ENCAPSULATION PROCESSING AND MANUFACTURING YIELD ANALYSIS
SPRINGBORN LABORATORIES, INC.

P. Willis

Goals

- Understand the relationships between:
 - Formulation variables
 - Process variables
- Define conditions required for optimum performance
- Relate to module reliability
- Predict manufacturing yield
- Provide documentation to industry
PROCESS DEVELOPMENT

Material Variables

LA MINATION POTTANTS
- ETHYLENE/ETHYL ACETATE (EVA)
- ETHYLENE/ETHYL ACRYLATE (EVA)

CASTING POTTANTS
- ALIPHATIC POLYURETHANE (PU)

ADHESIVES/PRIMERS
- THREE BASIC PRIMER SYSTEMS

COVER FILMS
- TEDLAR, ACRYLICS, FEP

FORMULATION VARIABLES:
TYPE AND AMOUNT OF:
- CURING AGENTS (PEROXIDES)
- ANTIOXIDANTS
- ULTRAVIOLET SCREENERS
- ULTRAVIOLET STABILIZERS (HALS)
- SELF PRIMING AGENTS

STORAGE CONDITIONS:
- TIME, TEMPERATURE, HUMIDITY, LIGHT
 AIR EXPOSURE

QUALITY CONTROL:
- DETERMINE ANALYTICAL METHODS TO VERIFY
 COMPOSITION
- PUBLISH QC SPECIFICATIONS FOR MATERIAL
 CERTIFICATION
PROCESS DEVELOPMENT

Process Variables

(VACUUM BAG LAMINATION)

- AMBIENT CONDITIONS:
 - TEMPERATURE
 - HUMIDITY
 - BAROMETRIC PRESSURE
- VACUUM PRESSURE (INITIAL) AND TIME OF EVACUATION
- TEMPERATURE -- RATE OF RISE
- TEMPERATURE -- ULTIMATE
- DWELL TIME, AT TEMPERATURE
- RATE OF COOLING
- TIME/TEMPERATURE/PRESSURE INTER-RELATIONSHIP

(CASTING LIQUID SYSTEMS)

ABOVE VARIABLES, PLUS:

- 2 COMPONENT MIX TIME
- DEGASSING PRESSURE
- PUMP AND FILL TIMES
- MIX UNIFORMITY
- GEL TIME
MICROPROCESSOR CONTROLLED EXPERIMENTAL LAMINATOR CONSTRUCTED
STUDIES STARTED ON PROCESSING PROFILES
• RATE OF HEATING (HOW SLOW, HOW FAST?)
• VACUUM TIMING
• RATE OF COOLING
PROCESS DEVELOPMENT

Quality and Performance Criteria

METHOD:
- Prepare test modules and/or other test specimens with change in significant variable(s)
- Determine the effect

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>CRITERION</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTTAINT</td>
<td>ADEQUATE CURE</td>
<td>PERCENT GEL</td>
</tr>
<tr>
<td></td>
<td>TRAPPED BUBBLES</td>
<td>THERMAL CREEP</td>
</tr>
<tr>
<td></td>
<td>DISCOLORATION</td>
<td>VISUAL</td>
</tr>
<tr>
<td>CELLS</td>
<td>BREAKAGE</td>
<td>VISUAL, RESISTANCE</td>
</tr>
<tr>
<td></td>
<td>INTERCONNECT</td>
<td>RESISTANCE</td>
</tr>
<tr>
<td></td>
<td>REGISTRATION</td>
<td>VISUAL</td>
</tr>
<tr>
<td>COVER FILMS</td>
<td>TEARS/PUNCTURES</td>
<td>VISUAL</td>
</tr>
<tr>
<td></td>
<td>WARPING/SHRINKAGE</td>
<td>VISUAL</td>
</tr>
<tr>
<td>GLASS (SUPERSTRATE)</td>
<td>FRACTURE</td>
<td>VISUAL</td>
</tr>
<tr>
<td>ADHESION</td>
<td>BOND STRENGTH</td>
<td>PEEL TEST</td>
</tr>
<tr>
<td></td>
<td>ENDURANCE</td>
<td>WATER SOAK (50°C)</td>
</tr>
</tbody>
</table>

Need to decide on:
- Standard test specimen(s)
- Standard test protocol
- Uniform data sets
Data Analysis

- Statistical analysis complicated by lack of uniformity in data type

- Two types of data:
 - Discrete (Pass/Fail)
 - Continuous
 - Cell fracture
 - Interconnect breakage
 - Trapped bubbles
 - Thermal creep
 - Glass fracture

For continuous data types:

- Two level factorial experiments (most information, fewest experiments)
- No. experiments = 2^K, K = no. variables
- Determines effect of single variable at two levels
- Determines factor interactions (several variables)
- Permits ranking of variables according to magnitude of effect
- Linear analysis possible for subsequent predictive capability

For discrete data types:

- Determine "X successes in N trials" for suitably large sample
- Scatter plot - for first estimate of acceptable processing range
- Binomial distribution - determine probability of failure

In general:

1. Determine the dominant failure mode
2. Determine variable(s) responsible
3. Determine experimental conditions that result in a range of failures
4. Determine the mean and standard deviation of the distribution
5. Use probability distribution function to calculate probable failure at other stress levels
Manufacturing Practice: Discrete Variables

- Prepare graphical interpretation of data
- Determine "tolerable failure" level
- Define boundary conditions for defect-free manufacturing (First estimate)

Example: Cell breakage

O = PASS
X = FAIL

Resin temperature (°C)
Backfill rate (mm Hg/sec)
Zero failure line
Vacuum pressure (mm Hg)
PROCESS DEVELOPMENT

Manufacturing Practice: Continuous Variables

- Graphical presentation also good for continuous variables
- Provides boundaries for process/formulation variables based on criteria of acceptability
- Easily used in manufacturing practice

Example: Percent gel
(Degree of cure)

Property lines
70%
60%
50%

Temperature
(°C)

Dwell time
(minutes)

Peroxide content
(%)
PROCESS DEVELOPMENT

Formulation Sensitivity

- UV SCREENERS AND OTHER STABILIZERS - SLOW DOWN CURE RATE SLIGHTLY. NO ENORMOUS DIFFERENCE BETWEEN TYPES
- ANTIOXIDANTS CAN HAVE MAJOR EFFECT ON CURE. NOT USED/UNNECESSARY

CURE VERSUS PEROXIDE CONTENT
(TIME TO GEL CONTENT > 65%, MINUTES)

<table>
<thead>
<tr>
<th></th>
<th>LUPERSOL 101:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5%</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130°</td>
<td>140°</td>
<td>150°</td>
<td>160°</td>
</tr>
<tr>
<td>150°</td>
<td>NC</td>
<td>20</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>150°</td>
<td>NC</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

EVA 15295

<table>
<thead>
<tr>
<th></th>
<th>LUPERSOL TBEC:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5%</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130°</td>
<td>140°</td>
<td>150°</td>
<td>160°</td>
</tr>
<tr>
<td>150°</td>
<td>NC</td>
<td><5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>150°</td>
<td>NC</td>
<td>10</td>
<td>5</td>
<td><5</td>
</tr>
</tbody>
</table>

(NC = NC CURE)

- ONE THIRD THE STANDARD PEROXIDE CONCENTRATION DOUBLES THE REQUIRED TIME
- EVA FORMULATIONS NOT SENSITIVE TO MINOR VARIATIONS ON PEROXIDE CONTENT
PROCESS DEVELOPMENT

Process Sensitivity

EVA STORAGE / AIR EXPOSURE

<table>
<thead>
<tr>
<th>EVA NUMBER</th>
<th>9918</th>
<th>15295</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEROXIDE</td>
<td>LUPERSOL 101</td>
<td>LUPERSOL TBEC</td>
</tr>
<tr>
<td>CURE</td>
<td>150(^o) / 20 MIN</td>
<td>150(^o) / 5 MIN</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>140(^o) / 20 MIN</td>
<td>140(^o) / 5 MIN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIR EXPOSURE</th>
<th>GEL CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL, 0</td>
<td>80 %</td>
</tr>
<tr>
<td></td>
<td>64 %</td>
</tr>
<tr>
<td>24 HOURS</td>
<td>82 %</td>
</tr>
<tr>
<td></td>
<td>71 %</td>
</tr>
<tr>
<td>48 HOURS</td>
<td>78 %</td>
</tr>
<tr>
<td></td>
<td>0 %</td>
</tr>
<tr>
<td>72 HOURS</td>
<td>70 %</td>
</tr>
<tr>
<td></td>
<td>0 %</td>
</tr>
<tr>
<td>168 HOURS</td>
<td>0 %</td>
</tr>
<tr>
<td>(ONE WEEK)</td>
<td>0 %</td>
</tr>
</tbody>
</table>

- EVA FORMULATIONS STRONGLY AFFECTED BY AIR EXPOSURE.
- FORMULATION WITH TBEC PEROXIDE MUCH LESS AIR SENSITIVE
- EVA STORED IN ROLL FORM - APPEARS TO HAVE LONG STORAGE LIFE
- CUT EVA SHEET ONLY BEFORE USE, DISCARD FIRST WRAP OF ROLL
PROCESS DEVELOPMENT

JPL Process Sensitivity Analysis

DEFINE VARIABLES

DETERMINE CRITERIA OF PERFORMANCE

UNIFORM TEST SPECIMEN(S)

UNIFORM TEST PROTOCOL

UNIFORM DATA SET

DISCRETE DATA

CONTINUOUS DATA

PLOT DATA

FACTORIAL EXPERIMENTATION

RANK VARIABLES AND COFACTORS

RANK VARIABLE(S) AND COFACTORS

BRACKETS AND BOUNDARIES

BRACKETS AND BOUNDARIES

BERNOULLI PROBABILITY DISTRIBUTION

MULTIVARIATE ANALYSIS

GRAPHICAL PRESENTATION

ASSIGN PROBABILITY VALUES-REQUIRED CRITERIA

DETERMINE MANUFACTURING YIELDS

499
PROCESS DEVELOPMENT

Conclusions

- EVA FORMULATIONS RELATIVELY INSENSITIVE TO QUANTITY OF PEROXIDE BUT VERY SENSITIVE TO AIR EXPOSURE
- UNWRAP/CUT EVA JUST BEFORE MODULE MANUFACTURING - LIMIT AIR EXPOSURE

Accomplishments

- ANALYTICAL METHODS DEVELOPED FOR PEROXIDE CONTENT
- MICROPROCESSOR CONTROLLED EXPERIMENTAL LAMINATOR CONSTRUCTED
- EXPERIMENTAL TEST METHODOLOGY DEVELOPED (FIRST CUT)
- REVISED EVA PRODUCT BROCHURE AVAILABLE INCLUDES "TROUBLE SHOOTING" SECTION

Future Work

- DETERMINE DOMINANT FAILURE MODES
- CONVERT DATA TO PRACTICAL ENGINEERING FORMAT
- RELATE DATA TO MANUFACTURING YIELD
 - ASSIGN PROBABILITY OF FAILURE
 - NORMAL DISTRIBUTION (?)
 - WEIBUL (?)