
Parallel Structures in Human and Computer Memory

Pentti Kanerva

January 1986

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS TR 86.2

(N A S A - T M - 8 9 U 0 2) PABA1LEL STBUCTUBES IN N86-2S535
H U M A N A N D ' C O M E O I E E M E M O R Y (N A S A) ' s p

CSCL 09B
Unclas

G3/60 43338

RIACS
Research Institute for Advanced Computer Science

PARALLEL STRUCTURES IN HUMAN AND COMPUTER MEMORY

Pentti Kanerva

Research Institute for Advanced Computer Science
Mail Stop 230-5

NASA Ames Research Center
Moffett Field, CA 94035

RIACS Technical Report TR-86.2
January 1986

SUMMARY

If we think of our experiences as being recorded
continuously on film, then human memory can be
compared to a film library that is indexed by the
contents of the film strips stored in it. Moreover,
approximate retrieval cues suffice to retrieve
information stored in this library: We recognize a
familiar person in a fuzzy photograph or a familiar
tune played on a strange instrument.

This paper is about how to construct a computer
memory that would allow a computer to recognize
patterns and to recall sequences the way humans do.
Such a memory is remarkably similar in structure to
a conventional computer memory and also to the neural
circuits in the cortex of the cerebellum of the human
brain.

The paper concludes that the frame problem of
artificial intelligence could be solved by the use
of such a memory if we were able to encode information
about the world properly.

The research reported in this paper was conducted at the Institute for
Mathematical Studies in the Social Sciences (IMSSS) and at the Center
for the Study of Language and Information (CSLI), Stanford University,
supported in part by a gift from the System Development Foundation.
The paper was prepared for an invited lecture at COGNITIVA 85, Paris,
France, but has not been published.

TR-86.2 Kanerva / Parallel Structures

INTRODUCTION

The title of my paper suggests two things! that
a memory is a parallel processor and that human and
computer memories are structurally similar. I will
discuss both of these topics.

The memory model discussed in this paper was
developed by me (Kanerva, 1984), and I will simply
refer to its properties as needed. It resembles the
associative-memory models of Marr (1969, 1970, 1971),
Kohonen (1977, 1984) and his coworkers (Kohonen, Oja,
b Lehtio, 1981), and Hillshaw (1981). The detailed
comparison to computer memory is unique to my work.

It is nice to begin with something about which
we can say that we truly understand it. We can say
that about a computer memory because we specify it
in minute detail and build it from very simple
components. The point of my talking about computer
memories, however, is that their organization is
remarkably similar to my model of human memory.
A comparison of the two can be useful in several ways.
First, it can help us understand the proposed memory
model. Second, the differences in the two can give
us insights into intelligence, both natural and
artificial: Why are some things so easy for us and
so hard for computers? This, in turn, can guide
research in artificial intelligence. Finally, it can
suggest ways to build computer memories for artificial
intelligence.

THE ORGANIZATION OF COMPUTER MEMORY

The random-access memory of a computer is an
array of storage locations or registers. A location

is identified by its position in the array—a sequence
number—which is called the address of the location.
A location stores information:- a fixed-length vector
of bits, a binary word. The word stored in a location
is called the contents of the location. For example,
today's small computer may have a memory with 100,000
locations, each with a capacity of 8 bits, and a large
computer may have several million 64-bit locations.
The main parts of a computer memory appear on the
right in Figure 1.

Storing information (a 32-bit word) in memory
is called writing and retrieving it is called reading.
They involve two special registers: the address
register, to hold the address of some memory location,
and the datum register, to hold a word that is being
transferred into or out of the memory. In writing,
the contents of the addressed location (exactly one
location) are changed (the datum register is copied
into the addressed location, replacing the location's
old contents), and in reading, the contents of the
addressed location are retrieved (they are copied
into the datum register).

To find the addressed location in the memory
array, the memory has a network of circuits called
address decoders. In principle, each storage location
has its own address decoder, which will recognize the
location's address and no others. When an address is
placed in the address register, it becomes available
to all the address decoders, but only one will
recognize it as its own and make that location
available for a subsequent transfer of a word.

In addition, a computer memory has circuits
to control the timing of data transfers. They are
included in Figure 1 for completeness.

PROCESSOR MEMORY

1
" "

•

Write-command signal ̂

f Read/write done

> 1 >>r ^
>i — >

i• •* i • • •••i
N.I ^

Memory datum
register
•vl I-*

Nl |«*

1 1
. . |..|

I 1
-si it

10:
Ms
12:
13:

Address I 4:

16:
decoders . . .

registers

• • •

FIGURE 1. A computer organized as a processor and a memory.

TR-86.2 Kanerva / Parallel Structures

PARALLELISM IN COMPILERS

We usually think of the computer as operating
in serial. The processor executes a program one
instruction at a time, and words (data) are read from
or written into memory one at a time. The nervous
system, by contrast, appears to be highly parallel
in its operation. This serial versus parallel
operation is commonly taken to be a major difference
between computers and brains. Perhaps too much has
been made or that difference.

First, some parallelism is apparent even in the
schematic picture of a computer in Figure 1: The bits
of an address, and of a word being written or read,
are transferred from one part of the computer to
another in a single swoop—in parallel—instead
of bit after bit. Such parallelism is present also
in my model for human memory, only the model memory
operates with t,000-bit words compared to the
computers' words of, say, 32 bits. Parallelism
of this kind—of data paths—appears common also
in the brain.

Less apparent in Figure 1 but exceedingly
important in reality is the parallelism in the working
of the address decoders. Recall that the function
of the address decoders is to find the addressed
location in the memory array. • We may think of it
as one primitive operation, but, in fact, a very
large selection network is active in parallel and,
as a result, memory access is fast (the time to find
a location grows with the logarithm of memory size).
Address decoding has this same parallelism in my
memory model. The counterpart of address decoding
in human memory is pattern recognition, which likewise
appears to involve much parallel processing similar
to address decoding.

By contrast, in a truly serial computer—
a machine with tape for a memory, such as a Turing
Machine—the memory locations are examined one after
another, and it takes a long time to find the •
addressed location (the time grows linearly with
memory size, i.e., the length of [the active part of]
the memory tape). The absence of parallelism in such
machines makes the accessing of memory very slow.

When computer professionals speak of parallel
processing, they tend to overlook address decoding
as an important instance of it and think only of many
programmable processors (see Fig. 1) being active
at once, working on different parts of a problem.
In an extreme form of such parallel processing, the
processors operate in lock-step on different pieces
of large, homogeneous data. Matrix calculation
is a good candidate for such parallel processing.
In a more general form of parallel processing,
the processors are coupled loosely to one another
and can work quite independently of each other.
Address decoding is a variant of the first, more
restricted form of parallel processingi All the
individual, primitive processors—the logic gates—
are performing the same selection function at once,
only they are doing it relative to different parts
of the memory array.

A final note about parallelism! It is
a practical issue for computers and, presumably,
also for brains. It provides a way to speed up
computation—even millionfold—and to increase a
system's reliability, but it does not affect the class
of things that a computer, in theory, is capable of.

SPARSE, DISTRIBUTED MEMORY AS A GENERALIZATION
OF COMPUTER MEMORY

•In this section, I will transform a fairly large
computer memory into a model of human memory.

A storage location. Instead of the computer's
32-bit words, the model memory will have 1,000-bit
words; instead of 20-bit addresses—enough to address
one million locations—the model memory will have
1,000-bit addresses; and instead of each bit slot of
a storage location containing either 0 or 1, the 1,000
bit slots of a storage location in the model memory
each contain a count, a small integer. Initially,
all counts are zero.

Two locations are said to be h bits apart if
their addresses differ by h bits. Such a distance
is called the Hamming distance; it is the number
of bit positions at which two binary words differ.
The number of n-bit words that are h bits away
from an arbitrary n-bit word is given by the binomial
coefficient *n choose h'. Hence, the distribution
of distances from an arbitrary address to all possible
addresses is the binomial distribution with parameters
n = 1,000 and p = 1/2, which is approximated by
the normal distribution with mean 500 and variance
250. For example, in the model memory, the maximum
distance between two locations is 1,000 bits, the mean
distance is 500 bits, and .998 of the locations are
at least 451 bits and at most 549 bits away from any
given location.

Sparse memory. A computer memory with 20-bit
- 20

addresses usually has 2 locations (about one
million), so it is natural to assume that a memory
with 1,000-bit addresses should have 21'000 locations.
But that is an enormously large number; there are not
that many elementary particles in the known universe.
Fortunately, the memory can be made to work with a
relatively small number of locations. We will assume
that the model memory has 1,000,000 actual locations
and that their addresses are a random sample of the
2 ' possible addresses. Thus, the memory is very
sparse: The median distance from a storage location
to its nearest neighbor is 424 bits.

Distributed memory. When a computer memory is
addressed for writing or reading, exactly one location
is selected, and that location either receives or
emits a word. But when a sparse memory is addressed,
practically never is there an actual location with
that exact address. A way to access a sparse memory
is to select many locations at once. Given an address
for writing or reading, select the locations that are
within 450 bits of that address. In this way, nearly
1,000 memory locations closest to the read or write
address will be selected (.001 of the address space
lies within 451 bits of any given address).

Writing. A 1,000-bit word is stored in the model
memory by storing it in all the locations that are
within 450 bits of the write address. A word is
stored in a location by incrementing and decrementing
the location's 1,000 counters. To store 1, one is
added to the appropriate counter; to store 0, one
is subtracted from it. Thus, writing a word causes
nearly 1,000 times 1,000 counters to be incremented
or decremented. These nearly million operations are
carried out in parallel.

Reading. A word is retrieved from the model
memory by pooling the contents of the locations
that are within 450 bits of the read address and

TR-86.2 Kanerva / Parallel Structures

then rinding a word that represents the pooled data.
Each bit of this 1,000-bit word is determined by
the majority rule: If, in the words written into
the pooled locations, the bit was more often 0 than 1,
the bit read will be 0; otherwise it will be 1.
In practice, we add the counters across the pooled
locations—in parallel—and compare the resulting
1,000 sums to zero. Notice that the read word is a
statistical reconstruction and it is not necessarily
identical to any of the words that has been written
in memory.

Capacity. After a word has been written in
a location in computer memory, it can be read by
specifying the location's address. Is this also true
for a sparse, distributed memory? If a word W has
been written with A as the write address, can it
be read by using A as the read address? It can,
with a very high probability, if the total number
of words written in memory is not too large—100,000
for our model memory—and if another word has not been
written with an address very similar to A (two
addresses are similar to each other if the Hamming
distance between them is small). So even though the
model memory has 1,000,000 locations, its capacity
is somewhat less than 100,000 words.

let the word X stand out against the background
noise from the other words in the pooled data.
In such a case, iterated reading will result in
a sequence of random t,000-bit words with little
resemblance to any of the words written in memory.

A sequence of words X, Y, Z, ... can be stored
in memory as a linked list by using X as the address
to write Y, Y as the address to write Z, and so
forth. If we then read with X as the address, we
will retrieve Y, then read with Y as the address,
we will retrieve Z, and so forth. In other words,
we can read back the sequence by starting with its
first member, just as we would with linked lists
stored in conventional computer memory.

Similarity works here as well. Assuming that
the sequence has been stored as a linked list and that
we read with address X* that is sufficiently similar
to X, we will retrieve a word X" that is more
similar to Y than X' is to X. With X" as
the address we will read a word X'" that is even
more similar to Z, and a few more iterations will
suffice to read exact words of the stored sequence.
The statistical argument for this is the same as it
was above.

CONVERGENCE TO THE BEST-MATCHING WORD AND SEQUENCE

The most significant property of the model memory
is that it is sensitive to similarity. In other
words, approximate retrieval cues can be used to
retrieve exact information. This makes the memory
a candidate for a model of human memory.

For the model to work in this way, it is
necessary that a word read from memory can be used
to address the memory. I call this the unifying
principle of the theory. It is also necessary that
the memory has not been filled to capacity. In the
examples below, I will assume that 10,000 words have
been written in memory. Since each word is written
in nearly 1,000 locations, nearly 1,000 times 10,000
copies have been written in the million locations,
or about 10 words per location.

Assume that the word X has been written
with X itself as the address. That means that
all locations within 450 bits of X (nearly 1,000
locations) will store one copy of X each—their
counters are incremented and decremented according
to the bits of X. We have already implied that
reading with X as the address will retrieve X with
very high probability. The reason is that we get back
the nearly 1,000 copies of X, and they reinforce
each other in the grand sum, plus nearly 1,000 times
10 copies of other words written in those same
locations, and they mostly cancel out each other.

The interesting case is when some word X'
that is sufficiently similar to X (within 209 bits
of X) is used as the reading address, because the
read word X" will be more similar to X than X*
is. Reading then with X" as the address will
retrieve the word X'" that is even more similar
to X. Fewer than ten iterations of this kind will
retrieve X. The statistical argument here is
similar to the one above: When the memory is read
with an address X' that is sufficiently similar to
some previous write address X, writing and reading
will access many common locations, each one of
which holds a copy of X, and these multiple copies
reinforce each other in reading. When the distance
is sufficiently large (over 209 bits), the locations
by which writing and reading overlap are too few to

NEUROPHYSIOLOGICAL PARALLELS

Most interesting about the memory model is that
realizing it in hardware requires components and
circuits that resemble common neural components and
circuits in the brain.

An address decoder that responds to a set
of addresses that are within a certain distance
from a specified address can be realized by a linear
threshold function. Linear threshold functions,
in turn, have been used commonly to model neurons,
and, in fact, a neuron appears to be an ideal address
decoder for a storage locations.

A storage location is made of 1,000 counters,
the values of which are incremented and decremented
to store Is and Os. Accordingly, modifiable synapses
along the axon of an * address-decoder neuron' could
constitute a storage location.

In reading from memory, corresponding bit
locations of many storage locations are pooled to form
a single bit of output. An ideal neural structure
for that would be a large, flat dendrite plane of
a 'read-out neuron', perpendicular to the axons of
the address-decoder neurons. It would correspond
to a bit plane in computer memory.

In writing into memory, to cause a bit to be
written in the very bit locations that are pooled for
a single bit of output upon reading, there would have
to be a 'write-in neuron' with a branching axon tree
that matches the dendrite tree of a read-out neuron.

The structure of the cerebellar cortex follows
very closely the above plan. The granule cells
correspond to the address-decoder neurons. Their
axons, called the parallel fibers, are perpendicular
to the flat dendrites of the Purkinje cells, and
the Purkinje cells provide the only output of the
cerebellar cortex. So the Purkinje cells correspond
to the read-out neurons, and the synapses of the
parallel fibers with the Purkinje-cell dendrites
correspond to the bit locations. Finally, the
climbing fibers correspond to the axons of the
write-in neurons, as they pair up with the dendrites
of the Purkinje cells.

TR-86.2 Kanerva / Parallel Structures

Whether the cerebellum actually works as a memory
is not clear to me. However, climbing fibers similar
to those in the cerebellum are common in the brain.
In general, any place with a climbing fiber matching
the dendrite tree of another cell is a good candidate
for a pair of write-in and read-out neurons and hence
a good starting point in trying to interpret the
function of a neural structure.

SPARSE, DISTRIBUTED MEMORY AS A MODEL OF HUMAN MEMORY

I assume that the function of memory is to store
a model of the world for use by an individual in
dealing with the world. The usefulness of the model
memory for this function will be discussed in the next
two sections.

The 1,000-bit words on which the model memory
operates can be thought of as patterns of 1,000
abstract features. We have established that it is
possible to store such patterns and sequences of them
in the model memory and then retrieve them by cueing
the memory with those same patterns or with ones
similar to them.

To apply the model to human memory, we will
identify a pattern with a moment of an individual's
experience. A graphic, even if crude, way to think
about it is that an individual has a thousand special
neurons in the brain—the equivalent of the 1,000-bit
memory address register—and the momentary state of
those neurons encodes the individual's subjective
experience of the moment. I will henceforth call this
address register the mind's focus (actually, it is
a combined datum and address register; see Fig. t).
The individual experiences things through the focus.
To attend to something, that something {its encoding)
has to be in the focus.

The individual is coupled to the world through
the senses. The senses feed into the focus, and
memory storage and retrieval are through the focus.
This is illustrated by Figure 2.

A succession of moments—a section of an
individual's life—is then represented by a sequence
of patterns. It is natural to store the sequence
in memory as a linked list, because it can then
be retrieved later, as has already been described.
The usefulness of such storage will become clear
in the next section.

Focus

From the
senses

\

\
/

... /

A (\

Memory

FIGURE 2. The coupling of memory with the world.

APPLICATION TO THE FRAME PROBLEM

As an application of the memory model, consider
the frame problem of artificial intelligence,
particularly, of robotics. I will explain the frame
problem with an example.

A robot lives in a world. To function in it,
the robot maintains an internal model of the world—
a data base. In the data base are represented objects
of the world (e.g., the robot, a cart, box 1, box 2,
room 1, room 2, a rope), properties of the objects
(e.g., all rooms are stationary, the cart is movable,
box 1 is red, box 2 is green), and relations between
the objects (e.g., the cart is in room t, box t is
on the cart, box 2 is on box t).

In addition, the model of the world must specify
the ways in which things interact when the robot
acts on the world, say, moves the cart from room 1
to room 2. What, besides the cart (and the robot),
will end up in room 2—what entries in the data base,
other than the one for the cart (and the robot), must
be updated? Naturally, entries for all the things
resting on the cart, except those tied by a short rope
to the wall—box I, say—as they and things resting
on them will fall on the floor of room 1 and will
no longer be on the cart (nor on top of one another).
The story can be made as complicated as one wishes.

Updating the data base as the robot interacts
with the world is known as the frame problem, and
it is as yet unsolved in robotics.

How do the higher animals and we humans handle
the frame problem? According to the computational
view of mental functions, the problem is as real to
us as it is to the robot. An easy answer is that we
have common sense, which the robot lacks, and we have
gained it through experience. But how does common
sense work? How is experience acquired and how is
it used?

The memory model suggests a way to answer these
questions. Assume that the situation in which the
individual is at present resembles ones encountered
by it in the past. The consequences of those past
situations are then likely to predict what is about
to happen this time. So the metaory should allow the
retrieval of those consequences. According to the
memory model, they will be retrieved automatically
if the individual's record of experiences has been
stored as a linked list. Furthermore, due to the
statistical nature of memory storage and retrieval,
the common parts of those past consequences will
reinforce each other and thus will stand out in
what is retrieved from memory, the other parts being
blurred away. Thus, the likely consequences of
the present—a statistical abstraction based on
the individual's past experience—are automatically
brought to the focus.

We are still left with a major problem, namely,
encoding. On that, the memory model suggests
the following! First, the things that come to the
focus from our senses are the very things written
in memory—encoding happens outside the focus-memory
loop (abstraction happens in it, as mentioned above,
and encoding can be affected by what is retrieved
from memory). Psychological experiments on encoding
support this view, as does our subjective experience.
Consider a familiar task, such as driving to work.
In doing it we are constantly cued by the environment
but fill in most of the detail from the inside, from
memory. As long as there are no surprises—as long
as what comes from the outside agrees with what

TR-86.2 Kanerva / Parallel Structures

comes from memory—we are hardly aware of where the
information is coming from and start paying attention
only when the two disagree. Experiences that are
controlled almost entirely from the inside, such as
dreams and hallucinations, provide further support
to this view about encoding. The subjective
experience in such cases can be very real and it can
be accompanied by physical signs of pleasure or fear,
for example. In extreme cases it may be hard to tell
whether the thing actually happened to us or whether
we just "made it up."

Second, the entity in the focus is a high-
dimensional vector of features (a very "large"
pattern, a point of an abstract multidimensional
space) that encodes everything about that moment,
that is, any specific things that the individual may
be attending to as well as the overall context.
In that sense the memory is holistic, and whatever is
retrieved from it is affected strongly by the context.
This agrees with memory experiments with human
subjects that have shown conclusively that recall and
recognition are sensitive to manipulations of context.

Assuming that the function of memory is to store
a model of the world for later reference, we can now
see that this model is dynamic: The present situation
(its encoding) brings to focus the consequences of
similar past situations—the organism makes use of
its experience. Referring back to the frame problem,
the memory predicts continuously and automatically
what is about to happen.

Notice, however, that this does not solve a basic
problem of robotics, but it only shifts it. Whereas,
before, we had chosen an encoding of the world in
a data base but had a problem updating the data base
(i.e., the frame problem), we now have an idea of how
to make the memory work (how to maintain the data
base) but are left with the problem of encoding the
data. So has there been any progress? Possibly.
Whereas, before, we knew neither how to encode
information about the world nor how to manipulate
this information, we now have a reasonable candidate
for the latter. Before, we had just assumed that
we can encode the information in object and property
lists and in rules of manipulating the lists, but
that approach led to the frame problem. The present
research suggests another approach: Assuming the
memory dynamics to be known, how to encode the data?

SUMMARY AND CONCLUSIONS

I have tried to describe a memory model in
sufficient detail to give an idea of how it works.
At this level of description the model has problems,
some of which are avoided by more complete
descriptions of it. Particularly worth pointing out
is that the theory is valid mathematically over a very
wide range of dimensions: It works for patterns with
as few as 100 and as many as 100,000 components.
Therefore, the theory could apply even if a pattern
encoding a moment of human experience were to have
10,000 components (10,000 bits of information) instead
of 1,000 and the total number of memory locations
were in the hundreds of millions instead of a million.
Furthermore, such large models would be practical
because of the massive parallelism in writing and
reading, whereas simulating them on a conventional
computer would be utterly impractical.

The real story about human memory will be much
more complicated than any of our models of it so far.

However, it helps to understand simple models of the
right kind if we want to develop more comprehensive
models and eventually to understand the real
phenomenon of memory itself. I have used a similar
strategy by describing my memory model in terms of
a computer memory, and, presumably, that helps people
who already know how computer memories work.

Below are some statements about human memory
that I believe to be true and that are supported by
my model.

1. The mind has a focus. It is associated with
the states of a set of neurons. This set is a very
small compared to the total number of neurons in the
brain.

2. At any moment, the information in the focus
is a minute fraction of the total information stored
in memory.

3. The contents of the focus serve as an address
to the memory.

4. Retrieval of information from memory is
iterative through the focus, making possible the
retrieval of information by approximate retrieval
cues.

5. We are aware of (conscious of, attend to,
perceive) only things that have been brought to the
focus. Stable and well-behaved states of the focus
correspond to clear mental images, thoughts, and
actions.

6. Some associations are inherent—they are
based on form (similarity in the model)—and others
are learned (frequent juxtapositions in time,
experience).

7. The memory (storage) is highly distributed,
and images are reconstructed statistically.

8. Writing in and reading from memory arc highly
parallel.

Besides possibly helping understand human memory,
the present research suggests a new construction
principle for computer memory: We could build
a sparse, distributed memory. It would be a random-
access memory that operates on patterns with a very
large number of features—i.e., points of a high-
dimensional, abstract space—and it would have
dynamic properties resembling those of human memory.
To use such a memory in robots, we would have
to learn to encode information about the world
into high-dimensional feature vectors. I conclude
with the suggestion that studying perception and its
encoding could be a fruitful line of investigation.

REFERENCES

Kanerva, P. 1984. Self-propagating search;
A unified theory of memory (Rep. No. CSLI-84-7).
Stanford: Center for the Study of Language and
Information. To appear as a book by Bradford
Books/MIT Press.

Kohonen, T. 1977. Associative memory: A system-
theoretic approach. New York: Springer-Verlag.

Kohonen, T. 1984. Self-organization and associative
memory. 2nd ed. New York: Springer-Verlag.

TR-86.2 Kanerva / Parallel Structures

Kohonen, T., Oja, E., and Lehtio, P. 1981. Storage
and processing of information in distributed
associative memory systems. In G. E. Hinton
and J. A. Anderson (Eds.), Parallel models of
associative memory. Hillsdale, N.J.: Lawrence
Erlbaum Associates. Pp. 105-143.

Harr, D. 1969. A theory of cerebellar cortex.
Journal of Physiology 202:437-470.

Harr, D. 1970. A theory for cerebral neocortex.
Proceedings of the Royal Society of London
8-176:161-234.

Marr, D. 1971. Simple memory: a theory for archi-
cortex. Philosophical Transactions of the Royal
Society of London 6-262:23-81.

Willshaw, D. 1981. Holography, associative memory,
and inductive generalization. In G. E. Hinton
and J. A. Anderson (Eds.), Parallel models of
associative memory. Hillsdale, N.J.: Lawrence
Erlbaum Associates. Pp. 83-104.

ADDENDUM

In October 1985, RIACS undertook the study of the sparse, distributed
memory as a massively parallel computing architecture. The initial task
is sponsored by the Human Factors Division of the NASA Ames Research
Center and has been defined as "The Application of a Sparse, Distributed
Memory to the Detection, Identification, and Manipulation of Physical
Objects." It is a feasibility study aimed at assessing the theoretical
and practical merits of the architecture. It involves computer
simulation of the memory, learning experiments with the simulator,
examination of sensory and motor encoding from the perspective discussed
in this paper, and the comparison of the properties of the memory to
experimental results on human memory. The project is likely to include
the building of a hardware prototype that would allow working with real
data, such as speech, in real time.

RIACS
Mail Stop 230-5

NASA Ames Research Center
Moffett Field, CA 94035

(415) 694-6363

The Research Institute for Advanced Computer Science
is operated by

Universities Space Research Association
The American City Building

Suite 311
Columbia, MD 21044

(301) 730-2656

