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ABSTRACT

One of the major concerns in the design of an active control system is obtaining

the information needed for effective feedback. This involves the combination of

sensing and estimation. A sensor location index is defined as the weighted sum of

the mean square estimation errors in which the sensor locations can be regarded

as estimator design parameters. The design goal is to choose these locations to

minimize the sensor location index. The gradient of the sensor location index with

respect to each individual sensor location is formulated and a program using this

gradient for systematic optimal sensor location search is developed. The choice

of the number of sensors is a tradeoff between the estimation quality based upon

the same performance index and the total costs of installing and maintaining extra

sensors.

An experimental study for choosing the sensor location is conducted on an

aeroelastic system. It is the physical realization of a two degree of freedom typical

section wing. It consists of a NACA 0015 typical section wing with six accelerome-

ters installed inside along the wing chord as the estimator measuring instruments, an

existing wind tunnel section, and some other accompanying experimental devices.

The system modeling which includes the unsteady aerodynamics model developed

by Stephen Rock has been improved. The center of percussion of the rigid two de-

gree of freedom typical section wing has been verified as a sensor location for which

the system is unobservable. Experimental results verify the trend of the theoretical

predictions of the sensor location index for different sensor locations at various wind

speeds.
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Chapter I

INTRODUCTION

A. BACKGROUND

Large structures have been considered for future space missions, such as

communications, collection of solar energies, etc. Because of the inherent size

and the necessarily low weight to area ratio, the influence of structural flexibility

is becoming more significant. This is also true for the future energy efficient air

transports which in addition need increased performance, comfort, and service

time. To meet the requirement of larger configurations and more ambitious

specifications on control system performance, e.g. controlling both the geometric

shape and the orientation of the configuration (attitude control) [Refs. 1-2], as

well as vibration suppression [Refs. 3-6], one is led to the use of modern mul-

tivariable control theory and the associated concepts of controllability and obser-

vability. However, the concepts of controllability and observability in modern

control theory can only provide binary information, i.e. either a system is con-

trollable (observable) or uncontrollable (unobservable) [7]. The more useful

design questions which are naturally asked still remain unsolved:

a) What types of actuators and sensors should be used?

b) How to identify the minimum required number of them, and how does

the increased number affect the overall performance?

c) Where should they be placed?

Among all, placement exhibits a fundamental and largest degree of freedom

- 1-



available to the designer even though it is usually not a very straightforward

question to answer.

There are already several papers discussing these problems and some guide-

lines have been suggested [Refs. 8-14].

Juang and Rodriguez [8] start from the general linear quadratic (LQ) for-

mulations and establish two criteria relating the actuator and sensor placement

to the minimums of the optimal cost function and state estimation error. This is

a simple approach but it doesn't take into account the time constraint of the con-

trol or estimation.

Likins, et al. [9] define a measure of controllability based on the minimum

initial distance from the origin in a state space from which the system can be

brought to the origin in time Te, what they call "recovery region". This is a

difficult problem itself which can only be solved approximately.

Hughes and Skelton [10] develop the modal controllability (observability)

by measuring the controllability (observability) norm based on a linear matrix-

second-order system formulation.

Kammer and Sesak [11] interpret the increasing insensitivity to parameter

variations (robustness) versus actuator number analytically, it is analogous to

that caused by the o-shifted performance index. This result adds to the

designer's ability one more degree of freedom, especially in dealing with distri-

buted systems. It also confirms that the performance tends to increase with

increasing system complexity, i.e. with more actuators and sensors.

After reviewing Juang's and Likins' works and finding objections, Vander

Velde and Carignan define the degree of controllability (observability) as a

linear measure of the weighted "volume" of the hyperellipsoid in the

transformed equicontrol (equimeasure) space [Refs. 12-14]. This definition will

- 2 -



be reviewed in Chapter II.

It is evident that they all try to find a standardized criterion that measures

directly the degree of controllability (observability) for different actuator (sen-

sor) locations. Most important, it must be a quantitative measure that can be

easily computed and have a direct physical interpretation so that the control sys-

tem designer can rank the desirability of various candidate actuator (sensor)

distributions in a meaningful way.

In this research, our major concern is to find a guideline in this respect for

sensing and state estimation. So we will hereafter restrict ourselves to the sensor

part in the above questions. While the duality between estimator and controller

design is well known and established [Refs. 15-16], this research goal can thus

easily be extended to the controller part.

First, a so called sensor location index (Jsi) will be proposed. It is defined

as a weighted sum of the mean square estimation errors, i.e. J$i = tr (WP),

where W is a symmetric positive-definite weighting matrix. It happens to be

similar to Juang's idea, except for the weighted sum formulation. The choice of

W is similar to Vander Velde's choice of the transformation to an equimeasure

space, specifically, it is the inverse square of his transformation matrix.

Using existing software support, it is easy to compute the JSi in a steady

state manner. Since our goal is to look for the optimal sensor location directly,

an optimization technique using the gradient search scheme is applied for this

purpose. The program is designed to report the figure of merit for different sen-

sor locations and increasing sensor number, thus offers the designer a handy refer-

ence to make his judgements.

An experimental study to evaluate the sensor number and their locations is

conducted on an aeroelastic system. It is the physical realization of a two degree

- 3 -



of freedom (DOF) typical section wing [Refs. 17-18]. It consists of a NACA

0015 typical section wing with six accelerometers installed inside along the wing

chord as the estimator measuring instruments. The evaluation process is done

through the Kalman filtering technique for state estimation and sensor location

index computation. However, effective implementations of Kalman filtering

depend heavily upon the accuracy of the unsteady aerodynamics theory in

predicting the loads associated with the general motions of the airlifting surfaces.

Fortunately, this unsteady aerodynamics theory has already been investigated

thoroughly.

A complete solution for the unsteady aerodynamic loads of the typical sec-

tion wing, including a trailing-edge flap, undergoing a simple harmonic motion

was first presented by Theodorsen -[19] in 1935 for the conditions of incompres-

sible, invicid, two-dimensional airflows.

In 1951, Timman [20] solved the same problem except under the con-

straint of a two-dimensional wind tunnel.

In 1977, Edwards [Refs. 21-22] extended Theodorsen's results to include

arbitrary airfoil motions by recognizing a derivation of the generalized Theodor-

sen function in the work of Von Karman and Sears [Refs. 23-24].

In 1978, Rock [25] combined Timman's results with the work of Edwards'

to develop an aeroelastic model for a 2 DOF typical section wing undergoing

arbitrary motions in a small subsonic wind tunnel. He also verified this analytic

model by experimental investigations.

Afterwards, in 1981, Stoltz [26] extended Rock's work by adding a

trailing-edge flap to the typical section wing. Using this as a control surface, he

was able to design an active aeroelastic control law capable of stabilizing the

experimental wing-flap system up to a dynamic pressure equal to twice the open

- 4-



loop flutter value.

In our experimental studies, Rock's unsteady aerodynamics modeling is used

for our new airfoil model and it is presented in Appendix A.

B. THESIS OUTLINE

In Chapter II, a continuous free-free beam example b first given to explain

the physical meaning of system observability. Then the optimal estimator design

problem is reformulated for correlated process disturbance and measurement

noise. The derivation is based on minimizing a weighted sum of the mean square

estimation errors as the performance index [15]. It turns out that it is not trivial

especially for the discrete case. The OPTSYS program [27] b modified to the

LOPTSYS to accept a more general input form including a rate measurement.

It solves for the continuous steady state estimator gain with correlated process

dbturbance and measurement nobe. A similar work b done independently by

Walker [64] and it is included in the COPT program. For the dbcrete case, a

FORTRAN program b developed to carry out the estimator gain iteration until

it approaches the steady state value. Thb program b validated by comparing

the results of some examples with uncorrelated dbturbance and nobe run on the

program DISC [28].

The experimental system has an unobservable sensor location for the

accelerometer. It b verified to be the center of percussion (CP) [29]. This same

physical behavior b used independently by Chiang in hb mini-manipulator design

[30]. Several different investigations of the experimental system observability by

examining the observability matrix, the transfer function pole-zero loci and the

modal dbturbance and measurement dbtribution matrices are performed and

some conclusions are given.
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Finally, a gradient search scheme is developed to find the optimal sensor

location based on the sensor location index which is similar to the performance

index for the estimator design. This is a general scheme which is capable of solv-

ing multisensor problems. A computer program is developed to do the search

and a result for a single sensor case is given. The sensor location index (SLI) is

then compared with the degree of observability (DO) suggested by Vander

Velde. A double sensor example is given to conclude this chapter.

Chapter III describes our experimental apparatus. There is not too much

difference from that used by Rock [25] or Stoltz [26], except a new and thicker

wing model is built to accommodate those accelerometers used as measuring

instruments. A digital computer is used in this study for data collection and

analysis. Some software is developed to facilitate the laboratory operation.

Chapter IV describes the experimental methods and results. The approxi-

mation to Timman's modified Theodorsen function suggested by Rock is reexam-

ined. With the external sensors used and the doublet excitation he had found it

impossible to verify experimentally this part of the model. However, it is a well-

posed parameter identification problem [Refs. 31-32]. An on-line parameter

identification scheme through Kalman filtering proposed by Mishne [33] is

modified and used for this purpose. Simulations are carried out and found to be

successful. But actual tests fail because of the existence of the process distur-

bance and the measurement noise.

A more accurate 5th order system model which includes those experimen-

tally measured damping terms in the F matrix and takes into account the

unbalanced force due to the applied torque in the G matrix. The dynamic cou-

pling [Refs. 34^35] between the plunge and pitch modes through the actual

wing section mass center offset from the elastic axis is used in the F matrix

rather than using the distance between the entire plunge suspension system mass
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center and the elastic axis. The accuracy of the system model is checked by exa-

mining the theoretical and the experimental root locus versus varying wind

speeds. The worst case for stable behaviors is about 1% error in the pitch

mode frequency. This same accuracy is also observed by comparing the computer

simulated system responses to the linear motor doublet input with those of the

actual system responses.

The quality of estimation varies with the location and number of sensors. It

can be indicated by the sensor location index we proposed. The difficulty in

evaluating it as a function of the sensor location is presented in the estimator

design section along with the approaches we use to get around it. The experi-

mental test results are given and they prove the trends predicted by the theory.

Chapter V gives a summary and recommendations for the future research.

Appendix A includes the derivation of the system modeling and the

unsteady aerodynamics model derived by Rock. Instrument calibrations and sys-

tem parameter measurements are detailed in Appendices B and C.

C. SUMMARY OF CONTRIBUTIONS

1) The computer program OPTSYS is modified to the LOPTSYS to

accept a more general input form including a rate measurement. The

correlation between system disturbance and measurement noise is

taken into account.

2) An iterative scheme for calculating the discrete Kalman filter gain is

derived to deal with the correlation between system disturbance and

measurement noise for discrete systems.

3) Experimental system observability is examined from several different

approaches and some conclusions are given. System unobservable
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sensor location is verified analytically to be the center of percussion of

the two DOF typical section wing at zero wind speed.

4) A tractable sensor location index is defined so that the optimization

technique can be applied. A first order gradient search algorithm is

developed and implemented. It is a general scheme which can be used

for solving multisensor cases. The program doing the optimal sensor

location search can report the figure of merit of the sensor location

index for different sensor locations and increasing sensor number.

5) An experimental apparatus is set up for feasibility studies. It includes

a new and thicker airfoil with six accelerometers installed inside along

the wing chord as measuring instruments.

6) An on-line parameter identification through Kalman filtering is

modified and used for aerodynamic parameter identification.
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Chapter H

PROBLEM FORMULATION

A. INTRODUCTION

State variable feedback control requires all the system states to be measured.

However, the more frequent situation is that only certain linear combinations of

the state can be obtained.

By using a linear model of the system and the statistical models which

characterize the system disturbance and measurement noise, Kalman developed a

filter with which to reconstruct the missing states from any set of noisy measure-

ments [Refs. 36-37].

Although a Kalman filter describes how to process the measurement data to

achieve the optimal system state reconstruction, it doesn't [38, p. 3]:

1) solve the problem of designing in the presence of parameter

uncertainties,

2) provide a method for dealing with computational errors,

3) solve the problem of establishing an optimal measurement schedule.

The first problem is due to the presumption of a perfect mathematical model

which requires the system be known exactly in order to formulate the optimal

Kalman filter. Since this is often unrealistic and may lead to filter divergence,

many authors have derived results to overcome this problem [Refs. 39-42). The

second difficulty is caused by the quantization limitation inherent in the com-

puter implementation, especially in dealing with ill-conditioned problems.
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Alternate recursive relationships have been developed, such as discrete square

root filtering [Refs. 43-44], to cope with this difficulty. The third question is

because there are various choices of the sensor type, number and location.

The sensor type is usually limited by its utility, cost, availability, reliability,

and other factors [45]; the sensor number is a tradeoff between the estimation

quality and the cost of installing and maintaining, the weight as well as power

consumption for extra sensors. All of them are highly cost dependent. However,

a.good choice of sensor location may increase the overall performance without a

change in cost. Of course, the sensor location may still be constrained by its size

and ease of access.

While the sensor type is usually determined in the early design stages, the

sensor placement is a degree of design freedom frequently not fully exercised,

especially in large distributed systems. A standardized criterion could be very

helpful to a designer in choosing the sensor number and their locations optimally.

Some authors have already suggested approaches [Refs. 8-11], and the most

intuitive result is given by Vander Velde [Refs. 12-14]. In this chapter, a new

approach based on the steady state solution of the optimal estimation problem is

presented to study the sensor location problem. The final goal is to develop a

process that can be used to look for- the best sensor location directly and report

its figure of merit for increasing sensor number to help the designer's judgement

in making his decisions.

A experimental study for choosing the sensor number and their locations is

conducted on a simple two DOF aeroelastic system. A detailed description of

this experimental apparatus is given in Chapter HI. Basically, it is a physical

realization of an ideal two DOF typical section wing [Refs. 17-18]. The model-

ing of the unsteady aerodynamics of this system was already developed and

experimentally verified by Rock in 1978 [25]. So there is obviously an
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advantage in using a similar system to save some time and effort. Besides, this is

a simple physical system which is still capable of describing such complex aeroe-

lastic phenomena as divergence and bending-torsion flutter thus making it a real-

istic application area of our research objective. Also, many experimental studies

have used this typical section wing, it facilitates the comparison of new and old

experimental results [25, p. 2].

In this chapter, an example is first given to illustrate the effects of sensor

types and locations upon the system observability. Secondly, the Kalman filter

gains for both the continuous and discrete cases will be reformulated under the

condition of correlated process disturbance and measurement noise in order to

minimize the performance index chosen to be the weighted sum of the mean

square estimation errors. Thirdly, a study of the observability of our experimen-

tal system is investigated through several different approaches. The purpose is to

find a direct connection that can be used to help determine the sensor location

and number. Then a gradient search scheme is developed to achieve this goal. A

comparison between Vander Velde's criterion and ours is conducted assuming

there is no process disturbance and using finite estimation time. Finally, a dou-

ble sensor example is given to conclude this chapter.

B. OBSERVABILITY OF DYNAMICAL SYSTEMS

To many readers, the concept of observability of dynamical systems may

seem to be a weak abstract idea rather than one with strong physical feeling. A

real example showing its physical meaning should be useful for further investiga-

tions.
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Let us consider a uniform, free-free beam undergoing a transverse vibration

as shown in Fig. II-1 without taking into account the effect of gravity. Neglect-

ing the shear distortion and rotary inertia, the equation of motion of the beam is

governed by the Bernoulli-Euler model [46, p. 135]:

(2.1)
El

where y(x,t) is the transverse displacement at station x and time t, and El,

<T, and L are the beam bending stiffness, mass density per unit length, and

beam total length respectively.

Fig. II-l Uniform, Free-Free Beam Undergoing A Transverse Vibration

-12-



The natural boundary conditions are [46, pp. 163-166]

(M = (M = °'

(M = M = °* (2'2b)

Since the meaning of observability is understood most clearly in the modal

coordinate system, the displacement is thus expressed as

oo
y(x,t) = £ A<*)9.<4. (2.3)

u-o

where <f>t{x) are the mode shapes and qt{t) are the modal amplitudes [1, p. 36].

This separation of variables leads to a solution by substituting Eq. (2.3)

into Eq. (2.1), and we obtain

= 0, (2.4)
az* *" ar

and

El 1 <• ^i 1 ^Vi •>

So the differential equations to be satisfied become

tfi-/**-«, (2.6)
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and

20.' J = oj/2 •'" ' \*''/

where

# = "J|p. (2.8)

After enforcing the boundary conditions, Eq. (2.2), we obtain

<f>0(x) = \ /?0 = 0, (2.9a)

*,(») = A ^ x - ) , /?, = 0, (2.9b)

and

<j>t(x] = A{ [ (cos/?,-L - cosh/?,-L)(sin/?,-z + sinhftar)

- (sin/?,-L - sinh£,-L)(cosftz + coshftar) ], (2.9c)

where /?,- satisfies

cos/?,Lcosh/?,-L =1, i = 2, 3, ••• . (2.10)

The first four modes are plotted in Fig. TL-2. The two rigid body modes

correspond to the rigid body translation and rotation respectively. Since there is

no node in the rigid body translation mode, a displacement sensor can always

observe this mode. However, if we place a displacement sensor at those nodes of

the other modes, i.e. at points B, D, E, G, I, the corresponding mode will

not be observed at those particular sensor locations. This can also be seen from

the exact pole-zero cancellations in their transfer functions (see discussions in

Section D-3). If an orientation sensor is used and placed at those locations where

the mode shapes have zero slopes, i.e. at points C, F, and H,
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the corresponding mode will be missing from its measurements, that is, the orien-

tation sensor can not detect the mode at a point of zero slope [47, p. 0]. This

should provide a clearer picture of the dependence of observability on sensor

types and locations.

1-1 O

i=2 O

E G

X "3

Fig. H-2 First Four Modes of the Transverse Vibration
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C. KALMAN FILTER GAIN

The system equations of motion of our experimental apparatus are derived

in Appendix A, see Fig. A-l. They are presented here for ease of reference.

• Equations of Motion without considering Aerodynamics:

• . «

A

jf

Or

a

-

0 1 0 0

K K K K

0 0 0 1

7 1 K n K K K

K

a

a

KF

MTKb
_

Fy

TV

(2.n)
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• Equations of Motion considering Aerodynamics:

^ •

h

h

a

a
»

y

3

*

" 0 1

-«1 ''a

0 0

-'6 -'7

_° -•« •

0 0

0 0

0 0

0 0

-., -.,
0 1

"g8 ~gS

"g!2 "gl

Pv

«_ • j

0

\ "gs

0

> "810

3 "g!4

" h"

h

a

dr

y

•

where

(2.12)

h, h, h: are the normalized plunge displacement and its time

derivatives,

a, a, a: are the pitch displacement and its time derivatives,

/Y, TV are the input voltages to the linear and angular

motors respectively.
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All the coefficients and constants are defined in Appendices A and C.

C-l Continuous System

Most of the mathematical representation of dynamic systems including the

ones above can be described by the following linear, time-invariant, state

differential equations:

where

v(t):

w(0:

Gv(t)

Juv(t)

: n,Xl state vector, with

t

neXl control vector,

nol>Xl observation vector,

ngXl white process disturbance vector, with

E { «W } = 0, E { *lt)wT(T) } = QW6 (t-r),

or it can be simply written as w(t): N ( 0, Qw ],

where Qv is the power spectral density of v^t),

n«6Xl white measurement noise vector, with

E { 4Q } = 0, E { *t)vT(r) } = RJS (t-r),

or it can be simply written as v(f): N [ 0, Rv ],

where R, is the power spectral density of

t > I time.

(2.13a)

(2.13b)
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Furthermore, it is assumed that ui(f) and v(t) are correlated, i.e.

E { w(t)vT(r) } = V6 (t-r), where V is the cross spectral density of w(t) and

v(t) [48], while the initial state a^) is uncorrelated with w(t) and v(t); v(t) is

a given known input to the system.

Suppose that a full-order estimator of the form [15, p. 351]

K(t)( z(t) - HS(t) - JM } (2.14)

is used to estimate the system state, and the estimation error is given by

e(t) = i(t)-4t). (2.15)

The estimator can be designed optimally by finding the estimator gain matrix

K(r], t0 < T < t, and the initial condition x(t0), so as to minimize the

weighted sum of the mean square estimation errors

J* = min £ { eT(t)We(t) } = min tr [ WP(t) ], (2.16)
K(t) V ' K(t)

where W is a symmetric positive-definite weighting matrix, and

P(t) = E { e(t)eT(t) } is the estimation error covariance matrix.

First subtracting Eq. (2.13a) from Eq. (2.14) and using Eq. (2.13b), we

obtain

e(t) = [F-K(t)H]e(t) + K(t)v(t)-r^t), (2.17a)

e(t0) = e0 = %t0)-4t0). (2.17b)

It follows from the above equation that P(t) satisfies the following

differential equation
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P(t) = (F-
+ K(t)R,KT(t) - T VKT(t) - (2.18a)

(2.18b)

Substituting Eq. (2.18) into Eq. (2.16), and using the gradient table [49] in

Appendix D to take derivatives, we obtain

tr W f{ [F-K(r)H]P(r) + P(T)(F-K(r)H]T

6J
dK

W

-TVKT(T)-K(T)VTrT} rfr

/ { - 2P(T)HT + 2K(T)R, - 2F V } dr
to

— 2Wf R.dr > 0.
i

(2.19)

(2.20)

(2.21)

a r

In order to minimize / with respect to K, -^r must vanish, that is,
oK

- 2P(T)HT + 2K(T)R, - 2F V = 0, t>r>

which leads to

K°(t) = [P(t)HT+rV]R?, t>t0.

(2.22)

(2.23)

It can be seen that K°(t] is independent of the choice of the weighting

matrix W.
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Using the optimal gain matrix of Eq. (2.23) in Eq. (2.18), P(t) now

becomes the solution of the matrix Riccati equation

P{t) = [F
-P(t)HTR-v

lHP(t) + TQJT

(2.24a)

(2-24b)

Since Eq. (2.16) can be rewritten as [15, p. 342]

E { eT(t)We(t) } = eT(t)We(t)
+ E{ [e ( t ) - e ( t ) } T W[e( t ) - e ( t ) }} , (2.25a)

where

e(t) = E{ e(t)}. (2.25b)

It is a sum of two positive quadratic terms, the first term of which b obviously

minimal when e(t) = 0. This can be achieved by letting e(f0) = 0, because

e(t) obeys the homogeneous differential equation

*t) = [F-K(t)H]e(t), (2.26)

so the initial condition of the estimator can be chosen as Z(/Q) = %

Since the system is time invariant, i.e. F1 G, F, //, Jw Qu, Rv, V are

all constant matrices, it can be proved that the estimating process will reach a

steady state as t — * oo [16, p. 366].

The OPTSYS computer program developed by Hall and Bryson [27] uses

the eigenvector decomposition technique to solve for the steady state estimator

gain and root mean square (rms) estimation error. Since the use of accelerome-
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ters as measuring devices is common in most control applications, OPTSYS has

been modified by the author to the LOPTSYS to accept the more general input

form

40; = /XO + GXO + Tw(t), (2.27a)

/ (0, (2.27b)

where

E{w(t)v (T)} = 0. (2.27c)

Substituting Eq. (2.27a) into Eq. (2.27b), it can be shown that [Refs. 50,

pp. 2-3, and 51, p. 73, and 52]

J'n }w(t) + v' (t), (2.28)

so comparing with Eq. (2.13b), we have

H = HgjF + Hz,

Jw = H

•(0 = [ nzp + J'w MO + "' (0,

V = Qv[H,f + 4 }T. (2.29)

It is important to know that the derivative term introduces a direct feed

through of the process disturbance into the measurement noise and it is highly

sensor location dependent.
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C-2 Discrete System

In this research the evaluation of estimation quality for different sensor

numbers and locations is carried out on a digital computer. So the previous

development has to be extended to the discrete case. The discrete estimator gain

found in this section will be used for our discrete estimator implementation.

First Eq. (2.28) is rewritten as

2(0 = H*(t) + Juv(t) + Juw(t) + 9 (t). (2.30)

Instead of modeling w(t) and v (t) as white noises, we must think of them as

colored noises with variances Qv and R9> , and correlation times Tu and Tv' ,

respectively. That is,

(2-31a)

(2.31b)

where ijw(t) and r}v'(t) are white noise processes with power spectral densities

2 TWQW and 2 T,' Rv> , respectively.

Let xa = [ XT WT v r] and 17 = [ ijj lyj] *, Eqs. (2.27a), (2.30) and

(2.31) become

(2.32a)

z(t) = Haxa(t) + JXO, (2.32b)
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where

F T

(2.33a)

r —* a —

0

0 (2.33b)

Ha =

•7 = N[0, Ql Q = diag[2rttQtf, 2T,'R,>],

which is a system with no white noise measurement.

Thus the discrete system is of the form [Refs. 53-55]

z(k) =

(2.33c)

(2.33d)

(2.34a)

(2.34b)
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If we use a zero-order hold for the control, that is,

«(<) = t^), tk < t < tM, k = 0, 1, 2, ..., (2.35)

and assume that the observation is made at the controlling instant tk, then

*M

(2.36a)

(2.36b)

where 4>(^+i,^) is the state transition matrix from time tk to

Comparing Eq. (2.34) with Eq. (2.36) we obtain:

Fd = *(W»),

)IVrt»)*i (2-37a)
'*

and

=0, ft = ^
«H-1

)*-. (2.37b)

In the usual case in which the sampling instants are equally spaced, i.e.

~ '* ==' ^»> while the system is time-invariant, then
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e t** . F'T'

T,

Gd = [
o

r,
(2.33)

0

Similar to the continuous case, we can design an optimal discrete estimator

as [15, p. 550]

*„(*+!) = *„(*+!) + K(k+l) X
- Hjca(k+l) - /ttu(*+l) ], (2.39a)

where

xa(k+l) = Fdxa(k) + Gd«(k), (2.39b)

by finding the gain matrix K(j), k$< j < k, and the initial state xa(k^ in

order to minimize the weighted sum of the mean square estimation errors

J° = minE{ eT(k)We(k) } = min tr [ WP(k) 1, (2.40a)
K(k) J

where W is a symmetric positive-definite weighting matrix, and

e(k) = xa(k) - xa(k), P(k) = E{ e(k)eT(k) }. (2.40b)

Subtracting Eq. (2.34a) from Eq. (2.39a) and using Eqs. (2.34b) and

(2.39b), we obtain
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= [ /- K(k+l)Ha ] [ JFJ(*fl) - «j(*fl) ]. (2.41)

It follows from the above equation that f\k) satisfies the following recurrence

relation,

P(k+l) = [I-K(k+l)H t]M(k+l)lI-K(k+l)Ha\
T, (2.42a)

where

= E { [ xa(M) - za(k+l) ][ xa(k+l) - xa(k+l) }*}

= E { ( Fde(k) - fiJik) ][ Fde(k) -1*k)]T}

Qd, (2.42b)

which is the covariance matrix of the estimation error before measurement.

Substituting Eq. (2.42a) into Eq. (2.40a), J can be found as

J = tr{ w[(I-K(k+l)Ha]M(k+l)(I-K(k+l)Ha]^}, (2.43)

and its derivatives are

(2.44)

_ - j j — "i —o-—\" • -/—a J — \™'*"/

ft T
J can be minimized with respect to K by letting -rrr equal to zero, that is,

oK.

- 2[ /- K(k+l)Ht ]M(k+l)Hf = 0. (2.46)
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From the above equation, K°(k+l) can be solved as

K'(k+l) = M(k+l)Hlx[HMM)H?}-1. (2.47a)

with initial condition

JW(*b) = MQ. (2.47b)

Substituting Eq. (2.47a) into Eq. (2.42a), then

P(k+l) = [I-K°(k+l)H,]M(k+l). (2.48)

As in the continuous case, we can let e(A^) = 0 by choosing

= *«, (2-49)

For a time invariant system, i.e. F^, Gd, Ha Jw Qj are all constant

matrices, it can also be proved that the estimating process will reach a steady

state as in the continuous case. A computer program DISC developed by Katz

[28] can be used to find the steady state solution, but it is not able to handle the

correlation between the process disturbance and measurement noise. So a pro-

gram coded in FORTRAN was developed by the author to iterate Eqs. (2.47-

2.48, 2.42b) until the steady state in Eqs. (2.47-2.48) is reached. Better tech-

niques can be used to find the steady state solution at faster convergence speed

but they are not considered here.
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D. EXPERIMENTAL SYSTEM OBSERVABILITY ANALYSIS

For ease of analysis and notation, we will use the continuous formulation

hereafter, and the system is assumed to be time-invariant.

D-l Differential Equation Investigation

As derived in Appendix B-l, the system equations of the physical system,

Eqs. (A-23)-(A-24), are repeated here

T
M-fl + Saa + Chh + Kkh = F - -y- - L, (2.50a)

SQh + Iaa + Caa + Kaa = Ta + Ma. (2.50b)

Without considering the driving forces and aerodynamic forces, i.e. in vacua,

and neglecting the damping effects, the equations normalized by the the semi-

chord can be written as

, ,oci ^
T K Q' ( *

5 = "Sf K~ "f "• (2'51b)

where all the coefficients are defined in Appendix C.

Using a linear accelerometer located at a distance d away from the elastic

axis (EA) for linear acceleration measurement, "z, see Fig. II-3,

"z = h+ 3a
2

(2.52)~
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and the second derivative of this measurement is

-

r1)1A
&a
-^-I)]«.

*a
(2.53)

Combining Eqs. (2.52) and (2.53), we can solve for h and a in terms of 7 and

7 provided the determinant

A =
tf

&

(2.54a)

(2.54b)

does not vanish.

SENSOR TI

1

Fig. n-3 Acceleration Measurement
(An accelerometer located at x, w.r.t. midchord (MC)

is d from the elastic axis (EA))

-30-



as in Fig. D-4.

1

3.0

2.0

i.o

0.0

-1.0

Since d = x, - a, the determinant A can be plotted as a function of x,

for given system parameter values:

= 1821.58 (rad/sec)2

= 3737.83 (rad/sec)2

= 0.3684
= 0.96469
= 0.19

x,-a

: 0.37668
« -0.3
- 1. < x, < 1.

K2

K

a =s

(2.55)

-0.6 -0.2 0.2
Sensor Location x.

0.6 1.0

Fig. n-4 Determinant A vs Different Single Sensor Locations x,

It can be seen that A = 0 at 7e « - 0.2, that is, the system will lose its

observability if we put an acceleiometer at this location. The following example

will be used to explain the physical meaning of this singularity.
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Example: (see Figure II-5)

Suppose an airfoil with mass, m and moment of inertia about EA, Ia is

suspended at point O, which is of distance d away from EA. Assume a linear

spring with spring constant Kk and an angular spring with spring constant Ka

is attached to the airfoil at EA. Now dbplace EA laterally away from its neu-

tral position a small distance x and release, the reaction force at point O in *

direction Rt can be solved as follows.

Fig. n-5 Example

The force and moment equations about point O are

R,-Kkx — mxe = m(d-xa)e,

~ Ka-j ~ Kkx* — W>

so
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Since

and

so

d-x»

~t

= -^ -^ KK - <0 - *fl-i-l) ]. (2.56)

Thus if d is so chosen that Rt = 0, the accelerometer will have zero

measurement at that position. Physically, this is the center of percussion (CP),

where there is zero specific force. Comparing with Eq. (2.54a), they are

equivalent when K2 = 1. Since plane motion is involved in this example and

when there are no other forces applied, the instantaneous center will be located

at the center of percussion, where the ratio of linear and angular accelerations is

such that there are no movements during vibration [29, p. 481]. When external

forces are applied, the acceleration measurements at CP may not be zero but

the ratio of the incoming linear and angular components is such that there will be

no distinctions between them. This can be seen by letting

in Eq. (2.52). Then the measurement contains only one of the frequency com-

ponents, either plunge or pitch but not both.
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D-2 Observability Matrix

A more systematic way to check the observability is to write the system

equation in the state space form as Eq. (2.13). Equation (2.11) is first used for

this investigation. If only one accelerometer is used, the measurement equation

can be written as

40 = H^t) + 40,

where

H t d = (0 1 0 (x,-a) ],

and

40 = a(t) a(t)]T.

Using Eq. (2.29), we have for our physical system that

H = H,

40 =

V =

+ v (0,

where we assume V = 0.

Then the observability matrix Oob can be constructed as

H

HF

HF*

HF*

(2.57a)

(2.57b)

(2.57c)

(2.58)

(2.59)
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In general, Oob is an (ntf6Xn,) by n, rectangular matrix. The deter-

minant of the n, by n, square matrix O*bOob, det (OjbOob), can be plotted as

a function of xr In this formulation the aerodynamic effect can be considered

easily by using Eq. (2.12) which adds an additional aerodynamic state. Now the

measurement distribution matrix becomes

H t d = [ 0 1 0 (x.-a) OJ ,

1*0]

(2.60a)

(2.60b)

and the observability matrix will be

H

HF

HF2

HF3

HF*

(2.61)

The det (O%bOob) can thus be plotted for various wind speeds. Figure H-6a

is a plot of the theoretical estimation error performance index tr (WP) versus

different single sensor locations "x, at zero wind speed, where

W= diag [ 1, 10"1, 10, 10~2, 1 ]. This result is obtained from the steady state

covariance analysis, it gives finite estimation error for finite power spectral den-

sity inputs of the process disturbance and measurement noise even at x,(inin.

Figure II-6b shows the det (OjbOob) versus different single sensor locations xt

at zero wind speed. For different wind speeds, the plots look the same except the

Jim-m corresponding to the minimum value of det (O%bOob) will be different.
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Fig.n-6a Performance Index tr (WP\
vs Different Single Sensor Locations x, at Zero Wind Speed
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Fig. n-6b Determinant det(0J0o6)
vs Different Single Sensor Locations Jt at Zero Wind Speed
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By comparing the plots in Fig. II-6, we can see that z,in,in corresponds to

the unobservable location of the sensor. The same conclusion also holds for vary-

ing wind speeds. Otherwise, the absolute magnitude of det (0*bOol>) bears no

direct relationship with the observability of the system. This can be seen that

for the same magnitude of det (O*bOob) the corresponding sensor locations can

have different results for tr (WP). Actually, the det (O*bOob) can only provide

binary information about the system to be analyzed, i.e. either observable (when

det (OfbOob) T£ 0) or unobservable (when det (O*bOob) = 0) [16, p. 457].

D-3 Transfer Function and Modal Form

Using the state space formulation Eq. (2.13a) and the measurement equa-

tion Eq. (2.13b), we can find the transfer function from w(t) to z(f) as

(2.62)
""V8;

and the modal form as

£(t) = A£(f) + rlGv(t) + T^v^t), (2.63a)

z(t) = HT&t) + Juv(t) + v(t), (2.63b)

where A = T1FT, f(<) = Tlx(t), and T is the right eigenvector matrix of

the open-loop system.

The product of disturbability times observability can be determined by exa-

mining the transfer functions or the modal distribution matrices. Figure II-7

shows the pole-zero loci for different single sensor locations and various wind
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speeds. The conclusion from this figure is that at the unobservable or undisturb-

able position of the sensor, there is an exact pole-zero cancellation of the pitch

mode. It seems that as the separation between the pole and zero increases, the

estimation error for that mode decreases. Although this qualitative behavior is

general for all cases, we did not use it for best sensor location searches.

If (z, w) were scaled so that one unit of each component is of comparable

significance, then (#T),- and (TlT)f indicate relative observability and distur-

bability of ith mode. Outer product of these two vectors forms a rank one resi-

due matrix. The norm of this matrix equals the product of the length of these

two vectors, and it is a measure of the significance of tth mode in the input-

output relation.

A thorough examination of the residue matrices reveals useful information

about its connection with the magnitude of the estimation error and it can help

to locate the unobservable or undisturbable location of the sensor.

E. CRITERIA FOR CHOOSING THE BEST SENSOR LOCATION

The choice of sensor location represents a significant design freedom avail-

able to the designer. However, it is usually not a very straightforward choice to

make. To make a good choice, it is necessary to have a standardized criterion to

choose the sensor number and their locations. Most important, it must be a

quantitative measure that can be easily computed and have a physical interpreta-

tion so that engineering judgement can be based upon it. In order to get a per-

spective on this research, it may be helpful to review the criterion proposed by

VanderVelde [12-14].
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E-l Degree of Observability (DO)

For the Kalman filter with uncorrelated process disturbance and measure-

ment noise, i.e. V = 0, from Eq. (2.24) the estimation error covariance matrix

can be found satisfying the following equations

P(t) =

(2.64a)
= P9. (2.64b)

Vander Velde chooses Qw = 0 by arguing that it is an external influence

not related to the sensor set (however, this is not true when accelerometers are

used as we pointed out at the end of Section C-l) and uses the information

matrix S(t) — P~1(t) formulation, then Eq. (2.64) becomes

5(0 = -^F-F + HH, t>t0, (2.65a)

using the fact that

P(t) = - P(t)S(t)P(t). (2.66)

Assuming there is no information about the initial state, i.e. P0 = oo or

S0 = 0, one is interested in measuring how much information has been accumu-

lated in S( Tt) up to a specified estimation time Te, that is, the size of S( Te).

This can be obtained by reference to the quadratic surface in the z-space, i.e.

xTS-lx = I. (2.67)
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After the transformation

y = Tx, (2.68)

where T = diag I | ei |, . . . , | e; |, . . . , | en | I and e; are the max-v I *maot *nuK "RBK I *maK

imum errors that can be tolerated in the directions i,-, the volume of the

transformed ellipsoid can now be measured in the equimeasure space. The degree

of observability (DO) is defined as the maximum spherical volume (Vs) con-

tained in the n,-dimensional ellipsoid (VE) plus a lesser weighted excess volume

( VET V$) due to the nonideal volume distribution. Specifically,

DO = V s + -
VE

l/n,

(2.69a)

with

I— 1

and i/,- are the eigenvalues of T5( Te) T.
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E-2 Sensor Location Index (SLI)

In Section A, the performance index for optimally designed estimator at

steady state is found to be

J°M = min tr [ WPM ], (2.70)

where Ptt is the solution of the steady state Riccati equation

[F-T VR-JH \Plt + P.,[ F-
+ TQJT-rVR-9

1VTTT = 0. (2.71)

It can be seen that Ptt as well as J°tt are functions of the measurement distri-

bution matrix H. Specifically, they are functions of the sensor location along the

wing chord, xt, for single sensor case. This is also true for multiple sensors, in

which case, Jt will be interpreted as a vector. The performance index can be

plotted as a function of zt, and by a simple judgement, the location where it

has the smallest value should correspond to the best sensor location under given

conditions.

The above conclusion suggests that a similar sensor location index

J°SL = min J°lt = min { min tr [ WPtt \ } (2.72a)
H H K,t

can be used to find the best sensor location, where W is a symmetric positive-

definite weighting matrix and can be chosen similarly to T as

W = diag f -J-, . . . ,4-, • • • ,-r-l. (2-72b)= diag f -J
1 €1L li
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To incorporate the constraint of Eq. (2.71), we introduce the use of a

Lagrangian multiplier matrix A, and denote the Eq. (2.71) by J(P,S,H). Then

Eq. (2.72) can be written as

J>SL = min tr [ WP,9 + \J(P,,,H) ], (2.73)
H

since

A/(PM)fl) = 0. (2.74)

After substituting and using the gradient table in Appendix D and Eq. (2.23),

we can find that

= [ F- K..H}TA. + A[ F- KttH\ + W, (2.75)

(2.76)

The gradient of J$L w.r.t. each individual sensor location is obtained by apply-

ing the chain rule. Using Eqs. (2.58) and (2.60a), we have in our case that

(2.77)

where F4)- is a 1 by ng matrix which is identical to the 4th row of the F

matrix. For multiple sensor case, xt can be considered as a nof> by 1 vector.

In order to minimize JSL, both and must vanish.
dP,, dti
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E-3 Gradient Search Procedure

The gradient searching process for the optimal sensor location can be pro-

ceeded as:

1. guessing initial value of x, with which to compute the component

values of the H matrix,

2. using LOPTSYS to solve for Ptt and Kltt

3. solving the Riccati equation of Eq. (2.75) for A,

4. computing the gradient --£- of Eq. (2.76), and — — of Eq. (2.77),
on dx,

5. if - < c (a small number close to zero given by the designer),
dx,

stop; otherwise

6. computing

:A x. (2.78)
ax,

under the constraint of -1 < x, < 1,

7. go back to step 2.

This procedure is also shown by the flow chart in Fig. II-8.

Figure II-9 shows the sensor location index JSL versus different single sen-
_

sor locations !„ and Table II-l gives the values of JSL and - . From
dx,

which we can see that - truly reflects the slope of the curve and a local
dx,

minimum exists.

-44-



initial 1
guess of

f solve for ^
[P.. & Ktt J

dJ
solve for A from

exceeds
boundary

— < € oj y Jcompare with

.7 ̂  J [ J boundary

Fig. n-8 Gradient Search Procedure for the Optimal Sensor Location

- 45 -



20.0

Table n-i Numerical Values of —— and /«
dlt

ri jt

10.0 ;-

3.0

0.0

-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-6.0402E-OS
-4.8933E-05
-3.7098E-05
-2.4H9E-05
-8.9908E-06
9.3666E-06
3.0327E-05
4.I958E-05

- 1 .4239E-06

-1.1697E-04
-1.0181E-04
-8.3357E-05
-6.8757E-OS
-5.7892E-05
-4.9749E-05
-4.3504E-05
-3.8593E-05
-3.4640E-05
-3.1390E-05
-2.8672E-05

JSL

7.1675E-03
7.0607E-03
6.9705E-03

, 6.9170E-03
6.8867E-03

: 6.8875E-03
6.9268E-03
6.9963E-03
7.0341E-03
6.6640E-03
6.4034E-03
6.4034E-03
6.1737E-03
5.9761E-03
5.8047E-03
5.6539E-03
5.5192E-03
5.3976E-03
5.2865E-03
5.I844E-03
5.0897E-03

-l.GO -0.7S -030 -0.25 0.00 0.29

LOCATIONS OF SENSOR

o.eo

Fig. H-Q Sensor Location Index JSL
vs Different Single Sensor Locations 7,

0.75 1.00
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Using the gradient for sensor location search is easy and convenient,
on

however, = 0 can lead to a local minimum. So the use of it must be
an

with care.

E-4 Comparison between the SLI and DO When QV — Q

Since in the actual applications, the process disturbance may be close to

zero, i.e. Qw —* 0, and V-» 0, then the Pu will approach zero. In this case,

we could take into account the estimation time Te to avoid the singular result

and solve Eq. (2.24) by integration.

Figure 11-10 shows the result by letting Qw = 0, V = 0 and Te = 1 sec. It

can be seen that the trailing edge is still the best location to install an accelerom-

eter while the center of percussion is still the worst.

Using Vander Velde's information matrix formulation, Fig. 11-11 shows the

sum of its weighted diagonal terms versus different single sensor locations. It

shows the trailing edge is the best sensor location, however at the center of per-

cussion the index value does not go to zero. Because, in modal form, only one

diagonal term vanishes when the sensor is at the center of percussion.

Figure 11-12 is a plot of the information matrix determinant versus different

single sensor locations and it shows zero value at the center of percussion while

the best sensor location is still at the trailing edge.

For finite time estimation, the SLI is independent of the initial value

assumptions because of their fast decaying rates for stable systems. However,

this is not true for the DO. For some cases, the available initial information

may dominate the value of the DO and makes the sensor location preference

indistinguishable.
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WIND SPEED = 1.00 m/sec, ESTIMATION TIME = 1.00 sec.
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LOCATIONS OF SENSOR

1.00

Fig. n-11 Performance Index tr(S/W)
vs Different Single Sensor Locations z, for Te= 1 see
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E-5 Relative Merits of the SLI versos DO

Compared with the degree of observability (DO) suggested by Vander

Velde, we have chosen to use the sensor location index (SLI) because it is more

convenient for our purposes for the following reasons:

1) Practically, it is much more meaningful to measure directly the state

estimation error than the hypothetical ellipsoid volume, especially

when the system state has physical meanings.

2) The measurement noise will include the process disturbance when

accelerometers are used, see Eq. (2.29). This inclusion of the process

disturbance is highly sensor location dependent and it may affect the

choice of the optimal sensor location. The sensor location index takes

this into account in its formulation. However, in our case both the

SLI and DO give the same answer.

3) When evaluated for a finite time to avoid singular results the sensor

location index is independent of the initial value.

4) The existing design program LOPTSYS and some of its supporting

subroutines were developed at Stanford. They are available and

make it straightforward to compute J$£ the value of J^ could be

computed as a by product during the design process.

5) Most important of all, this choice of sensor location index J$L makes

the gradient formulation easy to handle and compute thus making

JSL tractable for the optimal sensor location search.
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F. DOUBLE SENSORS CASES

Figure n-13 shows the theoretical results of single sensor as well as double

sensors, with one sensor fixed, versus varying sensor locations along the wing

chord. Due to the existence of Qv and V, there is no simple relationship

between the single sensor and collocated double sensors at the same sensor loca-

tion. Adding a second sensor generally improves the SLI, with the improvement

increasing as the second sensor moves toward the trailing edge.

The best location for the second sensor is still at the trailing edge, same as

the first one. This result shows however the negative side of our sensor location

index definition, namely it is too dependent on the mathematical modeling of the

physical system. For example, a practical estimator designer would rather choose

to put one sensor at the leading edge and one at the trailing edge. Their meas-

urements can then be used to solve for the linear and angular accelerations which

are independent of the system modeling. So the two sensors can get 2 DOF

information directly albeit the initial conditions. Since these dc information is

rarely needed for flutter suppression, it suggests that a frequency-band weighted

SLI may be useful to cope with system parameter uncertainties and modeling

errors. A more realistic criterion which takes this into consideration will be

recommended for the future research.
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Fig. 11-13 Single Sensor and Double Sensors Cases
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Chapter ffl

EXPERIMENTAL APPARATUS

A. INTRODUCTION

The idea of the typical section wing was devised during the 1930's by

Theodorsen and Garrick to simulate an actual wing by matching the properties

at a station 70-75% of the distance from the centerline to the tip [18, p. 189].

Ideally, as shown in Fig. ffl-1, it consists of a thin, rigid wing immersed in a two

dimensional, incompressible airstream, suspended by two sets of springs allowing

elastically restrained but uncoupled rotation about the elastic axis (EA, line of

shear centers [18, p. 281]) and translation perpendicular to the free stream

airflow.

This chapter describes an experimental apparatus that is the physical reali-

zation of the ideal two DOF (degree of freedom) typical section wing. Its

suspension system was built by Rock in 1978 to investigate the aeroelastic sta-

bility of a simple, two DOF wing in Stanford's small, subsonic wind tunnel

[25]. This suspension system provides spring restraints for plunge and pitch

movements while allowing virtually no elastic coupling between these two

motions. It is also characterized by small structural damping and relatively high

stiffness in the remaining DOF's.

A schematic view of the complete system is shown in Fig. ffl-2. A descrip-

tion of the major subsystems is presented, followed by a summary of system

parameters and a discussion of the system performance.
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Fig. ra-1 Typical Section Wing

B. WIND TUNNEL

The wind tunnel used in this research at Stanford University is a. small,

closed-circuit, subsonic, vented tunnel, see Fig. III-3 for its plane view [56]. It

has a dynamic pressure range of 200 N/m 2 to 2000 N/m 2 (an airspeed range

of 19 m/sec to 65 m/sec, A/miX = 0.2). The dynamic pressure is controlled

by adjusting the pitch angle of a 16-blade constant speed (19 Hz) fan. Five

screens upstream reduce the mean turbulence level at the test section to approxi-

mately 1%. The contraction ratio is 8.67 and the total distance around the

center line is 25.1 m.
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Fig. m-2 Experimental Apparatus
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CONSTANT SPEED (19 HI)
VARIABLE PITCH FAN (16 BLADES)
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NACELLE
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TEST SECTION

AIRSPEED RANGE 19-65 «/»
TURBULENCE LEVEL < U

TURBULENCE
DAMPING SCREENS

Fig. m-3 Plan View of the Stanford Subsonic Wind Tunnel

The test section is 0.4572 m (18 in.) square by 0.9017 m (35.5 in.) long. It

consists of a welded steel frame with three removable Lexan walls and one steel

bottom wall, mounted on a welded steel cart with castors for ease of handling.

The suspension system and actuators are bolted to mounts welded to the

test section. All have been machined in place to provide proper alignment and

rigidity. The only hardware inside the test section is the airfoil with its endplates

as well as those sensors inside the airfoil for the "in-flight" estimation. All

suspensions, actuators and monitoring sensors are located externally.

C. AIRFOIL

The airfoil is constructed of a fiberglass-laminate skin wrapped around a

foam core. It has a NACA 0015 profile with a span of 0.4101 m (16.5 in.) and

a chord of 0.2413 m (0.5 in.). A core of styrofoam is cut to the shape using a

hot-wire passed over two aluminum templates (shown in Fig. III-4) numerically

machined to NACA 0015 specifications [57, p. 113].
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Four layers of bidirectional weave fiberglass cloth and epoxy cover the core

to provide structural rigidity and one layer of light weight fiberglass cover pro-

vides a smooth aerodynamic surface. Surface irregularities are removed by sand-

ing and filling with quartz microspheres and resin.

The wing spar is initially a single piece of square aluminum tubing, 10.05

mm (0.75 in.) on a side and 3.175 mm (0.125 in.) thick, centered on the mean-

line at 35% of the chord behind the airfoil leading edge and extending out each

wing tip to the external suspension. It is cut into two pieces to fit in a rectangu-

lar aluminum box which is constructed to mount an angular rate measuring dev-

ice. The protruding ends on the box are fitted closely inside the cut spar tubing

thus transmitting the structural loads across the wing, see Fig. ni-5. Six

accelerometers of two different sizes and sensitivities are installed inside of the

airfoil for the "in-flight" estimation. They are mainly laid out in the middle of

the wing section to maintain the symmetry of mass distribution, and fixed onto

the surrounding styrofoam and one side of the fiberglass skin through epoxy and

microsphere filler.

Circular endplates are fastened to each end of the airfoil, with a diameter a

little bigger than the wing chord, machined from plexiglass 12.7 mm (0.5 in.)

thick. A gap of 6.35 mm (0.25 in.) exists between each endplate and the wind

tunnel wall to avoid boundary layer effects and maintain two-dimensional flow

over the airfoil [26, p. 32]. Since both endplates move with the wing, they con-

tribute significantly to the total apparent mass (10%) and moment of inertia

(36%) of the system.
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D. SUSPENSION SYSTEMS

The suspension system is designed to constrain the airfoil to move in the

plunge and pitch DOF's without introducing any friction or elastic coupling into

these motions. Hence, the suspension system employed can be treated statically

as two independent systems — one for plunge and one for pitch.

D-l Plunge Suspension

The plunge suspension consists of four folded-cantilever springs mounted on

the test section exterior, connected across the section top and bottom by light

weight magnesium-aluminum cross beams. The cross beams are also connected

along one vertical side of the test section by a third beam, as shown in Fig. ni-2.

This arrangement constrains the airfoil to the plunge motion only (Fig. ffl-

6, direction 2), and it is stiff in all the other directions. The only suspension

losses are in the material flexural hysteresis and are very small. The plunge

direction is designed to be horizontal rather than vertical to avoid the gravity

bias.

The diagram of a single spring is given in Fig. ni-7. It is stiff in directions

2, 3, and 4, but compliant in 5, 6, and 1, the desired direction. This spring can

be analyzed as a group of four cantilever beams, two in parallel forming the

center web, and two parallel split beams, each containing one half of both outside

webs, which are in series with the central ones. The spring rate for displacement

taken at the free end of a cantilever beam with the constraint condition of zero

slope, is given by

12£7
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Fig. Ill-7 Folded Cantilever Spring
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from elementary beam theory [58, p. 212], where /= wP/12. Since the four

beams form a series-parallel set, the overall spring rate is the same as that of a

single beam, given in Eq. (3.1).

Each spring was machined from Beryllium-Copper (E = 1.28 *10n N/m2)

with t= 1.68 mm, w= 28.6 mm, and /=203 mm. The resulting spring

rate is

K, = 2075 N / m , (3.2)

and the total spring rate along the plunge direction is

Kh = 4K. = 8300 N/m. (3.3)

The measured spring rate of the actual system is 10383 N/m, 25% higher

than its predicted value due to the uncertainties in the parameters E, I, w, but

principally in t. The springs are offset by 10 mm to avoid snap-through at

their zero position. Adjustable stops on the top and bottom cross beams allow

the plunge travel to be restricted if necessary. They proved to be useful when

operating in dynamically unstable situations. With the pitch DOF locked (see

D-2), the total effective plunge mass and the structural damping in the plunge

mode were experimentally determined by using an FFT analyzer, see Appendix

C for details.

The vertical reinforcing beam shown in Fig. III-2 helps stiffen the suspen-

sion in the differential bending mode. The plunge actuator and plunge position

sensor are located at the center of this beam. This location is chosen because it

is at the node of the differential bending mode. Consequently, the actuator does

not excite this mode and the sensor does not observe it either.
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D-2 Pitch Suspension

The pitch suspension system is formed by torsional springs fastened between

housings on the wing spar tips and the plunge cross beams as shown in Fig. ni-8

for details. The springs are double cantilever Bendix flexural pivots, which allow

elastically restrained pitch motion about the wing spar centerline. They are com-

mercially available in a variety of spring rates and sizes. The bushings shown in

Fig. ni-8 allow the housings to accommodate different sized pivots. The spring

rates for the plunge and pitch suspensions are designed or selected to allow the

test system to have an adequate separation between those two major system

modes and the desired flutter frequency. The two flexural pivots used have a

measured combined spring rate of 43.04 N-m/rad. Adjustable stops are also pro-

vided for the pitch motion.

Since the mass of the plunge suspension is elastically decoupled from the

pitch rotation, the actual mass of the system rotating about the pitch axis is con-

siderably less than the total system mass MT. The experimentally measured

pitch mass A/2, including the wing section and its endplates and part of the

torque motor, is 2.075 kg. Its center is 0.0165 m behind the elastic axis thus

yielding a value of Sa = M2xa = 0.04814 kg-m.

The effective moment of inertia of the wing section and the pitch mode

structural damping were experimentally determined by using an FFT analyzer,

see Appendix C for details.
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E. ACTUATORS

Two actuators are used, one for each degree of freedom. They may be used

independently or simultaneously to simulate the effect of an aerodynamic control

surface.

E-l Plunge Actuator

The plunge actuator is a linear motor (see Fig. ffl-9) of the type found in

computer disc drives. It has a bandwidth of 65 Hz and is capable of 62 N (11.7

Vinput..) for short periods of time and 22 N (4.15 V;nput) for continuous opera-

tion.

The voice coil current to force relationship is only linear within 5% but the

repeatability (1%) is such that the motor can be easily compensated. The

motor is driven by a current-drive amplifier to eliminate the back electro-

magnetic force (EMF) damping.

E-2 Pitch Actuator

The pitch actuator is an Aeroflex brushless torque motor shown in Fig. III-

10. It is also driven by a current-drive amplifier. It has a bandwidth of 100 Hz

and is capable of 2.12 N-m (9.5 V-mput) for short periods of time and 1.06 N-m

(4.75 Vinput) for continuous operation.

The motor (2.27 kg) acts through the four-bar linkage shown in Fig. ni-10

to reduce its apparent mass added to the airfoil by roughly 100:1.
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ORIGINAL PA@E II

Fig. ni-fl Linear Motor and LVDT with its Suspension
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Fig. HI-ID Torque Motor and Four-Bar Linkage
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The operation of the linkage is explained with the aid of Fig. III-ll. The

elastic axis of the airfoil is constrained to move rectilinearly by the plunge

suspension, Fig. HI-11 a. As the airfoil plunges, the linkage deflects without pro-

ducing any torque (but it does produce an unbalanced force along the cross

beam) about the elastic axis, Fig. Hi-lib. At any plunge position, however, the

motor can transmit a torque through the linkage into the elastic axis, Fig. ffl-

llc. All joints in the linkage are very compliant flex pivots. There are no bear-

ings used in order to reduce the friction effects and maintain the repeatability of

the system performance. Consequently, the only suspension losses are in the

material flexural hysteresis and can be neglected.

b)

c)

Fig. HI-11 Operations of Four-Bar Linkage
a). Normal b). Translation c). Rotation
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F. SENSORS

A monitoring sensor is provided for each degree of freedom. Six accelerome-

ters inside the airfoil can be used in various combinations for the "in-flight"

estimation. A pitot-static tube is provided for airspeed measurement.

F-l Plunge Sensor

The plunge displacement transducer is a Schaevitz Engeering type 500 HR

LVDT (linear variable differential transformer) which is excited with a 400 Hz

signal, and when demodulated and filtered, produces an output voltage propor-

tional to the plunge displacement. It is linear within 1% over the range ± 10

mm.

The sensor is isolated from motions of the wind tunnel walls and motions of

the laboratory by suspending its case in an elastic suspension system (see Fig.

ffl-9) with a natural frequency of about 2 Hz.

F-2 Pitch Sensor

The pitch angle sensor is a Kearfott type R235 -1-A resolver which is

excited with a 400 Hz signal. It is linear within \% over the range ± 5

degrees.

The resolver shaft is connected to the top flexural pivot housing using a

flexible bellow coupling for protection. The resolver case is held by a bracket

fixed to the top plunge suspension cross beam.

F-3 Linear Acceleration Sensors

Two different types of Piezoelectric Accelerometers, each with a different size

and sensitivity, made by ENDEVCO are used - model 2221D shear

accelerometer weighs 12 gm with sensitivity 17 pC/g, and model 7701-100

isoshear accelerometer weighs 29 gm with sensitivity 100 pC/g.
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Both types of accelerometers produce output charges proportional to the

acceleration inputs. These outputs are converted by a model 2721B charge

amplifier to voltage readings with a full scale (FS) ± 10 V.

F-4 Airspeed Sensor

Airspeed is measured with a United Sensor type PCD-8 KL pitot static

tube connected to a gage-fluid filled manometer to read dynamic pressure in

inches of water (a range of 0-8 in. or 0-2000 N/m2). The manometer is cali-

brated with 0.1 inches graduations (24.9 N/m2). The pitot tube is mounted

approximately one half-chord ahead of the airfoil leading edge, and a similar dis-

tance above the test section centerline. This system has an accuracy of 1%.

The ambient temperature and pressure are recorded at the wind tunnel for future

conversion of the dynamic pressure to airspeed.

G. COMPUTER SYSTEMS

A DECLAB-23/MNC computer system is used for data acquisition and

manipulation, monitoring and controlling of external apparatus. Its RT-11

operating system is a real-time, single-user operating system using FORTRAN

IV programming language and PDP-11 assembly language. The Real-11/MNC

software is designed for use with the RT-11 operating system to support the

MNC-series hardware modules, which includes the real-time clock, digital

input/output units, A/D and D/A converters, and a dual-multiplexer. The

module function diagram is shown in Fig. HI-12.

The A/D converter is a successive approximation type analog-to-digital

converter with 12 bits resolution. Its full scale input range is ± 5.12 V bipolar

with 40 /isec typical data acquisition time. With its internal and the external

dual-multiplexer it can sample up to 12 channels in quasi-differential mode.
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There are 4 D/A converter channels with 12 bits resolution and output vol-

tage ranges ± 2.56 V, ± 5.12 V, ± 10.24 V selected by users.

A Nicolet 660B dual-channel FFT analyzer is used for system

identification; it facilitates the measuring of transfer function, damping ratio,

spectrum distribution, and correlation function, etc.
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Fig. m- 12 MNC-series Module Function Diagram

H. SYSTEM PARAMETERS

The definitions and experimentally measured values of the important physi-

cal parameters are summarized in Table ffl-1 along with error estimates. The

procedures used to determine these values and error sources are detailed in

Chapter IV and Appendix C.

-72-



Table HI-1 Definition of Parameters

Parameter

/

c

b

a

Mj

M,

MT

K,

'a = 4r

Kk

Ka

Definition of parameters

Definition

wing span

wing chord

semichord

distance in semichord
the EA lies aft of the MC

wing mass

suspension mass

total mass

mass ratio

total moment of inertia
about the EA

plunge spring rate

pitch spring rate

Experimental
Value

0.4191

0.2413

0.1207

-0.3

2.1

3.395

5.7

0.3684

0.01151

10.38

43.04

Experimental
Accuracy (%)
(worst case)

0.5

0.8

0.8

0.8

9.5*

4

7.2

16.7

2.4

1

1

Units

m

m

m

-

kg

kg

kg

-

kg-m2

kN/m

N-m/rad

* See explaination in Appendix C.
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Table HI-1 Definition of Parameters (cont)

"h

w«

ft

?«

*a

Sa

•*

K

T

KF

KT

^

plunge modal frequency

pitch modal frequency

plunge damping ratio

pitch damping ratio

normalized distance
the CM lies aft of the EA

dynamic coupling coefficient

normalized squared
radius of gyration

moment of inertia ratio

normalized four linkage
length

linear motor force constant

torque motor moment constant

mass ratio

6.65

10.05

0.00448

0.00032

0.19

0.04814

0.3767

0.9647

1.684

5.295

0.2232

246.0

0.7

0.7

-

-

11

3.5

11.2

-

1.8

-

-

10.3

Hz

Hz

-

-

-

kg-m

-

-

-

-

-

-
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I. APPARATUS PERFORMANCE

After a thorough investigation of the frequency response of the physical sys-

tem by using the FFT analyzer, the the overall performance of the system is

sure to behave very closely to the ideal two DOF typical section shown in Fig.

ni-1. By comparing with the analytical transfer functions obtained in Fig. A-l,

Section B-l, Appendix A, it can be seen that Figs. Ill-13 to IE-16 truly

describe them well in terms of the pole-zero locations. However, two complicat-

ing characteristics exist because of the four-bar linkage used with the torque

motor and the excitation of differential modes.

1-1 Unbalanced Force Problem

Torque is transmitted to .the elastic axis of the airfoil as described in Sec-

tion E-2. However, the application of a torque generates an unbalanced force in

the plunge DOF which is 180 degree out of phase with the linear motor force.

This is explained with the aid of Fig. ffl-17. Although this force has been taken

into account in the system modeling, it may still excite the differential plunge

mode as shown in Fig. IE-18.

1-2 Differential Modes Problem

The plunge differential mode discussed above which exists due to the

arrangement of the plunge suspension and asymmetry of the system structure.

Its existence can be easily removed by adjusting the mass center of the plunge

DOF; also, it is not quite observable by the plunge position sensor in our system

configuration. However, if the amplitude of this differential motion got large

enough, it could cause binding of the plunge actuator, although this has not

occurred so far.
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•s

Frequency (Hs)

Fig. m-13 Magnitude of Transfer Function of h/F

10.05 Hz
I? =0.0149

1 10

Frequency (Hi)

Fig. m-14 Magnitude of Transfer Function of a/F

100
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1 10

Frequency (Hi)

Fig. m-15 Magnitude of Transfer Function of a/T

100

a - -

6.65 Hz 10.05 Hz
2 =0.024

10
Frequency (Hi)

Fig. m-16 Magnitude of Transfer Function of h/T
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MOTOR CAS1

F. - t

a - t/X

Fig. HI-17 Unbalanced Reaction Force in Plunge Direction
Due to the Applied Torque
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(a) DIFFERENTIAL
PLUNGE MOTIOW

(Ik) DIFFERENTIAL
PITCH. MOTIOW

Fig. ffl-18 Differential Plunge and Pitch Motions
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The pitch differential twisting of the wing across its span exists due to the

flexibility of the wing spar and the application of torque to only one end of the

wing as shown in Fig. A-2. It can also be observed in Figs. HI-IS and ffl-16 at

about 90 Hz. Since it is much faster (9:1) than the primary system dynamics,

it can be ignored without too much influence upon our investigation.

Both differential modes are antisymmetric and thus do not affect the aero-

dynamics. Since in closed loop studies, it is theoretically possible to drive the

differential modes unstable, they must be examined closely at that time [26, p.

83].
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Chapter IV

EXPERIMENTAL METHODS AND RESULTS

A. INTRODUCTION

This chapter describes the experimental methods and compares the experi-

mental results with the theoretical predictions.

B. MEASUREMENT OF SYSTEM PARAMETERS

A Nicolet 660B dual-channel FFT (fast Fourier transformation) analyzer

was used for most of our system parameter identifications. It performs the

hardware fast Fourier transformations on both input channels, from which a lot

of functional relationships between these two channels can be obtained. For

instance, the transfer function between an input and an output of a physical sys-

tem can be easily obtained by simply plugging its input to channel A and its

output to channel B. The definition of the functions that the FFT analyzer can

analyze is given in Table IV-1.

With the help of the clamps on both of the plunge and the pitch suspension

systems, the airfoil can be constrained to move in either single degree of freedom

(DOF) independently. The FFT analyzer was first used to investigate the

transfer functions for these single DOF motions. The problems discussed in the

apparatus performance of Chapter HI were noticed at this stage. The system

structural parameters were found by looking at those transfer functions with a

light square aluminum bar installed in place of the airfoil section.
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Table IV-1 Definition of Functions for FFT Analyzer

FUNCTION DEFINITION

instantaneous
time history A(t)

instantaneous

FFT

= F{A(t)}

T
= lim f A(t)e->ut eft

_T

average

power spectrum

A'°A

average
cross spectrum

transfer

function
HAB =

GAB
^^^^^

*AA A

impulse
response

transmissibility GBB
GAA
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Table IV-1 Definition of Functions for FFT Analyzer (cont)

coherent

output power

COP =
JAB

GAA

coherence
GAA'GBB

GAA' GBB

auto-corr.

function l= lim -^ [A(t)A(t+r) dt
r-*oo 2T _T

cross-corr.

function

GAB

1
lim -i- fA(t)B(t+T) dt
r-»oo 2T _T
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Some of the parameters of the airfoil section itself were measured easily out-

side of the wind tunnel section, such as its mass, dimensions, etc. The available

data were used to fit the second order clamped single DOF system models in

order to compute those parameters not easily measured, such as the moment of

inertia of the airfoil, etc. Redundant data were sometimes available for cross

checkings. The system parameters measurements and identification are described

in Appendix C with greater details.

After all the necessary system parameters were measured or identified, they

were used in the complete two DOF system model to describe the full system

behavior.

C. ACCURACY OF SYSTEM MODELING

The mathematical system model was derived in Appendix A. It incor-

porated the unsteady aerodynamics modeling for the 2-dimensional wind tunnel

airfoil developed by Rock. In his thesis, he found that as H/b decreases, fewer

poles are needed to be retained to describe accurately the Timman's modified

Theodorsen function, i.e. Qj{s,\). If H/b<2, the residue of the first pole

represents roughly 98% of this function's impulse response. Consequently, he

introduced and proved that the approximation

G — (4.1)
8+p l '

describes Qj(a,\) accurately throughout the entire s-plane for ///6<2, where

p is a function of H/b.
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From Fig. IV-1, the Nyquist plot of Eq. (4.1) in a/P plane, we can see it

is a semicircle with center at G+G(z/p-l)/2 and radius G(z/p-l)/2 [Rets. 59-

60], The values of G and z/p determines the location and size of this semicircle.

Playing with the values, we have found a better fit of the theoretical root-

locus to the experimental one than that found by Rock. Rock chose G = 0.5

and z/p = 2.0 to preserve the d-c and high frequency gains (1.0 and 0.5

respectively). Their old and new values are given in Table IV-2.

A 5th order system model was established to describe the plunge, pitch and

aerodynamics behavior of the physical system. The resulting modes are named

by their dominant components for ease of reference. In this model, the unbal-

anced force due to the applied torque mentioned in Chapter ffl-I was modeled

into the control distribution matrix G. The damping coefficients were measured

by the FFT analyzer and added to the modeling. Also the dynamical coupling

between the plunge and pitch mode was actually computed through the offset of

the mass center (CM) from the elastic axis (EA) rather than using a rough

2nd order experimental fit to find the value of the coupling. It is upon the

center of mass of the wing instead of the center of mass of the whole plunge

structure that the aerodynamics has influence anyway. These proved to be useful

to increase the system modeling accuracy.
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Table IV-2 Old and New Values

P

G

z
P

old
value

0.27 Hz

0.5

2.

new
value

0.43 Hz

0.47

2
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A laboratory test instrument, Genrad 2515 structural analyzer, was used to

check the validity of the system modeling. It gathered a batch of data and then

used a lattice filter for adaptive processing [61] to fit a specified order linear

transfer function to the raw data. Figure IV-2 shows a typical output which

identifies the system eigenvalues directly.

After repeating the procedure at various wind speeds, those test results could

be compared with the theoretical predictions by examining the pole-zero loci of

their transfer functions. Figure IV-3 shows both the experimental and the

theoretical open-loop system root locus versus various wind speeds. Note that

they agree within 1% in frequencies for the worst case before fluttering. This

result is considered to be better than Rock's 2% error.

It was proven by Rock that a doublet input to the plunge actuator can be

used to excite both the plunge and the pitch structural modes of the system.

Actually, a positive voltage (2 volts) was applied to the linear motor for 10 ms

followed a negative voltage of the same amplitude and duration. This same

input was used to drive the mathematical model in computer simulations. The

actual and computer-simulated system responses could be compared in a real

time manner. Figure IV-4 shows the setup for the real time comparison.

From Fig. IV-5 to Fig. IV-8, the simulated responses from the computer's

digital to analog (D/A) converters were compared with the actual system

responses. The agreement can be seen excellent for lower wind speeds. However,

there is a 1% difference in frequency for the worst case before fluttering shows

up at a wind speed of about 27 m/sec in Fig. IV-8.
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ORIGINAL
OF

ee.ee

80 DB

0.0000

0.0000 FREQUENCY

LATTICE TRftNSFER FUNCTION

20.ee

T-2047 XL-0.3900 EST ORDER: 12
CENTER FREQ- 0.00 BflNDWIDTH- 20.00
P(Z) zeroes

real imaq
2.273E+00
1.242E+00
242E+00

6.47SE+01
6.476E+01
474E+03

6.737E+09
6.737E*00
2.454E-I-01
2.4S4E+01

0.000E-01

- 1

-1

-i
-1.470E*02

-6.097E*01
6.441E-»-0i

1.00SE+0?
-1.246E+02
1.246E+02
-i.704E*02
1.704E+02
2.011E+02
2.011E-«-02

Q(Z) poles
real

-2.130E+00
-2.882E-01
-2.882E-01
-5.596E+01
-5.596E*01
-1.336E1-00
-1.336E*00
-S.797E*00
-6.797E+00
-2.932E-J-01

inag
0.000E-01
4.187E-»-0i
-4.i87E*01

freq.(hz)
0.000E-01
6 . 663E+00

-2.651E+01

-5.789E-«-01
6.311E+01
-6.311E*01
1 . 246E*02
-1.246E+02
1 . 729E*02
-1.729E*02
2.011E+02

9.214E-t-00
-9.214E*00
1 . 004E+01

1 . 982E+01
1.982E*01
2.752E-»-01
2.752Ê 0i
3.200E+01

Fig. IV-2 Typical Output of the Genrad 2515 Structural Analyzer
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Fig. IV-4 Setup for the Real Time Comparison
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Fig. IV-5a Actual and Simulated Plunge Responses to
A Linear Doublet Input at Wind Speed U =0 m/see

Fig. IV-5b Overlapped Plot
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Fig. IV-6a Actual and Simulated Pitch Responses to
A Linear Doublet Input at Wind Speed U —Q m/see

-BO
$•<

Fig. IV-6b Overlapped Plot
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Fig. IV-7a Actual and Simulated Accelerometer #3 Responses to
A Linear Doublet Input at Wind Speed U = 0 m/sec
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Fig. IV-7b Overlapped Plot
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Fig. IV-8a Actual and Simulated Pitch Responses to
A Linear Doublet Input at Wind Speed U = 27.17 m/see

Fig. IV-8b Overlapped Plot
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D. PARAMETER IDENTIFICATION

Due to the limitation of our laboratory facilities, only linear and angular

positions were measured for system monitoring. However, we need all the system

states to evaluate the estimation error for different sensor locations. Without

adding other measuring instruments, one easy and possible approach would be to

use a simple analog differentiating circuit to get their pseudo-rate measurements.

However, the artificially introduced aerodynamics state was still unknown.

Finally, we decided to design one more estimator using those position measure-

ments to construct the pseudo system state for comparison with that obtained

from the estimator using acceleration measurements. From the discussion in

Section C about the approximation of using Eq. (4.1) to describe Q-j(s,\), it

seems to be helpful to incorporate some system parameter identification schemes

to identify those uncertain parameters in order to reduce the system modeling

error effects. In our case, those key parameters, i.e. p, G, and z/p in Eq.

(4.1) are good candidates to be identified. Although it was mentioned in Rock's

conclusion that the doublet force input did not sufficiently excite the aero-

dynamic mode for it to be identifiable, an on-line parameter estimation scheme

through Kalman filtering proposed by Mishne [33] was modified and tried for

this purpose. The formulations and procedures are followed.
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First, defining the innovation sequence

4*) = f(*)-ffift«*-l)l, (4-2)

and the performance index

J = „(*) Hfc(*), (4.3)

where VT is a positive-definite matrix and o(Ar) is the parameter vector to be

identified.

The gradient of the performance index J with respect to the parameter vec-

tor o(fc) is

(4-4)

and the approximation to the second order derivative is

The on-line application of the Gauss-Newton iteration scheme is to make the fol-

lowing iteration after each measurement update:

= o(Jt-l) - M-\k)D(k). (4.5)

After defining the following sensitivity functions
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and finding the sensitivity matrices

then the identification iteration can proceed as follows:

Given initial values:

o(0), £(0), 5(0),

Continuous system modeling:

Discretization and time update of the system state:

Output predication error:

r., (4.9)

and

(4.10)
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Time update of the sensitivity function:

Gradient of J:

Information matrix:

Parameter update:

Parameter update of the system state:

x[k+l,a(k+l)] = 5l*+l,a(*)l + %k+l)[ a(k+l) - a(k) ]

Measurement update:

= f 7- KH)z[k+l,a(k+l)] + Ky(k+l)

If this scheme is used to track the initial condition responses, i.e. «(<) = 0,

then the computation can be further simplified by not considering the G, GJ(a},

and Gda(a) matrices.
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This scheme was checked with computer simulation. To identify the single

parameter p, it converged within 100 time steps (1 sec) for 20% deviation

from its nominal value. It converged quickly also for the identification of p and

(7, but had difficulty converging for all p, G, and z/p.

Unfortunately, the tests performed on the experimental data failed due to

the existence of the process disturbance and measurement noise since the

identified parameter values were equivalent to these noise levels. This subject

will be left for future research.

E. ESTIMATOR DESIGN

In this section the estimator design is discussed. The sensor locations are

evaluated based on the proposed sensor location index.

E-l Choice of Qw and Rv Matrices

Given an actual design problem, one can often assign a meaningful value to

/?„ which is based on the sensor accuracy. The same cannot be said for Qw.

Physically, Qw is crudely accounting for both unknown disturbances and imper-

fections in the plant model. In the design process, we are usually forced to pick

values of Qw and to settle on an acceptable one after a certain amount of trial

and error based on the quality of the estimation obtained using gains given by

specific Qw's and Rv
js [53].

Although we use P as an indicator of relative estimation accuracy, it is

only an absolute accuracy predicator when we choose the values of Qw and R,

based on some knowledge of processes which are approximately white and more

or less representative of the actual disturbance and noise levels. This makes the

evaluation of our experiments difficult because the real disturbance and noise are

not white. Whereas we may be able to find a Qw and Rv which gives estimator
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gains that minimize the estimation error, the error we calculate from this Qw

and R, may have no relation to measured estimation error. The other difficulty

we will encounter is that not only the noise levels are different between the two

different types of accelerometers we used, but also they are different even among

the same type of accelerometers. Fortunately, the inherent sensor noise level is

low enough. One easy approach to overcome the above problems in checking

theory versus experiment is to create a known external disturbance and add a

known noise to our measurements.

E-2 Sensor Location Evaluation

Figure IV-9 shows the setup to evaluate the sensor locations, in which the

estimator 1 using the position measurements to construct the pseudo full system

state as the reference and the estimator 2 using the acceleration measurements

to construct the system state estimate.

There are only three acceleration measurements available simultaneously due

to the limited number (three) of the available accelerometer charge amplifiers.

However, these three measurements can be used altogether to get the estimation

error of the three sensors case, or separately for single or double sensors cases.

To simplify the presentation of the test results, both the theoretical and

experimental values for single and double sensors cases are normalized by their

corresponding three sensors values. So in the following figures, one will be the

bottom line which corresponds to the use of all three sensors altogether. In these

figures, the solid lines are the theoretical predictions which take into account the

correlation between the process disturbance and measurement noise while the

dotted lines do not. Generally speaking, the experimental results prove the

trends predicted by the theory.
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Fig. IV-0 Setup for the Sensor Location Evaluation
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F. DISCUSSION OF THE RESULTS

Figure IV-10 shows that the experimental data of the first sensor are scat-

tered about the theoretical value. This may be caused by its improper installa-

tion. Although this effect is not as significant by looking at the individual esti-

mation error as in Fig. IV-11. It still can be seen in Fig. IV-12 for the double

sensor case when one sensor is fixed at the third sensor location. At higher wind

speeds the error due to this cause is more obvious, see Fig. IV-13. However, the

result is still good for the other sensors.

For single disturbance input and single measurement case, the effect of

changed sensor location amounts to the change of the zero locations of the

transfer function from the disturbance input to the measurement output. This

can be seen in Fig. IV-14 which shows the estimator pole locus for increasing

Q
-^- ratios. The corresponding sensors are numbered from one to six from theR*

leading edge to the trailing edge. Also due to the limitation of those trapping

transfer function zeros, the estimation gain and speed will not be able to increase

at will.
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Fig. IV-11 Estimation Error vs Different Single Sensor Locations
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Fig. IV-14 Estimator Pole Locus vs Various -^- Ratios
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Chapter V

SUMMARY AND RECOMMENDATIONS

A. SUMMARY

The problem of placement and number of sensors has been investigated. A

sensor location index based on the weighted sum of the mean square estimation

errors is proposed and has been experimentally verified. Although there have

been many proposals regarding the choice of the criterion, the sensor location

index features easy computation, having direct physical interpretation, and show-

ing relative improvement for an increased number of sensors. Also this new cri-

terion makes the gradient formulation easy to handle and compute. A computer

program for the systematic optimal sensor location search is developed based on

the gradient search optimization technique.

Since the use of accelerometers as measuring devices is so common in most

control applications, the control design computer program OPTSYS has been

modified to accept a more general input form including a rate measurement and

which also takes into account the correlation between the process disturbance

and measurement noise introduced by those accelerometers. Similarly, an itera-

tion scheme doing this for the discrete case is also developed to facilitate the esti-

mator implementation on digital computers.

An experimental study for choosing the sensor location has been conducted

on an aeroelastic system. It consists of a NACA 0015 typical section wing with

six accelerometers installed inside along the wing chord as the esti-
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mator measuring instruments, an existing wind tunnel section, and some other

accompanying experimental devices. Fabrication techniques are developed and

apparatus built for experimental studies.

A sensor location for which the system is unobservable has been verified to

be the center of percussion of the rigid two degree of freedom typical section

wing. System modeling which includes the unsteady aerodynamics model is

improved and experimentally verified. An on-line parameter identification

through Kalman filtering has been formulated and applied to aerodynamic

parameter identification. It is successful in simulations when no system distur-

bance and measurement noise exists, but fails for the actual system test due to

the system noises.

Sensor location choice is evaluated experimentally based on the proposed

sensor location index. It proves the trend predicted by the theory. This experi-

mental evaluation on an aeroelastic system is significant since it is believed to be

the first for feasibility studies.

After investigating the double sensor example which results in collocated

sensors at the trailing edge we can see the negative side of the sensor location

index. This result shows that it may be too dependent on the theoretical model-

ing of the system and it suggests that a more realistic index should also take into

account the parameter uncertainties of the system for sensor location selection.

Specifically, one would like to separate the sensors if there was no model

knowledge and depend only on the kinematic information available from the two

sensors for the two mechanical degrees of freedom. The results also show the

need for accurate models for the process disturbance and measurement noise

when making critical decisions.
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B. RECOMMENDATIONS FOR FUTURE RESEARCH

1) Newton-Raphson technique can be applied to the sensor location search pro-

gram for faster searching speed. Better schemes should be tried to detect

the local minimums.

2) Extend the same idea to the optimal actuator location search through the

duality between the estimator and controller design.

3) Estimation and sensor location analyses in the presence of system parameter

uncertainties and modeling errors should be investigated. This should also

include the exploration of a more realistic criterion which takes greater

account of the kinematic information of the system as model uncertainties

increase by considering a frequency-band weighted SLI.

4) Further investigation of system parameter identification with the current

setup is suggested using optimal input design.

5) Adaptive estimation with combined on-line system parameter identification

and state estimation should be developed.

6) Apply these results to the airfoil section with a trailing-edge flap (built by

Stoltz) for improved estimation and feedback control of flutter.
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Appendix A

t

MATHEMATICAL MODELING

In this Appendix, Section A is given for completeness of the derivations of

equations of motion, although it is well known in many textbooks [46]. Section

B includes some refinements to differentiate the mass of the airfoil and the mass

of the whole plunge system. Section C and Tables A-l - A-5 are summarized

from Rock's thesis [25] for ease of reference and they are corrected for typo-

graphical errors.

A. EXTENDED HAMILTON PRINCIPLE

In general, for a system of N particles in equilibrium, the sum of the vir-

tual works over all particles must be zero, or

6W = £ SW{ = £
n=l n=l

where R, is the resultant force vector acting on a particle at position r, [46].

After eliminating all the constraint forces and the internal forces among

rigid bodies, we obtain

£ F, • fr,- = 0, (A-2)
n=l

where F,- is the resultant vector of externally applied forces at r,-.
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Equation (A-2) is the expression of the virtual work principle. It can be

stated as: If a system of forces is in equilibrium, the work done by all the

externally applied forces through virtual displacements compatible with

the constraints of the system is zero.

By incorporating D'Alembert's principle, which states that the resultant

force is in equilibrium with the inertia force, one can extend the principle

of virtual work to cover the dynamic case following the same reasoning for Eq.

E (F,- - p,.)-fr, = E (F,--m,r,)-tfr,. = 0. (A-3)
n=l n=l

Note that

E F, • fr, = 6W, (A-4)

'•'' 6r< = Tt(^'6Ti) ~6 7('-' *f)> (A'5)

and

N N
m,r, • 6r{ = £ ™,' 4ft ' W ~ « E T,

n=l al

= E fn,~ft • «rj - W1. (A-6)

Introducing Eq. (A-4) and Eq. (A-6) into Eq. (A-3), one obtains

6 T + 6 W = E m t . - ( r , . - t f r , ) . (A-7)

Integrating Eq. (A-7) between ^ and <2. the result is
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f(6T+6W)dt
*i

f
 N

/E
N

= E
<2

fl/, =°'

assuming

= 0 at < = fj and < = <2.

(A-8)

(A-9)

Equation (A-8) is referred as extended Hamilton principle by letting W

consist of both conservative and nonconservative works. Now Eq. (A-8)

becomes

= f(6T-6V+6Wn e)dt = 0,

using the fact

6We = -6V. (A-ll)

The expressions T and V can be thought of in the following forms (in our

special case)

T = r(p),

V =

where r is a generalized coordinate vector; and noting that

dr

(A-12)

(A-13)

(A-14a)

(A-14b)
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= Q« • fr, (A-14c)

where Qnc is a generalized nonconservative force vector.

After substituting Eqs. (A-12)-(A-14) into Eq. (A-10), integrating by parts

and using the assumption of Eq. (A-9), also noting that the resulting equation

equals to zero must hold for arbitrary <5r, we obtain the general form of the

Lagrange's equation

i'f' + £ = «~ <A-">

B. EQUATIONS OF MOTION

B-l Two DOF (degree of freedom) Model

Figure A-l shows the physical system and its modeling representation. In

this case,

TT = [ h a ], (A-16)

T = —

V =

The virtual work term arises from the external energy input into the struc-

tural system by the torque Ta about the elastic axis (EA), the force F to the

EA, and the unsteady pressure difference between the upper and lower wing sur-

faces [18, p. 30]. The unsteady pressure distribution can be defined as
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where

p (z,y=0+,f) = static pressure at airfoil upper surface,

p (ar,y=OV) = static pressure at airfoil lower surface.

So the first variation of the nonconservative virtual work can be expressed as

b rr>

8Wne = - / Ap (x,t)6ydx + (F- -£)8h + TQSa, (A-20)
-b '

where

y = - [ h + (x-a)a }, (A-21)

and

5y = -ff 6h + ^-6a = - [ 6h + (x-a)8a ]. (A-22)
on oot

Substituting Eqs. (A-16)-(A-18) and (A-20) into Eq. (A-15), and adding

the structural damping terms, the complete aeroelastic equations of motion

become

T
S a a+C h h+K k h = F- - - L (t), (A-23)

S ah+I aa+CQa + Kaa = Ta + MQ (t), (A-24)

where

5a = M2x0, (A-25)
6

L(t) = -f*p(x,t)dx, (A-26)
:,:• • ' - • • : • ,-,. . . : . . . - 6 - • . • : • • • • • • . . -
;-V." : : • • - • • • • • - -- '•••::^,, ..-• . : •.•;•. •., .. . b ..-••: - ••

Ma(t) = / Ap M(x-a)rfx. (A-27)
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B-2 Three DOF Model

Figure A-2 shows the same physical system but one more DOF is added to

it's modeling representation. In this case,

rT = [ h az al 1, (A-28)

T = ±MTh2 + ^Iaid* + ^oP* + Sa<*2b> (A~29)

(A-30)

And similarly,

6 Ta6Wne = - / &p(x,t)6ydz+ (F —)6h + Ta6otit (A-31)
-6 '

where

y = - [ k + (x-a)az ], (A-32)

and

6y = M + -^z = - [ 5A + (z-a)«a2 ]. (A-33)
art

After substituting Eqs. (A-28)-(A-31) into Eq. (A- 15) and adding the

structural damping terms, we obtain the complete aeroelastic equations of motion

= F-?f--L(t) , (A-34)
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(A-35)

tr

(A-36)

This model is presented for reference only and not used for analysis.
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Fig. A-2 Three Degree of Freedom Modeling: Plunge, Pitch and Twist
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C. UNSTEADY AERODYNAMICS MODELING

If an experimental airfoil with finite thickness is placed in a flow field

bounded by tunnel walls, we must consider the blockage and lift interference
'i

effects. ;

C-l Blockage Corrections

Blockage corrections account for the reduction in available cross-sectional

area when a body of finite thickness is placed in a bounded flow field [62, p.

300]. These corrections may be divided into solid blockage term and wake block-

age term for a finite thickness airfoil and its wake, respectively, see Fig. A-3.

They amount to a correction on the airspeed, i.e.

U = ( ) 'tie' (A-37)

where Uue is the unconnected free stream flow velocity. The results for our

NACA 0015 airfoil with a b/H ratio of 0.5278 is a 1.9% increase in the

airspeed.

U

Fig. A-3 Blockage Effects
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C-2 Lift Interference Effect

This effect is caused by the wind tunnel walls surrounding the airfoil.

Assume an infinitely thin airfoil performing oscillations with an infinitely small

amplitude. Its magnitude is prescribed in every point of the wing chord instead

of the airfoil contour for simplification. The wind tunnel is considered to be

infinitely long with constant cross section so that it does not influence the undis-

turbed flow. The airfoil spans the height of the tunnel section equidistant from

and parallel to the side walls. The flow field can be considered as two dimen-

sional and incompressible by assuming invicid, low speed air flow. Under these

conditions, Timman solves the problem with an exact solution [20] using the

velocity potential functions and conformal transformations in a manner analogous

to Theodorsen's treatment of an airfoil in free (unconstrained) flight [19].

Using the coordinate systems in Fig. A-4 and the two transformations

Z = X+ i Y = 5^ "/" , (A-38)
smh nb/2H

Z = en ( f , k* ) , (A-39)

where

z = x + i y,

f = f + « »7,
k* = tanh xb/2H,

and en is a Jacobian elliptic cosine function, Timman maps the region in the

2-plane bounded by the airfoil and the wind tunnel walls first into a cut Z-plane

and then into a rectangle in the {•-plane. These two successive transformations

reduce the problem to the one which he can solve for the disturbance velocity

potential $ = $| + $2-
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$1 is the velocity potential for the noncirculatory flow field and satisfies the

boundary conditions in the z-plane

= 4x)eMt : y=0, - 6 < z <
an

and

1 = 0 : y = ± H , (A-40)
on

where n is in the normal direction to the wing chord or tunnel walls. The term

v(x) is a known function which describes the motion and shape of the airfoil. $2

is the velocity potential for the circulatory flow field resulting from the vortices

along the wake, and subjects to the boundary conditions in the 2-plane

= 0 : y = 0, - 6 < x < 6; and y = ± H. (A-41)
on

After applying the Helmholtz condition of persistence of vorticity and the

Kutta condition of finite velocity at the trailing edge, $ can be solved

analytically. The pressure distribution over the airfoil can thus be found from

the unsteady Bernoulli's equation in the linearized form [63, p. 226]

(A-42)

where + and - represent the upper and lower surface of the airfoil, respectively.

Finally, the lift and moment about EA can be obtained by integrating the pres-

sure distribution over the airfoil using Eqs. (A-26)-(A-27).

Rock proved that the expressions of the Fourier transform of the lift and

moment about EA of Timman's results could be written as [25, p. 27]
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L (u) = a^pb2 [ (iu>)2A + U(iu)a - ba(iu)*a \
(iu;)A + Ua + 6(fl3-c)(ia;)a ], (A-43a)

and

MQ (w) = a^pb2 [ ba(iu)2h- 62(a4+o2)(tw)2a -

(iu)h + Ua + 6(fl3-a)(ia;)o ], (A-43b)

where QT (k,\) is the modified Theodorsen function.

The technique of simply replacing ik with Laplace variable s is used to

extend the modified Theodorsen function to include the general motions of

an airfoil.

Definitions of QT and coefficients a,- are repeated here in Table A-l for

easy reference. It is also accompanied with free flight values, which are the limit-

ing values as wall separation approaches infinity, i.e. H/b -+ oo. Values of

coefficients a,- for different H/b ratios are computed by Rock as in Tables A-2

- A-3.

Rock also shows the approximation

describes QT(S^) accurately throughout the entire s-plane for H/b < 2.

After incorporating this approximation into Eq. (A-43) and knowing that

as(s,\)QT (8,\) = 07 - ogl 1 - T\s,\) ], (A-45)

combining coefficients and using new defined coefficients in Table A-4, the

expressions of lift and moment about EA may now be written as
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L (s) = a1jrp63 [ &h + Usa - as2** ]

+ aflirpU&l [ ansh + ana + o12sar

+ C(8,\) [ alosh + alQUa -I- a13«o ]\, (A-46a)

and

Ma («) = a17rp64 ( as*h- D(a6-a)«a -

+ a227r/>f/64(a+a5)| [ fln«A + a^Va + al2sa ]

+ C(s,\) [ a10sh+ a10Ua + a13sa ] , (A-46b)

where

g U X ) « ^Xj + 1 = CfMlI. (A-47)

Introducing an augmented aerodynamic state jT as

(A-48)

and combining Eqs. (A-23)-(A-24) and (A-46)-(A-48) yields

T

- dny,

(A-49a)

fg<* + A^A + /10«A = - + /ny, (A-49b)

where coefficients rf,- and ft are defined in Table A-4. After solving Eq. (A-49)

for s*h and tFa, and replacing the Laplace operator « by the time derivative,

we get Eq. (A-50) with coefficients gf defined in Table A-5.
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-rla

(A-50)
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Table A-l Definition of Coefficients

Definition of Coefficients, a,

Term Constrained Flight
(by Timman)

irb

fl5

Oft not used

«7 = 7

tfbk'

A2**
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Table A-l Definition of Coefficients (cont)

°10

«11

0,2

«13

X

r

ft'

A:

*

?

{7

j&

^'

a*

2 - flg

O f l - 1

-OHO-208+ 07

-a10o + 20s

ff6/2//

tanhX

v^F

complete elliptic integral
of the first kind of k

complete elliptic
of the first kind

integral
of ft

e-*K IK

U/b

ub /U=u /U

€2X

sH/ifU
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Table A-l Definition of Coefficients (cont)

OO I i

E •«" -7^
2n+l

oo 2n+l

2n+l (i _

n=l

H-92

n-1

» (2m + l)(2n - 2m -

cx>

" m=o (2m + l)(2n + 2m

F(6)r(c- 6)

1

/

— a* -I- — a* -I- 2- —)
2' 2' ' *}
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Table A-l Definition of Coefficients (cont)

.•+!>>
+ ~

+ — 77 - 1 + •'*£

(? 0.5

0.269 17

0.538 C7

flio

«11
- P)
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Table A-2 a; at Various H/b

a,- at Various H/b

H/b

«i

«2

fl3(0)

«4

«5

07 = 7

«8 = £

Ofl = /?

oo

1.0000

1.0000

0.5000

0.1250

0.5000

0.5000

0.2500

1.0000

10

1.0021

1.0041

0.4990

0.1246

0.4987

0.4990

0.2478

1.0000

2

1.0488

1.0952

0.4788

0.1168

0.4735

0.4788

0.2067

1.0000

1.745

1.0631

1.1224

*

0.1148

0.4670

0.4736

0.1966

1.0000

1

1.1725

1.3209

0.4438

0.1023

0.4299

0.4438

0.1429

1.0000

0.5

1.5191

1.8971

0.4004

0.0827

0.3751

0.4004

0.0767

1.0000

* See Table A-3.
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Table A-3 Dependence of Timman's a3(k,X) on k and H/b

Dependence of Timman's fl3(Ar,X)* on k and H/b

k H/b

k = 0

k=Q.l

*=0.2

fc=0.3

*=0.4

Jb=0.5

k = 0.6

k = 0.8

)t= 1.0

10

0.4990
+ 0i

0.4994
+ O.OOOSi

0.4999
+ 0.0012i

0.5003
+ 0.00131

0.5006
+ 0.00131

0.5009
+ 0.00131

0.5011
+ 0.00131

0.5014
+ 0.00121

0.5016
+ 0.00111

2

0.4788
+ 01

0.4810
+ 0.01161

0.4867
+ 0.02101

0.4941
+ 0.02731

0.5017
+ 0.03071

0.5085
+ 0.03191

0.5143
+ 0.03181

0.5228
+ 0.02981

0.5283
+ 0.02711

1

0.4438
+ 01

0.4470
+ 0.02291

0.4559
+ 0.04201

0.4687
+ 0.05751

0.4832
+ 0.06831

0.4978
+ 0.07491

0.5114
+ 0.07811

0.5339
+ 0.07821

0.5503
+ 0.07391

0.5

0.4004
+ 01

0.4040
+ 0.02971

0.4143
+ 0.05691

0.4296
+ 0.07981

0.4479
+ 0.09741

0.4674
+ 0.10981

0.4866
+ 0.11771

0.5209
+ 0.12351

0.5482
+ 0.12111

* This parameter value is not used, it is for reference only.
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Table A-4 Definition of Coefficients

Definition of Coefficients, rf,- and f{

1 + "I/A*

2 tfcja, it/2//*

n

+ ^C a10

d7Gf (z' - p)

1 +
(04 + c2)

a5)a12J7

JL-

+ 2faw(

/4

/5

not used

/8

/9

/10

/ll !7d (z -
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Table A-5 Definition of Coefficients

Definition of Coefficients, g{

9i = <kl

92 = kJ

9s = <*4/

94 = 4)/

9s = rfio

96 = ~d\

97 = <*!/

9s = <k/

99 = 4$/

9io= 4a

9n = <*i

9l2 = ~«

'4 - /10//4

frfl
'<*! - /1//4

'^1 - /8//4

/rfl - /9//4

ll/rfl - /11//4

'd* ~ /4//i

rrf4-/10//l

^4

/^4 - /8//1

0/<*4 - /9//1

'n/rf4-/n//i

01 = 99/97

02 = 98/97

03 = 9ll/97

04 = 910/97

05 = -912/97

06 = 92/93

07 = 91/93

08 = 95/93

09 = 94/93

010 = -96/93

011 = -fl!0

012 =-fl10^

013 = ~fl13

014 =P

015 = l/rf497

016 — 1//197

017 = l/rfl93

018 = 1//493
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Table A-8 Derivative of Parameters

Derivative of parameters </,- and fa
w.r.t. G, p, and z

04,
dG
ddg
dG

~dG~

~dG

ddg

dG

5/10

dG

*
<*7«13

flio

d7U

/7fl13

_

~

-/7

0rfn
dG

ddn

dp

ddn

dz

0/ii
dG

0/ii
0p

0/ii
dz

d7(z-p)
aio

djG

flio

flio

M*-P)
aio

f7G

aio

S
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Table A-6 Derivative of Parameters (cont)

Derivative of parameters q{ and </,-
w.r.t. G, p, and z

001
dG

004

dG

005

dG

006

5(7

008

dG

0010
0G

00ii
dG

0012
dG

006
0P

005
dp

00io
0P

0014

0P

(M)
( 4 ^ / 7 ) «13

~J~ + T\ T"~\ &i /4j a10

l"4 + A"r

( _ _i i 1 "

l~4 +7n

\-r + T\~r~v «4 /lJ <*10

l~4 + A"'^
( 4 / 7 ) ^ - p

1 4 ' Al o10

14 A) °io
j r f 7 + / 7w, j G Jj

I 4 ' AH P J aio 07

(4 h \ i z \ G V
14 AH P J OID 03

U - J p1 p 1

dG

JG

~d~G

00io
0G

~dG~

~d~G

~d~G

005
dG

0012

0P

005

0*

00io
0*

-J + t

~4 + i
4 / 7

4 " + A
4 ^ / 7

4 ' A
4 /7

4 A
_4 + A

4 A
4 A
4 ^ / 7

4 ' A

4 ^ / 7

4" + A"

03

<»13 1

°10 03

U_

03

z-p 1

°10 03

J_

07

°13 1

°10 07

U_

07

z-p 1

°10 07

—

4 /7)| * j G u
4 /Jl P I «10 07

4 Air z ) G 17
"4 + A"H7~1l"^o""07

- 135-



Appendix B

ACTUATOR AND SENSOR CALIBRATIONS

Characteristics of sensors and actuators enter into the determination of sys-

tem parameters (see Appendix C) and are important in predicting system

dynamic behavior. Accurate calibration is therefore necessary.

Since the same test section built by Rock was used for our experiments with

a new airfoil, most of the calibration procedures were similar to those used by

him, however, with some different approaches. While every effort was made to

reproduce or cross check with Rock's results, the calibrations were carried out

independently with different tools and equipment.

A. ACTUATORS

A-l Static Response

The tstatic calibration procedures of the plunge and pitch actuators are out-

lined in Fig. B-l. A PDP-11 computer system was used to implement the digi-

tal controller with the actuator as the controlled element. Known disturbance

loads (weights Jhung in the gravity field) were balanced by the action of this

controller. A 60 Hz dither signal was added to eliminate the effects of stiction.
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A-2 Dynamic Response

A Nicolet 660B dual-channel FFT analyzer was used with a Tektronix

P6042 current probe to find the frequency responses of the actuators and the

current-drive amplifier.

A Hewlett-Packard 3722A noise generator was used to generate an infinite

sequence, 150 Hz bandwidth (system dynamics was about 10 Hz) noise signal

to drive the amplifier. First the transfer functions between the current outputs

from the amplifier and the voltage inputs to the amplifier were obtained using a

pure resistive load. It verified that the amplifier worked as a constant gain

amplifier (KA>plunge = 0.590 A/V, KAipitek = 0.270 A/V) with zero phase

shift within 0-100 Hz. Similar transfer functions with actuators connected to the

amplifier were obtained, which showed a small change in amplifier gains

(KA,piunye = ° 630 A/V, A^pto/k = 0.273 A/V) because of the back electro-

magnetic force (EMF) from the actuators.

Then the transfer functions between the position sensor voltage outputs and

the actual actuator current inputs were obtained. These transfer functions

showed the responses of the system also (see Fig. B-2 and B-3). Above 10 Hz,

the actuators should behave as forces (torques) acting on pure masses (moment

of inertias) with minus 40 dB/decade magnitude slope and 180 degree phase

lag. However, there were significant phase shift and change in magnitude slope.

Specifically, a big magnitude drop and phase shift at 63.5 Hz in the plunge

motor's response and 45 degree phase shift at 60 Hz in the pitch motor's

response. They were caused partly by the associated system dynamics and those

high frequency resonances of the actuators, as well as their bandwidth limita-

tions.
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B. SENSORS

B-l Static Response

The plunge displacement sensor, LVDT, was calibrated by clamping its

core in the chuck of a milling machine (Societe Genevoise, SIP, Switzerland)

and fixing its case to the movable table. Table motion could be read to

2.54 *10~3 mm (ICT4 in.). Figure B-4 shows the voltage output of the LVDT

versus the known table displacement using linear least square fit to the raw data.

Its gain constant is 15.931 V/in. (627.2 V/m) which is accurate to 1% over

the ±10 mm limit on plunge displacement.

The pitch displacement sensor, resolver, was calibrated with a dividing head

on a mechanical lathe (Leitz, Wetzlar, West Germany). It could be rotated

accurately down to 1 arc second ( 2.78 flO"4 degree). The case of the resolver

was fixed while its shaft rotated with the dividing head. Figure B-5 shows the

resolver voltage output versus known dividing head rotation using linear least

square fit to the raw data. Its gain constant is 52.13 V/rad which is accurate to

1% over the range ±5 degrees.

B-2 Dynamic Response

No tests for either sensor due to the difficulty to perform with available

equipments. However, we anticipate no effects would occur below the 400 Hz

excitation frequency.
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Appendix C

MEASUREMENT OF SYSTEM PARAMETERS

Brief discussions of the procedures used in determining system parameter

values are presented with estimates of accuracy (worst case).

Figure C-l shows the dimensional parameter definitions with exaggerating

variations for clarity.

e • Jb

TRAILING MIOCRORO
EDO*

LEADING EDGE

/
ELASTIC AXIS

Fig. C-l Plane View of Wing Exaggerating Dimensional Imperfections
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f = 0.4101 m: wing span.

Directly measured with an accuracy of 2 mm (0.5%).

c = 0.2413 m (6 = 0.12065 m): wing chord (semichord).

Template was numerically machined with an accuracy of 0.0254 mm

(10"3 in.) (0.01%). Form section cut with hot wire has imperfections in

the leading and trailing edge may result in chord variations of 2 mm

(0.8%) along the span.

a = - 0.3: distance in semichords the elastic axis (EA) lies after the mid-

chord (MC).

Variations in a are of the same order as variations in c (0.8%).

MAl = 0.3546 kg, 0.8461 kg/unit span (m): Al spar mass.

Directly measured using a digital scale with an accuracy of 10"5 kg

(0.003%).

A/2 = 2.1 kg, 5.011 kg/unit span (m): total mass of the wing section.

Directly measured as MAt. It included the mass of plexiglass endplates

(0.5473 kg, 26.1% of M2), fixing screws, accelerometer connecting

wires, etc. The way the connecting wires being handled may result in

0.2 kg (0.5%) variations in A/2.

(JJ^AI = 8.375 Hz, 52.62 rad/sec; ^At = 0.0152: uncoupled plunge natural

frequency and damping ratio with wing section replaced by Al spar only.
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A Nicolet 660B dual-channel FFT analyzer was used to find this

plunge mode frequency response with pitch mode clamped. Resonant

peak can be determined accurately within its resolution range (0.125

Hz, 1.5%). Damping ratio was computed by the analyzer using the

relationship f = 1 / 2Q, where Q was the amplification factor

— 21.25 Hz, 133.5 rad/sec; ^Al = 0.0148: uncoupled pitch natural

frequency and damping ratio with wing section replaced by Al spar only.

Same method as above, which is accurate to 0.125 Hz (0.6%), except

the plunge mode was clamped.

wA,win? = 6-75 Hz, 42.41 rad/sec; ^mnt
 = 0.00111: uncoupled plunge

natural frequency and damping ratio with wing section installed.

Same method as above, which is accurate to 0.05 Hz (0.7%).

u.a,wing = 9-70 Hz» 60-95 rad/sec; Sa,uing = 0.00981: uncoupled pitch

natural frequency and damping ratio with wing section installed.

Same method as above, which is accurate to 0.05 Hz (0.7%).

uk = 6.65 Hz, 41.78 rad/sec; fA = 0.00448: coupled plunge modal fre-

quency and damping ratio with wing section installed.

Same method as above, which is accurate to 0.05 Hz (0.7%).

ua = 10.05 Hz, 63.15 rad/sec; fa = 0.00932: coupled pitch modal fre-

quency and damping ratio with wing section installed.

Same method as above, which is accurate to 0.05 Hz (0.7%).
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Kk = 10.38 kN/m, 24.78 (kN/m)/unit span (m): plunge spring rate.

Measuring the displacement of the plunge motion due to a known

applied load (weight) yielded a direct measure of the plunge spring

characteristics (Fig. C-2). Accuracy depends on the calibration of the

plunge displacement sensor (1%) and the weight (0.01%), totally

equals 1%.

Ka = 43.04 N-m/rad, 102.7 (N-m/rad)/unit span (m): pitch spring rate.

Measuring the angular displacement of the pitch motion due to a known

applied torque (weight hung on one end of the four-bar linkage) yielded

a direct measure of the pitch spring characteristics (Fig. C-3). The

angle measured by the resolver was actually the twisted wing angle,

however, this fact was ignored in this measurement. Accuracy depends

on the pitch displacement sensor (1%).

MT<Ai = 3.750 kg, 8.047 kg/unit span (m): total apparent mass with Al

spar installed only.

The apparent mass was found from w^j and K^ as

It included the mass of the Al spar and the suspension systems. Its

accuracy depends on Kk (1%) and w^/ (1-5%), and is about 1 4-

1.5 * 2 = 4%.
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A/! = 3.395 kg, 8.100 kg/unit span (m): total apparent mass of the suspen-

sion systems.

which is accurate to 4%.

IQi = 1.502* XT' kg-m2, 3.584*1Q-3 kg-m2/unit span (m): apparent

moment of inertia of the pitch suspension system about the EA.

This apparent moment of inertia about the EA was found from Ka

and <jJQ AI as

4, = -f2- «*>)

Since the calculated moment of inertia of the Al spar was only 1% of

/Oj, it could be ignored. 7ttj is accurate to 1 + 0.6 * 2 = 2.2%.

Ia = Iar = 1.151*10-2 kg-m2, 2.746*10-2 kg-m2/unit span (m): total

apparent moment of inertia with wing section installed about the EA.

4f =

which is accurate to 1 + 0.7 * 2 = 2.4%.

70a = 1.001 *10~2 kg-m2, 2.388*10~2 kg-m2/unit span (m): total apparent

moment of inertia of the wing section and endplates about the EA.
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4, = 4, - 4, (C-5)

which is accurate to 2.4%.

MT = 5.7 kg, 13.60 kg/unit span (m): total apparent mass of the wing sec-

tion and the suspension systems.

MT = A/! + M2, (C-6)

which is accurate to 7.2%.

r£ = 0.3767: squared radius of gyration in semichords squared about the

EA.

* - W' (c-7)

which is accurate to 2.4 -I- 7.2 + 0.8 * 2 = 11.2%.

xa = 0.10: dbtance in semichords the center of mass (CM) lies after the

EA.

The measurement of xa is based on its physical definition shown in

Fig. C-4. Oscillation frequency was measured with a stop watch accu-

rate to 0.1 sec (0.3%) for 30 cycles (27.5 sec).

(c-8)

which is accurate to 2.4 + 0.3 * 2 + 7.2 + 0.8 = 11%.
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IQa + M2gxa-a = 0,

xa =

Fig. C-4 Calibration of xa

T— 1.684: length of the four-bar linkage in semichords.

Directly measured with an accuracy of 2 mm ( 1 + 0.8 = 1.8%).

Ko — 0.3684: mass ratio.

K* = M

^=0.9647: moment of inertia ratio.

li '

(00)

(C-10)
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Ke = 421.1 N-m/rad: spar coupling spring rate.

Computed value for 3 DOF (degree of freedom) modeling.

Kp = 5.295 N/V: linear motor force constant.

KT = 0.2232 N-m/V: torque motor moment constant.

uai = 91.50 Hz, 574.9 rad/sec; f0l = 0.0443: differential pitch modal fre-

quency and damping ratio.

Directly measured by FFT analyzer which is accurate to 0.25 Hz

(0.3%).

<jjeu = 6710 Hz, 42,166 rad/sec: coupling frequency from wing to four-bar

linkage.

wCi2 = 44,629 Hz, 280,414 rad/sec: coupling frequency from four-bar link-

age to wing.

ft = 246.0: mass ratio.
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The density of air in the tunnel p is nominally 1.219 kg/m3, which is

known within 1%. /* is thus accurate to 7.2 + 0.5 + 1 + 0.8*2 =

10.3%.

SQ = 0.04814 kg-m, 0.1140 kg-m/unit span (m): dynamic coupling

coefficient.

which is accurate to 3 -I- 0.5 = 3.5%.
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Appendix D

TABLE OF GRADIENTS

,.

' '4 . - v t r [ A X B ] «A'B^ ̂ ^ ^ ̂

S. -^ - t r fAX 'B] »B A
^ ™* ^ ^ —

6.

7.

8. » « A X B 1 »B A

. » t r A X ' B «A'B' '

10. - t r [XX l - 2 X '

11. - t r [ X X » ] -2X
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TABLE OF GRADIENTS (coat)

1*0

'14, -j^ trj A X B X 1 * A'X'B' + JJ'X'A'

I5> "I? f r 11 ̂  § ̂ ' 'J * £'& S' '* i 11

.

17.

. -|y ilet(X) *<det (X]HX"V
^ ^ ^

20.

2 1 . - t t e t f A X B ] a ( d e t [ A X B ] ) ( X " V

22.

23. j% detfX n ] «n(Uet[XDn(X"1) '
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