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ABSTRACT OF THE DISSERTATION

The Non-Newtonian Heat and Mass Transport of He II

in Porous Media

Used for Vapor-Liquid Phase Separation

by

Sidney W.K. Yuan

Doctor of Philosophy in Engineering

University of California, Los Angeles, 1985

Professor Traugott H.K. Frederking, Chair

The present investigation of vapor-liguid phase separation

(VLPS) of He II is related to long-term storage of cryogenic

liquid. This VLPS system utilizes porous plugs in order to

generate a thermomechanical (thermo-osmotic) force which in

turn prevents liquid from flowing out of the cryo-vessel

(e.g. Infrared Astronomical Satellite ).

In part, VLPS research reported in the literature has

produced apparently contradictory results. Therefore, an

apparatus was built and VLPS data were collected for a 2 ym

and a 10 ym sintered stainless steel plug (1/2 inch diameter

and 1/8 inch thick) and a 5-15 ym sintered bronze plug (1/2

inch diameter and 1/2 inch thick).

xxn



The VLPS data obtained at high temperature (close to T, )
A

were in the non-linear turbulent regime. At low tempera-

ture, the Stokes regime was approached.

A turbulent flow model was developed, which provides a

phenomenological description of the VLPS data of the present

experiment and of other laboratories. According to the mo-

del, most of the phase separation data in the literature and

the present work are in the turbulent regime. The model is

based on concepts of the Gorter-Mellink transport involving

the mutual friction known from the zero net mass flow (ZNMF)

studies. The latter had to be modified to obtain agreement

with the present experimental VLPS evidence. In contrast to

the well-known ZNMF mode, the VLPS results require a geome-

*
try dependent constant. This parameter K GM

("Gorter-Mellink constant") to first order, is independent

j,
of temperature and is found to be proportional to K 2 within

data scatter (K = room temperature permeability).

A theoretical interpretation of the phenomenological

equation for the VLPS data obtained, is based on modelling

of the dynamics of quantized vortices proposed by Vinen. In

extending Vinen"s model to the VLPS transport of He II in

*
porous media, a correlation between the K GM and K was ob-

tained which permits an interpretation of the present find-

ings.

xxi ii



As K is crucial, various methods have been introduced in

the present work to measure the permeability of the porous

media at low temperatures. Good agreement (within 10%) was

found between the room temperature and the low temperature

K -value of the plugs.
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Chapter I

INTRODUCTION

1.1 GENERAL

Space vessels like the Infrared Astronomical Satellite

(IRAS) make use of liquid helium (He II) for cooling purpos-

es. In the case of IRAS, He II was used to keep the tele-

scope sensors at low temperature (around 1.8 K) . At this

temperature, the telescope has a better resolution of the

outer space regions emitting low intensity radiation in the

far infrared spectrum. The duration of such a mission usu-

ally depends on how long the cryogen can last. When all the

He II on IRAS evaporated, the telescope was out of opera-

tion. Therefore, it is crucial to keep the cryogen in the

cryostat as long as possible. To confine liquid helium in

the container by conventional means for very long times,

e.g. 10 years, is difficult. Vent lines are necessary for

the vapor to be ejected from the cryostat due to the heat

input. Since the pressure inside the cryostat is always

higher than that of the outer space, any liquid in the con-

tainer will tend to escape through the vent line. It was

proposed by Professor William Fairbank to utilize the foun-

tain effect of He II to confine the liquid in the cryostat

(Selzer et al. 1970).

- 1 -



A porous medium is mounted between the container and the

vent line (Figure 1.1). The porous plug is in contact with

liquid helium on one side, and on the other side it is open

to the vapor in the vent line. That is why the system is

called the vapor-liquid phase separator. Any heat that is

carried into the cryostat liquid is transported by one of

the two fluids, called normal fluid (Fig 1.2). The other

fluid is superfluid responsible for the fountain effect

pressure. The normal fluid seeps slowly through the pores

of the separator. Once it has penetrated the plug at the

vapor-liquid interface on the downstream side, the liquid is

vaporized immediately. The latent heat of vaporization is

taken away which results in a lower temperature on the down-

stream side. This is how the heat absorbed by the cryostat

is rejected. In doing so, a temperature gradient is set up

across the plug with higher temperature at the helium bath

side.

1.2 PREVIOUS WORKS

A number of investigators have studied the vapor-liquid

phase separator (VLPS). One of the earliest models was the

one suggested by Professor Fairbank (Selzer et al. 1970).

By assuming that the normal fluid of He II is clamped and

that only superfluid can penetrate the porous plug, Fairbank

was able to come up with a simple solution of the VLPS sys-

tem. Such a model assumes that the only way heat can be

- 2 -
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transported across the porous medium is by conduction

through the solid portion of the plug. The solution is in a

quadratic form

2p
* 5m =

PSLX/K + J ( P S L X ) 2 / K 2 - AP/A
^ ^/= - - * - —

A P cs

where p, S and X are the density, entropy and latent heat of

He II respectively, p is the superfluid density, AP is the
5 V

vapor pressure difference. A and L are the cross sectional

area and thickness of the porous media ,and K is the thermal

conductivity of the plug.

It was found that the second term under the radical is

much smaller than the first. By expanding to a first order

approximation, Fairbank got

m = APK / PSLX (1.2)

and

2P^PSLA2X
m =

K pSLX



Since Equation 1.3 yields flow rates that greatly exceed the

superfluid critical velocity, it is rejected, and Equation

1.2 is the physically meaningful solution of Fairbank's mo-

del.

Figure 1.3 is a plot of mass flow rate versus the bath

temperature for the VLPS data of Klipping. (Denner et al.

1977). The data were obtained by using a 1 ym ceramic po-

rous medium. Also included in Figure 1.3 is Fairbank's mo-

del for an aluminum plug. Klipping's (1 vm ceramic) sin-

tered plug is one of the smallest (in pore size) in the

literature, and yet Fairbank's model lies below the data.

For a sintered plug of very small pore size made of highly

conductive metals, this model is very useful.

Among all the investigators, Murakami (Murakami 1984 and

Murakami et al. 1984) probably has the largest amount of

data reported so far. He has tested both stainless steel

and ceramic plugs. In his apparatus, a heater was mounted

at the downstream side of the porous plug to control the

flow rate. Murakami measured the temperature distribution

across the porous media by positioning thermometers along

the thickness of the plugs. A large temperature drop was

found across a thin layer of his plugs close to the down-

stream side. He suggested that the vapor-liquid interface

might have withdrawn into the porous medium and the presence

of a thin layer of vapor was responsible for the large AT

observed. By measuring the AT close to the upstream and the

_ 6 .
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middle portion of the plugs (and ignoring the AT drop of the

thin vapor layer at the downstream side), Murakami was able

to fit his data by the Blake-Kozeny equation (Murakami

1984). Murakami thus concluded that under normal operating

condition of VLPS, the transport of normal fluid in the po-

rous media is in the laminar regime. Figure 1.4 is a plot

of friction factor as a function of Reynolds number of Mura-

kami 's data.

Hendricks and Karr (Hendricks and Karr 1982) have pro-

posed a two fluid modification based on the Poiseuille flow

in straight channels of diameter D. The authors assume that

the total throughput area in a porous medium is equal to

A = NiTD2 / 4 (1.4)

where N is the number of channels. Hendricks and Karr ob

tained the following equation

NTTD4 ST p AP
128 X T-L

where n is the normal fluid viscosity.

Petrac and Mason suggested that the mass flow rate in a

VLPS system below 1.9 K is given approximately by

- 8 -
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rii = FAAP (1-6)

where F is a proportionality constant which depends on pore

size, porosity, plug length and structure. They have mea-

sured the F value for ceramic, glass and stainless steel

plugs (Petrac and Mason 1978).

Concerning secondary effects, Dipirro (1983) has stressed

the importance of surface tension effects (for "2 ym" plugs

and below the 1 micron range).

Hendricks and Karr have studied the importance of the re-

cession of liquid into the plug interior. In the recent

Boulder worshop (1985), these authors mention the possibili-

ty of a constant temperature gradient in the turbulent re-

gime described by the Allen and Reekie rule. Any "dry-out"

length would cause a smaller liquid path, i.e. a larger

pressure gradient. Apparently, the authors do not assign a

large emphasis on this dry-out effect in their recent work.

Instead of using porous media as vapor-liquid phase sepa-

rator, Schotte and Denner (Schotte and Denner 1981, Schotte

1982) have studied the so called active phase separator

(APS). The APS consists of a pin which can be moved in and

out of an orifice bushing as shown in Figure 1.5. A typical

diameter of the annulus is 20 mm, and the gap length L var-

ies from 0 to 15 mm. The gap size is of the order of 10 vm.

By varying the gap length one can control the flow rate,

that's why it is called the active phase separator.

- 10 -
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1.3 SCOPE

Vapor-Liquid phase separation research in the literature

has produced partially contradictory results. As mentioned

in the previous section, different investigators have

stressed the role of various secondary effects in the VLPS,

namely the thermal conductivity of plug metarial, the sur-

face tension effects and the recession of liquid. Addition-

al confusion may have arisen from the introduction of the

idea of a third "Gorter-Mellink regime", e.g. Schotte et al.

(1980). Historically, the original Gorter-Mellink (GM) re-

gime has been for the zero net mass flow (ZNMF) mode. The

second use of GM has been for one particular region of the

resistance transition from the Landau regime to the "classi-

cal Newtonian flow" (Rorschach 1957 and Vote et al. 1971).

The third case is the case mentioned above. It has been

used for the transition from the onset to the completion of

liquid breakthrough in the active VLPS system. As this uses

a gap size of the order of 10 ym, no linear regime could be

detected easily in that work.

Therefore, the present thesis research has been directed

towards the resolution of the heat and mass transport of He

II with emphasis on the non-linear regime of the VLPS sys-

tems. An apparatus has been built, and data have been taken

with porous plugs of nominal pore size of 2 to 10 microme-

ter. At low temperatures, the linear (laminar) regime has

become accessible. Most of the data however, have been tak-

-12 -



en in the non-linear regime of quantum fluid turbulence.

For the data description, various modes of the two-fluid mo-

del have been calculated, in particular the zero net mass

flow mode, and the phase separation mode.

The theoretical description has a simple solution of la-

minar normal fluid flow as a basic solution. Starting from

this simple case, a turbulent flow model has been developed

resulting in a phenomenological description of various phase

separator data of the present experiments and of other labo-

ratories. The lat'ter have not always been given in terms of

suitable plug parameters. The present research has empha-

sized a common frame of reference for the throughput. Using

this basis for well-documented data, there appears to be

consistency between the present data and other results.

- 13 -



Chapter II

LIQUID HELIUM

2.1 BASIC PROPERTIES OF LIQUID HELIUM

Helium was first liquefied by Kamerlingh Onnes in 1908.

Its normal boiling point is 4.2 K at atmospheric pressure.

Liquid helium remains in the liquid phase under its own va-

por pressure and would apparently do so right down to abso-

lute zero temperature (Figure 2.1). Due to the small mass

and extremely weak forces between the He atoms, pressure is

required to produce solid helium (25 atm or more).

When liquid helium is cooled to 2.172 K it undergoes a

transition (Figure 2.1). Because of the characteristic pro-

file of the heat capacity curve, the temperature at which

the transition takes place is called the lambda temperature

(T.). There is no specific volume change or latent heat in-

volved in the lambda transition. Keesom and Wolfke (1927)

used the terms He I and He II to distinguish the liquid

above and below T. respectively. He I behaves like a Newto-

nian liquid, however He II owing to its quantum effects has

remarkably strange properties. In 1938, Kapitza and inde-

pendently Allen and Misener reported that there is no measu-

rable resistance to the flow of He II through small capil-

-14 -
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-4laries with diameter of the order of 10 cm (Kapitza 1938,

Allen & Misener 1938). Kapitza referred to He II as the

"superfluid". On the other hand, experiments using oscil-

lating disks by Keesom and•MacWood (1938) demonstrated the

existence of a viscous drag, consistent with a viscosity

coefficient not much less than that of helium gas. It seems

that He II is capable of being both viscous and non-viscous

at the same time. This has led to the formulation of the

two fluid model by Tisza and Landau. In addition to super-

fluidity, some of the remarkable properties of He II include

extremely high thermal conductivity, the fountain effect,

the mechano-caloric effect and the Rollin film.

2.2 THE TWO FLUID MODEL

The two fluid model proposed by Tisza (Tisza 1940) and

Landau (Landau 1941) independently postulates that He II is

made of two fluids, namely the normal fluid and superfluid

(Figure 2.2). Further, the sum of the normal fluid density

and the superfluid density is equal to the bulk fluid densi-

ty

P = P_ + Pcn s (2.1)

where p is the density of He II, p and p are the densityn s

of the normal and superfluid respectively.
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Table 2.1. Essential parameters for the
two fluid model.
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At T, , only normal fluid is present in He II. As the

temperature is decreased, more and more normal fluid is

transformed into superfluid. Finally, at absolute zero

temperature, He II consists of superfluid only. The essen-

tial parameters of the two fluid model are summarized in Ta-

ble 2.1. The normal fluid behaves like a Newtonian fluid.

It has finite viscosity and is the only entropy carrying

component in the system. Superfluid on the other hand has

no viscosity and does not carry any heat.

The total mass flux density of He II is equal to the sum

of the two components (Appendix A)

j = pv = Pnvn + Psvs (2.2)

The subscript n represents the normal fluid component and

subscript s represents the superfluid component.

According to Landau (Landau 1941), the simplified equa-

tions of motion for the normal fluid and the superfluid can

be written as (see Appendix A)

+ 2» <2-3)
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_,. PQ (2.4)ps(VV)vs
 = Vu = - P^VP + P

where VP and VT are the pressure and temperature gradient

and T) is the viscosity of the normal fluid. The chemical

potential is denoted by y.

2.2.1 The Fountain Effect

For demonstration, a glass container is packed with fine

particles (of the order of 1 ym). One end of the container

is connected to a fine capillary tube (as shown in Figure

2.3), and on the other end it is open to the He II bath.

Now if a light is shone onto the particles, the liquid in-

side the packing will be excited. This results in a higher

concentration of normal fluid inside the container. Accord-

ing to the two fluid model, superfluid will tend to rush

into the packing to equilibrate the concentration. Normal

fluid on the other hand tries to carry the entropy away from

the heat source. However, due to its finite viscosity, nor-

mal fluid cannot penetrate the fine particles easily whereas

the superfluid with no viscosity can enter the packing with

ease. Thus a net pressure (the fountain pressure) is set up

by the motion of the superfluid, forming the He fountain.

- 19 -
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2.2.2 The Mechano-Caloric Effect

For the apparatus shown in Figure 2.4, a small hole is

drilled in the bottom of an insulated container. The hole

is then plugged by very fine particles (emery powders). The

apparatus is set up such that it can be raised from or low-

ered into a bath of He II. It was found (Daunt and Mendels-

sohn 1939) that when liquid flowed into the container, the

_2
temperature dropped about 10 K, and when liquid flowed

out, the temperature rose by the same amount. According to

the two fluid model, only superfluid can penetrate the pow-

der easily. So when more superfluid flows into the contain-

er the temperature should drop, and when liquid exits, the

increase in normal fluid concentration will increase the

temperature.

2.3 THE THERMO-OSMOTIC PRESSURE

Since the driving force for .the fountain effect is the

temperature difference, the fountain pressure is also known

as the thermo-osmotic pressure. The thermo-osmotic pressure

can be derived following Zemansky's approach (Zemansky

1968).

Consider two vessels of He II connected by a fine porous

media (superleak) as shown in Figure 2.5. According to Put-

terman's definition a superleak is made of fine packings

-4with particle diameter less than 10 cm (Putterman 1974).
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The vessels are in thermal equilibrium with reservoir A and

B at T, and T_ respectively. The frictionless, non-leaking

pistons are moved slowly and reversibly from left to right,

so that an amount of liquid equal to dm is transferred from

vessel A to B. If we assume that only superfluid can pene-

trate the porous medium and that there is no friction or

heat conduction across the plug, the liquid helium at each

side should undergo an isothermal and isobaric change of

state.

The temperature in vessel A tends to rise, due to the ac-

cumulation of normal fluid, unless heat is removed. On the

other hand, the temperature in vessel B tends to drop, un-

less heat is supplied. Maintaining thermal equilibrium with

the reservoirs, dQ, is removed from vessel A (to the reser-

voir at T.,), and dQ~ is added to vessel B (from the reser-

voir at T?). The entropy loss from vessel A is

S,(m, - dm) - S,m, =-S,dm (2.5)

For a reversible process entropy is conserved

dO
— S,dm = 0 (2.6)

or

- 23 -



= T^dm (2.7)

•

Similarly, the amount of heat added to vessel B is

(2.8)

Therefore, the net heat supply to the present ideal super-

leak system is

d°net " d°2 - d°l = {T2S2 ' TlSl)dm (2.9)

From the first law of thermodynamics

dU = dW + dO

= (-?V + V d m - * (TS - T S - d m (2.10)

or

(U2 + P2V2 - T2S2) = (U1 + P1V1 - T1S1)

Gl ~ G2 (2.12)
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This means that the Gibbs free energy difference across the

plug is equal to zero. Usually the low temperature litera-

ture uses the symbol v ( - Gibbs free energy per unit mass)

called "chemical potential". Thus we have dy = 0, or

Ul = U2 (2.13)

According to the first and second law of thermodynamics, we

have

du = -SdT + dP/p (2.14)

From Equation 2.13 and 2.14 one gets

AP = pSAT = AP (2.15)

The above equation is H. London's fountain pressure predic-

tion. The subscript T is used to distinguish the thermo-os-

motic pressure.

The ideal superleak system discussed so far does not in-

clude dissipative processes, as only the superfluid is

transported. Any realistic fluid flow description ought to

include both the fountain pressure difference (Equation

- 25 -



2.15) and viscous dissipation. The two fluid equations of

Landau appear to be appropriate in this respect. It is not-

ed that for steady state and parallel flow, Equation 2.4 re-

duces to Equation 2.15.

The present thermo-osmosis is conveniently understood as

an analog of mass osmosis. In the case of mass osmosis,

(Figure 2.6a) a semi-permeable membrane is used to separate

salt solutions of different concentration. Water will pene-

trate the membrane to get to the high concentration side and

equilibrate the concentration on both sides. Since the mem-

brane only allows the water molecules to pass through (but

not the salt), a mass osmotic pressure is set up. The li-

quid level on the high salt concentration side will rise un-

til the mass osmotic pressure is equal to the hydrostatic

pressure (Figure 2.6b). If an external pressure is applied

at the high salt concentration side, one can separate the

water from the salt solution (Figure 2. 6c) . This is known

as reverse-osmosis.

In the case of thermo-osmosis (Figure 2.7a), a porous

medium is used to separate a He II bath. A light or heat

source is being applied to the bath on the right hand side

to induce a temperature difference. According to the two

fluid model, there is a higher concentration of normal fluid

in the "hot" container. By analogy to mass osmosis, super-

fluid penetrates the porous plug, flowing to the high temp-

erature side and equilibrating the concentration. Since the
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superfluid can pass through the porous medium much easier

than the normal fluid, a thermo-osmotic pressure is set up.

Similarly, the liquid level on the high temperature side

will rise until the hydrostatic pressure is equal to the

fountain pressure (Figure 2.7b). If an external pressure is

applied to the bath on the right hand side, superfluid can

be forced back into the low temperature side (Figure 2.7c).

This is known as breakthrough. In the discussion of thermo-

osmosis so far, the dissipation effect has been neglected.

For the non-ideal case, please refer to Section 3.2.1..
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Chapter III

TRANSPORT OF HE II IN POROUS MEDIA

As it was mentioned earlier, the normal fluid behaves

like a Newtonian fluid. With the assumption of parallel

flow, one can add Equation 2.3 and 2.4 including Equation

2.1 to get

_ 3v 3v

If we introduce a relative velocity defined by

w = vn - vs (3.2)

Equation 3.1 can be rewritten as

n _ P8|w = _vp + V2+ (3.3)
3t 3t n n

For small relative velocity (v - v )n s
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The preceeding equation is the Navier-Stokes equation for

the normal fluid, with the pressure gradient VP. For steady

state conditions, Equation 3.4 reduces to

VP = n V
2v (3.5)

n n

Therefore at steady state, the normal fluid satisfies the

Navier-Stokes equation apparently, regardless of the magni-

tude of the relative velocity w. This shows that the normal

component of He II is indeed Newtonian for the conditions

assumed.

3.1 ZERO NET MASS FLOW MODE

Zero net mass flow (ZNMF) means that the total mass flux

density of normal fluid is counter balanced by the mass flux

density of the superfluid. There is no net flow of the bulk

helium liquid in one direction or the other. From' Equation

2.2,

° = PA + PA (3-6)
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3.1.1 Laminar ZNMF

Figures 3. la and b show the zero net mass flow of He II

in a capillary and a porous medium respectively. There is

no net driving force for bulk liquid motion as a whole and

the chemical potential across the capillary (or porous plug)

is zero. From the superfluid equation of motion (Equation

2.4) one gets London's fountain pressure for steady and ful-

ly developed flow

APT = AP = pSAT (3 ?)

Substituting Equation 3.7 into Equation 3.5 for the normal

fluid ,we get

VPT = V Vn (3-8)

Thus the driving force for the normal fluid is the thermo-

osmotic pressure produced by the superfluid.

Let's look at the ZNMF of He II in a capillary first.

3.1.1.1 Capillaries

For a circular capillary, the axial component of the Nav-

ier-Stokes equation in the cylindrical coordinate can be

simplified to

- 31 -
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32v . 3v . (3-9)
- + - £)
2 r 3r ;

where VP_ and v are the thermo-osmotic pressure gradient

and normal fluid velocity along the capillary axis and r is

the radial direction.
->

For no slip boundary condition of the normal fluid (v =

0, at r=R), the solution for the above equation gives

VP
-*(R2 - r2) (3'10>

Equation 3.10 is an exact solution to Equation 3.9. The

maximum velocity on the axis is

2 VP
K_ T

n,max 4 n
n

It can be shown that the average velocity can be expressed

as

i- o2 IVPT
V = —V = — — - —n 2 n,max 32 n
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The preceeding equation is the Hagen-Poiseuille law for the

laminar transport of normal fluid in a capillary.

For ZNMF, the heat flux density is related to v by the

following equation

qZNMF = VnPST
(3.13)

By substituting Equation 3.13 into 3.12, one can express the

heat flux density as a function of the temperature gradient,

- of. p2S2T|VT| (3.14)
qZNMF 32 nn

3.1.1.2 Porous Media

By analogy to the Hagen-Poiseuille law for laminar flow

of He II in capillaries, Darcy's law was found to be valid

in the case of porous media (Yuan et al. 1983).

v = K — (3.15)n pn n v '

where K is the normal fluid permeability. The above equa-

tion is called the thermo-osmotic Darcy equation in this re-

search. In terms of the heat flux density,

- 34 -



- = K P
2S2TlVT|

qZNMF pn n

Equations 3.14 and 3.16 can be rewritten in dimensionless

form (see Appendix B).

Nq = NVT (3.17)

where N and N?T are defined as,

qZNMFLc pvnLc
Nq = nST = —n- (3.18)

P2SVTL3

NVT = 2~~ (3.19)
V

N is a dimensionless heat flux number and NV_ is a dimen-

sionless driving force number. For capillaries the charac-

2 ^teristic length L is equal to (D /32)2, for porous media Lc c

= K ** (K = permeability).

If the thermo-osmotic Darcy equation is indeed valid for

the ZNMF of He II in porous media, then a plot of N versus
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N^™, should yield a linear curve with a slope of unity. Fig-

ure 3.2 is a plot of the dimensionless numbers for the ZNMF

of He II in packed materials. Data include that of Heijden

et al. (1972), fiber packing of Frederking et al. (1981) and

packings with different particle diameter (Schmidt et al.

1979), and column thickness (Forstat 1958). One can see

that all the data fall on the theoretical line, proving that

the thermo-osmotic Darcy equation does describe the flow of

normal fluid in porous media (Yuan et al. 1983).

In Figure 3.3, the normal fluid permeability is plotted

as a function of temperature for the same data presented in

Figure 3.2. It is seen that every packing has a well de-

fined normal fluid permeability.

3.1.2 Turbulent ZNMF

For turbulent flow, it has been found experimentally that

the heat flux density is proportional to the cube root of

the temperature gradient. It .is observed that there is

another friction force larger than the one associated with

the viscosity of the normal fluid. Gorter and Mellink

(1949) attempted to account for this by assuming a mutual

friction force between the normal fluid and the superfluid.

In order to obtain the correct proportionality between

and AT, they assumed a mutual friction force proportional to

the cube of the relative velocity (v - v ).' s n
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Gorter and Mellink modified Landau's two fluid equations

to include the mutual friction term. According to Gorter

and Mellink, the equations of motion for the normal fluid

and superfluid are

Pn*T+Pn<V
7>*n-'

(3.20)

- !rVp - psSVT + V2% - *sn

3v p

*r + ps(VV)^s - - ̂ VP + PsSVT + Fsn

where

(3.22)

with A being the Gorter-Mellink coefficient for mutual

friction. For steady, parallel flow and small AP, Equation

3.21 becomes

PsSVT = PsPnAGM(vn - vs)
3 (3.23)
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Rearranging the preceeding equation and substituting

Equation 2.1 and 3.2 , one gets

ps+ _ PS. psSVT ,1/3
Vn ' r* = P ( A < > p 0.24)

or

ZNMF ~ PsST(Arvp Dn
) (3.25)

(jrl S n

Equation 3.25, is the Gorter-Mellink equation. Soloski

(1977) modified the above equation by introducing a Gorter-

Mellink constant

KGM

where KGM is equal to 11.3 for wide ducts and is not a func-

tion of temperature. Substituting Equation 3.26 into 3.24

and 3.25 ,we get

(3'27)

and
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1 / 3 ' (3.28)

Note that for turbulent flow of He II, v or qZNMF does

2 i'not depend on the characteristic length (L = (D /32) 2 forc

1,
capillaries & L = K 2 for porous media). Therefore Equa-

tions 3.27 and 3.28 are applicable to the transport of He II

in ducts or porous plugs.

One can arrange Equation 3.28 into dimensionless form

(Appendix B) as below

(3.29)
n .

Turbulent ZNMF transport data of He II in porous media are

limited in the literature. Figure 3.4 represents the result

of Frederking et al. (1981) for ZNMF of He II in fiber pack-

ing. If we plot N versus NVT, then all the data in the la-

minar regime will fall on the thermo-osmotic Darcy equation

with the slope of unity (Figure 3.5). In the turbulent re-

gion, the data start to deviate from the thermo-osmotic Dar-

cy equation into the Gorter-Mellink regime. From Figure

3.5, we can see that the transition between the laminar and

turbulent regime is broad compared to the sharp transition

in ducts. If the Gorter-Mellink equation is also valid for
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the ZNMF of He II in porous media, then a plot of

log(p/p )N versus log(p /p )Nnrr should result in a straight
S y S li V X

line with a slope of 1/3. The y-axis interception is log

KOM. Lee (1982) has transformed the data of Figure 3.4 into
OJ>1

the dimensionless coordinate for turbulent flow (Figure

3.6). He found that for fully developed turbulent ZNMF of

He II in packing systems, the data are described by the

Gorter-Mellink equation. The solid line represents the

Gorter-Mellink equation for wide ducts with KGM equals to

11.3. From Figure 3.6 one can see that all the data for po-

rous media are below the Gorter-Mellink equation indicating

a lower KGM.

Knowing the ZNMF transport equations in both laminar and

turbulent regime, one can interpolate between Equation 3.16

and 3.28 and come up with the following equation

= ^Laminar + ^Turbulent' (3-30>

In Figure 3.7, the above equation is used to fit the data of

Frederking et al. (1981). The dashed lines represent Equa-
•

tion 3.30. A good fit of the data was found with K_M equalOIYl

to 7.5.
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3.1.2.1 Vinen's Vortex Model

The mutual friction term in Equation 3.20 and 3.21 are

thought to arise from the collision of normal fluid and the

vortex lines. Vinen (1957 and 1958) has developed a model

based on the growth and decay of vortex tangle maintained in

equilibrium. For unbound He II,

dLv xlBpn ••» 3/2 X2h 2v _ •*• n r,T j / £. £. T £.
dF" - ~W WLv ~ 2~^ Lv

The first term of the above equation represents the genera-

tion of vortex lines due to the interaction of normal fluid

and the vortex lines. The second term is the annihilation

of vortex-lines through line-line collision of the vortex.

L is the length of the vortex line per unit volume, h/2irm

is the quantum of circulation and B is a known parameter de-

scribing the interaction between the line and normal fluid,

x, and x~ are unknown functions that can be fitted by exper-

imental data.

It was shown (Vinen 1957 and 1958) that the Gorter-Mel-

link coefficient equals

2
_ TiB n i. iiin-1 x \ *• i -5

AGM ~ ~6~ ~3 ~̂ «̂ J (
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In a later paper, Vinen further proposed the effect of walls

on the turbulence in channels. It was assumed that the vor-

tex generation mechanism is inactive within a characteristic

j,
distance = L 2 from the wall. Thus for turbulence in chan-

nels with diameter = D

dLv *lB-3/2n _x_. X2h T2(1-HH-2^Lv (3-33)
v

where 1 is a parameter of the order of unity.

Childers and Tough (1976) have interpreted the ZNMF data

in terms of Vinen1s idea. Recently, Barenghi et al. (1983)

have studied further details of this model.

3.1.3 Thermal Convection of He II in Porous Media

Classical thermal convections in porous media due to

buoyancy force or surface tension have been studied exten-

sively. Similarly, the counter flow of normal and super-

fluid results in the internal convection of He II. A linear

stability analysis approach will be attempted in this sec-

tion.

The equation of motion for the normal fluid and the equa-

tion of energy are
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3v P_ n 2+ (3.34)
—- = -VP/p SVT -f -pV v
O L M ^ *^n

I? - B V - p f T (3.35)

where B = -dT/dz and c is the heat capacity of liquid heli-

um.

For convection of He II between two parallel plates heat-

ed from below, lets consider one-dimensional variation along

the X-axis (Figure 3.8). Guyon and Pieranski (1974) found

that the effect of the distance between the plates, L, can

be expressed in the horizontal wave vector of the periodic

disturbance K , with
X

K
x ~ */

L (3.36)

Retaining only the dominant contributions in the horizon-

tal direction, Equation 3.34 and 3.35 can be written as
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Figure 3.8. Schematic diagram showing the formation of
convection cells in He II, between two
parallel plates.
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S0 p_ %. (3.37)
n " pn L pn

0 = Bvn 4- e/tQ (3.38)

where 8 is the temperature distribution in the horizontal

axis.

(3.39)

is the relaxation time due to damping of motion by shear

viscosity, and

= rJL_ (21,2,-!
lpc ( L> ] (3.40)

P

is the time constant for the diffusion of vorticity.

Substituting Equation 3.38 into 3.37, we get
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e __ = fs. SG P e_ p_ e
6 " et0 " pn p Pn 6tv pn B

The useful concepts of stability investigation can be ap-

plied by stating that at threshold, v and 8 are proportion-

al to e with the real quantity R = 0

Ps S p 1~ ~

Substituting for t and tQ, we have
V D

Ps p2SVTL3 ., 4" = 1T

For a pseudo-classical model with Pr = 1, the above equation

becomes

Ps D_S P
2 p VT (3.44)
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From this, the critical driving force number (or Rayleigh

number) is found.

3.2 THE VAPOR-LIQUID PHASE SEPARATION MODE (VLPS)

3.2.1 The Thermodynamics Of VLPS

The thermodynamics of various VLPS systems is discussed

in this section, namely,

1) Ideal VLPS at linear range with terrestrial gravity

force

2) VLPS at linear range including surface energy effects

and gravity

3) Dynamic operation

4) VLPS at zero gravity

The discussion of the above systems will be based on the

condition of local thermodynamic equilibrium.

3.2.1.1 Ideal VLPS At Linear Range With Terrestrial Gravity Force

In this case, both the interfacial vapor-liquid contribu-

tion (surface tension) and the kinetic energy are neglected.

The thermomechanical (thermo-osmotic) pressure gradient is

providing for the liquid retention in the vessel (Figure

3.9b). The thermomechanical pressure difference is opposed

by the vapor pressure difference and the hydrostatic pres-

sure.

APT = pSAT = gpAZ + APy (3.45)
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Figure 3.9. Ideal VLPS system at laminar range
with terrestrial gravity force
(schematic diagram).
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In the P-T diagram, this case is depicted readily in graphi-

cal form as in Figure 3.9a.

The spatial distribution sketched in Figure 3. 9b cannot

be maintained indefinitely. At the critical velocity, the

quantized vortices generated from the superfluid require ki-

netic energy. Thus, for a given AT, a portion of the energy

supplied is converted into kinetic energy at the expense of

the thermostatic energy. For the present ideal case, it is

considered sufficient to rely on the "critical temperature

gradient". In recent time, it has been found for tubes (Di-

motakis 1974) and porous media (Frederking et al. 1981) that

the dimensionless T-gradient is proportional to (p /p ) .s n

From this criterion, we obtain a limit on the spatial condi-

tion T(z) .

(Ps/Pn) (3-46)

or

VT]c = Hc(ps/pn) nn / P SLc (3.47)

For small AT « T, we have an inequality
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|AT| / L < |VT|C (3.48)

This implies that

AP

• - < > (3-49>

Further, with A?v = ATpv\/T

AP

(3.50,

or

Apv pvX nn

-4For a critical temperature difference AT = 10 K at 2 K,

AP is less than 10 microbar (for a plug of 1 cm thick).
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3.2.1.2 VLPS At Linear Range Including Surface Energy Effect And
Gravity

Consider the grains of a phase separator (porous plug) at

the vapor-liquid interface (Figure 3.10a). At the "top"

with a small radius of curvature, there is a pressure gradi-

ent towards the "bulk". At the "bottom", there might be a

tendency towards a lower pressure than the vapor pressure.

However, the "bottom" is expected to tend towards a "flat"

interface. This effect ought to make the pressure rise at

the "top" the dominant effect, such that there is a net AP.

Thus, for a given AT the static contribution of the previous

case cannot be maintained. Therefore AP (=pgZ) becomes

less than before, as shown in Figure 3.10b. Thus,

AP
T = P9AZ + APv + APQ (3.52)

However, the surface tension effect is very small. For a 10

Vim plug, the pressure difference due to surface tension,

AP , is only of the order of 1 mbar.

3.2.1.3 Dynamic Operation

First an ideal system is considered, such as a capillary

with smooth inlet and exit geometry giving rise to Onsager-

Freynman vortex ring shedding. The energy is proportional

to pv /2. For instance (for an exaggerated schematic view)
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GRAIN

VAPOR

"TOP"

(b)

iTl__4i_ _

AT

Figure 3.10. Linear VLPS system with gravity
force and surface energy effects
included (schematic diagram).
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with velocity of order 100 cm/s, there is a dynamic pressure

difference of the order 1 millibar. This is indicated

schematically in the P-T-diagram in Figure S.lla.

2
Second, a real plug system is considered with pv /2 re-

ductions at various grains and narrow flow passages respec-

tively. The apparent path is expected to involve fluctua-

tions in pressure related to the local velocity

fluctuations. Similarly, the state functions of pressure

and temperature versus position coordinate show these ef-

fects (Figure 3.lib). Thus,

AP = pgAZ + AP + Ap + A

where AP .. , . is used to denote to kinetic terms,dissipation

3.2.1.4 VLPS At Zero Gravity

For the zero gravity case there is no hydrostatic pres-

sure. Therefore the initial P-T-diagram is changed signifi-

cantly. The absence of gravity "pushes" the "inlet" condi-

tion to a point quite close to the vapor pressure curve

(Figure 3.12). Thus, kinetic energy terms appear to be im-

portant. Because of this, it does not appear to be possible

to operate in the linear regime, and the above non-linear

operation with liquid accelerations (normal fluid accelera-

tions) has to be considered.
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Figure 3.11. Dynamic operation (including kinetic
energy) of VLPS (schematic diagram).

STATIC
ig ^
CASE V

Figure 3.12. VLPS operation at
zero gravity (schematic
diagram).
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(3.54)

3.2.2 Heat And Mass Transport In VLPS

The vapor-liquid phase separation mode belongs to the case

of finite mass flow. By introducing a relative velocity w,

one can eliminate the superfluid velocity v in Equation 2.2

and get

j = Pv = p vn - pgw (3.55)

where

W = Vn ~ Vs (3.56)

For finite mass flow, the heat flux density is usually

written as

q = pswST (3.57)
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Substituting Equation 3.57 into 3.55 and eliminate w, one

gets

pv = pv - q/ST
n M (3.58)

With the liquid helium being evaporated at the downstream,
->•

one can eliminate pv by

= XD = Apv (3.59)

and rearrange to get

3 = [ST/(X+ST) ] pvn (3.60)

or

= [X/(X+ST)]pSTvn (3.61)

Note that on the right hand side of the above equation,

pSTv is equal to the heat flux density in the zero net mass

flow (qZNMF)/ therefore
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One can further substitute Equation 3.16 and 3.28 into Equa-

tion 3.62 to get the laminar and turbulent transport equa-

tion in a VLPS,

2 9qVLPS=K [ X / ( X + S T > ] p S^ |VT| / i i n (Laminar) ( 3 . 6 3 )

n n ( 3 6 4 )

(Turbulent)

*
where K _„ is used to denote the Gorter-Mellink constant inC»M

porous media. The term X/(X+ST) in the above equation is

quite close to unity because X«ST. It ranges from -0.999

(at 1 K) to ~0.872 (at TX ). Therefore it is not unreason-

able to assume that the VLPS mode is pretty close to the

ZNMF situation. Especially at low temperature, the ZNMF

condition should be reached asymptotically.

Figures 3.13 and 3.14 show the property functions in

Equations 3.63 and 3.64 (for property data of He II, please
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Figure 3.13. Property function in Equation 3.63 versus
temperature.
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Figure 3.14. Property function in Equation 3.64 versus
temperature.
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refer to Appendix H). One can see that the heat flux densi-

ty is a strong function of the thermal properties of He II.

Therefore, a small change in temperature will result in a

drastic change of the heat flux density g. Thus in using

the preceeding equations, it is recomended to integrate the

equations from the downstream temperature T, to the upstream

temperature T rather than simply using the arithmetic mean

temperature.

Figures 3.15 and 3.16 represent the integrated function

for the laminar equation (Eq. 3.63). In Figure 3.15, the

downstream temperature is held constant with T being var-

ied, where as T is held constant as T. is lowered in Figure

3.16. Similarly, Figures 3.17 and 3.18 show the integrated

turbulent equation (Eq. 3.64), with constant T, in Figure

3.17 and constant T in Figure 3.18 (see Appendix C).

3.3 BOUNDARY LAYER MODEL FOR THE TRANSITION INTO
TURBULENT FLOW

Consider the flow of He II in a pipe with a boundary lay-

er thickness of 6 (Figure 3.19). Outside this layer, He II

flows with a relative velocity of w. Inside the boundary

layer, vortex cells are formed due to the shear stress.

Lets say that the cells are separated by distances of L .

According to the momentum theorem, the effective shear
->•

force F acting across a mean stream line is equal to the

rate of momentum transfer.
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Figure 3.15. Integration of the laminar VLPS equation
(Equation 3.63) from constant T, to various T ,
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Figure 3.16. Integration of the laminar VLPS equation
(Equation 3.63) from various T, to constant T .
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Figure 3.17. Integration of the turbulent VLPS equation
(Equation 3.64) from constant T, to various T ,
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Figure 3.18. Integration of the turbulent VLPS equation
(Equation 3.64) from various T, to constant T ,
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F = A T = d(mw/dt) (3'65)
w

where A is the wall area. T is the shear stress and m isw

the mass of the fluid.

The rate of change of momentum transfer can be written as

d (mw) • ? • - » - .
—rr—- = mw + wmat

Combining Equation 3.65 and 3.66, for steady state (w = 0)

A T = wm = A w2p (3.67)
w c

where A is the cross sectional area. For unit width A =o o

6x1 and A = L xl, the above equation becomes
Yt C

= 6w2p (3.68)

By definition
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w

Figure 3.19. Schematic diagram showing the
formation of vortex lines within
the hydrodynamic boundary layer.
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< £ > - „ ¥ <3'69)n 3y 'n6

Substituting Equation 3.69 into 3.68, we get

C (3.70)
2

P 6^

For pipe flow, the transport of He II is described by the

London-Zilsel equation

w ~ v = t—~—5 / o 7-1 \n o n (J • ' -1-1n

with $ = 1/8. Equating Equation 3.70 and 3.71, the boun-

dary layer thickness is found to be

6 = ( L n /^ p | V P | ) 4 (3'72)

Substituting Equation 3.69 for 6 and multiplying both

sides by L ,we have



L T , , , (3.73)
- <PC0IVPT|L' / ft*

If we now define a local friction coefficient

Cf = 2T / pw
2 (3.74)

then Equation 3.73 can be written as

C.. pwL _ „ ,

- T - l i = UOP'VPT|LC / ̂  (3.75)

or

= u pjvp |i/ / nn)* (3.76)

•

In dimensionless form the preceeding equation becomes

•

Nq - CB (NVT (3.77)

- 74 -



,
where CB = 2e */Cf. According to this model, the heat flux

density of He II is proportional to the fourth root of temp-

erature gradient instead of the cube root found experimen-

tally in the Gorter-Mellink case.
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Chapter IV

APPARATUS AND EXPERIMENTS

The experiments in this research can be divided into two

main categories, namely the vapor-liquid phase separation

and the permeability measurement experiment.

4.1 VAPOR-LIQUID PHASE SEPARATION EXPERIMENT

4.1.1 Apparatus of VLPS

The apparatus for vapor-liquid phase separation .(VLPS) is

depicted in Figure 4.1. The plug holder (with porous media)

was soldered onto the stainless steel pipe (grade 304, 2.54

cm I.D., 0.051 cm wall thickness) of the main apparatus (as

shown in Figure 4.2). For the preparation of the plug hold-

er and the mounting of the porous media please refer to sec-

tion 4.2.1.3. An outer vacuum jacket (304 stainless steel,

3.2 cm O.D. with 0.051 cm wall thickness) thermally insulat-

ed the inner vented helium vapor from the He II bath.

For easy control and reading of the He II liquid level, a

Kovar beaker was attached to the apparatus surrounding the

outer vacuum jacket

A fountain effect pump was used to replenish liquid heli-

um into the Kovar beaker. A schematic diagram of the foun-

tain effect pump is presented in Figure 4.3. Figure 4.4
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THE VLPS APPARATUS

VALVE C

VALVE

VALVE A

LIQUID
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COLD TRAP

kl
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TO GAUGE
PUMP

THERMOMETERS

He II

.POROUS PLUG

THERMO-PUMP

HEATER

Figure 4.1. Schematic diagram of the VLPS apparatus
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Figure 4.2. Schematic diagram of the vapor-liquid
phase separator.
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shows the typical results of the fountain effect pump (Yuan

et al. 1984). A heater was installed at the bottom of the

Kovar beaker to simulate external heat input from the in-

struments on board of a satellite. The vapor at the down-

stream vent pipe was pumped away by a Kinney mechanical pump

(model KC-46). Between the Kinney pump and the apparatus, a

cold trap was installed to prevent any backflow of impuri-

ties to the apparatus and thus contaminate the porous media.

Figure 4.5 is a schematic diagram of the liquid nitrogen

trap.

The temperature difference across the plug was measured

by carbon resistor thermometers. A spring made of a thin

stainless steel tubing was used to press the downstream

thermometer on the porous plug to make sure that it was mea-

suring the temperature right at the vapor-liquid interface

(Figure 4.2). Pressure taps were present on both the up-

stream and downstream of the system. Once again, a spring

device was used to press the pressure tap onto the plug at

the downstream side.

4.1.2 Thermometry and Heater

The temperatures in the VLPS experiment were measured by

carbon resistor thermometers (1/8 watt Allen-Bradley, 39

ohms). The insulation layer of the resistor was removed by

sanding the resistor into a thin slab. Teflon-coated copper
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Figure 4.3. Schematic diagram of the thermo-pump used
in the VLPS experiments to refill liquid
helium.
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wires (5 mils diameter) were soldered onto each side of the

thermometer. The thermometer was then coated with a thin

layer of varnish. Both the upstream and downstream thermom-

eter used in this experiment had a resistance of 93 ohms at

room temperature. The resistance measured by the carbon re-

sistor thermometers were calibrated against the Wallace &

Tiernan pressure gauges (model FA 145, FA 160). A least

squares program was used to fit the resistance and the pres-

sure data by the following equation

log R = A + B log P (4.1)

where A and B are experimentally determined constants. One

can obtain temperature readings from the vapor pressure by

using the T-58 scale (Brickwedde et al. 1960). The uncer-

tainty in temperature measurements are discussed in Appendix

D.

The heater in the VLPS experiment was made of teflon in-

sulated constantan wire (0.0076 cm, 3 mil in diameter). The

wire was wrapped around a short copper tube to increase the

heat flux surface area. The heater was then coated with a

thin layer of varnish to prevent any short circuit. The

heater used had a room temperature resistance of 50 ohms.

- 83 -



4.1.3 Instrumentation

Figures 4.6 and 4.7 depict the circuitry for the heater

and the thermometers. Current to the carbon resistors was

supplied by a Keithley current source (model 225). Two Hou-

ston Instruments X-Y plotters (model 2000) were used to re-

cord the resistance across the upstream and downstream ther-

mometers. The heater current was supplied by a Kepco

current source (model ABC 40-0.5). A Hewlett Packard Mose-

ley X-Y plotter (model 7035A) was used to record voltage

drop across the heater. The vapor pressure across the po-

rous plug was measured by a Pennwalt differential pressure

gauge (model 62D-4C-0040D) and a Validyne pressure transduc-

er (model DP 15-20) with a Validyne digital readout (model

CD 23). The mass flow rate (m) of liquid helium through the

5-15 ym bronze plug was measured by a 'pressure mass flow

meter'. The pressure difference from the downstream pipe to

the vacuum pump (Kinney, model KC-46) was measured by a Wal-

lace & Tiernan absolute pressure gauge (model FA 160). A

calibration curve of m versus pressure difference is shown

in Appendix E. The bath temperature of liquid helium above

and below T, were recorded by Wallace & Tiernan pressure

gauges FA 145 and FA 160 respectively, on the basis of vapor

pressure thermometry.

- 84 -



2
O
CO OS

cu
ac os .

OS O D
< Oi co

M W O-l

o
CO

CO

OS
W
EH
U
s

H
1-5
(J

EH
2

CO

Q
OS OS
< W
&5 Q
U OS
< x o
Oi W U

J tj
W OS

EH CO
EH O
W 2 >n
J
S
U
a:

I

x

CO

•H
i-l
0)
Ou
X

CO
Oi

Q)

0)
JJ
(0
QJ
.C

0)

1

H3I.V3H

O
l-i
•H
U

VD

Q)
M

iViSOAHD I
J

85



W
i-3 W

EH >H
2

Oi

H D
W U

tf D
C/D

w
4-1
C
V

•H
M
(U
a
X
Q)

a,

.c

c

2
O

O X

W
EH
EH
O

s
O >H

H
CO I

O X

tt
w
EH
H
O

L
iYiSOAHD EH I

I

0)
-P
(D

O
E
5-1
0)

J-i
4-1
•H
D
O
)-i
•H
U

Q)
V-i
D

86



4.1.4 Procedures for the VLPS Experiment

The VLPS experiment was carried out in an existing cryos-

tat. A schematic diagram of the entire system is presented

in Figure 4.8.

Prior to the experiment, liquid nitrogen was transferred

into the outer jacket. The by-pass valve (valve B) was

opened to equilibrate the pressure between the upstream and

downstream of the plug. The dewar was then evacuated over-

night by opening the main valve A with valve C closed. The

apparatus was purged with helium gas, and the evacuation was

repeated for at least two times. Liquid helium was then

transferred into the inner dewar. In order to cool the sys-

tem down to He II temperature, the vapor pressure on top of

the liquid helium was reduced. Latent heat of vaporization

was taken away and the system was cooled down following the

vapor pressure curve. During the cool down process, the

thermometers were calibrated by recording the bath tempera-

ture and the resistance readings of the carbon resistor

thermometers. The cold trap was filled with liquid nitrogen

and the apparatus was ready for the experiment.

The system was operated in three different methods:

4.1.4.1 The Transient Cool Down Experiment

In this experiment, the by-pass valve (B) was closed and

the downstream helium vapor was pumped away by opening valve

C. Data were taken as soon as the VLPS mode was reached.
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Since the vapor at the downstream was continuously being

pumped away, the bath temperature got lower and lower until

steady state was reached (Figure 4.9). The experiment was

repeated with different heater power input (Q=0 mW, 50 mW,

100 mW, 150 mW, 200 mW etc.).

4.1.4.2 The Transient Warm Up Experiment

The heater power was increased mechanically by using a

potentiometer. Starting with no heater input, the system

was ramped up to 1000 mW. The speed of the ramping was

pre-programmed. Data were collected as the heater power in-

creased (Figure 4.10).

4.1.4.3 The Steady State Experiment

For the steady state runs, the heater power was stepped

up (or down) in increments of 50 or 100 mW. Data were re-

corded when the upstream and downstream temperatures

reached steady state. After recording the data, the heater

power was stepped up (or down) to the next value (Figure

4.11).

In each of the above experiments, the upstream and down-

stream temperatures, vapor pressure differences, mass flow

rates and bath temperatures were recorded.

- 89 -



ORIGINAL PAQ'i IS
OF POOR QUALITY

•H
E-"

o
o
vo

o
o
IT)

O
o

o
o
ro

o
o
CM

O
O

0)
D
cr
•H
c
s:
u
cu
4J

c
o

o
o
u

10
c
03
S-l
JJ
0)

.Q

T3
0)

4->
O

O
O

(0
-U
(Ct)

CO

o
c3
M

(0
U
•H

QJ
CP
tO
-P
I—I
O

0
M
D

90



ORIGINAL FACIE *8
OF POOR

Q)

•H

o
o
VD

o
o
in

o
o

o
o
ro

o
o
<N

o
o

ro

o;
CP
m
4J

tr
•H
c

J2
u
0)
-p

3

E
>-l
(0

•H
to
c
(0
M
-p

Q)

T3
0)
4J
u
Q)

o
u
(0
4-)
(0

Hi

M-l

o
c
D

(0
u

•r-l

EH

•

O
.-I

*
T

0)

D
CP

91



ORIGINAL
OF POOR QUALITY

CD
E

o
o
>£>

O
O
ID

O
O

O
o
ro

O
O
CM

O
O

<D
D
CT

•H
C

U

-P

0)

(0
4J
0)

a)
-P

Q)
x:
-p

X! >
-iH

T3 -P
0) U
*J Q)
O d-
0) CO
.-( 0)
^H >-l
O
o w

a;
m £.
•u u
(0 (0
T) O

M
- 04w cu

(0

C W

M -H
W

•-i (0
(0 3
U CT
•H

c
ITJ

QJ
Cn

••a-

Q)

CP

92



4.2 PERMEABILITY MEASSUEMENT EXPERIMENTS

There are a number of ways one can measure the permeabil-

ity of porous media. In this section, the pressurized heli-

um gas permeability determination, the liquid outflow exper-

iment of He I and the cold vapor permeability measurement at

below 4.2 K will be discussed.

4.2.1 Pressurized Helium Gas Permeability

In this experiment, the permeability K was measured by

passing helium gas through the porous plugs. The K 's were

calculated from Darcy's law. Figure 4.12 is a schematic di-

agram of the apparatus. The main part of the apparatus con-

sists of a plug chamber made of stainless steel (grade 304,

O.D.=2.54 cm, wall thickness = 0.065 cm), Figure 4.13. The

end caps of the plug holders were machined out of brass.

Incorporated within both end caps were provisions for helium

gas throughput tubings, thermocouple leads and pressure

taps. Rectifying tubes were installed at the upstream end

cap. Copper mesh was stuffed between the end cap and the

rectifying plate to trap and absorb any impurities in the

helium gas. A heat exchanger (made of copper tubing with

O.D.=3.18 cm wound into a spiral coil) was installed between

the plug chamber and the helium gas cylinder. Such a heat

exchanger acted as a cold trap for permeability tests below

room temperature. Without the cold trap, impurities would

condense in the porous media and reduce the K . The porous
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Figure 4.12. Schematic diagram of the permeability
measurement apparatus.
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Figure 4.13. Schematic diagram of the permeability
measurement chamber.
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plugs were mounted onto the plug holders by Stycast (1266).

Pressure taps were present at both the upstream and down-

stream side of the plug to measure the differential pres-

sure. Thermocouples were used to sense temperature within

the plug chamber, Figure 4.13.

4.2.1.1 Thermometry

In this experiment, the temperatures within the plug chamber

were measured by thermocouples made of Chromel-Constantan

wires (0.0076 cm, 3 mils in diameter). The thermocouples

were positioned on both the upstream and downstream side of

the plug. The constantan wires ran from the reference temp-

erature bath to the inside of the plug chamber through a Ko-

var lead (as shown in Figure 4.13). Stycast (1266) was used

to seal the gap between the wires and the Kovar leads. The

thermocouples had been calibrated against temperature at

three fixed points (as shown in Appendix E) and was found to

agree within 2 K with the data of NBS Circular 561 (1955)

and Omega Engineering Manual (1979).

4.2.1.2 Instrumentation

The helium gas flow rate was measured by a Precision

Scientific wet-test flow meter (model 63118) and a Brooks

Instruments rotameter (model P-72-H-RO). The differential

pressure across the plug was recorded by a Pennwalt differ-

ential pressure gauge (model 62D-4C-0040D) and a Validyne
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pressure transducer (model DP 15-20) with a Validyne digital

readout (model CD 23). The voltage across the thermocouples

were recorded by two Houston X-Y plotters (model 2000) as

shown in Figure 4.14.

4.2.1.3 Procedures for Pressurized Helium Gas Permeability Tests

Before the experiments, the porous plugs to be tested had

to be mounted onto the plug holders. The plug holders were

machined out of stainless steel pipes and their dimensions

are presented in Figure 4.15. After weighing the plugs on a

beam balance (to determine their porosity E) they were glued

onto the plug holders by Stycast (1266). Precaution has to

be taken such that the viscosity of the Stycast was not too

low that it would be soaked into the pores of the plugs.

The end caps were then soldered onto the plug holder. For

room temperature permeability measurements the procedures

were simple. Helium gas was passed from the gas cylinder to

the test chamber, Figure 4.12. The gas flow rate was cont-

rolled by a Matheson regulator (model 3104 A) . Flow rate

and differential pressure readings were then recorded. To

test another porous medium, simply unsolder the end caps and

put in a new holder with the plug to be tested.

For permeability measurements below room temperature (say

at liquid nitrogen temperature, 77 K), the procedures were

slightly modified. The cryostat in Figure 4.12 was filled

with liquid nitrogen. Besides recording the flow rate and
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the differential pressure, both the upstream and the down-

stream temperatures were measured. A Union Carbide molecu-

lar sieve (part# SG 6140) was also installed between the gas

cylinder and the apparatus to remove any impurities that

might be condensed in the porous plugs.

4.2.2 Liquid Outflow Permeability of Helium I

For the liquid outflow tests, the experiment was conduct-

ed using the VLPS apparatus. Therefore both the instrumen-

tation and thermometry & heater description will be same as

section 4.1. The only difference was the procedures of op-

eration. The experiment was performed at temperature above

the T.. Referring to Figure 4.1, the by-pass valve (B) was

closed and the downstream pressure was reduced by opening

valve C. Liquid He I was forced through the porous plug and

accumulated at the downstream vent pipe. The by-pass valve

was then opened with valve C closed allowing the liquid to

flow back into the upstream beaker under gravitation force.

The liquid level, temperature and time were recorded. Per-

mealility was calculated by the Darcy limit of Ergun's equa-

tion. Figure 4.16 is a schematic diagram of the He I out-

flow experiment.
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Figure 4.16. Schematic diagram of the liquid
He I outflow experiment.

101



4.2.3 Cold Vapor Helium Gas Permeability

This experiment was also performed in the VLPS apparatus.

Data were collected when the liquid level was below the po-

rous plug. The vapor at the vent line was pumped away by

the Kinney pump with valve C open. The upstream and down-

stream of the system was isolated with valve B close. The

gas flow rate was controlled by liquid boil-off using the

heater, see Figure 4.17. Data were collected at tempera-

tures below 4.2 K. The mass flow rate was measured at the

downstream side by using a line section as 'pressure mass

flow meter' (for the calibration of the mass flow meter, see

Appendix E). Both the vapor pressure difference and the

temperature across the plug were recorded. The cold vapor

permeability was calculated by the Darcy limit of the Ergun

equation.
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Figure 4.17. Schematic diagram of the cold
vapor permeability measurement
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Chapter V \

RESULTS AND DISCUSSION

The permeability (K ) is very important in characterizing

porous media used for vapor-liquid phase separation (VLPS)

in the present model. It is crucial to measure the K accu-

rately. Once the room temperature K of the plugs is known,

the VLPS data can be analyzed with considerable confidence.

Therefore, the results of VLPS experiments will be discussed

following the permeability measurement results in this chap-

ter.

5.1 PERMEABILITY MEASUREMENT RESULTS

Four different methods of K measurements were performed.

5.1.1 Room Temperature Permeability

The porous media being tested were purchased from two

different manufacturers. They consisted of 0.5, 2, 5 and 10

ym filtration grade stainless steel plugs from Mott Metal-

lurgical Corporation, also 2 ym (stainless steel) and 5-15

ym (bronze) particle removal size plugs from Pacific Sin-

tered Metals Company (PSM). The permeability was calculated

by using Darcy's law.
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v = K AP / n L (5.1)

In Figure 5.1, the square root of permeability is plotted

as a function of the particle removal size (or filtration

grade), S . From such a plot, one can see the range of

permeability for each pore size. The dash-solid lines are

drawn to guide the eye. It is seen that the range of K in-

creases with the decrease in pore size. This is expected,

because as the particle diameter becomes smaller the possi-

ble configuration inside the plug becomes more unpredicta-

ble. The manufacturing of these very small plugs leads to a

more compressed top and bottom domain of the porous media.

Various characteristic lengths are plotted versus perme-

ability in Figure 5.2. The figure includes particle removal

î
size or filtration grade (S ), K 2 and equivalent Ergun

î
diameter. The characteristic length = K 2 is used in the

calculation of dimensionless numbers, e.g. N , N̂ -, and the

Reynolds number. Note that the L versus K function isc p

completely linear because of the definition of L . The
C

equivalent Ergun diameter (DE) is obtained from the analogy

between Darcy's law and Ergun1s equation
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Figure 5.1. Nominal pore size versus square root of
permeability (see Table 1.6 for detail).
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D = KJ (1 - e) (150 / e3)* (5-2)

£, P

The plug results of German (1981) are also included in Fig-

ure 5.2. Good agreement is found between the present exper-

iments and German's data.

The K 's measured for various plugs are very reproduci-

ble. One question remains whether the room temperature

permeability will be retained at low temperatures (say below

4.2 K). In the following sections, the K measurement at

low temperatures will be discussed.

5.1.2 Cold Vapor Permeability Measurement

The passage of pure vapor through porous media is one of

the simplest and cleanest methods of measuring permeability

at low temperatures. The K 's can be obtained by Darcy's

law (Equation 5.1) for the laminar flow of vapor through the

plugs. One can also calculate the permeability by the Darcy

limit of Ergun's equation. By substituting Equation 5.2

into Ergun's equation one gets

. —
K
P n(150e3K )* {
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In Figure 5.3, K calculated by Equation 5.3 is shown as a

function of the vapor temperature for a 5-15 ym PSM bronze

plug. Excellent agreement (within 10 %) is found between

the room temperature K and the low temperature vapor perme-

ability measured at 1.5 - 2.4 K. A similar result for

^Clipping's 1 ym ceramic plug is presented in Figure 5.4.

Again, the room temperature permeabilities appear to be re-

covered at low'temperatures.

5.1.3 Liquid Outflow Permeability of He I

From the procedures described in Section 4.2.2, the flow

rate of He I can be measured from the change of liquid level

in the Kovar beaker. For little or no vapor pressure dif-

ference across the plug, the only driving force in the ex-

periment was the hydrostatic pressure. Therefore, one can

express both the pressure gradient and the velocity term in

the modified Ergun equation (Equation 5.3) by the rate of

change of liquid level

1.75a?p(150K e3)"^(dz/dt)2 + a (n/K )(dz/dt)
i P i f

(5.4)

-(gp/L)Z = 0

where a is the area ratio. A Runge-Kutta-Fehlberg algor-

ithm was used to integrate the above equation (see Appendix
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Figure 5.3. Cold vapor permeability of a 5-15 urn bronze
PSM plug (P5-15B2-4x4).
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Figure 5.4. Cold vapor permeability of a 1 unt ceramic
plug (Denner et al. 1977).
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F).

Figures 5.5 to 5.8 show experimental results of He I out-

flow through the same plug used in the cold vapor test with

different initial liquid level. The dashed line represents

Equation 5.4 with viscosity TI = 30 yP and K = K =^ J ' •* p p,room

-8 27.364 x 10 cm . The data show good agreement with the

theoretical curve indicating that the room temperature

permeability is indeed retained at such low temperatures.

5.2 THE VAPOR-LIQUID PHASE SEPARATION RESULTS

In order to achieve true vapor-liquid phase separation

(VLPS) mode, the downstream of the porous plug tested must

be dry. Following the procedures outlined in section 4.1,

the VLPS mode could not be reached instantaneously. Figures

5.9 and 5.10 represent the results of a 10 ym Mott plug

(M10Sl-4xl) at the beginning of a typical run. The - bath

temperature and mass flow rate are plotted in Figure 5.9 and

the temperature difference and vapor pressure difference are

presented in Figure 5.10.

As the valve to the downstream pump was opened during the

experiment, the bath temperature decreased monotonically.

For m in Figure 5.9, a negative mass flow rate indicates

that the liquid was flowing from upstream to downstream

(from the Kovar beaker to the downstream vent pipe), whereas

a positive value shows that the liquid was traveling in the

opposite direction. At the start of the experiment (region

-no-
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A and Figure S.lla), liquid He II was forced through the

plug as the valve was first opened because

pg(Zo-Zi)

where pg(Z - Z.) is the net hydrostatic pressure, with Z.

and Z the liquid level inside the vent pipe and the Kovar

beaker respectively. As the thermo-osmotic pressure in-

creased (due to the increase of temperature difference, Fig-

ure 5.10) and the liquid level at the downstream rose, the

right hand side of Equation 5.5 finally surpassed the vapor

pressure difference

(5.6)

This section is represented by region B in Figure 5.9 (also

Figure 5.lib). At this stage, liquid flowed back into the

upstream region. This is indicated by a positive mass flow

rate in Figure 5.10.

When the liquid at the downstream side was emptied out

(Figure 5.lie), the true VLPS mode was achieved (region C),

thus
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AP = AP + Dq(Z -Z.) (5.7)
T v o i

Note that the above thermodynamic equation is only valid for

ideal transport where the dissipation effect is ignored. In

the actual VLPS mode, the thermo-osmotic pressure was found

to be much larger than the sum of the hydrostatic pressure

arid the vapor pressure difference. The VLPS data of a 2 ym

and 10 ym Mott plug and a 5-15 ym PSM plug are presented in

Figure 5.12. The thermo-osmotic pressure is plotted as a

function of the sum of vapor pressure and hydrostatic pres-

sure across the plug. As expected, APT is found to be much

larger than AP and pgZ. Thus the dissipation effect of He

II in porous media used for VLPS is significant, and the

ideal laminar transport is difficult to achieve. This is

especially true for zero-gravity space operations where the

hydrostatic term in Equation 5.7 is negligible. Since the

thermo-osmotic pressure is always an order of magnitude lar-

ger than the vapor pressure difference, a large dissipation

term must be present such that

(5.8)

Therefore, for VLPS in space, only the turbulent regime

seems to be feasible (as described in the preceeding section

on the thermodynamics of VLPS at zero gravity) .
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Figure 5.12. Comparison of the thermo-osmotic pressure
to the sum of vapor pressure and hydrostatic
pressure across the phase separator.
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Using the AT measured from a section of the porous media

(close to the upstream side), Murakami (1984) was able to

fit his VLPS data by a modified Blake-Kozeny equation, as

shown in Figure 5.13

where

£M = 150 / ReM (5.9)

*•„• ("OV'' onn / nn

and

f = (150K e3)*pSVT / pjv^ (5.11)M p n n

Note that the modified Blake-Kozeny equation is same as the

thermo-osmotic Darcy equation (Equation 3.15) based on the

near-spherical particle assembly model. Please refer to

derivation in Appendix G. Included in Figure 5.13 is the

modified Ergun equation (by analogy with the Darcy law, see

Appendix B) for normal fluid flow at various temperatures

-121 ~



10"

f,M
2

10

10'

0
lO'r

= \

1.5 K
1.7 K
1.9 K

CLASSICAL ERGUN'S
EQUATION

T =
T =
T =

I i i i mil i i i 11 n i i i i i IIL

10" 10 IOV 10' ReM

Figure 5.13. Comparison of Murakami's data to the
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fluid flow (Equation 5.12).
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1.75 % >
+ -

Kp

For the classical Ergun equation, the data starts to deviate

from the laminar regime at a Reynolds number of about 10.

However, for the modified Ergun equation for normal fluid

flow, the data should turn turbulent with Re less than 10.

In Figure 5.13, Murakami's data show no tendency to deviate

from the Blake-Kozeny equation for Re > 10. Moreover, Mura-

kami's data tend to curve concave down instead of concave up

as predicted by Ergun's equation. It is possible that by

measuring the temperature difference across a section of the

porous media, the data do not represent the true VLPS mode.

Moreover, the downstream thermometer might not be measuring

the temperature right at the vapor-liquid interface.

Figures 5.14 to 5.17 are results of VLPS runs of this re-

search for Mott 2 vm and 10 ym stainless steel plugs and PSM

5-15 ym bronze plug. The data were collected by the tran-

sient cool down technique as discussed in Section 4.1.4.1..

Figure 5.14 is a plot of the liquid level (inside the Kovar

beaker) as a function of time. During the VLPS run, a fi-

nite amount of He II penetrated through the plug to the

downstream vent line, resulting in a decrease in the liquid

level at the upstream side. From the conservation of mass,

the flow rate through the porous medium can be obtained.

- 123 ~



z
(cm)

25

20

15

10

0

\

<x<X o.
- -o-o-o-

XX

•o.
o

O 2 um MOTT (M2Sl-4xl)

V 10 um MOTT (M10Sl-4xl)

O 5-15 um PSM (P5-15B2-4x4)

0 200 400 600 800
•t(s)

Figure 5.14. Liquid level as a function of time (VLPS data).

124



1 6

(K)

1.5

.1.4

\X

-<>

O
\

5-15 um PSM

V 10 um MOTT

O 2 urn MOTT

\

-o-o-o-

0 200 400 600 800

Figure 5.15. Upstream temperature as a function of time
(VLPS data).

125



APV

(torr)

0

x>

V\
\

<£> 5-15 urn PSM

V .10 um MOTT

O 2 um MOTT

o

V

I I I I I

0 200 400 600 800

Figure 5.16. Vapor pressure difference as a function of
time (VLPS data),

126



H EH
EH EH
O Os s
E

CO

b
\

E e
3. 3-

CM

OD>O

\

\

\> \

I I

L.
L
O

Q>

tO
cvi

Q
CO

LO

O

O CvJ

tO
O

O

en
(fl
O
>-i
O

0
Oc
V
S-l
0)

0)
>-l
3
W
in
QJ
S-l
a

O
a
(0

Q)
,C
-P

C
O
•H
-P
U
C (C
3 -P

tw (0
TD

(0
W

tn CM
rd iJ

-P
•H Jji
W 3
C -H
o a

w
x 3
3 O
—I H
u-i O

a
in
in a)
(0 .C

0)
CVJ

E
a

in
0)
i-l
3
Cn

127



The upstream (or bath) temperature and vapor pressure

difference across the plug are shown in Figures 5.15 and

5.16 respectively. During the cool down process, both the

T and AP decreased monotonically. From the liquid level

change, the mass flux density can be calculated and is pre-

sented in Figure 5.17 versus AP .

A number of investigators have tried to characterize po-

rous media used for VLPS. For example, Hendrick and Karr

(1982) used the capillary model (Equation 1.5) and Petrac

and Mason (1978) used the proportionality constant F (Equa-

tion 1.6). As was mentioned earlier, the room temperature

permeability is retained at low temperatures. Thus, the

Darcy permeability is a very useful parameter for the char-

acterization of porous plugs used for VLPS.

Yet another method of measuring permeability at low temp-

eratures is possible by utilizing the VLPS data. Looking at

Equation 3.63, it. is easy to see that

qVLPS * qZNMF (At low T and (5.13)
small flow rate)

because X/(X+ST)~1. Therefore, for VLPS data with small AT

at low temperatures, the zero net mass flow laminar equation

should be observed (Equations 3.16 & 3.17). The VLPS data
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of a 5-15 ym PSM bronze plug (P5-15Bl-4x4) is plotted in di-

mensionless form of N versus NV_ in Figure 5.18. These

data were taken by the transient cool down technique. As

the temperature difference across the plug and the bath

temperature decreased, the ZNMF laminar equation of N = N_T

was approached asymptotically. Also included in Figure 5.18

are the VLPS data of Petrac and Mason (1978) with a stain-

less steel collimated hole plug and Klipping's (Denner et

al. 1977) 10 vim glass plug. Both sets of data show the as-

ymptotic behavior.

The same data are replotted in a different form in Figure

5.19. The ratio of the normal fluid permeability (K ) over

the room temperature or Darcy permeability (K ) is pre-

sented as a function of the mean temperature across the po-

rous media. The K 's were calculated by Equation 3.16. If

the VLPS results do indeed follow the ZNMF laminar equation,

then K /K =1. From Figure 5.19, one can see thatpn p,room

the room temperature permeability was approached for small

flow rates (small AT and low temperatures).

Figure 5.20 is a plot of mass flux density versus temper-

ature difference across the porous media for the 2 ym, 10 ym

(Mott) and 5-15 ym (PSM) plugs. Due to the extreme sensi-

tivity of Equation 3.64 to temperature, the 1/3 power law of

j on AT cannot be observed for transient data. Even for

constant bath temperature results in the literature, the
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"1/3" law of Gorter-Mellink might be hidden if the tempera-

ture across the plug is large. In order to compare with the

experimental data, Equation 3.64 is integrated by Simpson's

rule from T, to T (Appendix C)

qVLPS = 1J (KGMnnST ITST ~} 7 T dij (5-14)
Td pnnn

For the sake of simplicity, Equation 5.14 can either be

integrated up with constant T , or integrated down with cons-

tant T . This way, smooth curves like that of Figures 3.15

and 3.16 can be generated. In Figures 5.21 and 5.22 the

present experimental data are compared with the integrated

Gorter-Mellink equation. The mass flux density is plotted

against the bath (or upstream) temperature. The results of

the 5-15 ym bronze plug are presented in Figure 5.21. The

open symbols represent data taken by the transient cool down

technique where a bath temperature of 1.3 K was approached.

The full symbols are data collected by the transient warm up

method as mentioned in section 4.1.4.2.. Both sets of data

were fitted by integrating Equation 5.14 with constant T, of

*
1.3 K and 1.5 K, using a K _M value of 1.4. Results of the(jfi

two Mott plugs are shown in Figure 5.22. Gorter-Mellink
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constants of 0.0081 and 0.171 were used to fit the 2 ym and

10 ym plugs respectively, with T, = 1.4 K. Good agreement

is found between the theory and the experiments.

The modified Gorter-Mellink equation is also compared to

other VLPS data reported in the literature. Results of

Klipping (Denner et al. 1977) are presented in Figure 5.23.

Data are presented for a 1 ym ceramic plug and a 10 ym glass

plug. Besides an excellent agreement with Klipping's re-

sults, Equation 5.14 can also predict the leveling of mass

flux density for the 1 ym ceramic plug at T > 2.0 K. Look-

ing at Figure 3.14, one realizes that the property function

in Equation 5.14 drops drastically for T > 2.0 K. There-

fore, in integrating Equation 5.14 from T, to T > 2.0 K, the

increase in area under the curve beyond 2.0 K is small and

the flow rate levels off. The mass flux data of the in-

flight IRAS porous plug (Petrac 1979) is recreated in Figure

5.24 as a function of the vapor pressure difference. The

result is rearranged by plotting j versus T, in Figure 5.25.

These data were taken at constant bath (or upstream) temper-

ature. In this case, Equation 5.14 is integrated at cons-

tant T with T, varied. Note that for T = 1.69 K and 1.8u d u

K, the data are slightly below the theoretical curve. Look-

ing at Figure 5.24, one realizes that these data were pretty

close to the laminar region. Since these data might be in

the transition regime (between laminar and fully developed
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Figure 5.23. Comparison of the modified Gorter-Mellink
equation to data of Klipping et al.
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Gorter-Mellink transport), the use of Equation 5.14 might

predict a higher flow rate. Figures 5.26 to 5.28 represent

VLPS data of Murakami et al. (1984). Again, the experiments

were performed with constant bath temperature. Data of cer-

amic plugs (No.s 3 and 4 in Murakami 1984) are plotted in

Figures 5.26 and 5.27 respectively. The results of a sin-

tered stainless steel plug are shown in Figure 5.28 (No. 6

in Murakami 1984). It is noted that for plug No.s 4 and 6,

the modified Gorter-Mellink equation (Equation 5.14) tends

to give a high prediction at low temperature and a low pred-

iction at high temperature. As discussed before, the lami-

nar linear regime is more easily accessible at low tempera-

ture (asymptotic region). Therefore, the fact that the data

might be in the transition regime results in a lower mass

flux density value than the fully developed Gorter-Mellink

prediction. For the high temperature case (T > 2.05 K), the

mass flow rate of Murakami's data is found to be much larger

than Equation 5.14. In a number of Murakami's ceramic

plugs, he noticed a radical increase in the flow rate as the

temperature gradient was increased at T, > 2.05 K. Murakami

considered this behavior as a typical flow feature of some

porous plugs, and plug No. 4 was one of them. As for the

stainless steel plug (No. 6), leakage was observed by Mura-

kami for T, > 2.06 K. The breakthrough resulted in a much

larger flow rate. In either case, for plug No.s 4 and 6,

the flow at high temperature was not governed by the Gorter-
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Figure 5.26. Comparison of the modified Gorter-Mellink
equation to the VLPS data of Murakami's
No. 3 ceramic plug (Murakami 1984).
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Mellink transport and is not expected to follow Equation

5.14.

The only adjustable parameter in the present modified

*
Gorter-Mellink equation is K GM- For each porous medium, a

*
single K _M is used to fit the data. It is found that every

plug is characterized by a unique K GM. In Figure 5.29, the

*
room temperature permeability is compared against K _ . The

following result is found

KGM

Lets look at the possible physical meaning behind the

above relation. At steady state, the annihilation and

growth of the vortex lines in Vinen's model should be ba-

lanced. Thus, Equation 3.31 becomes

= £ __ h_ 2
h
vo

Pn 27rmB x

Substituting Equations 3.26 and 3.32 into 5.16, one can eli-

minate xn, i- and the Gorter-Mellink coefficient A_.. to get1 2 UM
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K3 _i_e
GM - 2* pn hB

The above equation shows the relationship between KGM and

w/L. For unbound liquid helium, L is the length of the

vortex line per unit volume at equilibrium. Let's say that

for the transport of He II in restricted geometries

Lvo = 5/volume = 5/Lp (5.18)

where £ is the total length of the vortex line in the res-

tricted volume. For the transport in porous media, a useful

•L,

characteristic length is L = K 2. Thus, Equation 5.17 can

be rewritten as

Note that K _.. is introduced to distinguish the Gorter-Mel-

link constant in porous media. Therefore, if Vinen's vortex

model can be extended to transport of He II in porous media,

-146 -



then the Gorter-Mellink constant should be a linear function

ĵ
of L or K 2. This linear behavior indicates that the in-

fluence of pore size on the vortex tangle is more than a

simple decay of lines at the walls (as predicted by Equation

3.33). Equation 5.19 suggests that as the pore size is re-

duced the vortex tangle is pinched. This results in a lar-

*
ger mutual friction and A-., increases whereas K _.. decreaseson UM

accordingly (Equation 3.26).

So far, the Gorter-Mellink constant K_.. has not received
UlYl

the attention that it deserves. If the Gorter-Mellink coef-

ficient A-., is a measure of the mutual friction between the
UM

normal fluid and the superfluid, then K-.. is the measure ofiji*i

the throughput of the normal fluid. For the transport of He

II in wide ducts, Soloski (1977) found that K equals to

11.3. In Figure 5.30, A values from various authors are

compared with Equation 3.26, with K.,.. = 11.3. Schwartz's
(jFl

theory (1978) is also included in Figure 5.30. Reasonable

agreement is found between Equation 3.26 and the literature

values. Note that a different definition of the 'Gorter-

Mellink regime' has been adopted by the Klipping group

(Schotte 1980) which departs significantly from the common

usage adopted in the present work.

In a recent article, Ladner (1983) pointed out that the

Gorter-Mellink coefficient is "strongly geometry- and temp-
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erature-dependent and that the often-quoted average value of

50 cm-s/g is inadequate for most meaningful calculations in-

volving A_ ". Since K_M is not a function of temperature,Grl UM

using Equation 3.26 is much more accurate and convenient

than the rough estimation of A = 50 cm-s/g.

From Figure 5.29 one realizes that for the same nominal

pore size, the ceramic or glass plugs tend to give a smaller

*
throughput (K .. or K ) than the corresponding sintered me-

tal plugs.

The results of Klipping1 s group (Denner et al. 1977) for

a 1 ym ceramic plug are plotted in Figure 5.31 together with

some typical active phase separation data (Schotte et al.

1980). Since it was shown that Klipping's data follow the

modified Gorter-Mellink equation, the much steeper slope of

m versus AP of the slit data seems to indicate that the ac-

tive phase separation system was actually operating in the

breakthrough regime at high flow rates.
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Chapter VI

CONCLUSIONS

The major conclusions of this research can be summarized

as follows.

1) Newtonian Flow Results

2) He II Flow Results

6.1 NEWTONIAN FLOW RESULTS

A number of porous plug characterizing parameters were

investigated, for examples, the Darcy permeability K , the

equivalent Ergun diameter D™ and the nominal pore size S .
£j O

Among the three characteristic lengths, the equivalent Ergun

diameter has the largest value. It is related to the Darcy

permeability via the following equation

(1 - e) (150K / eJP (6-1)
P

For each nominal pore size of the porous media, a range of

permeability was found due to the manufacturing tolerances

(e.g. the presence of "dead zones"). The range of K in-
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creased with decrease in pore size, because as the particle

diameter becomes smaller, the possible configuration within

the plug becomes more unpredictable. For commercially avai-

lable sintered plugs, modification of the plug compression

is expected to improve predictability.

The room temperature permeability of various plugs with

different pore size (ranges from 0.5 to about 10 vim) has

been measured and good reproducibility was found, especially

for the large grain size plugs. It is recommended to mea-

sure the plug permeability at low temperature, so that one

would be more confident to apply the Darcy permeability (K )

to the VLPS mode.

In the present investigation, three different methods

have been used to determine the low temperature permeabili-

ty, namely, the cold vapor K measurement, the zero net mass

flow asymptotic limit and the liquid He I outflow experi-

ment. These experiments are readily carried out using

the VLPS apparatus for which the cold vapor method is the

most convenient. The room temperature K was found to be

reproducible at low temperatures, departing not more than

10% (by using the cold vapor technique). It is concluded

that one should use the Darcy permeability to characterize

the porous plugs used for VLPS.
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6.2 HE II RESULTS

A major conclusion of the present VLPS investigation is

the dominance of thermal transport which controls the plug's

transport rate of the two-fluid system. The externally ap-

plied temperature difference, necessary for thermo-osmotic

liquid retention, causes heat flow, i.e. normal fluid flow.

Aside from a small deviation of the VLPS transport from the

ZNMF, known ZNMF functions serve as a useful basis for quan-

tification.

The modified Gorter-Mellink equation derived in the pre-

sent turbulent model (based on ZNMF)

(KGMVT

is very successful in predicting most of the phase separa-

tion data in the literature and the present work. This sug-

gests that the normal operating condition for VLPS is in the

turbulent, regime. For data taken close to the transition

region between the laminar and the turbulent flow, Equation

6.2 predicts a higher mass flow rate due to the fact that

the turbulent transport is not fully developed. On the oth-

er hand, for breakthrough data, a much higher mass flow

(than the one predicted by Equation 6.2) is found.
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At low temperature and small flow rates, the laminar zero

net mass flow equation

ZNMF = KpPS|VT|/ % (6.3)

is approached asymptotically by the VLPS data. There is a

factor of X/(X+ST) causing a small difference between Equa-

tion 6.3 and the laminar VLPS equation proposed in this dis-

sertation (Equation 6.4),

a 2 ?qVLPS=K [X/U+ST) ]p SZ|VT|/nn (6.4)

Within the scatter of the VLPS data, the ZNMF mode gives a

very good approximation for the VLPS of He II (X/(X + ST)

ranges from 0.999 at 1 K to about 0.872 at T.).

From the preceeding findings, the possible operation con-

ditions for the VLPS mode can be mapped as shown in Figure

6.1. At small flow rates, the data follow the laminar VLPS

equation (Equation 6.4). As the AP increases, the flow

turns into the transition regime and finally into the turbu-
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AR.

Figure 6.1. Schematic diagram showing the possible operat-
ing conditions for the vapor-liquid phase
separation of He II.
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lent range. When the pressure difference is very high, the

onset of breakthrough occurs. Breakthrough is characterized

by a sharp increase in the flow rate. This regime is not

recommended for VLPS, because of the large amount of liquid

loss, and the radical change of m with AP makes the system

extremely unstable. After the completion of breakthrough,

the flow turns into the classical Newtonian flow.

As mentioned earlier, there are secondary effects in

VLPS. The fact that the modified Gorter-Mellink equation

was able to describe most of the VLPS data of the present

work and the literature indicates that for the porous media

investigated, the surface tension effect and the thermal

conductance of the plug materials have a secondary influ-

ence. However, for pore sizes < 0.5 ym, the surface tension

effect within the plugs cannot be ignored. Also for very

small pore size plugs, made of highly conductive metals, the

clamping of the normal fluid results in the transport of

heat through conduction within the solid grains. In this

case, the Fairbank model is very useful. It is also found

that for the same nominal pore size, the ceramic or glass

*
plugs tend to give a smaller throughput value (K or K )

than the corresponding sintered metal plugs.

In fitting various VLPS data to the modified Gorter-Mel-

link equation, a unique correlation is found between the

permeability and the Gorter-Mellink constant
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K GM is plotted as a function of the room temperature perme-

ability in Figure 6.2. For large permeabilities, the wide

duct value of K_M = 11.3 is approached. Interpolating bet-

ween the two limits, the following equation is proposed

GM = [(1/KGM)2

The data in Figure 6.2 are interpreted as providing the

first evidence of the dependence of vortex tangle (or mutual

friction) on the pore size. As the pore size is reduced,

the vortex lines are pinched together and the throughput of

the normal fluid is decreased as the mutual friction (or

A_M) increases. In extending Vinen's vortex model to theOM

*
transport of He II in porous media, K _M is found to be pro-

portional to the square root of K . This agrees with the

findings of the present model.

Within data scatter, Equation 6.6 is very valuable for

the design of VLPS systems. Knowing the desired heat load

and operating conditions (e.g. bath temperature) one can
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obtain the corresponding K value via the modified Gorter-

Mellink equation (Equation 6.2). The porous plug with the

reguired permeability can thus be found by Equation 6.6 or

Figure 6.2. In cases where the VLPS design requires a wide

range of heat load (the heat load during launching can be

guite different from that of the normal operation), a combi-

nation of porous plugs with different permeability is recom-

mended.

On the basis of local thermodynamic equilibrium, it is

found that zero-gravity operations of the present plugs and

most of the literature.plugs take place in the turbulent re-

gime .

Concerning future work, it is noted that there are very

few plug results for the ZNMF mode in the turbulent regime

of fine porous media. On the other hand, concerning wide

pore systems of VLPS, there are very few data in the laminar

range.

A major improvement of VLPS understanding resulting from

the present work, with respect to previous attempts, is the

*
recognition that the constant K _.. is a function of the pore

OM

size. Also, the temperature dependence of the properties

requires the integral of Equation 6.2.
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APPENDIX A

Landau's Equations for the Two Fluid Model

The hydrodynamic equations of the two fluid model arise

as follows. For pure superfluid flow at absolute zero with
-»•

velocity v , it is convenient to consider the liquid beings
->•

at rest and the wall of the tube is moving at a speed of v .s

The interaction between the wall and the liquid excites the

phonons and rotons in the He II.

Landau has shown that the energy of liquid helium in

such coordinate system is

E = EQ + pvg + mv^/2 (A.I)

where m is the mass of the liquid, E = cp is the energy of

the phonons, p is the momentum of the phonons and c is the

velocity of sound.

The mass flux density of the liquid helium equals to

the momentum density of the fluid since all of the atoms

have the same mass

j = Povg + <p> (A.2)

where p is the density of He II, <p> is the mean momentum of

the excitations per unit volume.

To minimize the energy E, the momentum tends to align
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opposite to the superfluid velocity v .s

Lets say

<P> = -p (v - u) (A.3)

This defines p . The excitations have a drift velocity of

->
u.

Combine Equation A.2 and A.3

- u)

If p is defined as p - p and we write u = v , then,

(A'4)

Thus, p and v are associated with the excitations in
. n n

the fluid. Since p is a derived concept, it does not

appear to represent the density of anything which has micro-

scopic meaning. However, one can interprete macroscopically

as saying that the current of He II is like that of a

mixture of two fluids, one of density p moving at velocitys
_». -»•
v , the other of density p and velocity v .

The flow rate j is also related to the density by the

equation of continuity

3p/3t + V-j = 0 (A.5)
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(t = time). Superfluid motion is characterized by irrota-

tional phenomena of an Euler fluid

V x v =0 (A.6)s

The Landau conservation statements lead to a set of macro-

scopic equations for the He II hydrodynamics:

Entropy conservation (ideal case):

3pS/3t + V-pSvn = 0 (A.7)

Momentum conservation:

3]\/3t + 3ir /3x, = 0 (A.8)
1 i .K .K

Mass conservation:

3p/3t + V-j = 0 (A.9)

Superfluid conservation statement:

3v /3t -t- (v *V)v = -Vu (A.10)
S S S

(P = pressure, u chemical potential, n., momentum density

tenser:
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• * • - * • •* •*
TI . , = P o . , + D V .V , + O V .V ,ik ik Ms si sk Mn ni nk

-nn(3vni/3xk
(A.11)

The thermodynamic identity for du may be expressed as

du = -SdT + dP/p - (1/2) (p /p)d(v -v)2 (A.12)
i* il S

The relative velocity is w = v - v . After substitution of
n s

Equation A. 12 into A. 10, and mu 1 itplication of both sides of the

equation by p , one obtains

Ps9vs/3t

(A.13)
2-(PC/P)VP + p SVT + (1/2) (p 0 /p)ws s n s

Assume that 3p/3t = 3p /3t = 3p /3t = 0, and 3S/3t = 0, we
O il

have from Equation A.8 and A.9

div v = div v = 0 (A.14)n s

Substituting Equation A.11 in A.9 and using A.14 we find

p 3v /3t +p 3v /3t + p (v -V)vs s n n s s s

• -•+ p (v *V)v = -VP + n v vn n n n n

(A.15)
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By substitution of Equation A.15 in A.13, we get

-PSSVT - (1/2)(pnps/p)w
(A.16)

" * r7 ̂ ••

Equation A.16 and A.13 are Landau's equations of motion for

normal and superfluid.
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APPENDIX B

Dimensionless Numbers Used In This Research

Most of the dimensionless numbers used in this thesis

are analogs of the general classical dimensionless numbers,

a) The dimensionless heat flux number, N versus the

dimensionless driving force number, N~ : (Figure B.I)

Lets start with the classical Ergun's equation,

VP = l-e)2 pv2(l-e)
Dp e * DP

 e

For He II, one can substitute the pressure gradient

by the thermo-osmotic pressure and the velocity &

viscosity by the normal fluid value. Together with

Equation 5.2, one gets,

(B.2)VPT
v ri
KP

pv~ /
_L 1 ~J r'!./_)

(150K e-

n
5)1/2

Multiplying both sides by pK0/<c / n

pv K1/2

2 nn

Together with the definitions of N and

(B.3)
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„ ,
q n SVT nn n

VT n2 n2n 'n

Equation B.3 can be written as

NVT = Nq + 1.75N/(150e) (B.6)

1/2Note that pv K /n is the Reynolds number for the normal

fluid. For small Re or N , Equation B.6 reduces to Equation

3.17,

(B.7)

b) Resistance ratio: (Figure B.I)

For packed bed data, the results are usually present-

ed as resistance ratio

R/RN = 1 + 1.75Rek/150 (B.8)

where

Re, = D vp/n(l-e) (B.9)
K. p
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Figure B.2. Resistance ratio vs. Renolds
number.
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Figure B.3. Friction factor vs. Reynolds
number.
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For He II,

R/RN = NVT/Nq = 1 + 1.75Nq/(150e
3)^ (B.10)

Equation B.9 and B.10 are essentially the same if one

substitutes D by K .
P P

c) Friction factor: (Figure B.3)

Another way of presenting packed bed data is by the

friction factor. For the classical Ergun equation, we have

f = (150 / Rek) + 1.75 (B.ll)

For He II,

f = NVT/Nq = (1/N ) + 1.75/(150e3)^ (B.12)

Note that for Equation B.12, the definition of friction

factor f' is slightly different from that of the classical

case.
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APPENDIX D

Error Analysis

D.I Experimental Accuracy of the Classical Permeability

Measurement

The accuracy of the experiment depends on the stability

and accuracy of measuring the following properties.

1) Thermometer calibration

2) Differential pressure across the porous plug

3) Volumetric flow rate of helium gas

Thermometer Calibration

The temperature in this experiment was measured by

chromel/constantan thermocouples. The thermocouples were

calibrated against temperature at fixed points (see Appendix

E) and was found to agree within 2 K with the NBS Circular

# 561 (1955) and Omega Temperature Measurement Handbook

(1979).

Differential Pressure Across the Porous Plug

The pressure difference at low range was measured by

Validyne's pressure transducer. It had a linearity of + ̂ %

of the full scale. AP at high pressure range was measured

by a Pennwalt differential pressure gauge. It had an un-

certainty in accuracy of 0.33% of the full scale.

Volumetric Flow Rate of Helium Gas

The flow rate of helium gas was measured by both a wet
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test meter (Precision Scientific Co.) and a floating sphere

rotameter (Brooks Instruments Co.). The rotameter had a

linearity of +0.5%. Accounting for temperature effect, the

total uncertainty was within 5%.

D.I.I. Random Error Analysis, for the Room Temperature

Permeability Measurement.

A random error analysis was performed using the least

squares method to calculate the error in the room temper-

ature measurement.

For the data of a 2 urn stainless steel Mott plug
2

(M2Sl-4xl), with an area of 5.06 cm and 1/8 in thickness,

AP = 25.75 torr

v = 15.99 cm3/s

n = 204.3 x 10 g/cm s

K = <rnL / APA = 5.73 x 10~ cm
P

u2 = (U )2(3K /3v)2 + (a).p)
2OK /3AP)2

l\ v p iilr p

= (u>^)2(LTi/APA)2 + (u>Ap)
2(vLn/AP2A)2

where w. is the uncertainty in measuring the flow rate

( + 1 cc/s) and w is the uncertainty in the

differential pressure ( + 0.34 torr).

-10 ?
w = + 3.73 x 10 cm
KP "

K = (5.73 -i- 0.37) x 10~9 cm2
P

The random error in the room temperature permeability

measurement was about 6.5 %.
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D.2. Experimental Accuracy of the Thermo-Osmotic Experiment

The accuracy of the thermo-osmotic experiment depends

on the stability and accuracy of measuring the following

properties.

1) Thermometer calibration

2) Differential pressure across the plug

3) Liquid level of He II from which the mass flow

rate was calculated

4) The bath temperature

Thermometer Calibration

Carbon resistor thermometers were used to measure the

upstream and downstream temperatures. Because of the

reduction of sensitivity with increasing temperature in

the carbon thermometers, the uncertainty at 5 K was about

0.2 K and approximately 1 K at 20 K. The uncertainty in

temperature below 2 K should not exceed 2mK.

PĴ ff e r e n t i aj^ Pressure Across the Porous Plug

The uncertainty in differential pressure was discussed

in section D.I.

Liquid Level of He II

The mass flow rate of He II was calculated from the

conservation of mass by measuring the change in liquid

level. The uncertainty in recording the liquid level

corresponded to a heat flow of 0 = + 5 mW.
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The accuracy of the bath temperature was directly

related to the accuracy of the pressure gauges used to

measure the vapor pressure above the helium bath. In the

Ha II temperature range a Wallace and Tiernan pressure

gauge calibrated to the 1958 International Vapor Scale.

Below 2 K, the overall uncertainty was less than 2 mK.

Bath stability in this temperature range was around 1 mK.

D.2.1. Random Error Analysis for the Vapor-Liquid Phase

Separation Experiment

For the VLPS data of a 5-15 bronze PSM.plug (P5-15B1-

4x4), with a cross sectional area of 1.27 cm and

1.27 cm thickness, we have (for T = 1.3 K) ,

0 = 78.33 mW

AT = 0.00882 K

K ~ On L/p2S2TATA = 6.87 x 10~8 cm2pn n

= (7.737 x 10~12)2[a>2(l/AT)2+U)2T(-Q/AT
2)]

w.. = + 1.62 x 10~8cm2

V "

K = (6.87 + 1.62) x 10"8 cm2pn

The uncertainty in the normal fluid permeability measurement

is about + 24 %.

The errors in the dimensionless heat flux number and

the dimensionless driving force number are 6.4 % and 22.5 %

respectively.
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The accuracy of the determination of the Gorter-Mel link

constant is presented in the following section

KGM ' [

u = + 0.16
KGM

For the same data discussed in the previous section, we have

K = 1.89 + 0.16GM -

The random srror is about 8.5 %.
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APPENDIX E

Calibration Curves

V

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Figure E.I. Calibration curves for the rotameters.
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Figure E.3. Calibration curve for the AP-mass flow meter.
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APPENDIX G

The Blake-Kozeny Equation

and the Thermo-Osmotic Darcy Equation

Murakami proposed the Blake-Kozeny equation for He II

as follows:

where

and

fM = 150 / ReM (G.I)

fM = (150Kpe
3)%VPT / pnvj (G.2)

ReM = (150K_e-
3)\vn/nn (G.3)

Substituting Equation G.2 and G.-3 into G.I and after re-

arranging, one gets,

Vn = K V PT I % (G'4)

The preceeding equation is the thermo-osmotic Darcy equation

(Eq. 3.15). It is noted that f and Re used by Murakami

are not the same as f and Re, of Equation B.ll.
JC

188



APPENDIX H

Thermal Properties of He II Used in This Research

The property data of He II used in this research are

summarized in Table H.I. These data were taken from the

following sources:

1) Vapor Pressure

T-58 Scale (Brickwedde et al. 1960)

2) Density and Density Ratio

Least squares fit of data from Brooks and Donnelly

(1977), Maynard (1976) and McCarty.

3) Viscosity

Spline fit of the data from Brooks and Donnelly

(1977), Hussey et al. (1967), Webeler et al.

(1965), Biskeborn et al. (1975) and Bruschi et al.

(1975).

4) Entropy

Calculated from the 5.6 power law

S = S (T/T, )5'6 (H.I)
A A

where S = 1.538 was obtained by the least squares
A

fit of the data from Brooks and Donnelly (1977),

Maynard (1976), Borelius (1963) and Van den

Meijdenberg et al. (1961).
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APPENDIX I

Raw Data

I.I Data of vapor-liquid phase separation:

Table I.I Data of the 2 urn stainless steel Mott plug
(M2Sl-4xl) VLPS results.

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

T

1

1

1

1

1

1

1

1

1

1

1

1

1

u <K)

.8035

.7814

.7551

.7313

.7054

.6775

.6548

.6279

.6013

.5690

.5518

.5342

.5147

Td

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

(K)

5342

5159

4939

4755

4668

4930

4930

4826

4668

4444

4444

4369

4265

AP (mbar)

10

9

8

7

7

6

5

4

4

3

3

3

2

.20

.53

.72

.91

.13

.27

.67

.96

.35

.76

.36

.00

.71

j (mg/cm s

7.

7.

7.

7.

6.

6.

5.

5.

5.

4.

3.

3.

2.

9

6

4

1

7

3

9

5

1

4

9

3

8
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Table 1.2. Data of the 10 urn stainless steel Mott plug
(M10Sl-4x4) VLPS results.

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

T
u

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

(K)

6068

5757

5583

5490

5271

5179

4987

4677

4608

4494

4378

4327

4265

Td

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

(K)

5226

4897

4747

4687

4470

4410

4227

3951

3868

3851

3785

3833

3850

AP
V

2

2

2

1

1

1

1

1

1

1

0

0

•

(mbar)

.47

.25

.07

.93

.77

.65

.52

.29

.20

.08

.89

.80

67

j (mg/cm s)

6.

6.

5.

5.

5.

4.

4.

4.

3.

3.

2.

2.

1.

0

2

5

3

0

7

4

1

8

2

7

3

8
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Table 1.3. Data of the 5-15 um bronze PSM plug (P5-15B2-4x4),
using transient warm up technique (VLPS results).'

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Tu (K)

1.6741

1.6938

1.7118

1.7258

1.7375

1.7756

1.7911

1.8049

1.8167

1.8265

1.8364

1.8466

1.8531

1.8611

1.8705

Td (K)

1.6252

1.6471

1.6593

1.6732

1.6826

1.7148

1.7267

1.7384

1.7487

1.7557

1.7638

1.7701

1.7739

1.7776

1.7795

APv (mbar)

1.88

1.92

2.25

2.36

2.53

3.09

3.41

3.64

3.84

4.08

4.28

4.61

4.84

5.17

5.72

j (mg/cn/s)

15.29

16.75

18.14

19.27

20.16

22.95

24.23

25.42

26.69

27.75

28.72

29.51

30.09

30.64

31.09
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Table 1.4. Data of the 5-15 urn bronze PSM plug (P5-15B2-4x4)
using transient cool down technique (VLPS results),

No.

1

2

3

4 •

5

6

7

8

9

10

11

12

13

Tu

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

(K)

5453

5000

4783

4621

4441

4228

4083

3916

3814

3729

3691

3684

3684

Td

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

(K)

5023

4635

4429

4263

4100

3965

3761

3603

3499

3428

3379

3379

3379

AP
V

0

0

0

0

0

0

0

0

0

0

0

0

0

(mbar)

.73

.55

.47

.40

.34

.31

.26

.22

.20

.19

.18

.18

.17

j (mg/cm s)

11.

9.

8.

7.

6.

6.

5.

5.

4.

4.

4.

4.

4.

69

64

61

76

90

35

58

03

65

44

31

28

28
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Table .1.5. Data of the 5-15 um bronze PSM plug (P5-15Bl-4x4) ,
taken from the asymptotic limit experiment.

No. T(K) AT(K) O(mW) N
q

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

44186

40647

38514

37511 ,

35256

33600

32523

31364

30695

30051

29752

29492

29032

28926

28907

28888

28870

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

02161

01985

01645

01641

01436

01522

01270

01248

01139

01178

01168

01221

00882

00948

00911

00874

00837

239.

227 .

224.

218.

195.

155.

134.

121.

115.

110.

104.

96.

78.

72.

63.

58.

57.

4

2

8

72

81

31

17

31

45

43

49

20

33

75

34

64

29

14.

15.

17.

17.

16.

14.

13.

12.

12.

12.

11.

10.

8.

8.

7.

6.

6.

48

99

18

34

94

41

06

47

28

14

62

81

96

35

28

75

59

Nn_VT

44.

33.

24.

23.

18.

17.

13.

12.

10.

10.

10.

10.

7.

8.

7.

7.

7.

37

42

74

41

17

50

68

53

95

87

57

88

65

17

84

52

19
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1.2. Data of room temperature permeability measurements:

Table 1.6. Room Temperature Permeability Measurement
Results

Plug * Porosity Permeability Equivalent
Designation

-f MO. 5Sl-4xl

QM2Sl-8xl

M^C O— Q v 11 1 £ D £. O X J.

D M2S3-8xl

A M2S4-8xl

VM2S7-8xl

MO C 1 1 Q v 1elf. SlX J. oXl

O M2Sl-4xl

Q M5Sl-8xl

^ M5S2-8xl

B M5Sl-4xl

• M10Sl-8xl

VM10S2-8xl

• M10Sl-4xl

O P2Sl-8xl

P2S2-8xl

^ P5-15Bl-8x2

• P5-15B1-4X4

AP5-15B2-4x4

0.3127

0.3115

O o np Q• j \J O -/

0.3138

0.3277

0.3113

O t t n n. J J.U U

0.2582

0 . 3 4 6 2

0.3283

0.3716

0.3881

0.3890

0.3899

0.3661

0.3655

0 .4508

0 . 4 2 2 3

0 . 4 2 3 6

(cm )

7.836x!0"10

4.88 x!0"9

5 .94 x!0"9

5 .79 xio"9

6 .40 xio"9

3 .43 xlO"9

1.02 xlO"8

8.86 xlO"9

1.28 xlO"8

3.25 xlO"8

3.384xlO"8

2 . 9 9 xlO"8

3.74 xlO"9

4 . 4 5 2 x l O ~ 9

1.135xlO~7

8.64 xlO"8

7.364x!0"8

Ergun Diameter
(um)

13.48

33.88

36.85

33 .40

38.85

40 .56

3 9 . 7 0

41.17

38 .44

55.88

56.74

53.07

21.43

2 3 . 4 7

74 .87

75.78

6 9 . 4 9

*The designation of the plugs is explained in the follow-
ing page.
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