\[
\ddot{\epsilon}_{ij} = \frac{(1+\nu)}{E} \sigma_{ij} - \frac{\nu}{E} \delta_{ij} + \dot{\epsilon}_{ij}^{PL}
\]

where the inelastic strain rate tensor \(\dot{\epsilon}_{ij}^{PL} \) is the plastic strain rate and

\[
\dot{\epsilon}_{ij}^{PL} = f S_{ij}
\]

where \(S_{ij} \) are the deviatoric stress components and

\[
f = \frac{bB}{\tau_0} \frac{N_m \sqrt{J_2} - D \sqrt{N_m}}{\sqrt{J_2}} e^{-Q/kT}
\]
ADVANCED SILICON SHEET

\[\begin{align*}
\sigma_{xx} &= 0 \\
\sigma_{yy} &= 0 \\
\sigma_{xy} &= 0 \\
\gamma_{xy} &= 0
\end{align*} \]

\[\text{MELT} \]

Note 1: \(\gamma_{xy} \neq 0 \)

PRE BUCKLING - IN PLANE STRESS

ASSUMES \(t > t_0 \)

(NO BUCKLING)
\[v^2(\sigma_{xx} + \sigma_{yy}) = -\alpha E\nabla^2 T + \frac{1}{V} \int_0^V \left(\frac{\partial^2 \varepsilon_{xx}}{\partial y^2} + \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} - 2 \frac{\partial^2 \varepsilon_{xy}}{\partial x \partial y} \right) E \, du \]

(8)

\[\sigma_{xx} = \frac{1}{1-v^2} \left[\varepsilon_{xx} + \frac{1}{2} \varepsilon_{yy} - z \frac{\partial^2 \varepsilon_{c}}{\partial y^2} - \frac{2}{2} \frac{\partial^2 \varepsilon_{c}}{\partial x \partial y} \right] \]

where \(w^c \) is the creep (viscoplastic) portion of the transverse displacement.

The moment intensity is related to the stress by the basic definition.

\[M_{xx} = - \int_{-h/2}^{h/2} \sigma_{xx} z \, dz \]

The "elastic moment" \(M_{xx} \) is then

\[M_{xx} = \frac{\varepsilon h^3}{12(1-v^2)} \left[\frac{\partial^2 \varepsilon_{c}}{\partial x^2} + \frac{1}{2} \frac{\partial^2 \varepsilon_{c}}{\partial y^2} \right] \]

(5)

while the corresponding "inelastic" moment component is

\[M_{xx} = \frac{1}{f} \left[\frac{\partial^2 \varepsilon_{c}}{\partial x^2} + \frac{1}{2} \frac{\partial^2 \varepsilon_{c}}{\partial y^2} \right] \frac{h^3}{12} \]

(6)

Since the moments are the same, the displacements are clearly related by

\[\frac{\partial^2 w_c}{\partial x^2} = \frac{fE}{2(1-v^2)} \frac{\partial^2 e}{\partial x^2} \]

(7)

\[D \frac{\partial^2 w_c}{\partial x^2} = N_{xx} \frac{\partial^2 e}{\partial x^2} + 2N_{xy} \frac{\partial^2 e}{\partial x \partial y} + N_{yy} \frac{\partial^2 e}{\partial y^2} + \frac{fEh^3}{12(1-v^2)} \left[N_{xx} \frac{\partial^2 e}{\partial x^2} + 2N_{xy} \frac{\partial^2 e}{\partial x \partial y} + N_{yy} \frac{\partial^2 e}{\partial y^2} \right] \]

(9)
ADVANCED SILICON SHEET

\[w^e(x,y,t) = g(t)W(x,y) \] \hspace{1cm} (10)

and obtain

\[g - \lambda^2 g = 0 \] \hspace{1cm} (11)

for the time part and

\[D \psi^4_W = N_{ab}^0 (1 + \frac{fF}{12(1-v^2)\lambda^2}) \frac{\partial^2 W}{\partial x \partial x_b} \] \hspace{1cm} (12)

Hence one can see that the inelastic material behavior results in buckling very much like the elastic case but with the pseudo in-plane forces given by

\[N_{ab}^0 (1 + \frac{fE}{12(1+v^2)\lambda^2}) \frac{1}{\lambda^2} \] \hspace{1cm} (13)

The separation parameter \(\lambda^2 \) in Eq (13) reflects how "fast" the lateral deflections grow from some initial value. Clearly the presence of \(f(x,y) \) in the numerator of Eq (13) makes simple interpretation impossible for \(\lambda^2 \) except as given in Eq (11).

To obtain values for \(\lambda^2 \), we use a Galerkin method on Eq (12) and find that

\[\lambda^2 = \frac{2 h^3}{3 h_{cr}^3} \int fE^2 \psi^4_W da \] \hspace{1cm} (14)

546
Normal Strain Rate XX Along Y = 0 (Centerline) for T = 1440*\exp (-0.08X) Width = 6.0 CM

LINE 1 IS TOTAL, LINE 2 IS ELASTIC, LINE 3 IS PLASTIC AND LINE 4 IS THERMAL STRAIN RATE
The Dislocation Density Contour Plot
for $T = 1440 \cdot \exp(-0.08X)$
Unit of X and $Y = \text{CM}$, Unit of $Z = 10^3 \text{ Per CM}^2$
ADVANCED SILICON SHEET

\[L \times W \times T = T_{w} \]

The results are

<table>
<thead>
<tr>
<th>N. /cm²</th>
<th>Nf max /cm²</th>
<th>(\sigma_{yy}) max MPa</th>
<th>(\sigma_{xx}) max MPa</th>
<th>(t_{c}) cr mm</th>
<th>(t_{2}) cr m</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2497</td>
<td>-22.64</td>
<td>15.23</td>
<td>.1936(c)</td>
<td>.1375(t)</td>
</tr>
<tr>
<td>.15</td>
<td>1092</td>
<td>-22.65</td>
<td>15.99</td>
<td>.1965(c)</td>
<td>.1388(t)</td>
</tr>
<tr>
<td>.01</td>
<td>266</td>
<td>-23.69</td>
<td>17.1</td>
<td>.1982(c)</td>
<td>.1394(t)</td>
</tr>
</tbody>
</table>

D-10D Larger backstress

\[.3 \]

| 1811 | -22.64 | 15.41 | .1948(c) | .1381(t) |

Table I
The 20th Elastic Buckling Mode
for Westinghouse Temperature Profile
Critical Thickness = 0, 198.17 MM
Unit of X and Y = CM
ADVANCED SILICON SHEET

<table>
<thead>
<tr>
<th>Mode</th>
<th>h_{cr} (mm)</th>
<th>χ^2 (sec$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1936</td>
<td>+0.06668</td>
</tr>
<tr>
<td>2</td>
<td>0.1375</td>
<td>+0.01124</td>
</tr>
<tr>
<td>3</td>
<td>0.1132</td>
<td>+0.00742</td>
</tr>
<tr>
<td>4</td>
<td>0.1031</td>
<td>+0.00452</td>
</tr>
<tr>
<td>5</td>
<td>0.0893</td>
<td>+0.00365</td>
</tr>
<tr>
<td>6</td>
<td>0.08503</td>
<td>+0.00153</td>
</tr>
<tr>
<td>7</td>
<td>0.07565</td>
<td>+0.00698</td>
</tr>
<tr>
<td>8</td>
<td>0.06755</td>
<td>+0.00117</td>
</tr>
<tr>
<td>9</td>
<td>0.06644</td>
<td>+0.006555</td>
</tr>
<tr>
<td>10</td>
<td>0.04987</td>
<td>-0.0000416</td>
</tr>
<tr>
<td>11</td>
<td>0.04086</td>
<td>+0.0000832</td>
</tr>
</tbody>
</table>

$T = T_w$

$No = 0.3/cm^2$

$6cm \times 6cm$
ADVANCED SILICON SHEET

<table>
<thead>
<tr>
<th>Mode</th>
<th>hcr (mm)</th>
<th>λ^2 (sec$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1965</td>
<td>+0.02937</td>
</tr>
<tr>
<td>2</td>
<td>0.1388</td>
<td>+0.04919</td>
</tr>
<tr>
<td>3</td>
<td>0.1099</td>
<td>+0.003094</td>
</tr>
<tr>
<td>4</td>
<td>0.1074</td>
<td>+0.0018414</td>
</tr>
<tr>
<td>5</td>
<td>0.09146</td>
<td>+0.0016733</td>
</tr>
<tr>
<td>6</td>
<td>0.08562</td>
<td>+0.000734</td>
</tr>
<tr>
<td>7</td>
<td>0.076924</td>
<td>+0.001504</td>
</tr>
<tr>
<td>8</td>
<td>0.069803</td>
<td>+0.000597</td>
</tr>
<tr>
<td>9</td>
<td>0.06800</td>
<td>+0.000367</td>
</tr>
<tr>
<td>10</td>
<td>0.062011</td>
<td>+0.006800</td>
</tr>
</tbody>
</table>

$T = T_w$

$N_0 = 0.15/cm^2$

6cm x 6cm
The First Positive Buckling Mode
for Westinghouse Temperature Profile
Critical Thickness = 0.76154 MM
Unit of X and Y = CM
ADVANCED SILICON SHEET

<table>
<thead>
<tr>
<th>Mode</th>
<th>hcr (mm)</th>
<th>$\lambda^2_{\text{sec}}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.4204</td>
<td>-1.706×10^{-3}</td>
</tr>
<tr>
<td>2</td>
<td>.3872</td>
<td>-7.164×10^{-3}</td>
</tr>
<tr>
<td>3</td>
<td>.3346</td>
<td>-5.623×10^{-4}</td>
</tr>
<tr>
<td>4</td>
<td>.3080</td>
<td>$+2.8909 \times 10^{-3}$</td>
</tr>
<tr>
<td>5</td>
<td>.2789</td>
<td>$+4.9641 \times 10^{-3}$</td>
</tr>
<tr>
<td>6</td>
<td>.2663</td>
<td>-7.8054×10^{-4}</td>
</tr>
<tr>
<td>7</td>
<td>.2337</td>
<td>$+2.3418 \times 10^{-4}$</td>
</tr>
<tr>
<td>8</td>
<td>.2281</td>
<td>-1.1527×10^{-3}</td>
</tr>
<tr>
<td>9</td>
<td>.2044</td>
<td>-6.0790×10^{-4}</td>
</tr>
<tr>
<td>10</td>
<td>.1974</td>
<td>$+1.2900 \times 10^{-4}$</td>
</tr>
<tr>
<td>11</td>
<td>.1801</td>
<td>-2.0870×10^{-4}</td>
</tr>
<tr>
<td>12</td>
<td>.1724</td>
<td>$+1.0930 \times 10^{-4}$</td>
</tr>
</tbody>
</table>

$T =$ Modified EFG

$No = 2 \times 10^{-7}/\text{cm}^2$

6cm x 6 cm

Run V-0545
8 June
The Effectiveness Stress Contour Plot
for Modified EFG Profile
Unit of X and Y = CM, Z = MPA

\[N_0 = 2 \times 10^{-7}/cm^2 \]
The Normal Stress YY Contour Plot
for Modified EFG Profile
Unit of X and Y = CM, Z = MPA

\[N_0 = 2 \times 10^{-7}/\text{cm}^2 \]
ADVANCED SILICON SHEET

The Normal Stress XX Contour Plot
for Modified EFG Profile
Unit of X and Y = CM, Z = MPA

\[N_0 = 2 \times 10^{-7}/\text{cm}^2 \]
ADVANCED SILICON SHEET

The 13th Buckling Mode
for Modified EFG Profile
Critical Thickness = 0.027877 MM
Unit of X and Y = CM
Fig. 1. Surface profile traces illustrating typical edge buckling for ribbon no. 18-102-2 grown at a speed of 3.0 cm/min. Traces are taken along the growth direction, with respect to the width dimension as marked.

MAR 1979
ADVANCED SILICON SHEET

for the case of a 6 cm x 6 cm ribbon pulled at \(v_0 = .0005 \) m/sec. The results are shown in Table III.

<table>
<thead>
<tr>
<th>(M / \text{cm})</th>
<th>(K_0 \text{ cm} / \text{cm})</th>
<th>(N_e \text{ /cm}^2)</th>
<th>(N_{el} / \text{cm}^2)</th>
<th>(\sigma_{yy\max} \text{ MPa})</th>
<th>(T_{\text{m}} \text{ mm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75</td>
<td>.5</td>
<td>Diverge</td>
<td>(4.65 \times 10^8)</td>
<td>-151.1*</td>
<td>.4698 *</td>
</tr>
<tr>
<td>1.0</td>
<td>.3</td>
<td>Diverge</td>
<td>(3.175 \times 10^8)</td>
<td>-101.7*</td>
<td></td>
</tr>
<tr>
<td>.25</td>
<td>.3</td>
<td>Diverge</td>
<td>(.5941 \times 10^4)</td>
<td>-17.4*</td>
<td></td>
</tr>
<tr>
<td>.240625</td>
<td>.3</td>
<td>1.06 \times 10^4</td>
<td>(.3137 \times 10^4)</td>
<td>-17.8</td>
<td></td>
</tr>
<tr>
<td>.2375</td>
<td>.3</td>
<td>1984</td>
<td>(.2527 \times 10^4)</td>
<td>-16.8</td>
<td>.31364</td>
</tr>
<tr>
<td>.225</td>
<td>.3</td>
<td>963</td>
<td>1049</td>
<td>-15.0</td>
<td></td>
</tr>
<tr>
<td>.200</td>
<td>.3</td>
<td>173</td>
<td>174</td>
<td>-12.1</td>
<td>.295-81</td>
</tr>
</tbody>
</table>

Table III

The * in the last column indicates these are the elastic stresses, because plastic ones are not obtained.

\[
T_{NEFG} = \frac{1200 - 125x + 485e^{-1.75x}}{3}
\]

This led to divergent solutions under conditions when the Westinghouse profile did not. With this situation in mind we considered the family of thermal profiles, defined by

\[
T(x) = \frac{1200 - 125x + 485e^{-3x}}{3}
\]
ADVANCED SILICON SHEET

OF POOR QUALITY

\[N(x) = 5.9 \times 10^4 \text{ /cm}^2 \]

\[N(0) = 1 \text{ /cm}^2 \]

\[N(15) = 11.5 \times 10^4 \text{ /cm}^2 \]

\[\text{FIRST ITERATION: } N(0) = 3 \text{ /cm}^2 \]

\[\text{AFTER 41 ITER. BOUND } N_0 = 1984 \text{ /cm}^2 \]

\[x = 0, 3, 4, 5, 6, \ldots \text{ (cm)} \]
ADVANCED SILICON SHEET

\[\varepsilon_{xx} \times 10^5 \]

\[u = 1200 - \frac{2.5}{3} x + 445 e^{-0.25x} \]

\[v = 1200 - \frac{1.25}{3} x + 485 e^{-0.375x} \]

\[x \text{ (cm)} \]
ADVANCED SILICON SHEET

Really New Science

Dislocations as part of the stress analysis.
That is $N \neq$ constant!

New

Creep buckling (lowest mode does not dominate!)

Practical

Elastic very useful
Plastic - residual stress
$
\tau_{Cr} \equiv \tau_{Cr} \text{ (elastic)}$
Keep N small
Very sensitive
(ala melting)