INITIAL RESULTS OF THE GLOBAL THERMOSPHERIC MAPPING STUDY (GTMS)

W. L. Oliver, J. E. Salah, R. G. Musgrove, and J. M. Holt
MIT Haystack Observatory, Westford, Massachusetts 01886 U.S.A.

V. B. Wickwar
SRI International, Menlo Park, California 94205 U.S.A.

G. J. Hernandez
NOAA, Boulder, Colorado 80303 U.S.A.

R. G. Roble
NCAR, Boulder, Colorado 80307 U.S.A.

The Global Thermospheric Mapping Study (GTMS) is a multi-technique experimental study of the thermosphere designed to map simultaneously its spatial and temporal morphology with a thoroughness and diversity of measurement techniques heretofore unachieved. Three-day campaigns at the summer and winter solstices are planned to study the seasonal variations in thermospheric structure. The GTMS is designed around the Incoherent Scatter Radar Chain in the western hemisphere. The European incoherent scatter radars and the worldwide communities of Fabry Perot interferometers, meteor wind radars, partial reflection drifts radars, MST radars, and satellite probes are included to extend the spatial coverage and types of measurements available. Theoretical and modeling support in the areas of thermospheric and ionospheric structure, tides, and electric fields are included to aid in program planning and data interpretation.

The initial GTMS campaign was conducted on 26-28 June 1984, during a period of sharply declining solar activity. Solar activity was low on the three observation days (F10.7 = 97, 98, 96) and magnetic conditions were unsettled to active (A = 10, 12, 20). All six incoherent scatter radar facilities collected data. Each collected F region data day and night while Saint Santin and Millstone Hill additionally collected E region data during daylight hours. Initial results from Sondrestrom and Millstone Hill are presented. Good quality Fabry Perot data were collected at Fritz Peak and San Jose dos Campos. Weather conditions produced poor results at Arequipa and Arecibo. Initial results from Fritz Peak are presented. Mesosphere/lower-thermosphere observations were conducted under the ATMAP organization. The magnetometer chains also were operational during this campaign. Initial TGCM predictions have been made for assumed solar-geophysical conditions, and selected results are presented.

Sondrestrom ionospheric results show a decrease in electron density from June 26 to 27 to 28, isolated periods of ion frictional heating during the nights throughout the field of view, and strong ionospheric convection velocity reversals well beyond midnight. Neutral wind results show a major period of enhanced northward velocity in response to strong heating to the south of the radar on June 28, the most disturbed of the three days.

Millstone Hill ionospheric results show lower densities on June 27 than on June 26 but higher densities on June 28. Frictional heating effects and velocity reversals are restricted to the most northerly observations. Millstone Hill neutral atmosphere results show a higher temperature and
atomic oxygen density over a wide latitude range on June 28 than on the previous two days, with particularly strong effects at lower latitudes. These are believed to be the first incoherent scatter radar determinations of the latitudinal variation of the neutral atomic oxygen density.

Fritz Peak Fabry Perot data show a strong latitudinal gradient in neutral temperature, with temperatures 5 degrees in latitude to the north of the station exceeding those to the south by 200 K. Early on the morning of June 28 the Fabry Perot winds showed a sudden and strong shift toward the equator with the winds to the north exceeding 300 m/s but the winds to the south attaining a speed of only 130 m/s.

TGCM simulations were made to predict the global steady-state behavior of thermospheric temperature, winds, density, and composition for pre-assumed values for solar flux (F10.7 = 120–somewhat high) and magnetic activity (Ap = 4 – somewhat low). A cross-tail magnetospheric potential and an auroral particle input of 2 ergs/cm**2/sec were included but tides were not. These simulations predict a strong summer-solstice neutral temperature gradient over North America with a temperature maximum over Greenland. Meridional wind predictions over Sondrestrom show a strong diurnal flow with poleward velocities of 170 m/s during the day and equatorward velocities of 300 m/s at night. A large quantity of such results are available from the simulations.

As more data are received and analyzed, composite maps of global upper atmospheric and ionospheric structure will be compiled and compared with models and simulations which will be updated as pertinent information on solar/geophysical inputs becomes available. Magnetometer data will be used to estimate global Joule heating rates to act as inputs to the models. The models will rely to various degrees on inputs from the measurements and on feedback from other models as thermospheric, ionospheric, and electrodynamic properties of the upper atmosphere all are interdependent.

A second GTMS campaign will be conducted on 15-17 January 1985. Optical coverage, especially at high northern latitudes near the Radar Chain, should be much improved during this period.

The GTMS data-taking campaigns will be followed by a Workshop at MIT on 17-19 July 1985. In addition to the GTMS solstices campaigns, the Workshop will include the Equinox Transition campaign, a radar/optical campaign coordinated by AFGL in September 1984, designed to observe the summer-winter thermosphere circulation transition and the competition between high-latitude and sub-solar forcing in controlling circulation structure. Consideration will be given to presenting these results at an AGU session in December 1985 or at an NCAR/URSI Radar Workshop on coordinated radar campaigns.
GTMS - EXPERIMENTAL ORGANIZATION

OVERALL COORDINATION - MILLSTONE HILL (W. OLIVER, J. SALAH)

TECHNIQUE COORDINATORS -

INCOHERENT SCATTER RADARS
SONDRE STROMFJORD
MILLSTONE HILL
ARECIBO, JICAMARCA
BISCAT, SAINT SANTIN

FABRY PEROT INTERFEROMETERS

METER RADARS
PARTIAL REFLECTION RADARS
MST RADARS
SATELLITE PROBES

GTMS - THEORY/MODEL/SIMULATION ORGANIZATION

1 - THERMOSPHERE SIMULATION (TGCM) ROBLE ET AL.
2 - THERMOSPHERE MODEL COMPARISON (E.G., MSIS) HEDIN ET AL.
3 - TIDES MODELING/CMPARISON FORBES ET AL.
4 - IONOSPHERE SIMULATION SCHUNK ET AL.
5 - ELECTRIC FIELD MODELING/CMPARISON RICHMOND ET AL.
6 - NE/TE MODEL COMPARISON BRACE ET AL.
7 - NE MODEL COMPARISON CHIU ET AL.
MARCH  122.0
APRIL   128.7
MAY     128.3
JUNE    100.3
JULY    89.3
AUGUST  83.7
SEPT.   (78.1)

MONTHLY AVERAGES

<table>
<thead>
<tr>
<th>MONTH</th>
<th>F10.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARCH</td>
<td>122.0</td>
</tr>
<tr>
<td>APRIL</td>
<td>128.7</td>
</tr>
<tr>
<td>MAY</td>
<td>128.3</td>
</tr>
<tr>
<td>JUNE</td>
<td>100.3</td>
</tr>
<tr>
<td>JULY</td>
<td>89.3</td>
</tr>
<tr>
<td>AUGUST</td>
<td>83.7</td>
</tr>
<tr>
<td>SEPT.</td>
<td>(78.1)</td>
</tr>
</tbody>
</table>

SITES INVOLVED IN THE GLOBAL THERMOSPHERIC MAPPING STUDY

<table>
<thead>
<tr>
<th>SITE</th>
<th>STATE/COUNTRY</th>
<th>LAT</th>
<th>LON</th>
<th>EXPERIMENT TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saint Santin</td>
<td>France</td>
<td>44</td>
<td>2</td>
<td>IS</td>
</tr>
<tr>
<td>SOUCY</td>
<td>West Germany</td>
<td>52</td>
<td>10</td>
<td>MST</td>
</tr>
<tr>
<td>Bologna</td>
<td>Italy</td>
<td>44</td>
<td>11</td>
<td>MR</td>
</tr>
<tr>
<td>EIASCAT</td>
<td>Scandanavia</td>
<td>69</td>
<td>19</td>
<td>IS</td>
</tr>
<tr>
<td>Kiruna</td>
<td>Sweden</td>
<td>68</td>
<td>20</td>
<td>PP</td>
</tr>
<tr>
<td>Kyoto</td>
<td>Japan</td>
<td>35</td>
<td>135</td>
<td>MR</td>
</tr>
<tr>
<td>Adelaide</td>
<td>South Australia</td>
<td>-35</td>
<td>138</td>
<td>PP PR</td>
</tr>
<tr>
<td>Christchurch</td>
<td>New Zealand</td>
<td>-43</td>
<td>172</td>
<td>PR</td>
</tr>
<tr>
<td>Fairbanks</td>
<td>Alaska</td>
<td>64</td>
<td>212</td>
<td>PP</td>
</tr>
<tr>
<td>Poker Flat</td>
<td>Alaska</td>
<td>64</td>
<td>212</td>
<td>MST</td>
</tr>
<tr>
<td>Calgary</td>
<td>Alberta</td>
<td>51</td>
<td>246</td>
<td>PP</td>
</tr>
<tr>
<td>Saskatoon</td>
<td>Saskatchewan</td>
<td>52</td>
<td>254</td>
<td>PR</td>
</tr>
<tr>
<td>Fritz Peak</td>
<td>Colorado</td>
<td>40</td>
<td>255</td>
<td>FP</td>
</tr>
<tr>
<td>Sunset</td>
<td>Colorado</td>
<td>40</td>
<td>255</td>
<td>MST</td>
</tr>
<tr>
<td>Urbana</td>
<td>Illinois</td>
<td>40</td>
<td>272</td>
<td>MR MST</td>
</tr>
<tr>
<td>Atlanta</td>
<td>Georgia</td>
<td>33</td>
<td>276</td>
<td>MR</td>
</tr>
<tr>
<td>Ann Arbor</td>
<td>Michigan</td>
<td>42</td>
<td>277</td>
<td>FP</td>
</tr>
<tr>
<td>Laurel Ridge</td>
<td>Pennsylvania</td>
<td>40</td>
<td>281</td>
<td>PP</td>
</tr>
<tr>
<td>Jicamarca</td>
<td>Peru</td>
<td>-12</td>
<td>283</td>
<td>IS MST</td>
</tr>
<tr>
<td>Millstone Hill</td>
<td>Massachusetts</td>
<td>43</td>
<td>289</td>
<td>IS PP</td>
</tr>
<tr>
<td>Arequipa</td>
<td>Peru</td>
<td>-16</td>
<td>289</td>
<td>FP</td>
</tr>
<tr>
<td>Durham</td>
<td>New Hampshire</td>
<td>43</td>
<td>289</td>
<td>MR</td>
</tr>
<tr>
<td>Arecibo</td>
<td>Puerto Rico</td>
<td>18</td>
<td>294</td>
<td>IS FP MST</td>
</tr>
<tr>
<td>Sondrestrom</td>
<td>Greenland</td>
<td>67</td>
<td>309</td>
<td>IS PP</td>
</tr>
<tr>
<td>San Jose dos Campos</td>
<td>Brazil</td>
<td>-23</td>
<td>314</td>
<td>PP</td>
</tr>
</tbody>
</table>

LAT: LATitude, + in northern hemisphere, - in southern
LON: east LONgitude
IS: Incoherent Scatter
FP: Fabry Perot interferometer
MR: Meteor wind Radar
PR: Partial Reflection drifts radar
MST: Mesosphere-Stratosphere-Troposphere radar

SOLAR/GEOPHYSICAL INDICES
DAYS OF OBSERVATION: 26-28 JUNE

OBSERVING SCHEME: CP-3 - WIDE LATITUDE SCAN

CYCLE TIME: 30 MINUTES

MEASURED QUANTITIES - IONOSPHERIC (F REGION)
NE, TE, TI, E FIELD - VS LATITUDE

MEASURED QUANTITIES - NEUTRAL (UPPER THERMOSPHERE)
TEMPERATURE - VS LATITUDE
MERIDIONAL WIND - VS LATITUDE
OXYGEN DENSITY - VS LATITUDE

DATA QUALITY: PRESUMED GOOD

DAYS OF OBSERVATION: 26-28 JUNE

OBSERVING SCHEME: VERTICAL TRANSMITTED BEAM (SAINT SANTIN)
3 RECEIVERS SCANNING TRANSMITTED BEAM
(NANCAY, MENDE, MONPAZIER)
(MONPAZIER RESTRICTED TO F REGION ON 28-TH)

CYCLE TIME: DAY - 60 MINUTES
NIGHT - 30 MINUTES

MEASURED QUANTITIES - IONOSPHERIC (LOCAL)
F REGION - NE, TE, TI, E FIELD
E REGION - NE, TE, TI, COLL. FREQ., ION DRIFT

MEASURED QUANTITIES - NEUTRAL (LOCAL)
F REGION - TEMPERATURE
MERIDIONAL WIND
OXYGEN DENSITY (DAY)

E REGION - TEMPERATURE (DAY)
WIND VECTOR (DAY)
N2 DENSITY (DAY)

DATA QUALITY: GOOD
GTMS - 26-28 JUNE 1984 - IS - ARECIBO

DAYS OF OBSERVATION - 26-28 JUNE

OBSERVING SCHEME - CONICAL BEAM SWING
INTERLACED POWER AND SPECTRAL MEASUREMENTS

CYCLE TIME: 16 MINUTES FOR ANTENNA SWING
1-2 MINUTES FOR LINE-OF-SIGHT MEASUREMENTS

MEASURED QUANTITIES - IONOSPHERIC (LOCAL F REGION)
NE, TE, TI, E FIELD

MEASURED QUANTITIES - NEUTRAL (LOCAL UPPER THERMOSPHERE)
TEMPERATURE
MERIDIONAL WIND
OXYGEN DENSITY (DAYTIME)

DATA QUALITY - GOOD

GTMS - 26-28 JUNE 1984 - IS - JICAMARCA

DAYS OF OBSERVATION: FARADAY ROTATION (NE) - 26-28 JUNE
IS SPECTRAL DATA - 27-28 JUNE

OBSERVING SCHEME - SPLIT BEAM, EAST AND WEST

CYCLE TIME: 5 MINUTES

MEASURED QUANTITIES - IONOSPHERIC (LOCAL F REGION)
NE, TE, TI, E FIELD

MEASURED QUANTITIES - NEUTRAL (LOCAL UPPER THERMOSPHERE)
TEMPERATURE
?? OXYGEN DENSITY (DAYTIME)

DATA QUALITY: FARADAY ROTATION - GOOD
IS SPECTRAL - UNCERTAIN

281
DAYS OF OBSERVATION - 26-28 JUNE

OBSERVING SCHEME -
11-POSITION MEASUREMENT: 5 PAIRS STRADDLING FIELD LINE
(FOR E FIELD VS LATITUDE)
1 POSITION UP B FIELD
(FOR LOCAL WINDS)
N-S ELEVATION SCAN: (SCALAR QUANTITIES VS LATITUDE)
UP B FIELD AFTER 11-POSITION AND ELEVATION SCAN

CYCLE TIME: 22.5 MINUTES (6 MINUTES UP B)

MEASURED QUANTITIES - IONOSPHERIC (F REGION)
NE, TE, TI, E FIELD - VS LATITUDE

MEASURED QUANTITIES - NEUTRAL (UPPER THERMOSPHERE)
TEMPERATURE - VS LATITUDE
MERIDIONAL WIND - LOCAL
OXYGEN DENSITY -

DATA QUALITY - GOOD

DAYS OF OBSERVATION - 26-28 JUNE

OBSERVING SCHEME -
DOUBLE ELEVATION SCAN: ONE ALONG MILLSTONE MERIDIAN
ONE CANTED 30 DEGREES TO WEST
ZENITH MEASUREMENTS
DAYTIME: ADDED 3-POSITION E REGION MEASUREMENT

CYCLE TIME: NIGHT - 30 MINUTES
DAY - 60 MINUTES

MEASURED QUANTITIES - IONOSPHERIC
P REGION - NE, TE, TI, E FIELD - VS LATITUDE
E REGION - NE, TE, TI, COLL. FREQ., ION DRIFT - LOCAL

MEASURED QUANTITIES - NEUTRAL
P REGION - TEMPERATURE - VS LATITUDE
MERIDIONAL WIND - VS LATITUDE
OXYGEN DENSITY - VS LATITUDE (DAY)
E REGION - TEMPERATURE - LOCAL (DAY)
WIND VECTOR - LOCAL (DAY)
H2 DENSITY - LOCAL (DAY)

DATA QUALITY - GOOD
6300-A NIGHTTIME OBSERVATIONS

1 - SAO JOSE DOS CAMPOS:
   JUNE 25  - 1850-2330 LT
   JUNE 26/27 - 1900-0430 LT (VERY LOW INTENSITY AFTER 00 LT)
   JUNE 27   - NO OBSERVATIONS (BAD WEATHER)
   JUNE 28   - NO OBSERVATIONS (BAD WEATHER)
   JULY 01/02 - 1950-0200 LT
   JULY 02/03 - 1830-0400 LT (LOW INTENSITY)
   JULY 03/04 - 1830-0300 LT

2 - AREQUIPA - DATA TAKEN, WEATHER WAS CLOUDY

3 - ARECIBO - DATA TAKEN, SKY WAS HAZY, POOR QUALITY

4 - FRITZ PEAK:
   JUNE 27  - 0300-1100 UT (TEMPERATURE ONLY)
   JUNE 28  - 0300-1100 UT (TEMPERATURE + HORIZONTAL WIND)

5 - LAUREL RIDGE - TAPE RECORDER MALFUNCTION

6 - ANN ARBOR - NO DATA

7 - CALGARY - NO DATA

8 - FAIRBANKS - NO DATA, INOPERATIVE IN SUMMER

9 - SONDRESTROM - NO DATA, INOPERATIVE IN SUMMER

OTHERS ??

GTMS - 26-28 JUNE 1984 - D&E-REGION/MESOSPHERE OBSERVATIONS

1 - ENTIRE ATMAP NETWORK - REPORTS INCOMPLETE
   METEOR RADARS
   PARTIAL REFLECTION DRIFTS RADARS
   MST RADARS

2 - INCOHERENT SCATTER RADARS - DAYTIME ONLY
   MILLSTONE HILL
   SAINT SANTIN

3 - FABRY PEROT INTERFEROMETERS (GREEN LINE) - NO OBSERVATIONS
   (ONLY F REGION RED LINE DATA WERE TAKEN)
MAGNETOMETER CHAINS WERE OPERATING

KAMIDE AND AKASOFU PLAN TO CALCULATE GLOBAL MAPS OF JOULE HEAT PRODUCTION AND IONOSPHERIC CURRENTS
GTMS/EQUINOX-CIRCULATION WORKSHOP

WORKSHOP TO STUDY GLOBAL FEATURES OF THERMOSPHERE STRUCTURE AS OBSERVED DURING:

(1) GTMS SUMMER (JUNE 1984) AND WINTER (JANUARY 1985) SOLSTICE CAMPAIGNS

(2) EQUINOX-CIRCULATION (SEPTEMBER 1984) CAMPAIGN

WORKSHOP DATES/PLACE: 17-19 JULY 1985 AT MIT

-----------------------------------------------------------------

GTMS/EQUINOX-CIRCULATION AGU SESSION

-----------------------------------------------------------------

DECEMBER 1985 MEETING IN SAN FRANCISCO

SESSION TO BE PLANNED AT JULY 1985 WORKSHOP

ABSTRACTS DUE IN TO AGU IN SEPTEMBER 1985
Illustration of the latitude-altitude coverage attained by a north-south elevation scan down to about 5 degrees at Millstone Hill. Plotted is the logarithm (base 10) of the electron density (cm⁻³).
MILLSTONE HILL RADAR
LOG (NE), TI, TE, VO vs LT and GEODEISTIC LATITUDE at 350 km
Elevation scan at 180, 360 deg AZ

OLIVER, page 287
SONDRESTROM RADAR
26-29 JUNE 1984
LOG(NE), TI, TE, VO vs LT and GEODETIC LATITUDE at 300 km
Elevation scan at 153, 333 deg AZ

OLIVER, page 290
Thermospheric temperatures measured in four directions from Fritz Peak during the night of 26/27 June 1984.
Thermospheric temperatures measured in four directions from Fritz Peak during the night of 27/28 June 1984.
Thermospheric meridional winds measured in four directions from Fritz Peak during the night of 27/28 June 1984.
Thermospheric zonal winds measured in four directions from Fritz Peak during the evening of 27/28 June 1984.

F.P.O. 6300 A WINDS 840628 (DAY 180)

EASTWARD (M/S)

U.T.

294
TGCM simulation of the global temperature field at UT=12 hours at an altitude of about 300 km.