OVERVIEW OF PROCESSING ACTIVITIES AIMED AT HIGHER EFFICIENCIES AND ECONOMICAL PRODUCTION

JET PROPULSION LABORATORY

D.B. Bickler

Outline

- Background
- Process development concerns
- High efficiency elements
- Sensitivities
- A proposed design
- Process development for proposed design

Background

- Historically, JPL process development dealt with minimizing $/watt
- Current focus on achieving cell efficiencies greater than 18%

Process Development Concerns

- Less than optimum Si sheet
- Control of yield
- Large area cells
High-Efficiency Elements Requiring Process Development

• Bulk material perfection
• Very shallow junction
• Front surface passivation
• Finely detailed metallization

Bulk Material Perfection

• Maintain minority carrier lifetime
• High doping levels add concern
• Large area

Very Shallow Junction

• Sensitive to metallization punch-through
• Series resistance problems
• Control dopant leaching during passivation

Front-Surface Passivation

• Mechanical integrity
• Optical characteristics
• Electrical requirements
• Process selection
 • Thermal oxidation
 • Thermal CVD
 • Plasma CVD
 • Sputtering
 • Evaporation
Finely Detailed Metalization

- Aspect ratio (thickness/width)
- Laser processing
- Electrochemical deposition

Determining Sensitivity to Processing

- Use of mathematical modeling
 - Cell model SPCOLAY from University of Pennsylvania
 - Metal pattern optimization CELCAL from JPL
 - Processing models in SUPREM from Stanford University
- Experimental lab work
 - Individual process steps
 - Combine into process sequences
Power Loss vs Cell Size

- **NOT STRAPPED**
- **STRAPPED**

Axes:
- **POWER LOSS, mW/cm²**
- **CELL SIZE, cm**

Legend:
- NOT STRAPPED
- STRAPPED
Low-Resistivity Cell Behavior

A Proposed High-Efficiency Design
PLENARY SESSIONS

Process Development Required for Proposed Design

- Thinning process
- BSR optics
- Patterned doped silicon
- Metal grid alignment