The influence of breaking gravity waves on the dynamics and chemical composition of the 60-110 km region is investigated with a two-dimensional model that includes a parameterization of gravity wave momentum deposition and diffusion.

The dynamical model is that described by Garcia and Solomon (1983) and Solomon and Garcia (1983) and includes a complete chemical scheme for the mesosphere and lower thermosphere. The parameterization of Lindzen (1981) is used to calculate the momentum deposited and the turbulent diffusion produced by the gravity waves.

It is found that wave momentum deposition drives a very vigorous mean meridional circulation, produces a very cold summer mesopause and reverses the zonal wind jets above about 85 km (Fig. 1). The momentum deposition and turbulent diffusion are much weaker at equinox than at solstice (Fig. 2). In Figure 3 the seasonal variation of the turbulent diffusion coefficient is consistent with the behavior of mesospheric turbulence inferred from MST radar echoes (Balsley et al., 1983; see Fig. 3 a, b).

The large decreases in turbulent diffusion at the equinoxes have profound effects on the distribution of certain chemical trace species. In particular, atomic oxygen in the lower thermosphere increases at the equinoxes because loss through diffusion into the sink region below = 90 km is reduced. This increase in atomic oxygen is reflected in the greater intensity of the 5577 Å green line airglow emission. The model reproduces very well the observed seasonal variation of the green line airglow (Fig. 4).

Ozone in the upper mesosphere is destroyed efficiently by \(\text{HO}_x \) (\(\text{H} + \text{OH} + \text{HO}_2 \)) catalysis. \(\text{HO}_x \) abundance at the 80 km level depends sensitively on the concentration of water vapor, which in turn is determined by upward diffusion from the lower mesosphere. At equinox, the diffusive flux of \(\text{H}_2\text{O} \) is reduced, \(\text{HO}_x \) abundances decrease and \(\text{O}_3 \) increases in the upper mesosphere. The 1.27 \(\mu \text{m} \) \(\text{O}_3 \) airglow is a proxy for \(\text{O}_3 \) abundances at 80 km. Fig. 5 shows that the model reproduces the major features of the seasonal variation of 1.27 \(\mu \text{m} \) airglow observed by the SME satellite (Thomas et al., 1984).

In conclusion, the large degree of consistency between model results and various types of dynamical and chemical data supports very strongly the hypothesis that breaking gravity waves play a major role in determining the zonally-averaged dynamical and chemical structure of the 60-110 km region of the atmosphere. A detailed account of this work is given in Garcia and Solomon (1984).

*The National Center for Atmospheric Research is sponsored by the National Science Foundation
REFERENCES

Figure 1. Zonally averaged circulation and temperature for model northern hemisphere winter solstice.
Figure 2. Vertical eddy diffusion coefficient due to breaking gravity waves for solstice and equinox.
Figure 3. (a) Height distribution of MST radar echoes at Poker Flat (65°N) as a function of season. Cross-hatched areas denote periods and altitudes for which no data are available. (From Balsley et al., 1983). (b) Vertical profiles of radar echo signal-to-noise ratio for summer (June 18-August 21, 1980 average) and fall (September 16-October 23, 1980). (Balsley et al., 1983). (c) Seasonal variation of the turbulent diffusion coefficient at 61° north latitude.
Figure 4. Seasonal variation of the atomic oxygen green line (5577 Å) emission intensities observed by the ISIS satellite at 35°N adapted from (Cogger et al., 1981) compared with model calculations.
Figure 5. Top panel: Ratio of O$_3$ observations by the Solar Mesosphere Explorer satellite (Thomas et al., 1984) for one week averages about day 270 to day 1 (southern hemisphere spring/summer; northern hemisphere fall/winter). Bottom panel: Same, as computed by the model.