the content of insoluble boron increases as the content of

fnitrogen (BN) increases.	 --
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Fig. 1.	 Influence of boron on temperability according to various

authors. The maximum effect is set equal to 100%.

1- Influence of boron given as a %; 2- Boron content, %.

- the effect upon temperability will decrease to the point of

disappearance if the insoluble boron component is increased at the

cost of a diminished component of soluble boron.
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boron content levels we are concerned with.

.:1., : LSrc k

the presence of a certain amount of insoluble boron (from

10 to 15 ppm, for example, seems to improve the tensile strength

of steel (3).

From the foregoing considerations it can be deduced that the

content of soluble and insoluble boron can be used to improve both

temperability and tensile streri-th.

It is clear that the soluble boron/insoluble boron ratio is a

function of the content of free nitrogen in the metal, and

therefore, of the content of elements, such as titanium and

aluminum, which can form nitrides.

It ik--, of utmost importance to achieve a homogeneous

distribution of the boron, as gaps can create I or , aI

irregularities, such as sizeable oxide or eutectic formations (Fe=

C-B).

The difficulties encountered by the first manufacturers of

boron steel are now history; modern production methods make it

possible to ensure ar, even distribution. This leaves us free to

focus on the problem of providing analytic methods which will, in

turn, guarantee the actual content of this element.

The most widespread methods for this type of analysis are

included within two categories:	 spectrophotocolorimetry and

emission spectroscopy (arc or spank). The former methods (4-14)

present major difficulties because of the extremely critical

working conditions under which they must be carried out, and the

latter,	 in addition to being subject to the availabilty of

suitable master samples, do not offer sufficient precision for the

y,	 {
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In this paper, the problem is studied using the Inductively-

Coupled Plasma emission source technique (ICP-AES)(15-20). An

operating procedure is established to permit precise, exact

determination Qf ppm levels of boron (soluble and insoluble) in

steels.

2. EXPERIMENTAL METHOD

2.1.	 Selection of analytical lines

2.1.1.	 Sensitivity

The study was made using etonventlonal ultraviolet boron

analitical lines.

X,A

2497.73
2496.76
2089.59
2088.93

	

Since the equipment utilized has no vacuum system (it merely
	 x

permits purging of the monochromator with inert gas), the remote

ultraviolet boron lines (	 = 1826.4 A and 1825.9 A) are not	
4

sufficiently sensitive for the boron levels we are concerned with.
r

On the other hand, it is of interest to note that these lines are

clearly interfered with by the 1826.3 A line of sulphur.

Table I shows the peak/baseline ratio of the lines considered

(calculated with emission values corresponding to 0.1 ppm of boron 	
S

and to water), the equivalent baseline concentration (concentra-

tion of the element which gives an emission intensity over the

baseline of the same order as the baseline itself) and the minimum

determinable ppm. The Relative Standard Deviations(RSD) calcu-

lated on 20 determinations of these minimum ppm are below 1%.

5
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The working parameters of the equipment employed OY 38 P),

were se iec'ted with the purpose of obtaining, for each line,

baseline values (considering as baseline the emission

corresponding to water) of less than .1,000 mV.

X tdai6n p Utfnndo

Or► PPM atH.o	 1
CE F	 1	 iPm 1nir^u+tiu

IVPmX	 Z	
Itt	 ur^bkt

2497.73 2,5 0,060	 0.03
2496.78 2.3 0.060	 0.05
2089,59 1.6 0,12	 0.10
2086,93 1.6 0,15	 0410	 i

Table 1. Sensitivity study of selected boron lines:

peak/baseline ratio, equivalent baseline concentration (C.E.F) and

minimum determinable ppm.

i- Peak/baseline ratio, 0.1 ppm B/1. 1 20;	 2- Minimum determinable

ppm (RSD 1%).

2.1.2.	 Interferences

Next, a. study of spectral interferences was made, in order to

verify the analytic value of each of the lines considered in the

determination of boron in steels. This study included not only

those interferences caused by the base element (iron), but also by

the other elements usually present in this type of material.

2.1.2.1	 Interferences originating_ from the base material (iron)

Because of the high proportion of sample in solution

necessary for the precise recording of the boron contents of

interest to us, the direct sample solutions present a high saline /89

concentration which originates on the one hand, significant

nebulization and transportation interferences, and on the other, a

considerable increase of the spectral baselines, carrying with it

a diminution in the peak/baseline ratio, and consequently less

'^	 1
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favorable values for the determinable minirnum contents.

Because of these difficulties the process evolved included

massive elimination of iron using ethyl ether. Following this

process, described in Section 3, "Preparation of the Test Solu-

tion", it was verified that, for weighings of 2.5 g of sample,

with a final measurement at 50 ml, the concentration of iron

toatning unseparated was In all cases less than 50 ppm. Next, a

study was made to verify the spectral interferences produced by

this residual quantity of iron in the boron analytical lines.

Lines 2088.93 A and 2089.59 A in their next measurement showed no

significant emission from iron. Line 2496.78 A, although very

close to the iron line 2496.53 A, was not interfered with

appreciably by the residual iron, thus verifying that the emission

corresponding to 0.1 ppm of boron is not affected by the presence

of up to 100 ppm of iron.	 Finally, line 2497.73 A proved to be

affected by iron line 2497.82 A, even at the residual levels of

unseparated iron in the solution.

Table II showG the values corresponding to the emission of

0.1 ppm of boron in the presence of different quantities of iron,

in lines 2496.78 A and 2497.73 A, since these are the lines

located close to each of the iron lines.

Table 11.	 Spectral interference produced by iron.

X

J„	 Valoms de emisi&

H=o 0.1 ppm 9 0.1 ppm 0 0,1 ppm a 0.1 ppm 0
+50 ppm h +100 ppm +250 ppm re

rV

2496.78 500 1180 1190 1182 1250
2497.73 800 2125 2250 2520 4800



As can be observed In table 11, boron line 2496,78 A is not

spectrally influenced by the Iron remaining after the extraction

process.

2.1.2.2	 Interferences caused by RjjX 21herelements p--- ------ .— _LSISnt

The elements usually present in steels as alloy or residual

materials, cause the spectral Interferences shown in Table 111.

Tungsten causes spectral Interferences In the four lines

considered, making necessary its elimination during the

preparat lo,, of the test solution, by means of ammonlacal washing

of the residue in acids.

Though lines 1825.9 A and 1826.4 A were not studied, the

literature indicates a clear interference coming from the 1826.3A

sulphur line.	 On the other hand, it has been observed that

cobalt presents an emission in the testing of the boron 2496.78

I !ne t an emission which does not cause appreciable interferences

within the concentration levels tested.

Table	 111.	 Lines of the elements	 interfering In the

determination of boron

at — L	 Eicrmnifjs iniefferento	

11
A, A k A

Ni — 2089f18
2088,93 W — 2089,14

f

Mo — 2089.52
2009,52 W — 2089J4

2496.78 W — 2496,63

2497.73 W — 2497,50

I- Interfering elements.
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concentrated to approximately 10 ml and diluted to 50 ml	 with

water.	 This solution contains soluble boron and	 is equivalent	 to

Cinall^ ,-, and in considerat.io;, )f the sensitivity and

interference studies carried out, the boron 2496.73 A 1 ine was

selected for determination of this elernent in steels.

3 PREPARATION OF THE TEST SOLUTION

2.5 mg of sample	 is weighed and attacked	 In a teflon	 vessel

with 20 rnl of 5N sulphuric acid. When the reaction subsides,	 the

solution is oxidized with 10 ml of concentrated nitric acid. The

resulting solution is diluted with approximately 23 ml of

[omitted] and is filtered while hot: through medium porosity

paper, washing it	 with with	 1	 to g diluted	 hot	 hydrochloric acid.

Soluble	 boron i;	 ., etermined in the	 filtrate	 liquids, and

insoluble boron, in the filtered residue.

3.1 Soluble boron

After attack of the sample with acid (Section 3) the

resulting solution is concentrated to approximately 15 ml; 30 ml

of concentrated hydrochloric acid is added and it is transferred

to a decanting funnel or plastic flask, using as a washing

liquid, 20 ml of 1 + 1 diluted hydrochloric acid (the chlor-

hydric molarity of the resulting solution falls between 6 and

8111) .

Then the iron is extracted with 60 ml of ethyl ether. With

agitation for 1 minute the aqueous phase is separated, and

another treatment of 60 ml of ethyl ether. The aqueous phase is



s

3.2 Insoluble boron

After	 4	 tack	 of	 the	 sample with acid	 (Section	 3) the

resulting	 solid	 residue	 is	 washed with ammonia,	 roasted In	 a

platinum crucible	 and	 fused with	 IS anhydrous Na 2 CO 3 .	 The fused

mass	 is	 extracted	 with	 15	 ml	 water and	 5	 ml	 concentrated

hydrochloric	 acid,	 and	 diluted	 to 50 ml	 with	 water. This

solution	 contains	 insoluble	 boron and is	 equivalent	 to	 5 g of

sample	 per	 100 rail.

4. CONTROL. TEST	 J90

The analysis was paralleled by a control test using the same

proportions of reagents and following the entire operating

procedure for both soluble and Insoluble boron.

5. TERMS OF REFERENCE

The terms of reference for both soluble and insoluble boron

are prepared by adding ppm of boron from a master solution of this

element to controls containing the same reagents in the same

proportions as in the problem sample. Given the linearity of the

technique employed and on the basis of the small contents sought

to determine, these terms can be the control test and one which

contains 0.5 ppm of boron in an identical medium.

6. RESULTS AND CONTRASTING SAMPLES

Using the test solutions prepared according to subsections

3.1. and 3.2. against the respective control tests (Section 4),

and calibrating the results as indicated in Section 5, *he soluble

and insoluble boron content in the sample (as a function of the

minimum determinable ppm indicated in Table 1) can be determined

A

jY
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with precision and accuracy down to I ppm.

The method developed has been contr ^bted with master samples

f rom the f i rms BCS (Nos. 326 to 330 and 458 to 460) and NBS (Nos.

361 to 365), the total boron content of which varies between 5 and

100 pprn. The results are given in Table IV. These same samples

have been analyzed for both soluble and insoluble baron by spec-

trophotocolorirnetry, and the results are in agreement with those

yielded by the method developed.

Table IV. Results

1 Munsru	
M 

bwo olubk
ICP

ppm bam bWWW
ICP

WP kWO t'"I
(a nW1C& a)

BCS 326	 802 4.0 10

00 327	 27.8 111 30

BCS 328	 39.0 2,8 40

BCS 329	 71.1 10.0 80
BCS 330	 72.7 <0.5 70
BCS 458	 38,B 817 45
BCS 09	 91.6 8,2 100

BCS 460	 11,9 15.0 25

ppm boro total
i►proximado

(no certificado)

NBS 361	 0 1.0 5
NBS 362	 30.0 e-045 25

NBS 363	 14,2 0.8 10

NBS 361	 120,3 <0.5 160

NBS 365	 015 <0.5 —

1- Samples; 2- ppm soluble boron ICP; 3- ppm insoluble boron
ICP; 4- ppm total boron (certified); 5- approximate ppm total
boron (uncertified).

11
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7 . OOKLUS IONS

- A plasma (ICP) methodology has been perfected for

determination of boron in steels at levels in the order of ppm.

- The soluble boron and insoluble boron present in these

materials have been separated by a wet method procedure.

- The iron matrix has been for the most part eliminated by

extraction with ethyl ether in a hydrochloric medium = 8M.

- The validity of the method has been verified by comparison

of its results with those obtained by spectrophotocolorlmetry in

various standard samples.

7	 ^
3
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