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ABSTRACT

An attempt has been made to model the so called “Leading Edge Vortex” which
forms over the leading edge of delta wings at high angles of attack.

A simplified model has been considered, namely that of a two-dimensional,
inviscid, incompressible stcady flow around a flat plate at an angle of attack with a
stationary vortex detached on top, as well as a sink to simulate the strong spanwise

flow.

The results appear to agree qualitatively with experiments. A comparison has
also been made between the lift and the drag of this model and the corresponding

results for two classical solutions:

(i) that of totally attachced flow over the plate with the Kutta condition satisfied at
the trailing edge only,

(ii) the Helmholtz solution of totally scparat‘;ed flow over the plate.
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INOMENCLATURE

English letter symbols:

a

b

[4
Cop
CL
Cm
Ce
d

D
F

radius of the cylinder.

length of the span of the plate.

chord length of the plate.

drag coeflicient.

lift coefficient. ,

pitching moment cocflicient.

pressure coefficient.

distance between the streamlines leading to the two stagnation points on
the pl=te.

drag force.

total force on the plate.

total vortex strength.

bwund vortex strength.

leading edge vortex strength.

non-dimensional total vortex strength.
non-dimensional bound vortex strength.
non-dimensional leading edge vortex strength.
lift force.

mass {low rate.

sink strength.

non-dimensional sink strength.
non-dimensional parameter showing position along the plate.
porlar coordinates in the z-plane.
non-dimensional distance from the center of the cylinder to equilibrium
point.

wing area.

velocity components.

free stream velocity.

complex potential.

cartesian coordinates in the z-plane.

complex variable in the original circle plane.
complex conjugate of 2.

complex variable in the rotated circle plane.
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Greek letter symbols:

[¢ 4

r

)

¢

‘.I
&
¢,
Ao

P

Subscripts:

c
4

angle of attack.

total circulation,

circulation due to the bound vortex.
complex variable in the final plate plane.
complex variable in the Joukowski plane,
coordinates in the ¢-plane.

coordinates in the ¢'-plane,

doublet strength.

air density.

in the plane of the cylinder.
in the plane of the plate.
radial component.

on the surface of the cylinder.
on the surface of the plate.
at the trailing edge.

in the z-plane.

tangential component.

in the ¢-plane.

refers to the origin (center of the cylinder).

refers to the equilibrium point.
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1. INTRODUCTION '

So far there are two well-known models for the flow over a flat plate at an angle
of attack. That of totally attached flow with the Kutta condition satisfied at the trailing
edge only, and that of totally separated flow (Helmholtz solution).

The present model, considering partially separated flow lies somewhere between the
two and despite the fact that it too is Lwo-dimensional, gives some very uscful represen-
tation of the threc-dimensional flow over delta wings. On such wings the leading edge is
usually sharp, causing thus flow separations even at moderate angles of attack, These flow
separations take the form of two free vortex layers joined to the leading edge of the wing
and rolling up to form spiral shaped vortices above the upper surface of the wing (Figure
1a). ‘

These vortices induce additional velocities at the upper surface of the wing. The
corresponding pressure distribution shows distinctly marked minima beneath the vortex

on the angle of attack (Figure Ic).

In the theoretical study made here, a simplified model has been considered, namely
that of a two-dimensional, inviscid, incompressible steady llow over a flat plate at an angle
of attack, with a stationary vortex detached on top as well as a sink to simulate the strong

spanwise flow caused by the pressure gradient due to sweep in the three-dimensional case.
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2, ANALYSIS OF THE FLOW VIELD

In the original circle plane (also called z-plane) the flow field consists of the following

comnponents:
(i) Uniform wind V,, coming from the negative z-axis,
(ii) A doublet Ay at the origin to simulate a circular cylinder |2z| = a,

(iii) A bound vortex ky at the origin to account for the circulation I'; around the plate.
Mote that although the flow is aligned with the z-axis the plate iz at an angle of
attack, requiring thus circulation Iy for the Kutta condition to be satisfied (see
Figure 2a).

(iv) A steady vortex ky of finite radius placed at z4(ry,01) to simulate the leading edge
vortex.

(v) A steady vortex —k at the i\verss square point of z; induced by the circle theorem
(sce Appendix Al.1).

(vi) A steady vortex k; at the origin also induced by the circle theorem (see Appendix
AL1).

(vii) A sink my (m; < 0) placed at z; (r1,0) to simulate the spanwisc flow along the

center of the vortex.

(viii) A sink m; at the inverse square point of z;, induced by the circle theorem (sce
Appendix AL.2).

(ix) A source —my at the origin also induced by the circle thcorem (see Appendix AlL.2).

2.1 The Complex Potential

For the components described above (regrouping them together), the complex po-

tential is given below:
a? g a?\
w= Vg (z+ —;) +(—my +1ik) In z+ (my +ik,) In(z—2z()+ (my —1ky) In (z - -5—) (1)
' 1

where
k= ko + ky (2)
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2.2 The velocity Field

Differentiation of i%.e comp!-x potential gives the velocity field:

%‘5— = (u, —tug) e” (3)

which applied to equation (1) gives:

2.2.1 Radial Components

a? my . myfr—ricos(0—0,)] + kyrysin(0 — 0,)
Uy = Voo (l - "','2") cosd - 'y + re 4 r? - 2rry 008(0 - 01)
myry[rry ~ a?cos(0 — 0,)] — kyryia?sin(0 — ;)
r2rf +at ~ 2rr a2 cos(0 ~ 0,)

(4)

+

2.2.2 Tangential Components

a®\ .k murisin(0=0i) = kifr ~ i cos(0 ~ 04)]
uo = Vo (1+:§) sm0-—--r- r2 4 r? — 2rr; cos(0 — 0,)
myria?sin(0 — 01) + kyry[rry — a® cos(0 — 0,)]
r%r? 4+ at ~ 2rr a2 cos(0 ~ 0,)

(6)

+

2.3 Conformal Transformation Used to Analyze the Flow Field

A solution for the flow ficld is provided by a mapping sequence that transforms the
potential flow about a circle into a flow about a flat plate at an angle of attack with a
detached vortex/sink combination, The steps are the following (see also Figure 2):

a. original circle plane (z-plane),

b. rotated circle plane (2'-plane), 2’ = ze'®,

c¢. Joukowski planc (¢'-planc), ¢’ = 2’ + 2 ,, )

d. final plate plane (¢-plane), ¢ = ¢'e='@,

: T'he first step is a simple rotation in order to make the flat plate depicted inside the circle
> aligned with the z-axis. The second step is the Joukowski transformation which transforms
ot the circle into a lat plate. The third step is another rotation which gives the plate an

angle of attack with respect to the horizontal free stream velocity.

3
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Combining the three steps we have that

2
§=z+9;~e""2‘a
or
=3 $y2 ~ia)2
z_ziJ(z) (ae—ia)

and if we set
¢ =§+in

we get

: 2
¢ =rcosf + 2;008(04-20)

2
n=rsinf — 9;- sin(0 + 2a)

On the surface of the cylinder (corresponding to the surface of the plate) r = a so

€sp = a[cos 0 + cos (0 + 2a))
Nsp = @ [sin 0 — sin (0 + 2a))

now

e PR G

and

r2 ¢$(2a+20)

(6)
(7)

(8)

)

(10)

(11)
(12)

(13)

Considering the surface again (r = a), expanding the right-hand side into sines and cosines

and using equation (3) we get finally

(ur,,]. = sin (40 + 4a) — 2sin (20 + 2a) — 2cos (20 + 2a) (o,

Ferdg 2 4-2cos (40 + 4a) — 4cos (20 + 2a) Oscla
1

[wo,] ¢~ " 2cos (20 + 2cx) [uo.cl.

(14)
(15)




D e e 4

3. CONDITIONS

Biundary conditions in the final plate plane require that:
(i) the flow depart smoothly from the trailing edge;

(i) the flow depart smoothly from the leading edge, i.e., the Kutta condition must

be satisfied at both edges of the plate.

Also, the vortex/sink combination must be located at an equilibrium point in the

flow field, that is, a point where the velocity induced by all other components is zero.

3.1 Kutta Condition at the Trziling Edge

From equations (14) and (15) with 0 = --a we find the velocity components at the

trailing edge of the plate:

> 1 ——a '
{ufc']fu = —“6 [u0.¢ g (:16)
: 1 =—
[ur]; = =5 o] (17)

For the Kutta condition to be satisfied there (i.e., u, finite and ug = 0) we must have

[we )= =0 (18)

3

or, from equation (5) with r =aand 0 = —a

(2Vaoasin @ — k) [r} + a® — 2rja cos(0; + a)] — 2myriasin(0, + a) + ki (r] — a®) = 0 (19)

3.2 Kutta Condition at the Leading Edge

Similarly, for the leading cdge we must have
[wo. 3" =0 (20)
and again from cquation (5) withr=aand § =7 — a

(2Vooasin a + k) [r} + a® + 2rya cos(0y -+ a)] — 2myriasin(0) + @) — ky(r3 —a®) =0 (21)

- S S




3.3 Vortex/Sink Velocity Condition

Equation (3) cannot be used to find the conditions which make the velocity vanish
at the location of the sink and vortex because the velocity given by equation (3) is singular
there. Threfore, the usual limiting process has to be used to find the velocity components
at the center of the vortex/sink combination. The strengths of the singularities can then
be adjusted so that they are stationary in the presence of the plate. Following the analysis
of reference 3 the complex velocity function in the final plate plane at the equilibrium

point is found to be

, - . ydz 1 ; [dzz/dS'g]s'x —
[up w,,]ﬁ = [(uc w,,)a-;:] . - E(ml +zk1)m =0 (22)

The derivative :—:— has been found in Section 2.3:

d_z _ (zel'a)Q
d¢ ~ (ze'=)? - a?

d?z _d (dz) _ d 22¢%ia
d¢? T d¢ \d¢ ) T d¢ | 22e%ia — g2 . i

and substituting z from equation (7), taking the derivative and substituting back ¢ from

while

equation (6) we get
Az a%e®e (424 + 3(22 + aPe~%2)?)

d¢? T 2z (a%e=%a — 22)(22e% — g2)?2

Also, from Figure 3 we have the following transformations:

U, = 4, cosld + v sin b
%9 = v.co80 — u,.sin 0

or .
U = Uy, c0s0 — uysind

Ve = 4, 8in 0 + ug cos 0

Substituting all these into equation (22) we get

[(urscos Oy — ugysinf,) — 3 (u,ysin 0y + ug; cos0y))] zfem"
a? [42] + 3(z} + a%e~%)?] (23)

- ky) ; =
(my + iky 221 (2] — ale—2i0)2 0

6
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where

2y =r1e'" =r; (cos ) +isin 0,) (24)

Splitting into real and imaginary parts and substituting for u,; and ug, their equivalent

expressions from equations (4) and (5) with r =7, and 0 = 0, we get

2WVoori(r] — a?)? cosf; cos(66, + 2a) — 4Vporia®(r? — a?)? cos 8, cos 40,

and

+ 2Vor1a*(r? — a®)? cos0) cos(20, ~ 2a) — 2Voori(r! — a*) sin 0y sin(60, + 2a)
+ 4Vooria?(rf — a*)sin 0, sin 40, — 2V ria*(r? — a4)sin 9, sin(20, — 2a)

~ 2kor$(r} — a?)sin(60, + 2a) + 4koria®(r? — a®)sin 46,

— 2koriat(r} — a?)sin(20, — 2a) + 2k,r$a®sin(60, + 2a)

+ kyr{a®(7r] — 11a?) sin 40, + Tk;ria®(r? — a?) cos 40,

+ 2kyria*(3r] — 2a%) sin(20, — 2a) + 6k riat(r? — a?) cos(20, — 2a)

+ 8(ky — my)(r — a®)(cos 4a — sin 4a) a® -+ 2mr%a? cos(60, + 2a)

~ myria®(7r} — 3a®) cos 40, — Tm,ria®(r? — a?)sin 40,

— 2myria®(3r7 — 4a?) cos(20, — 2a) — 6m,ria*(r? — a?)sin(20, — 20) =0 (25)

Voot (r? — a?)? cos Oy sin(60) + 2a) — AVorda?(r? — a?)? cos 0, sin 40,

+ 2Vorat(r? — a?)?cos 0, sin(20; — 2a) + 2Veori (r} — a')sin 0, cos(G0; + 2a)
— 4Vooria®(r} — a%)sin 0, cos 40, + 2Vooriat(rd - a*)sin 0, cos(20; — 2a)

+ 2kor$(r? — a?) cos(60, + 2a) — 4kria? (r? — a?)cos 40,

+ 2k0rfa4(r'f — a2) cos(20, — 2a) — 2Ix:1r‘fa2 cos(60, + 2a)

— kyria®(7r? — 11a%) cos 40, — Tkyria(r? — a?)sin 40,

— 2k ria*(3r? - 2a%) cos(20, — 2a) — 6kyriat(r? — a?)sin(20, — 2a)

— 3(ky + my)(r} — a®)a®(cos da ~ sin 4a) + 2m,7r$a?sin (60, + 2a)

— myri{a®(7r? — 3a%)sin 40, — Tm ria?(r? - a?) cos 46,

— 2myria*(3r} — 44%)sin(20, - 2¢) — 6myriat(r? — a?)cos(20) —2a) =0  (26)
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3.4 Non-Dimensional Parameters

At this point some non-dimensional parameters have to be introduced if the system
of equations (19), (21), (25), and (26) is to be solved explicitly. These are the following:

Ko = ;"% (27)
Ky = ;’-“t (28)
= (20)
M, = ;"'—2: (30)
R, = 5a£ (31)

Substitution into the original cquations yields the following system of four equations
in five unknowns Ko, K, M, R,, and 0y:

(2sina — K)[R? + 1 — 2R, cos(0, + a)] — 2M, R, sin(0 +a) + K (R? — 1) = 0 (32)
(2sina + K)[R}? + 1 + 2Ry cos(0, + a)] — 2M R, sin(0, + a) — K (R} — 1) =0 (33)

2R3 (R? — 1)? cos 0, cos(60; - 2¢) — 4R} (R? — 1)? cos 0, cos 40,
+ 2R (R? - 1)% cos 0, cos(20, — 2a) — 2R} (R} — 1) sin 0, 5in (60, + 2a)
+ 4R} (R — 1) sin 0, 5in 10, — 2R, (R} — 1) sin 0 5in(20, — 2a)
~ 2KoRS(R? — 1) 5in(60, + 2a) + 1K R} (R? — 1) sin 40,
—~ 2K, RE(R? - 1) sin(2él — 2a) + 2K, R®sin(60, + 2c)
+ K R}(TR? — 11)sin 49, + TK,;R}(R? — 1) cos 40,
+ 2K, R}(3R? — 2)sin(20; — 20) + 6K R?(R? — 1) cos(20, — 2a)
+3(K, ~ M,)(R? - 1)(cos da — sin 1a) -+ 2M IR cos(60y -+ 2cx)
— MR} (TR? — 3) cos 40y — TM R} (R} — 1) sin 10,
— 2M R}(3R? — 4) cos(20; — 2a) ~ 6M R} (R? - 1)sin(20y —2c) =0  (34)

2R}(R? - 1)2 cos 0, sin(60; + 2a) — 4R3(R? — 1)? cos 0, sin 40,
+ 2Ry (R} — 1)? cos 0, sin(20; — 2a) + 2R (1] — 1) sin 0, cos(60, + 2a)

8
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— 4R} (R} — 1)sin 0, cos 40, + 2R, (R} — 1) sin 0, cos(20, — 2a)

+2KoR{ (R} — 1) cos(66, + 2a) — 4KoR} (R} — 1) cos 49,

-+ 2KoR2(R3 — 1) cos(20, — 2a) — 2K R? cos(66, + 2a)

— K R}(TR? — 11) cos 40, — TK R} (R? — 1) sin 46,

— 2K, R?(3R? — 2) cos(20, — 2a) — 6K R?(R? — 1) sin(20, — 2a)

— 3(K1 + M1)(R} — 1)(cos 4a —- sin 4a) + 2M, RY 5in(60, + 2a)

—~ M R}(TR} — 3) sin 40, ~ TM, R{(R? — 1) cos 40,

~2MR3(3R? — 4) sin(20, — 2a) — 6 MR} (R? — 1) cos(20, —2a) =0  (35)

3.5 Additional Condition

We see that the equations derived so far are not enough to give us a unique solution.
Thercfore we must seek additional information in the nature of the flow. As mentioned
in the introduction the flow is assumed inviscid which implies that the total force on the

plate must be perpendicular to it (see Figure 4). Therefore
D
| tana = I (36)

Now we have to rclate the drag and the lift with the unknowns K and Mj.

From Figure 5 we sce that the fluid between streamlines a and b dissappears into the
sink producing drag which can be calculated as follows: The rate of mass of fluid between
the streamlines a and b (which is distance d apart) must be equal to the rate with which

mass is dissappearing in the sink, i.e.,
m= ;prdb = m pb2n. (37)
Now the drag is given by ‘the rate of loss of momentum of that fluid thercfore
D = -mV, (38)

combining equations (37) and (38) we get

(39)

‘Oﬁ..k-’.&*a-namﬂﬂ;xw o e v e e LT
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and from equation (30) we get
D
My = = bV 2

but
S =be

and from the Joukowski transformation we know that

c=4a

also, '
D

Cp = .
b 30V3S

The last four equations combine to give

CD = —1I’M1

The lift can be found from the Kutta-Joukowski law

L=pV,T b
and since
I' =27k
and L
CL

~ TvZs
we get
. Cp ==K

after cmploying equation (29).
Now going back to equation (36) we sec that

M,
t = ——
ana 7%

(40)

(41)
(42)
(43)

(44)

(45)

(46)

(47)

(48)

(49)

thus we have a system of five equations (32)-(35) and (49), which caa be solved for the
five unknowns: R,, 0y, Ky, K, and M,. This is done numerically (see Appendix 2) and

the results are shown in the next section.
10
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4. RESULTS

4.1 Position of the Equilibrium Point

As it can be seen from Figure 6 the equilibrium point is always ahead of the leading
edge of the plate and it goes farther as the angle of attack increases reaching a maximum
distance of approximately 53 percent of the chord from the leading edge (inecasured along
the chord line) at 45 degrees angle of attack.

At the same time (sec Figure 7) after reaching a maximum distance above the chord
line of approximately 16 percent of the chord (measured perpendicular to the chord line),
it starts moving downwards crossing the chord line at a =~ 35° and getting farther under

it at higher angles of attack.

4.2 Vortex and Sink Strengths

The bound vortex strength increases almost linearly with angle of attack \\;hile the
leading edge vortex strength grows nonlinearly reaching a maximum at « = 45° and
dropping to zero at a ~ 73° where the lower stagnation point reaches the trailing edge and
moves off the plate (Figure 8). Thus the total circulation is also nonlincar with angle of
attack and has a maximum at a = 50° (I'igure 10). The sink strength on the other hand,

starting with very small values increases almost linearly with angle of attack (Figure 9).

4.3 Pressure Distribution on the Plate

The pressure distribution has been calculated at the ¢’ plane (the most convenient
P

one since the plate is horizontal and lies along the ¢’-axis).
Irom the scquence of transformations shown in Figure 2 we have

2
a
! /

¢ =z +';;

or

¢! =r [cos(0 + a) -+ isin(0 + a)] -- ar-—z- [cos(0 -+ @) — £sin(0 + a)).

11
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and since
¢ =¢' +in'
we have
a3 :
§ = (r + -;-) cos(d + a)
and

2

n = (r - 9;—) sin(0 + a)

on the surface of the plate r = a so

&op = 2acos(0 + a)
Nop =0

(60)

(1)

(52)

(53)
(54)

To find the velocity field around the plate, a similar procedure as in Section 2.3 yields:

b _du_ds
d¢' ~ dz d¢'
dw 22

or

C~‘0 (u'n - iu”n) = e‘_‘o(u"c - iuon) ‘

and on the surface (r = a) we get finally

Uy, =~ 20,
T T2 sin(0+a) O

uo. = _1  sind Yo
v 2 sin(0+a)

from which

Ugp = %uo,c csc(0 + a)

Now from equation (5) and using equations (27)-(31) we find that

Y0 — _9gin0 - K +

2M R, Sill(o — 01) + Kl(Rf —_ l)

Voo

12

1+ R'f - 2R1'cos(0 - 01)

(55)

(56)

(57)

(58)




Substituting equation (58) into (57) as well as the corresponding Solution sets for.each

angle of attack we can find the pressure distribution from

2
Uy

Cp., =1- v:z; (59)
Cy,, has been plotted for four angles of attack in Figure 11 where the horizontal axis
measures the non-dimensional parameter
n =cos(0 +a) = Lp
2a
which varies from —1 at the leading edge to 41 at the trailing edge.

It can be scen from the plottings that both stagnation points move towards the
trailing edge as the angle of attack increases but the lower one moves faster, being at
about 70 percent of the chord from the lcading edge at o = 60° while the upper one is

only at the mid-chord point.
4.4 Lift, Drag, and Pitching Moment

At this point a comparison will be made between the results of:

(i) the classical solution of totally attached flow over the plate with the Katta condition
satisficd at the trailing cdge only and a singularity (infinite suction) at the leading

edge (Figure 12a),

(ii) this model with a detached vortex and a sink which make possible the satisfaction
of the Kutta condition at both edges removing thus the leading edge singularity
(Figure 12b),

(iii) the Ilelmholtz solution of totally separated flow over the plate (Figure 12c).

The lift, drag and moment coeflicients for the three models are given below:

CLi =27sina Cp1=0 Cmy = ;-sin 2c (60)
Cra=7nK Cp2 =—-1M, Cym2 = -}sin 2a (61)
7 sin 2a . 27 sin? a
Cm_‘l—{—wsina D3 = i rsina (62)
13
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From Figure 13 it can be seen that our model with partially separated flow (as the
leading edge vortex can be thought of), gives the highest lift coefficicnt at least up to
a = 60°, '

At higher angles it looks like the first model gives slightly higher lift cocflicients, but
this is mislcading since at high angles of attack the flow separates at some point on the
upper surface, resulting in significantly lower lift cocficients. Thus the first model breaks
down at high angles of attack.

From Figure 14 it can be seen that our model gives much higher drag cocflicients
even than the third model in which the flow is totally separated on the upper surface of the
plate. This should not be surprising howevér, because the drag in our model is associated
with a large momentum loss of all the fluid that dissappears into the sink (see Figure 5).

As a confirmation to the above comes Figure 15 which shows the same lift to drag
ratio for the second and third models (since L/D = tan « in both cases). In other words
since the second model yiclds a much higher lift than the third one, it also gives a much
higher drag which can be thought of as induced drag (lift related drag).

: Finally, it is intcresting to note that our model has the same momnent coeflicient and
the same position of acrodynamic center (at the quarter chord point) as the first model.
The proof is as follows: Since there is a uniform wind, the velocity at a great distance from
the plate must tend simply to the wind velocity, and therefore if 2] is suffliciently large we

may write

dw A B
E;——Voo'f‘“;"";f‘f'”‘

or

w=sz+Alnz+-€~+---.

Now the force and the moment on the plate can be found from the theorem of Blasius
and it turns out (after performing the integration) that the force depends only on A while
the moment depends only on B, llowever, comparing the complex potential for the first
two models we can sec that B is the same regardless of the presence of the vortex/sink
combination and therefore the inoment ought to be the same for the two models. In
equations (60) and (61) Cas is taken about the mid-point of the plate and is therefore
positive. The same relations but with a minus sign on the right hand side are valid for

Cu about the leading cdge. Equations (60) and (61) are plotted in Figure 16.

14
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5. CONCLUSIONS

(i) The present inviscid, incompressible, two-dimensional model of a flat plate with a
detached vortex close to its leading cdge indicates that lift coeflicients up to around
6 are achievable. Higher values should also be possible if thickness and canber are
added, considering an airfoil instead of a flat plate (reference 3).

(i) In order to satisfy the Kutta condition at both the trailing edge and the leading
edge, the presence of the sink is necessary (see equations (32) and (33)) This is
in agreement with physical observations of the leading edge vortex which forms
over delta wings at high angles of attack where the spanwise pressure gradicut due
to sweep angle evacuates the vortex core, It is also in agreement with the model

prescnted in reference 3.

(iii) For a given lift (CL) there are two possible solutions for the location of the equi-
librium point and the corresponding strengths of the vortex and sink. That of the
lower angle of attack gives a weaker sink and therefore less drag, while that of the
higher angle of attack gives a stronger sink and the associated higher drag. The vor-
tex strengths do not differ much for the two solutions since they are closely related
to the lift (which is the same for the two solutions). This result is also in agreement

with reference 3.

(iv) The upper limit found in the Cp versus a curve suggests that if a stronger vor-
tex would exist at the equilibrium point, unrealistic supercirculation would occur

resulting in the streamlines going entirely around the system.

(v) A limitation of the present model appears at a = 73°, above which the lower stag-
nation point moves ofl the plate making thus impostible the flow pattern depicted

in Figure 5, on which this model is based,

(vi) A comparison between Figures 8 and Lc shows very good agreement (at least qualita-
tively) between the results derived here and those found experimentally in roference
1,

(vii) Tinally, the presence of the vortex and the sink does not affect the position of the

aerodynamic center which remains at the quarter chord point.

15
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APPENDIX 1

Al.1

Consider a vortex of strength k; at the point 2; outside of a cylinder |z| = a. Then,
the complex potential is .

2
w=f(z) + f(‘f;)
- 2
= tk; ln(z - 21) —1k; In (e; - 51)

according to the circle theorem (reference 2) w can also be written as

. : . a?)
w=1tkInz+ikIn(z — 2z,) —tk; In (z - E—) + const.
1

which shows three vortices: one at the point 2;; one at the point % which is the inverse
square point of z; with respect to the cylinder; and one at the origin (center of the cylinder).

Al.2

Consider a sink of strength m; at the point z, outside of a cylinder |z| = a. Then,
the complex potential is

w=f(z) + f ((—';)

02
w=my ln(z-— zl) +myIn (7 —21)

or
2

w=-milnz+myIn(z-2)+m;In (z— g—l-) + const.

cquivalent to: a sink at the point z;, a sink at the point g:—, and a source at the origin.

36
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APPENDIX 2
A four-dimensional Newton-Raphson algorithm has been used to solve the system

of equations (32), (33), (34), and (35) for Ry, 0,, Ky, K| after elimination of M; from
equation (49). .
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ORIGE: AL F/70 &l
OF POOR GUALITY

PROGRAM NR4D
REAL KO,K1,K,J2,J93,J4,J5,J6,J7,I1,12,13,14,15,16,17,18,19

DATA

aoan

ALEA=? ‘
ALF=ALFA*3.14159/180.0
30 WRITE (5,110)
110  FORMAT ( ' GIVE UNDERRELAXATION FACTOR')
READ (5,120) C
120  FORMAT (F)
c T=THETA, R=R1
R=?
T=?
KO=?
K1=?
10  WRITE (5,100) R,T,KO,K1
100  FORMAT (4E15.6)
c _______ ———
T1=6*T+2*ALF
T2=2*T-2*ALF
T3=T+ALF
K=K0+K1
C s et e S S Y i i S o oo S —— s
AL=2#R*#4% (R¥R-1) * (9*R R~ 5)*COS(T)*COS(T1)
A2=-4*R*R* (R*R-1) * (7*R*R~-3) *COS (T) *COS (4*T)
A3=2* (R*R-1) * (5*R*R-1) *COS (T) *COS (T2)
Ad=-2%R**4* (9*R**4-5) *SIN (T) *SIN (T1)
AS=4*R*R* (7*R**4-3) *SIN (T) *SIN (4*T) -2* (5*R**4~-1) *SIN (T) *SIN (T2)
A6=-4*KO*R**5* (4*R*R-3) *SIN (T1) +8*KO*R**3* (3*R*R-2) *SIN (4*T)
A7=—-4*KO*R* (2*R*R-1) *SIN (T2) +12*K1*R**5*SIN (T1)
AB=2#*K1*R**3% (21 *R*R~22) *SIN (4*T) +14*K1*R**3* (3*R*R-2) *COS (4*T)
A9=8*K1#*R* (3*R*R-1) *SIN(T2) +12*K1*R* (2*R*R-1) *COS (T2)
B1=6*R* (K1+K*TAN (ALF) ) * (COS (4*ALF) ~SIN (4*ALF))
B2=-12*R**5*K*TAN (ALF) *COS (T1)
B3=3%K*R*#* 3% (14*R*R-4) *TAN (ALF) *COS (4*T)
B4=14*K¥R* * 3 (34R*R-2) *TAN (ALF) *SIN (T)
BS=K*R*TAN (ALF) * (8% (3*R*R-2) *COS (T2) +12* (2*R*R-1) *SIN(T2) )
C ——— -—
All = A1+A2+A3+A4+A5+A6+A7+A8+A9+B1+B2+B3+B4+B5
c g S O ———
B6= —Z*R**S*(R*&-l)**z*(SIN(T)*COS(T1)+6*COS(T)*SIN(Tl))
B7=4*R**3* (R*R-1) *#*2* (SIN (T) *COS (4*T) +4*COS (T) *SIN (4*T) )
B8=-2*R* (R*R-1) **2* (SIN (T) *COS (T2) +2*COS (T) *SIN (T2))
B9=-2*R**5* (R**4-1) * (COS (T) *SIN (T1) +6*SIN (T) *COS (T1))
C1=4*R**3% (R**4-1) * (COS (T) *SIN (4*T) +4*SIN (T) *COS (4*T))
C2=-2*R* (R**4~-1) * (COS (T) *SIN (T2) +2*SIN(T) *COS (T2))
C3=-12*KO*R**6* (R*R-1) *COS (T1) +16*KO*R**4* (R*R~1) *COS (4*T)
C4=-4*KO*R*R* (R*R~-1) *COS (T2) +12*K1*R**6*COS (T1)
C5=4*K1*R**4* (7*R*R-11) *COS (4*T) -28*K1*R**4* (R*R~1) *SIN (4*T)
C6=4*K1*R*R* (3*R*R-2) *COS (T2) ~12*K1*R*R* (R*R~1) *SIN(T2)
C7=4*K*R**4*TAN (ALF) * (3*R*R*SIN (T2) - (7*R*R-3) *SIN (4*T) )
C8=28*K*R**4* (R**2-1) *TAN (ALF) *COS (4*T)
C9=-4*K*R*R*TAN (ALF) * ( (3*R*R-4) *SIN (T2) -3* (R*R-1) *COS (T2))

Al2 = B6+B7+B8+B9+C1+C2+C3+C4+C5+C6+C7+C8+CI

D1=-2#*R**6* (R*R-1) *SIN (T1) +4*R**4* (R*R-1) *SIN (4*T)
D2=-2#*R*R* (R*R-1) *SIN (7 2)




D3=3*% (R¥R-1) *TAN (ALF) * (COS (4*ALF) -SIN (4*ALF))

D4=-2*R*#*6*TAN (ALF) *COS (T1) +R**4* (7*R*R~3) *TAN (ALE) *COS (4*T)
D5=7%R**4* (R*R~1) *TAN (ALF) *SIN(T)
D6=2*R*R* (3*R*R-4) *TAN (ALF) *COS (T2)
D7=6*R*R* (R*R-1) *TAN (ALF) *SIN (T2)

Al13=D1+D2+D3+D4+D5+D6+D7

D8=2*R**6*SIN(T1) +R**4* (7*R*R-11) *SIN (4*T)

D9=7*R*#*4* (R*R~-1) *COS (4*T) +2*R*R* (3*R*R-2) *SIN(T2)

E1=6*R*R* (R*R-1) *COS (T2)

E2=3* (1+TAN (ALF) ) * (R*R-1) * (COS (4*ALF) -SIN (4*ALF))
E3=-2*R**6*TAN (ALF) *COS (T1) +R**4* (7*R*R~3) *TAN (ALF) *COS (4*T)
E4=7*R*#*4* (R*R-1) *TAN (ALF) *SIN (T)

‘E5=2*R*R*TAN (ALF) * ( (3*R*R-4) *COS (T2) +3* (R*R-1) *SIN(T2))

A14"D8+D9+F1+EZ+E3+E4+E5

E6= 2*R**4*(R*R—1) (9*R*R-5)*COS(T)*SIN(T1)

E7=-4*R*R* (R*R-1) * (7*R*R-3) *COS (T) *SIN (4*T)

E8=2* (R*R-1) * (5*R*R-1) *COS (T) *SIN (T2)

E9=2*R**4* (9*R**4-5) *SIN (T) *COS (T1)

Gl=-4*R*R* (7*R**4-3) *SIN (T) *COS (4*T) +2* (5*R**4~1) *SIN(T) *COS (T2)
G2=4*KO*R**S* (4*R*R-3) *COS (T1) -8*KO*R**3# (3*R*R~2) *COS (4*T)
G3=4*KO*R* (2*R*R-1) *COS (T2) -~12*K1*R**5*COS (T1)

G4=-2*K1*R**3* ((21*R*R-22) *COS (4*T) +7* (3*R*R-2) *SIN (4*T) )
G5=-4*K1*R* (2* (3*R*R~1) *COS (T2) +3* (2*R*R-1) *SIN(T2))

G6=-6* (K1-K*TAN (ALF) ) *R* (COS (4*ALF) -SIN (4*ALF) )
G7=-12*K*R**S*TAN (ALF) *SIN(T1)

GB=K#R**3#TAN (ALF) * (3% (14¥R*R~4) ¥SIN (4*T) +14+ (3#R*R~2) *COS (44T))
GI=4*K*R*TAN (ALF) * (2* (3*R*R-2) *SIN(T2) +3* (2*R*R-1) *COS (T2))

A21 E6+E7+E8+E9+Gl+02+G3+G4*G5+G6+G7+GB+09

Il—Z*R**S*(R*R—l)**Z*( SIN(T)*SIN(T1)+6*COS(T)*COS(Tl‘)
I2=-4*R*#3* (R*R-1) **2* (~SIN(T) *SIN (4*T) +4*COS (T) *COS (4*T) )
I3=2#R* (R*R~1) **2* (~SIN(T) *SIN (T2) +2*COS (T) *COS (T2) )
T4=2*R**5* (R**4-1) * (COS (T) *COS (T1) -6*SIN(T) *SIN(T1))
IS=—4*R**3% (R**4-1) * (COS (T) *COS (4*T) ~4*SIN(T) *SIN (4*T))
16=2*R* (R**4~-1) * (COS (T) *COS (T2) -2*SIN(T) *SIN(T2))
I7=-4*KO*R*R* (R*R-1) * (3*R**4*SIN(T1) +SIN (T2) ~4*R*R*SIN (4*T))
I8=4*K1*R**4* (3*R*R*SIN(T1) + (7*R*R-11) *SIN(4*T))
19=-4*K1*R*R* (7*R*R* (R*R-1) *COS (4*T) - (3*R*R~-2) *SIN(T2))
P1=-12*K1*R*R* (R*R-1) *COS (T2)
P2=-4*K*R**4+TAN (ALF) * (3*R*R*COS (T1) - (7*R*R~3) *COS (4*T))
P3=-28*K*R**4* (R**2-1) *TAN (ALF) *SIN (4*T)

P4=4*K*R*R*TAN (ALF) * ( (3*R*R~-4) *COS (T2) -3* (R*R~-1) *SIN(T2))

A22 = I1+I12+13+I4+15+16+17+18+I19+P1+P2+P3+P4

PS=2%R*R* (R*R-1) * (R**4*COS (T1) ~2*R*R*COS (4*T) +COS (T2) )
P6=3* (R*R-1) *TAN (ALF) * (COS (4*ALF) -SIN (4*ALF))
P7=-2*R**6*TAN (ALF) *SIN (T1)

P8=R**4*TAN (ALF) * ((7*R*R-3) *SIN (4*T) +7* (R*R-1) *COS (4*T) )

P9=2*R*R*TAN (ALF) * ( (3*R*R—4) *SIN (T2) +3* (R*R-1) *COS (T2))
A23=P5+P6+P7+P8+P9

Q1=-R*#*4#* (2#R*R*COS (T1) + (7*R*R-11) *COS (4*T) +7* (R*R-1) *SIN (4*T))
Q2=-2*R*R* ( (3*R*R-2) *COS (T2) +3* (R*R-1) *SIN(T2))
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Q3=-3* (1-TAN (ALF) ) * (R*R-1) * (COS (4*ALF) -SIN (4*ALF) )
Q4=-2*R**6*TAN (ALF) *SIN(T1)

Q5=R*#*4*TAN (ALF) * ( (7*R*R-3) *SIN (4*T) +7* (R*R-1) *COS (4*T) )
Q6=2*R*R*TAN (ALF) * ( (3*R*R-4) *SIN(T2) +3* (R*R-1) *COS (T2) )

A24=Q1+Q2+Q3+Q4+Q5+Q6

A31=2* (2*SIN (ALF) -K) * (R-COS (T3) ) +2*K1*R+2*K*TAN (ALF) *SIN (T3) *
A32=2#R* (2*SIN (ALF) -K) *SIN (T3) +2*K*R*TAN (ALF) *COS (T3)

A33=- (1+R*R-2*R*COS (T3) ) +2*R*TAN (ALF) *SIN (T3)

A34=- (1+R*R-2*R*COS (T3) ) +R*R-1+2*R*TAN (ALF) *SIN (T3)

A41=2* (2*SIN (ALF) +K) * (R+COS (T3) ) +2*K*TAN (ALF) *SIN (T3) —2*K1*R
A42=2*K*R*TAN (ALF) *COS (T3) -2*R* (2*SIN (ALF) +K) *SIN (T3)
A43=1+R**2+2*R*COS (T3) +2*R*TAN (ALF) *SIN (T3)
A44=1+R**2+2#*R*COS (T3) +2*R*TAN (ALF) *SIN (T3) - (R*R-1)

FA=2*R* (R*R-1) *#*2#COS (T) * (R**4*COS (T1)-2*R*R*COS (4*T) +COS (T2))
FB=-2*R* (R**4~1) *SIN(T) * (R**4*SIN(T1) -2*R*R*SIN(4*T) +SIN(T2))
FC=-2*KO*R*R* (R*R-1) * (R**4*SIN(T1) ~2*R*R*SIN (4*T) +SIN(T2))
FD=2*K1*R**6*SIN (T1)

FE=K1*R**4* ( (7*R*R-11) *SIN (4*T) +7* (R*R-1) *COS (4*T) )
FG=2*K1*R*R* ( (3*R*R-2) *SIN (T2) +3* (R*R-1) *COS (T2) )

FH=3* (K1+K*TAN (ALF) ) * (R*R~-1) * (COS (4*ALF) ~SIN (4*ALF))
FI=-2%K*R**6*TAN (ALF) *COS (T1)

FJ=K*R**4*TAN (ALF) * ( (7*R*R~3) *COS (4*T) +7* (R*R-1) *SIN(4*T))
FK=2*K*R*R*TAN (ALF) * ( (3*R*R~-4) *COS (T2) +3* (R*R-1) *SIN(T2))

c
F1 = FA+FB+FC+FD+FE+FG+FH+FI+FJ+EK
c..._._ e - - —
FL=2*R* (R*R~1) **2*COS (T) * (R**4*SIN (T1) -2*R*R*SIN (4*T) +SIN(T2))
FM=2*R* (R**4-1) *SIN (T) * (R* *4*COS (T1) ~2*R*R*COS (4*T) +COS (T2) )
FN=2*KO*R*R* (R*R-1) * (R**4*COS (T1) -2*R*R*COS (4*T) +COS (T2) )
FO=-2*K1*R**6*COS (T1)
FP=-K1*R#**4* ( (7*R*R-11) *COS (4*T) +7* (R*R~1) *SIN (4*T) )
FQ=-2*K1*R*R* ( (3*R*R~-2) *COS (T2) +3* (R*R~-1) *SIN(T2))
FR=-3* (K1~K*TAN (ALF) ) * (R*R~-1) * (COS (4*ALF) ~SIN (4*ALF))
FS=-2*KAR**6*TAN (ALF) *SIN (T1)
FT=K*R**4*TAN (ALF) * ((7*R*R-3) *SIN (4*T) +7* (R*R-1) *COS (4*T))
FU=2*K*R*R*TAN (ALF) * ( (3*R*R-4) *SIN (T2) +3* (R*R-1) *COS (T2) )

F2 = FL+FM+EN+FO+FP+FQ+FR+FS+FT+FU

FV=(2*SIN (ALF) -K) * (1+R*R-2*R*COS (T3) )
EW=K1* (R**2-1) +2*K*R*TAN (ALF) *SIN (T3)
F3=FV+EW

FX=(2*SIN (ALF) +K) * (L+R*R+2*R*COS (T3))
FY=2*K*R*TAN (ALF) *SIN(T3) -K1* (R*R-1)

F4=FX+FY
Cﬁﬁt*ﬁt*ii***tt**tt**tiiitﬁi*t**tt*titiﬁ*t*i.iti*ﬁt**i***i*t*i**itt*t
S1=A11*A22* (A33*A44-A43*A34) +A11*A23* (A32*A44~A42*A34)
S2=A11*A24* (A32*A43-A42*A33) +A12*A21* (A33*A44-A43*A34)
S3=A12*A23* (A31*A44-A34*A41) +A12*A24* (A31*A43-A41*A33)
S4=A13*A21* (A32*A44-A34*A42) +A13*A22* (A31*A44-A34*A41)
S5=A13*A24* (A31*A42-A41*A32) +A14*A21% (A32%A43-A33*A42)
S6=A14*A22" (A31*A43-A33*A41) +A14*A23* (A31*A42-A41*A32)

DET = S1+52+S3+54+S5+86

|
J2=F1%A22* (A33*A44-A43*A34) +F1*A23* (A32*A44-A42*A34) §
J3=F1*A24* (A32*A43-A42*A33) +A12*F2* (A33*A44-A43*A34) ;




J4=A12*A23* (F3%A44-A34*F4) +A12*A24* (F3*A43-F4*A33)
J5=A13*F2* (A32*A44-A34*A42) +A13*A22* (F3*A44-A34*F4)
J6=A13%*A24* (F3*A42-F4*A32) +A14*F2* (A32*A43-A33*A42)
J7=A14*A22* (F3*A43-A33*F4) +A14*A23* (F3*A42-F4*A32)
Hl = (J2+J3+J4+J5+J6+J7) / DET

U1=A11%F2* (A33*A44-A43*A34) +A11*A23% (F3*A44-F4*A34)
U2=A11*A24* (F3*A43-F4*A33) +F1*A21* (A33*A44-A43*A34)
U3=F1*A23#% (A31*A44-A34*A41) +F1*A24* (A31*A43-A41*A33)
U4=A13*A21* (F3*A44-A34*F4) +A13*F2* (A31*A44-A34*A41)
US5=A13*A24* (F4*A31-F3%A41) +A14*A21* (F3*A43-F4*A42)
U6=A14*F2* (A31*A43-A33*A41) +A14*A23* (F4*A31-F3*A4l)
H2 = (U1+U2+U3+U4+US+U6) / DET

V1=A11*A22* (F3*A44~F4*A34) +A11*F2* (A32*A44~-A42*A34)
V2=A11*A24* (A32*F4-A42*F3) +A12*A21* (F3*A44~-F4*A34)
V3=A12%F2* (A31*A44-A34*A41) +A12*A24* (A31*F4-A41*F3)
V4=F1%A21% (A32*A44-A34*A42) +F1*A22* (A31*A44-A34*A41)
V5=F1*A24* (A31*A42-A41*A32) +A14*A21* (A32*F4-F3*A42)
V6=A14*A22* (A31*F4-F3*A41) +A14*F2* (A31*A42-A41*A32)
H3= (V1+V2+V3+V4+V5+V6)/ DET

20
130
140

W1=A11*A22* (A33*F4-A434F3) +A11*A23* (A32*F4-A42*F 3)
W2=A1*F2* (A32*A43-A42%A33) +A12*A21* (A33*F4-A43*F 3)
W3=A12*A23*% (A31*F4-A41*E3) +A12*F2* (A31*A43-A41*A33)
W4=A13%*A21* (A32#F4-A42*F3) +A13%A22*% (A31*F4~A41*F 3)
WS=A13*F2* (A31*A42-A41*A32) +F1*A21* (A32*A43-A33*A42)
W6=F1*A22* (A31*A43-A33*A41) +F1*A23* (A31*A42-A41*A32)
H4 = (W1+W2+W3+W4+W5+W6)/ DET

R =R-C*H1

T =T-C*H2

KO=KO-C*H3

K1=K1-C*H4

IF (ABS (H1) .LT.1.E-3.AND.ABS (H2) .LT.1.E-3)GO TO 20
IF (ABS (H3) .LT.1.E-3.AND.ABS (H4) .LT.1.E-3) GO TO 20
GO TO 10

WRITE (5,100) R,T,KO,K1

WRITE (5,130)

FORMAT ( ' IF YOU WANT ANOTHER RELAXATION FACTOR, TYPE
READ (5,140) IFF

FORMAT (I)

IF (IFF.EQ.1) GO TO 30

STOP

END

#
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