PRELIMINARY STUDY: MOISTURE-POLYMER INTERACTION
JET PROPULSION LABORATORY
L.-C. Wen

Study Objectives

To develop methodology for predicting module temperature, humidity and surface moisture level versus time in field environment

- Water sorption
- Moisture diffusion
- Simulation using SOLMET weather tape

To apply the above temperature-moisture prediction methodology together with electrochemical corrosion temperature-moisture dependence to predict module corrosion lifetime in the field

Simulation Flow Diagram
Sorption Study

- **Objective**
 - To establish an analytical model for predicting moisture sorption isotherms for relevant polymers

- **Approach**
 - Gravimetric measurements using a Cahn balance
 - Isothermal system: humidity chamber
 - Relative humidity from 40% to 95%, no liquid water
 - Data fitting with an analytical model (modified B.E.T. equation)

Water Sorption for PVB

![Graph showing water sorption for PVB](image-url)

- Fitting with modified B.E.T. Model
- Relative Humidity:
 - A - 40°C
 - B - 55°C
 - C - 70°C
 - D - 80°C
Water Sorption Isotherms

Modified B.E.T. Model for PVB

- **Status**
 - Limited samples were used (PVB)
 - Reasonable data fitting with a modified B.E.T. equation

- **Required R&D**
 - Expanded sorption data base for different materials, composite layers and conformal coatings
 - Sorption-desorption in non-isothermal conditions
 - Kinetics and thermodynamics of adsorption/absorption (both liquid and vapor water)
 - Factors influence moisture sorption in polymer; plasticizer, cross-linking agent
 - Free-to-bound water transformation
Moisture Diffusion

- **Objective**
 - To develop a moisture transport model and diffusion/permeation parameters

- **Approach**
 - Transient experimental data based on sorption measurements
 - Nodal network representation of Fick's diffusion model
 - 100-layer model
 - Isothermal system
 - Parametric iteration of constant diffusivity levels
 - Determination of diffusivity based on transient data
 - To establish equations to correlate diffusivity/permeability as a function of temperature and moisture content

- **Status**
 - Diffusivity increases with moisture content in PVB
 - Arrhenius-type variation with temperature
 - Good correlations between data and model

- **Required R&D**
 - Moisture diffusion in composite encapsulants
 - Diffusion of unbound water
 - Bulk water movement
 - Transition of bound and unbound water
 - Apparent diffusivity
 - Non-isothermal system
 - Models for simultaneous heat and mass transfer
 - Thermal diffusion
 - Factors affecting moisture diffusion and permeation
Moisture Sorption-Desorption

PVB RH: 85%-95%-85%

Sample Weight (grams)

Time (hrs)
Diffusivity Simulation at 55°C

Moisture in PVB RH 85%-95%-85%

Gross Sample Weight (Grams)

Time (Hrs)

A — 3E-4 B — 2E-4 C — 1.5E-4 D — 1E-4 E — 0.5E-4
Diffusivity of Moisture in PVB

Function of T and C

Concentration (mg of water/gm of PVB)

- 20°C
- 40°C
- 55°C
- 70°C
Bulk Conductivity of PVB

![Graph showing bulk conductivity of PVB with moisture content and temperature]

Electrochemical Corrosion

- **Objective**
 - To simulate module leakage current vs time in operating environment

- **Approach**
 - Construct preliminary analytical model
 - Conduction across encapsulant
 - No surface resistance, no lateral volumetric conduction
 - Include equations for sorption and diffusivity
 - Nodal network analysis using thermal analyzer SINDA
 - Equation to represent bulk ionic conductivity as a function of temperature and moisture content
 - Exercise model with transient chamber boundary conditions
 - Exercise model with SOLMET field data
Moisture Content, PVB

55 C, RH % 42-64-85-95-85-64-42

Average Concentration (mg Water/gm PVB)

Time (hours)
Normalized Leakage Current

55 C, RH % 42-64-85-95-85-64-42

A — Measurement Time (hours) B — Simulation
Temperature Profiles

(Near Miami, August 1963)

- A: Dew Point
- B: Dry Bulb
- C: Module Temp.

Temperature (Degrees C)

0 4 8 12 16 20 24 28 32 36 40 44 48

15 20 25 30 35 40 45 50 55 60 65

Time (hrs)
Vapor Pressure and Relative Saturation

Miami August 1963

A — Pv mm Hg B — RS In air C — RS In Module

Time (hrs)
Concentration Distribution

Moisture in 5 mil PVB Encapsulant

Moisture in 50 mil PVB Encapsulant

Distance from Surface (mil)

Concentration (mg water/gm PVB)

213
Leakage Current in Field

5 mil PVB Encapsulant

Relative Leakage Current

Time (hrs)

A - Unsealed
B - No Moisture
C - Sealed @22°C 70% RH
Charge Transfer in Field

5 mil PVB Encapsulant

<table>
<thead>
<tr>
<th>Time (hrs)</th>
<th>Relative Charge Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>14</td>
<td>70</td>
</tr>
<tr>
<td>16</td>
<td>80</td>
</tr>
</tbody>
</table>

A - Unsealed
B - No moisture
C - Sealed @ 22°C, 70% RH

50 mil PVB Encapsulant

<table>
<thead>
<tr>
<th>Time (hrs)</th>
<th>Relative Charge Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

A - Unsealed
B - No moisture
C - Sealed @ 22°C, 70% RH
Summary

- Realistic lifetime prediction appears to be feasible
- Refinements in prediction techniques are required
- Research areas:
 - 2-dimensional ionic conduction model
 - Composite layers
 - Non-isothermal system
 - Effects of liquid water
 - Interfacial adsorption/absorption