NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE



i R
- VAR €2
NASA CONTRACTOR REPORT

ON THE LAGRANGIAN METHOD FOR STEADY AND UNSTEADY FLOW

W.H, HUI AND H.J. VAN ROESSEL
UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO  N2L 3G
CANADA

PREPARED FOR NASA
AMES RESEARCH CENTER
UNDER CONTRACT NAGW-575 BASIC

WRI PROJECT NO. 411-29

{NASA-CEK=177079) CN THE LAGRANGIAN METHOD N86~-2S150
FOR STEADY ANL UNSIEADY FILCW (Waterloo
Upiv.) 17 p CSCL 20D

Unclas

G3/34 43253

NASAN

National Aeronauticé and
Space Administration

Ameos Resoarch Center
Moffett Field, California 34035



1, Report e, 2. Gevernment Acesmion No, 3. Recipiant’s Cotsiog No,
NASA CR- .
4, Vitle and Subtitle ) §, Regort

Dete
ON THE LAGRANGIAN METHOD FOR STEADY AND February, 1986
8. Performing. Organizstion Cede

UNSTEADY FLOW File No. 411-29

7. Auther(s) 0. Performing Organization Report No,
W.H., Hul and H.J. Van Roessel WRI No. 411-29

10, Work Unit No,
9. Purforming Organization Name end Address
Department of Applled Mathematics 11, Contract or Grant No,
University of Waterioo NAGW=-575 BASIC
Waterloo, Ontario, Canada N2L 3G1 13. Type of Report and Period Covered
12, Sporsoring Agency Neme and Address Contractor Report 85/8b
National Aeronautics and Space Administration 14, Sponsoring Agency Code

Washington, D.C. 20546

15, Supplementary Noies
Point of Contact - Technical Monitor, Murray Tobak, RA 227-4
Ames Research Center, Moffett Fleld, CA 94035
(415) 694-5855 or FTS 464-5398

16. Abstract

A new and general Lagrangian formulation of fluid motion is given In which
the independent variables are three material functions and a Lagrangian
time, which differs for different fluid particles and is distinct from the
Eulerian time. For steady flow It requires only three independent
variables - the Lagrangian time and two stream functions - in contrast
with the conventional Lagrangian formulation which apparently still
requires four independent variables for describing a steady flow. This
places the Lagrangian formulation for steady flow on the same footing as
the Eulerian. For unsteady flow, the new formulation includes the con-
ventional formulation as a special case when the Lagrangian time is
identifled with the Eulerian time and when the material functions are
taken to be the fluld particle's position at some given time. The
distinction between the Lagranglan and Eulerian time, however, is found
useful in applications, e.g. to problems involving a free houndary.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Unsteady and steady aerodynamics Unl imited

Lagrangian formulation

Fundamental Fiuld Dynamics Subject Category

-t Sl W

19. Security Clamsif, (of this reprrt)
Unclas«.ified

20. Security Clessif, (0f this page)
Unciassifled

21, No. of Pages

22, Price’

*Far sls by the National Tachnicsl information Service, Springfield, Virginis 22161

s g

o



ON THE LAGRANGIAN METHOD FOR
STEADY AND UNSTEADY FLOW

W. H. Hui and H. J. Van Roesscl®

Department of Applicd Muthematics
University of Waterloo
Waterloo, Ontario, Canada.

ABSTRACT

A new and general Lagrangian formulation of fluid motinn is given

in which the independent variables are three material functions and a
Lagrangian time, which differs for differeut fluid particles and is distinct
from the Eulerian time. For steady flow it requires ouly three indepen-
dent variables - the Lagrangian time and two strecam functions - in con-
trast with the conventional lLagrangian formulation which apparently
: still requires .four independent variables for deseribing a steady flow.
This places the Lagrangiau formulation for steady flow on the same foot-
ing as the Eulerian. For unsteady flow, the new formulation includes the
conventional formulation as a special case when the Lagrangian time is
identified with the Kulerian time and when the material functious are
taken to be the fluid particle’s position at some given time. The distine-
tion between the Lagrangian and Eulerian time, however, is found useful

in apgplications, e.g. to problems involving a free boundary.

*Present address: Departmert of Applied Mathematica, Univernity of “Vestera Ontario,
Londos, Osntario, Canada,



1. INTRODUCTION

It is well-known that there exist two general mcthods of description of Nuid
motion. The Eulerian method aims at describing the flow variables, e.g. velocity v, as
functic;us of the position x = (z,y,z) of a fluid particle at time ¢, viz.,, v = v(z,y,2,¢).
In contrast, the Lagrangian method uims at describing the motion history of each fluid
particle whose name is (a,b,c), viz, x = x(a,b,c,t). Conventionally, the Lagrangian
variables (a,8,¢) of a particle are taken to be its position at some time ¢ = ¢, say, i.c.
(abe) = (29,2, -ty

The two methods are equivalent, except that the Lagrangian form gives more
information: it tells where each fluid came from originally, this can considerably facili-
tate calculations of flows when two or more fluids, with differeat equations of state, are
present. However, the Eulerian method has been the popular one and generally
rcgarded as ricve advantageous than the Lagrangian for the following two reasons.
Firstly, it directly leads to results showing cxplicitly the spatial di:utributions of flow
quantitics, such as the pressure field and the stress field, etc., this is desirable in some
practical applications, e.g. flow over an airplane. Sccondly, and more importantly, for
steady flow the number of independent variables in the Evlerian method is immediately
reduced by one - the time variable drops out. This is not casily done in the conven-
tional Lagrapgian method for which four independent variables are apparently still
needed. This simplicity of the Eulerian method for steady flow over that of Lagrange
explains why the former is used by the great majority of fluid dynamicists.

‘The situation is quite different for unsteady flow for which bcth methods require
four independent variables and there scems no obvious advantage of the Eulerian
methed over the Lagrangian. In fact, while there is no distinction between steady and
unsteady flow in the Lagrangian concept, the Eulerian method treats the steady flow as
a degenerated case (of unsteady flow). As such, any Eulerian approach that is specially
designed for steady problems may not readily be generulized to ubnsteady problems.
Indeed, it has been demonstrated by Van Dommclen and Shen (1980) for unsteady
bouudary layer scparation and by Hui and Tobak (10231) and Hui and Van Roesscl
(1984) for unsteady high Mach number flow that the Lagrangian metbod can be more
advantageous than the Eulerian in treating unsteady flow problems.

The purpose of this paper is to develop a new and general Lagrangian method
which uses as Lagrangian variables tlhree material functions and a Lagrangian time r
distinct from the Eulerian time ¢. It will be shown that while the new Lagrangian
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method includes the conventional nne as a special case, it requires ouly three indepen-
dent variables in describing a three-dimensional steady flow: the Lagrungian time and
two material functions which for steady flow are stream functions. This then places the
Lagrangian method on the same footing as the Eulerian one, The advantage of the new
Lagrangian formulation over the conventional one for unsteady flow will also be dis-
cussed,

2. THE MATERIAL FUNCTIONS

3.1 Governing Equations in Eulerlan Form

We start from Eulerian formulation to derive our new Lagrangian formulation.
Consider a typical problem of fluid flow resulting from a rigid body moving through it.
Let the motion of the body be prescribed by the velocity v,(t), of its centre of muss and
its angular velocity £2(¢), and let the fluid be compressible, viscous, bomogeneous, and
isotropic. In a body-fixed coordinate system, the equations expressing conservation of
mass, momentum and encrgy are the continuity equ:gtion, the Navier-Stokes cquation,
and the energy equ;:tion respectively: .

Livim=o, ()
at

Ly lop = B oy, Lp2

YRR V)v+’Vp F + P (v v)-l-'Vv, (2)
OT Al ~ 2 2
TR -5"-+V'VT +pViva V:(kVT)+ (i + -a-va'v), (3)
with the equation of state

p = oRT, ()

where p is pressure, p density, T temperature, s the shear viscosity, ji the bulk viscos-
ity, k the termal conductivity, ¢, and ¢, the specific heats of the fluid, and R = ¢, ~¢,.
F in Equation (2) is the sum of the body force per unit mass G and the inertia force
arising from the motion of the body,

d
F=a- -f‘-‘-+20xv+ﬂx(nxx)+%—?-xx (5)

Let €( = 1,2,3) be body-fixed curvilinear coordinates such that €' = 0, say, coincides
with the body surface. Then equations (1) to (3) may be written, with the use of



summation convention,

» ._........_.. -
VAT (Visv) =0, (0)
i v i, L o B 80
“-o-u“,-rl avivt + '6(’ F+ "“,
+ £ ”'[ + o241 ol _ pi, 30
p! agads 7 Mg T T g oe" LT ae‘
+ (Tja + Toulf} = Fi, r;'.')v‘]. (7)

oT  joT 0 (a2, [, 2,),
pCy [a'-o-v“’]-o-pl- = .[\/,Lp ae*]+["+3"]" (8)

where the g'/'s are the components of the inverse to the metric, g is the determinant of
the metric, the I’j',,'s are the Christoffcl symbols of the second kind, and

O-Vv-v'-?b—(\/gv) (9)

In the special case of inviscid flow of a perfect gas the equations of motion may be
obtained from (0) and (7) by putting 4 = Ji = 0, and by replacing (8) by

2 1e
o [p" af’ [ (o)

2.2 The Material Functions

where ¢ = ¢, /¢,.

The key to the development of the new Lagrangian formulation lies in the handling
of the continuity equation.

It has long been known that for steady two-dimensional or axisymmetric flows a
stream function may be used to eliminate the continuity equation and reduce the
number of unknown functions by one. It was Lagrauge (1781) who first proposed the
streum function for the two-dimensional motion of an incompressible fluid and sixty-one
years later Stokes (1842) used a stream function for sxisymmetric flows of an
incompressible fluid in preciscly the sam¢ manner. Since then the use of stream fune-
tious has become o standard technique for solving two-dimensional or axisymmetric
flows whether compressible or incompressible, The use of two stream functions for



three-dimensional l‘lows; while less well known, Las been considered by a number of peo-
ple, among them Yib (1057).

For unsteady flows the presence of the —;f- term in the continuity equation (1)

however, precludes the use of stream functions. Rut, facilitated by a change of nota-
tion, it is possible to introduce a set of new functions to be called material functions.

Thus letting € = ¢, and noting that the mctric is time independent, we may
re-write the continuity cquation as
'
“,(\/“u\-o (11)
where v° = 1 and upper case lating indices range from 0 to 3. We now introduce three
functions ¢*(£%,6',6%€%), i = 1,2,3, related to the components of velocity as follows

ay! av atl‘

\/' l'” = /KL x(*l""!"’ﬁ) ‘el afK CL ’

(I =0,1,23) (12)
where )\ is an arbitrary function of t!w ¥''s. Subsiitution into (11) shows that the con-
tinuity equation is identically satisfied. ‘Taking the materinl derivative of ¥' yiclds

Di_ o, e o

—— . Y

Dt at ae! ¢’
- )KL noy' 3y ay’ ay?
Vit MV agm aeF aet
- 0. (i = 1,23) (13)

This skows that the ¢''s are constant following the fluid and so the name material
functions is appropriate. The existence of these functions was known by Yih (1957) but
they have been little utilized sincc then.

The materiz! functions introduced above for unsteady flow are a gencralization of
the stream functions for stesdy flow. In the latter case the time variable t(= £°) does
not appear, conscquentlj only two material f*:nctions ¢"(€',€’,€°), i 1,2, are needed to
eliminate the continuity equation, and (12) reduce to

aw a¢
26 a2’

which show that the material functions in steady flow are just the well-known stream

V3 o' = PP W)= (¢ = 1,2,3) (14)

functions.



Since ¥' = const, (i = 1,2,3) following a fluid particle, s pnrticle can, in turn, be
identified by a set of the constants ¢'. In other words, the materisl functions ¢° can be
.and will be in this paper, used as Lugrangian variables. We also note that the material
functions, analogues to the stream functions in steady flow, are not uniquely determined
by (12) but, rather, there are freedoras in chousing them, The conventional choice of
the Lagrangian variable (a,0,c) as the particie’s position at some time ¢g is just a par-
ticular choice of the material functions. In this regard, the conventional Lagrangian
formulation is a special case of the present one.

It should also be noted that although Yih (1057) pointed out that the arbitrary
function A(y') may be token to be unity without loss of generality, it is not ulways
desirable to do so in practical applications as illustrated by an exomple in section 6,

The body surface, which must be a material surface, can be described by v =0,
say. '

3. THE LAGRANGIAN TIME

We now further introduce a function VY(€°,6",6%,€%) such that

IO R I 20 .
2&,6.6468) M i)

When £/(7 = 0,1,2,3) are regarded as fuuctions of V/(J = 0,1,2,3), it can casily be
shown that

L .
I (15)

.3.’7 = of, (10)
i
| ;%f;,- - (19)
and
—:—f} wy' (i = 1,23). (18)
Also, the material derivative reduces to
i (19)

which shows that ° is a measure of time following a fluid particle or Lagrangian time.
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For this reason, ¢° will be replaced by £ whenever convenient. From now on we shall
use ¥/(/ » 0,1,2,3) as our Lagrangian variables,

The Lagrangian time r differs from the Eulerian timme ¢ by an arbitrary function of
v,
. t=r+ (V') (20)

as easily scen from Equation (17). This arbitrary function # may be taken to be zero,
thereby identifying the two times in the unsteady flow case. However, one can also
take advantage of this new freedom in applications. For instance, in the case of inviscid
supcisonic flow with shock wave past 3 body, one can choose s(¥*) to be such that the
unknowa shock wave position is given by r » 0, This amounts to fixing the zero time
of a particle at the moment when it crosses the shock. As shown by Van Roessel and
Hui (1086) this renders the free boundary problem of flow with shock wave in the
Eulerian {¢'} space to a fixed boundary one in the Lagrangian {{’} space, the latter
being easicr to solve.

In the case of steady flow, while the Eulerian time ¢ does not appear, the Lagran-
gian time (= Y°) still does and is defined by .
AW _ _ Ve
142 g8 19,2 3y’ (21)
(&6 My i)
where the two strcam functions ¢' and y? are defined by (14). Together with these
stream functions, {r,4!¢?} form a sct of three independent Lagrangian variables for

describing a three-dimensional steady flow. Here r plays the dual role of being the time
variable and of distinguishing fluid particles.

The Lagrangian time is thus scen to be more fundamental than the Eulerian time
when both steady and unsteady flow are considered.

4. LAGRANGIAN FORMULATION

Making the transformation of independent variables from {£'} to {$} in (6) to (8),
one obtains the following equations of motion in Lagraugian form

2% g 3t 1 . R i,
5 oA L= e B
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+ Lol N2+ riv 25 4+ r N2 - py M2
S0 Vil + PN + Ta Nl o) = Ta Nl

+ (NulPi) + T T = Dl )%}. (i = 1,23) (22)

"-% +phw -\7=.~ AVeke N1 + (B + -?;u)". (23)
D08,6.8) | M) (24)
or' W) Vi
¢m e o(0 500 (25)
where
)= V= NV "—-{-j (26)

and the operator Ny (I = 0,1,2,3) is

- Vo, [ afagt 2 a¢l ot og
L awt w7 0yt or T syt ayt ar oy’

s 967 96K o6t o0 a¢! agX aﬁi.a (27)
w‘ dr owl aw! dr ac’l aw? aws ¢

Equation (22) to (26) are six equations for six unknowns p,p,&' (I = 0,1,2,3). Of
course, Equation (25) can be used to eliminate ¢ and (24) to eliminate p, resulting in
four cquations for four unknowns.

Two-dimensional and onc-dimensional flow equations in Lagrangian form are given
in the Appendix.

5. SPECIAL CASES

5.1 Inviscid Flow

In the case of inviscid flow of a perfect gas Equations (22) are simplified by putting
p = ji = 0, while (23) is replaced by



[
5] "

which is readily integrated,

5.3 Steady Flow

For steady flow, the two stream functions ¢' rnd $? and Mw'¥°) are defined by
(14), whercas the Lagrangian time r is defined by (21). The governing equations for
steady flow in Lagrangian form can be derived by a method (Van Roessel, 1088) similar
to that leading to Liquations (22) - (25) for uusteady flow. Alternatively, and which
amounts to the same, the steady flow equations can be obtained as a special case of the
unsteady flow equations by contracting both Eulerian time ¢ and the third material
functions ¢* to the Lagrangian time 7. Thus Fquation (24) reduces to

M ...(.‘L!_“_l , (20)
arv'®) Vi, '

while Equation (25) hecumes redundant. On the other hiand, Equations (22) and (23)
remain unchanged in form except that the operator N, becomes

Vs [o&i ag* o  agf ae* a8 | g ag* a
N“. A s awl 00’2 al’ + aw? dr awl + ar awl 34’2 ' (30)

5.3 Cartesian Coordinates

In cartesian coordinates ¢ = (z,9,2), l‘j-,, -0y u Wi g m 1, Equation (22) and
(23) reduce to

.._f'_ + -Nlpl -+ L—-”—vm + LN N(-‘-—l. (6 =123) (31)

aT TR IRY
ey + pl = N;[EN,[T]} + (i + "3”4‘)"' (32)

whereas (24) to (27) are unchanged in form except that g = 1.



6. AN EXAMPLE: GERSTNER WAVE

Consider two-dimensionnl, iuviseid, incompremible, flow of water under gravity §.
Use cartr:isn coordinates 2y, with z borizontal snd y vertically upward, let ¢ = rand
¢' = a, $? = B, The governing equations ure

Mz) , Maf)

¥a,f) ’
s l Aey)
P * ‘("oﬂ) 0,
’ l ‘ ,B[
u’ Ry it

It is known that this systein admits an exact analytic solution represcnting travel-
ling waves (Gerstner, 1802) as follows

z = a—acthin(ka - wr),

y = B+ ac*cos(ka ~ wr),

p = =i+ pratul(e-1),
A= Al - a%k2e™),

where a and & are arbitrary constants, and w® = k.

It is noted that N\ = A(2) in this case. If X\ = const was imposed, the same
Gerstner wave solution would be extremely difficult to obtain,

7. CONCLUSIONS

Starting from the Fulerian formulation, & new and gencrai Lagrangian formulation
for fluid flow is devcloped. This new formulation uses as Lagrangian variables three
material functions and a Lagrangian time distinct from the Eulerian time.

Whilst the Eulerian time is the same for all fluid particles, the Lagrangian time
differs for different particles. It tbus plays a dual role of beinug the time varinble and
simultancously of distinguishing fluid particles. With the use of Lagrangian time,
steady flow can be described by three independent variables - the Lagrangian time and
two stream functions, thus placing the Lagrangian formulation for steady flow on the
same footing as Eulerian. This is in direct contrast with the conventional Lagrangian
method which apparently- still- requires four independent variables for describing a



steady flow - the BEulerian time pius three variubles to identify a particle in three-
dimensional spacs.

For unsteady flow the new formulation incly.’ - the conventionul formulation as »
special case when the Lagrangian time is identified with the Eulerian time and when the
material functions sre taken to be the particle position at sowe given time, llowever,
the distinction between Lagrangian and Eulerian time may prove useful in practical
applications,

Finally, the present formulation allows simultancous presence of both Lagrangian
and Eulerian variables, thus facilitating the r:hange from the former to the latier to give
results showing the explicit spatisl distribution of flow quantities. An example of this is
given by Van Roessel and Hui (1980),

ST - NP
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APPENDIX: LOWER-DIMENSIONAL FORMULATION

For two-dimensiona) unsteady flow, Equations (22) - (25) become

Tf': r;,—f——% + Lyt N = e L'L "N )

(4 { 4 o
+ ‘}:"{N.N,lﬁ,ﬁ}n + PaNASE) 4 ra NS - rp s

+ (N-,[l"“ + r:‘lr:ﬁ = r:lr}‘l) -aaj;"} y (a=1,2) (A1)

#C :T + ph= \;_ N,(V ;kg"’N,lT]] + [Ti + %p]l’. (A2)
(e, . My'w?) '

AW = Vg ! (A3)

t=r+ o', (A1)

where

N7 TN (T Tl N TR Y S S T Tl IR
N' by i'y'k {awl ¢2 or a‘vQ dr aq,l + dr awl a‘.“Q (As)

(/= 0,1,2)
)= -\—}7~..N?3§,1‘1- (A6)

'
Similarly, for one-dimensional unsteady flow, I'}, = -g-'-. p'l = —:—, Flap g mg !

= ¢, N, = N, and the governing equations reduce to

2
2 ]3¢ + w o4 s+ g 0
29 [ar P9 Nipl = F Y] Nl

338
£ N larl + N 2¢ ar,} (A7)
s 3L+ p V- —=Nl—= V- NITI| + (5 + -Eup?, (AB)
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2(t,E) | A(Y)
a(r,¥) /‘8" p

t=1+ sy

(A9)

(A10)

(A11)

(A12)
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