Study Objectives

To develop methodology for predicting module temperature, humidity and surface moisture level versus time in field environment

- Water sorption
- Moisture diffusion
- Simulation using SOLMET weather tape

To apply the above temperature-moisture prediction methodology together with electrochemical corrosion temperature-moisture dependence to predict module corrosion lifetime in the field
RELIABILITY PHYSICS

Sorption Study

• Objective
 • To establish an analytical model for predicting moisture sorption isotherms for relevant polymers

• Approach
 • Gravimetric measurements using a Cahn balance
 • Isothermal system: humidity chamber
 • Relative humidity from 40% to 95%, no liquid water
 • Data fitting with an analytical model (modified B.E.T. equation)

Water Sorption for PVB

![Graph showing water sorption for PVB with fitted B.E.T. model](image-url)
Water Sorption Isotherms

Modified B.E.T. Model for PVB

- **Moisture Content (mg water/gm PVB)**
- **Vapor Pressure (mm Hg)**

Moisture Sorption

- **Status**
 - Limited samples were used (PVB)
 - Reasonable data fitting with a modified B.E.T. equation

- **Required R&D**
 - Expanded sorption data base for different materials, composite layers and conformal coatings
 - Sorption-desorption in non-isothermal conditions
 - Kinetics and thermodynamics of adsorption/absorption (both liquid and vapor water)
 - Factors influence moisture sorption in polymer; plasticizer, cross-linking agent
 - Free-to-bound water transformation
Moisture Diffusion

- Objective
 - To develop a moisture transport model and diffusion/permeation parameters

- Approach
 - Transient experimental data based on sorption measurements
 - Nodal network representation of Fick’s diffusion model
 - 100-layer model
 - Isothermal system
 - Parametric iteration of constant diffusivity levels
 - Determination of diffusivity based on transient data
 - To establish equations to correlate diffusivity/permeability as a function of temperature and moisture content

- Status
 - Diffusivity increases with moisture content in PVB
 - Arrhenius-type variation with temperature
 - Good correlations between data and model

- Required R&D
 - Moisture diffusion in composite encapsulants
 - Diffusion of unbound water
 - Bulk water movement
 - Transition of bound and unbound water
 - Apparent diffusivity
 - Non-isothermal system
 - Models for simultaneous heat and mass transfer
 - Thermal diffusion
 - Factors affecting moisture diffusion and permeation
Moisture Sorption-Desorption

PVB RH: 85%–95%–85%
Diffusivity Simulation at 55°C

Moisture in PVB RH 85%-95%-85%

Gross Sample Weight (Grams)

0 2 4 6 8

Time (Hrs)

A — 3E-4 B — 2E-4 C — 1.5E-4 D — 1E-4 E — 0.5E-4
Diffusivity of Moisture in PVB

Function of T and C

Concentration (mg of water/gm of PVB)

$D \times 10^{-4}$ cm2/hr
Electrochemical Corrosion

- **Objective**
 - To simulate module leakage current vs time in operating environment

- **Approach**
 - Construct preliminary analytical model
 - Conduction across encapsulant
 - No surface resistance, no lateral volumetric conduction
 - Include equations for sorption and diffusivity
 - Nodal network analysis using thermal analyzer SINDA
 - Equation to represent bulk ionic conductivity as a function of temperature and moisture content
 - Exercise model with transient chamber boundary conditions
 - Exercise model with SOLMET field data
Temperature Profiles

(Miami, August 1963)

A — Dew Point
B — Dry Bulb
C — Module Temp.

Time (hrs) Temperatures (Degrees C)
Vapor Pressure and Relative Saturation

Miami August 1963

A — Pv mm Hg B — RS in air C — RS in Module

Time (hrs)
Concentration Distribution

Moisture in 5 mil PVB Encapsulant

Concentration (mg water/gm PVB)

Distance from Surface (mil)

Moisture in 50 mil PVB Encapsulant

Concentration (mg water/gm PVB)

Distance from Surface (mil)
Leakage Current in Field

5 mil PVB Encapsulant

A - Unsealed
B - No Moisture
C - Sealed @22°C 70% RH

Relative Leakage Current

Time (hrs)

0 2 4 6 8 10 12 14 16 18 20 22 24
Charge Transfer in Field

5 mil PVB Encapsulant

Relative Charge Transfer

Time (hrs)

A - Unsealed B - No moisture C - Sealed @22°C, 70% RH

50 mil PVB Encapsulant

Relative Charge Transfer

Time (hrs)

A - Unsealed B - No moisture C - Sealed @22°C, 70% RH
Summary

- Realistic lifetime prediction appears to be feasible
- Refinements in prediction techniques are required
- Research areas:
 - 2-dimensional ionic conduction model
 - Composite layers
 - Non-isothermal system
 - Effects of liquid water
 - Interfacial adsorption/absorption