
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



4

*i
	 A

7

1 " t
NASA CONTRACTOR REPORT

ON THE LAGRANGIAN METHOD FOR STEADY AND UNSTEADY FLOW

W.H. HUI AND N.J. VAN ROESSEL

UNIVERSITY OF WATERLOO

WATERLOO, ONTARIO	 N21- 3131

CANADA

PREPARED FOR NASA

AMES RESEARCH CENTER

UNDER CONTRACT NAGW-575 BASIC

WRI PROJECT NO. 411-29

(NASA-CE-177079) ON THE LAGRANGIAN METHOD
	

N86-2:150
FOR STEADY AND UNSIBADY FLCW (Waterloo
Uriv.)	 17 P	 CSCL 20D

Unclas
G3/34 43253

P*%Vk
National Aeronautics and
Space Administration
Ames Research Center
Moffett Field, California 94035

A.- .

F

-r



t. flows '/e, 2. Gwernrmnt Mossiest No, 3. NeWisianl's Catel" No,

NASA CR-
4, Title and Subtitle 6, fboort Dote

ON THE LAGRANGIAN METHOD FOR STEADY AND February, 1986
S. ft"orn ing Morino" as"UNSTEADY FLOW

File No.	 411-29
7. Aullwlsl t. Performing orpnlntiart Reps' No,

W.H. Hui and H.J. Van Roessel WRI	 No. 411-29

10, Work Unll Me.
t, Perfamin5 orl westien Nano and Addnte

Department of Applied Mathematics 11. Comrset or Went No,
University of Waterloo NAGW-575 BASIC
Waterloo, Ontario, Canada	 N2L 3G1 12, Type of Reps' and Period Cowed

Contractor Report 85/812. Swasoring At1mr Norse &W Address

National Aeronautics and Space Administration 14, Sponsoring ApneV cods
Washington, D.C.	 20546

16, Sup*nwtwv Notts
Point of Contact -	 Technical Monitor, Murray Tobak, RA 227-4
Ames Research Center, Moffett Field, CA	 94035
(415) 694-5855	 or	 FTS 464-5398

16, Abnren

A new and general 	 Lagranglan formulation of	 fluid motion	 is given	 in which
the independent variables are three material 	 functions and a Lagranglan
time, which differs for different fluid particles and 	 is distinct from the
Eulerian time.	 For steady flow it requires only three independent
variables - the Lagranglan time and two stream functions - in contrast
with the conventional	 Lagrangian formulation which apparently still
requires four independent variables for describing a steady flow. 	 This
places the Lagrangian formulation for steady flow on the same footing as
the Eulerian.	 For unsteady flow, the new formulation includes the con-
ventional	 formulation as a special case when the Lagrangian time Is
identified with the Eulerian time and when the material 	 functions are
taken to be the fluid particle's position at some given time. 	 The
distinction between the Lagrangian and Eulerian time, however,	 is found
useful	 in applications, e.g. to problems	 involving a free boundary.

17. Kay Words ISunated by AWhor(s)) 1!. Distribution Statement

Unsteady and steady aerodynamics Unlimited

Lagrangian formulation

Fundamental Fluid Dynamics Subject Category

to. Security Claeeif, lot this npxtl 20, Security Cleself, (of thb paN) 21, No. of i;; hke'

Unclas l .'ified Unclassified
72,

*Fw NO* by the National YwAtnipM Information Service. Swinefieid, Vironie 22161



fi

ON TIME LAGRANG1AN METHOD FOR
STEADY AND UNSTEADY FLOW

IV. It. 116i and 11. 1 Van Iloeaacl •

Department of Applied Mathematics

University of Waterloo

Waterloo, Ontario, Canada.

ABSTRACT

A new and general Lagrangian formulation of fluid motion is given

in which the independent variables are three, material functions and a

Lagrangian time,, which differs for different fluid particles and is distinct

from the Ettlerian time. For steady flow it requires only three indepen-

dent variables • the Lagrangian time and two stream function.+ in con-

trast with the conventional Lagrangian formulation which apparently

still requires .four independent variables for describing a steady flow.

This places the Lagrangiau formulation for steady flow on the same foot-

ing as the Culerian. For unsteady flow, the new formulation includes the

conventional formulation as a special case when the Lagrangian time is

identified with the Eulerian time and when the material functions are

taken to be the fluid particle's ponition at some given time. The distinc-

tion between the Lagrangian and Culerian time, however, is found useful

in applications, e.g. to problems involving a free boundary.

• Pitatut address: Deputrant of Applied Afatlematia, Uoivenity of Wsstero Ontario,
Loadoo, Oetario, raoada.
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1. INTRODUCTION

It is well-known that there exist two general methods of description of fluid 	 '*

motion. The Culerian method aims at describing the flow variables, e.g. velocity v, as

functions of the position x - (s,y,$) of a fluid particle at time t, viz., v - v(z,y,s,t )-
In contrast, the Lagrangian method aims at describing the motion history of each fluid

particle whose name is (n,k,c), viz., x M x(a,k,c,t). Conventionally, the Lagrangian

variables (e,/,c) of a particle are taken to be its position at some time t - to, say, i.e.

(og re ) W (XPy1011.Ir

The two methods are equivalent, except that the Lagrangian form gives more

information: it tells where each fluid came from originally, this can considerably facili-

tate calculations of flows when two or more fluids, with different equations of state, are

present. However, the Culerian method has been the popular one and generally

regarded as more advantageous than the Lagrangian for the following two reasons.

Firstly, it directly leads to results showing explicitly the spatial cl-Ptributions of now

quantities, such as the pressure field and the stress field, etc., this is desirable in some

practical applications, e.g. now over an airplane. Secondly, and more importantly, for

steady now the number of independent variables in the Culerian method is immediately

reduced by one - the time variable drops out. This is not easily done in the conven-

tional Lagrangian method for which Pour independent variables are. apparently still

needed. This simplicity of the Lulerian method for steady flow over that of Lagrange

explains why the former is used by the great majority of fluid dynamicists.

The situation is quite different for unsteady flow for which bGA methods require

four independent variables and there seems no obvious advantage of the Culerian

methrd over the Lagrangian. In fact, while there is no distinction between steady and

unsteady flow in the Lagrangian concept, the Culerian method treats the steady flow as

a degenerated case (of unsteady flow). As such, any Rulerian approach that is specially

designed for steady problems may not readily be generalized to unsteady problems.

Indeed, it has been demonstrated by Van Dommelen and Shen (15180) for unsteady

boundary layer separation and by Ilui and Tobak (1031) and llui and Van Roessel

(198 .1) for unsteady high Mach number flow that the Lagrangiau method can be more

advantageous than the Eulerian in treating unsteady flow problems.

The purpose of this paper is to develop a new and general Lagrangian method

which uses as Lagrangian variables three material functions and a ► Lagrangian time r

distinct from the Rulerian time t. It will be shown that while the new Lagrangian
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method includes the conventional one as a special case, it requires only three indepen-

dent variables in describing a three -dimensional steady flow: the Lagrangian time and

two material functions which for steady flow are stream functions. This then places the

€ ";	 Lagrangian method on the same footing as the Rulerian one, The advantage of the new

°

	

	 Lagrangian formulation over the conventional one for unsteady flow will also be dis.

cussed.

2. THE MATERIAL FUNCTIONS

2.1 Governing Equations in Lrulerlao Form

We start from Eulerian formulation to derive our new Lagrangian formulation.

Consider a typical problem of fluid now resulting from a rigid body moving through it.
Lot the motion of the body be prescribed by the velocity Y,(9), of its centre of mass and

its, angular velocity 12(t), and let the fluid be compressible, viscous, homogeneous, and

isotropic. In a body-fixed coordinate system, the equations expressing conservation of

mass, momentum and energy are the continuity equation, the Navier -Stokes equation,

and the energy equation respectively:

at

a + Ov • V)v + - Vp ° F + ^V(V -v) + I Vv,	 (2)

pe, at + v -V T + p  w • V -(k V T) + (l+ + 2 pXV - v )s ,	 (3)

with the equation of state

p - /Tr	 (4)

where p is pressure, p density, T temperature, N the shear viscosity, ji the bulk viscos-

ity, k the termal conductivity, c, and c, the specific heats of the fluid, and R = ei—e,,.

F in Equation (2) is the sum of the body force per unit mass G and the inertia force

arising from the motion of the body,

F= G — d e + 2n x v+ n x (f3 x x) + dt=x x 	
(5)

Let e(i - 1,2,3) be body-fixed curvilinear coordinates such that ft s 0, say, coincides

with the body surface. Then equations ( 1) to (3) may k- written, with the use of
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summation convention,
b:

	

av' +vi 8u' + r' v; 6+ 1 ;; all 	 ;+	 ^ i ae
ae	 aE,	 p aE;	 "p af'

# A f 	 + r	 + r	 r

+ (r; ,h + r i b r,ri — rig, r;)v'	 (7)

^^^ 'IT + ^ ̂OT + P e - 1 — a' V p'k 
a 
k + l^ + 2 N a2	 IS)ac	 of	 1^ p aE	 aE	 s

where the p 'j 's are the components of the inverse to the metric, q is the determinant of

the metric, the rd 's are the Christoffel symbols of the second kind, and

	

/ - V -v - 1 a, (V-1U1.	 Ig)^p aE

In the special case of inviscid flow of a perfect gas the equations of motion may be

obtained from (0) and (7) by putting N a p - 0, and by replacing (8) by

I	 (PP	 0

where 7 - er/e,.

2.2 The Material Functions

The key to the development of the new Lagrangian formulation lies in the handling

of the continuity equation.

It has long been known that for steady two-dimensional or axisymmetric flows a

stream function may be used to eliminate the continuity equation and reduce the

number of unknown functions by one. It was Lagrange ( 1781) who first proposed the

stream function for the two-dimensional motion of an incompressible Arid and sixty-one

years later Stokes ( 1842) used a stream function for axisymmetric flows of an

incompre-isible fluid in precisely the sam.; manner. Since then the use of stream func-

tious has become a ,standard technique for solving two-dimensional or axisymmetric

floes whether compressible or incompressible. The use of two stream functions for

^1
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three-dimensional flows, while less well known, has been considered b y a number of peo-

ple, among them 'Yib (1067).

For unsteady flows the presence of the a term is the continuity equation (1)

however, precludes the use of stream functions. Lust, facilitated by a change of nota-

tion, it is possible to introduce a set of now functions to be called material fu»ctions.

Thus letting E° - t, and noting that the metric is time independent, we may

re-write the continuity equation as

0	 00all

where u° = 1 and upper case lacing indices range from 0 to 3. We now introduce three

functions ay'(E°,^t,f"`^f s), i - 1,2,3, related to the components of velocity as follows

CIJKt 7►(^rt ►^r') a
* t a*z a40, r ( I ° 0, 1 ,2 ►3)	 (12)

a4'
.ScK 

aft
where X is an arbitrary function of the *''s. Substitution into (11) shows that the con-

tinuity equation is identically satisfied. 'taking the material derivative of *' yields

Day' ° ay' +
De	 at

°	 I c1,ACa(*')^-. ate a*` a*'
VO P	 ati oil OK a(t

- 0.	 (i - 1 ,2 ,3)
	

(13)

This elbows that the *"s are 0003tant following the fluid and so the name material

functions is appropriate. The existence of these functions was known by Yih ( 1057) but

they have been little utilized since then.

The material functions introduced above for unsteady flow are a generalization of

the stream functions for steady flow. In the latter case the time variable t(- (*) does

not appear, consequently only two material f , .octiona ^' t ^,f ^), i -1 ,2, are needed to

eliminate the continuity equation, and (12) reduce to

— aVa2 ^ (i - 1,2,3)	 (14)1/D oui - c'^a a(* 1 ,*2) aft at,

which show that the material function s in steady flow are just the well -known stream

functions.
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Sines 4oi r const, (i • 1,2,3) following a fluid particle, a particle can + in turn, be
identified by a set of the constants * i , In other words, the material functions #i can be

.&W will be in this paper, wed as Lagrangian variables. We also note that the material

Inactions, analogues to the stream functions in steady flow, are not uniquely determined

by (12) but, rather, there are freedoms in choosing them. The conventional choice of

the Lagrangian variable (s,&,c) u the particle's position at some time to is just a par
ocular choice of the material function. in this regard, the conventional Lagrangian

formulation is a special case of the present one.

It should also be noted that although Yih (105 7) pointed out that the arbitrary

function a(*i ) may be taken to be unity without lose of generality, it is not always

desirable to do to in practical application as illustrated by an example in section 6.

The body surface, which must be a material surface, can be described by * 1 w 0,

may.

3. THE LAGRANGUN TIME

	

We now further introduce s function 	 such that

	

d(f ^f^,fz,fs^) ^ a(^^ ►^ fir)
	

(15)

When Er(7 - 0,1,2,3) are regarded as functions of * '(J - 0,1,2 03), it can easily be

shown that

A-o u r ,	 (16)

i.e.

and

	

a^ 
• u'	 (i	 1 12 13).	 (18)

Also, the material derivative reduces to

D a*o ,	 (10)

which shows that 00 is a measure of time following a fluid particle or Lapranpia» time.
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For this reason,	 will be replaced by r whenever convenient, From now on we shall

use *W w 0,1 o4,3) as our Lagrangian variables.

The Lagrangian time r differs from the Eulrrian time a by an arbitrary function of

R

1

t w r + 01 001001	 (70)

as easily seen from Equation ( 1 7). This arbitrary function • may be taken to be zero,

thereby identifying the two times in the unsteady flow case. However, one can also

take advantage of this new freedom in applications. For instance, in the case of inviscid

supersonic now with &bock wave past a body, one can choose •(fir') to be such that the

unknown shock wave position is given by r a 0. 'This amounts to fixing the zero time

of a particle at the moment when it crosses the shock. As shown by Van Roessel and

Hui (1486) this renders the free boundary problem of flow with shock wave in the

Eulerian W) space to a fixed boundary one in the Lagrangian {* r) space, the latter

being easier to solve.

In the case of steady flow, while the Eulerian time t does not appear, the Lagran-

gian time	 V°) still does and is defined by

where the two stream functions *' and *2 are defined by (14). Together with these

stream functions, form a set of three independent Lagrangian variables for

describing a three -dimensional steady flow. Ifere r plays the dual role of being the time

variable and of distinguishing fluid particles.

The Lagrangian time is thus seen to be more fundamental than the Eulerian time

when both steady and unsteady flow are considered.

4. LAGRANGIAN FORMULATION

Making the transformation of independent variables from {( r) to {,y') in (6) to (8),

one obtains the following equations of motion in Lagrangian form

A	 ;	 ^	 .r

	

+ r i a	.	 + o o• Ni^ j . 1,4 + !- ` #'j Nip f1
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+ 'oil 1YjNAjLt r N)+ t ,!^ + r)	 ;,NkI a r) - ^Nt12t)

	

+ (NA jr^) + r,k r; - ri, r	 (0. " 1,2,3)	 (22)
Or

pr
oT 

+ po " ^- NsiV °k° A NAt7^N + (N + 3P ?^	 (23)

where

• J= N 1/

	

,/I 'i ° Or	 (2b)

and the operator N, (1 a 0, 1,2,3) is

a
NI set

X 
- 9ML

( So l aip: a^' Or	 a*` a* S Or , agol

a '`...a _'a.	 a
+ a*s Or 6* 1 a*j	 Or a*' ay e 03	 (27)

Equatiou ( 22) to (25) are six equations for six unknowns p,p, fl (1 0 0,1,2,3), Of

coarse, Equation (25) can be used to eliminate t and (24) to eliminate p, resulting in

tour equations for four uuknowns.

Two-dimensional and one -dimensional flow equations in Lagrangian form are given

in the Appendix.

b. SPECIAL CASES

6.1 Inviseld Flow

In the case of inviscid flow of a perfect gas Equations (22) are simplified by putting

/^ a is a 0, while (23) is replaced by
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a-& . "
Or p7

which is readily integrated.

5.2 Steady Flow

For steady flow, the two stream functions #' rnd P)r and	 are defined by

(14), whereas the Lagrangian time r is defined bi (21). The governing equations for

steady flow in Lagrangian form can be derived by a method (Van Roessel, 1985) similar

to that lending to Equations (22) • (25) for uustendy flow. Alternatively, and which

amounts to the same, the steady flow equations can be obtained as a special case of the

unsteady flow equations by contracting both Eulerian time t and the third material

functions # s to the Lagrangiao time r. Thus Equation (24) reduces to

a ' =.''	 1► ^Y'.^=^	 (20)

while Equation (25) hzc;mes redundant. On the othu land, Equations ( 22) and (23)

remain unchanged in form except that the operator N, becomes

	

yi ♦ e a .t'. i a	 a s a
Ni ^`	 c^it	 i	 s	 +	 s	 i+	 r	 z

.
	 (3A)a	 ay 84 ar	 a^ ar a^	 ar a^ a^

6.3 Cartesian Coordinates

In carte'ian coordinate!	 r  - 0 g'i 	 1, Equation (22) and

(23) reduce to

a + L MLpj h~ + L^Nj j0j + LN) Nij 

11

	

 1 ► ( i 	 1r2 ►3)	 (31)a r,

pet T + P g - NjjkN;Irll + (I'll 	 3 I^)I"',	 (32)

whereas (2-1) to (27) are unchanged in form except that 0 - 1.

(28)

i

-.
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. S. AN EXAMFILE: GERSTNER WAVE

Consider two-dimeesional,_ioviscid, lucompresnible, now of water under gravity ;.

Use csrter. 1^,+a coorAistai sit, witb s horizontal and Y vertically upward, Let f n r and

*1. a, ' n P. The governing equations care

e	 ,

It is known that this system admits an exact, analytic solution representing travel-

ling wave's (Gerstner, 1802) as follows

a — 09105in(ka — W r),

y = p + acspco4ka — Wr),

P M - Pip +	 -.
`^Pa 'Wr(0601 ),	 ,.

I► ^ P(1 , ark:^s0)^

where o and k are arbitrary constants, and W? = ok.

It is noted that X = X(0) in this case. If a - const was imposed, the same

Gerstner wave solution would be extremely difficult to obtain.

7. CONCLUSIONS

Starting from the Eulerian formulation, a new and gencrai Lagrangian formulation

for fluid flow is developed. This new formulation uses as Lagrangian variables three

material functions and a Lagrangian time distinct from the Culerian time.

Whilst the Sulerian time is the same for all fluid particle $, the Lagrangian time

differs for different particles. It thus plays a dual role of being the time variable and

simultaneously of distinguishing fluid particles. With the use of Lagrangian time,

steady now can be described by three independent variables - the Lagrangian time and

two stream functions, thus placing the Lagrangian formulation for steady flow on the

same footing as Eulerian. This is in direct contrast with the conventional Lagrangian

method which apparently- still- requires four independent variables for describing a
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steady flow • the Eulerian time plus three variables to identify a particle in three.

dimensional space.

For unsteady flow the new formulation inch:,' •:. the conventional formulation as a

special case when the Lagrangian time is identified with the Eulerian time and when the

material functions are taken to be the particle position at some given time, However,

the distinction between Lagrangian and Eulerian time may prove useful in practical

applications.

Finally, the present formulation allows simultaneous presence of both L agranglan

and Eulerian variables, thus facilitating the tthange from the former to the latter to give

results showing the explicit spatial distribution of flow quantities. An example of this is

given by Van Roessel and Ilui (388).

f

,

+^ 1
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AP.PEMIX: LOWER-DIMENSIONAL FORMULATION

For two-dimensional unsteady flow, Equations (22) - (25) become

N

+ I /O^ NONI1AC1 + r.,N,1^1 + rA N4Atj — r;,N^1 d "I

+ (N,lr;,l + rr r p — rd,,r1) ^ , (a . 1,2)	 (Al)

/c. OT + p f s p N* (V k0o0N0IT11 + l^ + .1p  h,	 (A2)

a(r►^^r^b^)	 X00

	
(M)

t	 r + e(^y^ ,^r'),	 (M)

where

1'	 X	 ' , ̂laol ads Or	 adz Or a,yt	 Or 8401 (AS)^ aws '

Y"- 0,1,2)

	

- 	a ).	 (A8)

ZSimilarly, for one -dimensional unsteady flow, r;,	 ^ , / i t . , F, " F► EI	 E ► J► ^

• Er, N, = N, and the aoverniut equations reduce to

r

aa^ + a Or + It NIn1- F +' + g N101

r
+	 N"1211  + N1 i a 1	 (A7)

oc• eT + p0 - ^^ N1 k NIT11 + (l 'P 214#2 1
	 (AB)

I

c:
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N Lp (at D at a
a	 at ay► — O ax

0^ gN[r]

(All)

(Al2)

(A9)

(A10)

13 -

a(t

t-T+•(0)

r
t

tt^

I

w
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