
f N f t S A - C R - 1 7 7 3 0 2) 1LGOBIIHMS A N D P R O G R A M M I N G
TCOLS FOR I M A G E E I C C E S S I N G CN 1BE MPP
Report , May 1984 - Nov . 1S65 (Cornell Univ.)
160 p CSC1 09B

G3/61

N 8 6 - 2 9 5 4 3
T H R U
N86-29546
Unclas
42960

Algorithms and Programming Tools for
Image Processing on the MPP /

Report for the Period
May 1984 to November 1985

Anthony P. Reeves
School of Electrical Engineering

Cornell University
Ithaca, New York 14853

Work Supported by NASA Grant NAG 5-403

CORNELL UNIVERSITY

SCHOOL OF ELECTRICAL ENGINEERING
ITHACA, NEW YORK 14853

Algorithms and Programming Tools for
Image Processing on the MPP

Report for the Period
May 1984 to November

Anthony P. Reeves
School of Electrical Engineering "^

Cornell University
Ithaca, New York 14853

Work Supported by NASA Grant NAG 5-403

r

Algorithms and Programming Tools for
Image Processing on the MPP

Report for the Period
May 1984 to November 1985

Anthony P. Reeves
School of Electrical Engineering

Cornell University
Ithaca, New York 14853

Work Supported by NASA Grant NAG 5-403

Summary

The work reported here was conducted by a number of students at Cornell

University and myself. A major contribution was made by Cristina Mahon (previ-

ously Cristina Moura); her masters thesis is included as Appendix A. The work for

this grant falls into two main categories: algorithms for the MPP and the Parallel

Pascal Development system. A number of novel algorithms for data arbitrary data

mappings, permutations, and image rotation including interpolation have been

developed and implemented on the MPP. A program development system has been

developed for both the MPP and conventional serial computers. This system greatly

simplifies the development of high level language programs for the MPP. Further-

more, it allows programs to be developed and tested on any conventional computer.

This environment consists of a set of system programs and a library of general pur-

pose Parallel Pascal functions.

A detailed description of the data mapping and rotation algorithms for the MPP

is given in section 3 of Cristina's thesis which is included as Appendix A. These algo-

rithms have been published [1] and a copy of this paper has been included as Appen-

dix B. The specification of the Parallel Pascal language has now been published [2,3]

These papers are included as Appendices C and D. The documentation for the Parallel

Pascal Development system is given in Appendix E and a description of using this sys-

tem on the MPP is given in section 2 of Appendix A.

In addition to the development of the reported algorithms and software this

grant provided us with the opportunity to be the pioneer remote users of the MPP.

Most of the work on the MPP was done from Cornell over a telephone line which in

itself absorbed a significant amount of the available funds. "We also made several

visits to NASA; on two occasions seminars were presented on the Parallel Pascal en-

vironment Considerable discussions were held wiht NASA on the development of

the I/O system for the MPP and other aspects of the high level language environment

The complete Parallel Pascal development system has been installed on the MPP host

and has been distributed by us to a number of remote sites. It has been ported to a

number of conventional computers including VAX systems running either VMS or

UNIX.

Some of the highlights of the results of this research are listed below.

Image Processing Algorithms

The following algorithms are described in detail in section 3 of Appendix A.

Data Mapping

A fast heuristic arbitrary data mapping algorithm has been developed. For most

mappings this is much faster than other techniques such as sorting. This has

been implemented for both regular (128 x 128) and large (Cn * 128) x Cm * 128)

two dimensional arrays.

Matrix Rotation

Fast matrix rotation algorithms have been implemented based on the above data

mapping function. The nearest neighbor algorithm ahs been tested on the MPP.

Large matrix nearest neighbor rotation, and interpolation schemes have been

developed and tested on conventional computers but have not yet run on the

MPP.

Interpolation

A high speed interpolation algorithm has been implemented for bilinear and bi-

cubic interpolation for image rotations (any angle) and small matrix warps.

These algorithms work on the development system but have not yet been tested

on the MPP.

The Parallel Pascal Development System

Compiler Command

A command file has been written both for the MPP and the development system

which, with a simple noninteractive command, compiles a program, makes all

the library links, and in the case of the MPP, loads the program onto the system.

See section 2 of Appendix A for details.

Library Preprocessor

Standard Pascal does not have any library facilities. A general purpose library

preprocessor has been developed which works for both the MPP compiler and

the development system. See Appendices D and E for details. The preprocessor

looks for library subprograms first in named files, then in the local directory, and

finally in a system library directory. The MPP compiler version of the prepro-

cessor also examines a special MPP system library before the general system li-

brary. This library contains system library programs which have been modified

to overcome deficiencies in the MPP compiler. This library preprocessor can be

used in conjunction with the assembly language library feature which is built

into the MPP Parallel Pascal compiler. It is also able to work in conjunction

with any library facilities that are available with a local Pascal compiler that is

used with the development system.

Parallel Pascal Translator

The translator is the heart ot the development system. It translates a Parallel

Pascal program into standard Pascal for execution on a conventional serial com-

puter; See Appendix E for details. The translator is a Pascal program with over

8000 lines of code. It has been in a very stable form for over a year now. It

still has some limitations but these are now well documented. In addition to be-

ing used by this and other MPP research groups it has also been used in a Paral-

lel Processing course which has now been offered three times with an enrollment

of about 50 students each time.

The System Library

A set of general purpose library programs have been developed. All of these pro-

grams run correctly on the development system and nearly all of them have been

tested on the MPP. Documentation for these programs is given in Appendix E

General Utilities

Programs in the general utilities group include a parallel random number gen-

erator, an index generator, simplified I/O functions and a parallel ceiling func-

tion.

Masked Reduction Functions

It is frequently necessary to apply a reduction function to a subregion of an ar-

ray. The masked reduction library functions are similar to the primitive reduc-

tion functions except that a Boolean array mask parameter is required.

Large Array Utilities

The large array utilities are shift and rotate functions that operate on matrices

which have dimensions that are multiples of 128. Both the crinkled and blocked

data structures are supported. There are also shift and rotate functions which

treat a 128 x 128 array as a vector of 16384 elements. These functions do not

use the hardware spiral interconnections; the use of the regular mesh intercon-

nections is faster for multiple element shifts.

Near Neighbor Convolution Functions

Many low level image processing applications require convolutions between im-

ages and small kernel matrices. Programs in this group simplify the entry of

small matrices and the application of these matrices to image arrays.

Pyramid Operations

A pyramid convolution function has been implemented; this is a three dimen-

sional convolution function which operates on the 13 near neighbors of a pyram-

id data structure. This data structure is embedded within an MPP array. Func-

tions are also available for both the vertical and horizontal data shift operations

that are associated with pyramid algorithms.

References

1. A. P. Reeves and C H. Moura, "Data Mapping and Rotation Functions for the

Massively Parallel Processor," Proceedings of Computer Architecture for Pat-

tern Analysis and Image Database Management, pp. 412-419 (November

19851

2. A. P. Reeves, "Parallel Pascal: An Portended Pascal for Parallel Computers," Jour-

nal of Parallel and Distributed Computing 1 pp. 64-80 (1984).

3. A. P. Reeves, "Parallel Pascal and the Massively Parallel Processor," pp. 230-260

in The Massively Parallel Processor, ed. J. Potter, MET Press (1985).

Appendix A

PROGRAMMING TOOLS AND ALGORITHMS

FOR THE MASSIVELY PARALLEL PROCESSOR

A Thesis

. Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Crisuna Helena Francfort de Sellos Moura

August 1985

ABSTRACT

The Massively Parallel Processor (MPP) is a SIMD computer with 16384 processing ele-

ments connected in a 128 x 128 mesh. The MPP is programmed in a high level language

called Parallel Pascal, a superset of standard Pascal used to program parallel computers. This

thesis describes system and programming tools for the Parallel Pascal development system and

the MPP-compiler system for the MPP. Some of these tools were developed to help remote

users, while others were developed to give users a way to work around features not yet

implemented on the MPP.

The organization of the MPP is ideal for problems which involve near neighbor interac-

tions. In this thesis we present a general algorithm for implementing arbitrary permutations

and mappings on such systems as well as matrix rotation schemes for nearest neighbor, bil-

inear interpolation and bicubic spline interpolation mappings. An algorithm for the Mag

model and its implementation on the MPP using Monte Carlo techniques is also discussed.

Such an application is well suited for the MPP because it uses mainly near neighbor interac-

tions and Boolean operations. Results and timings obtained from a direct implementation of

those algorithms on the MPP are also reported.

BIOGRAPHICAL SKETCH

Cristina Helena Francfort de Sellos Moura was born in Rio de Janeiro, Brazil in.

November 26, 1962. She started her undergraduate work in Electrical Engineering at Ecole

Polytechnique Feminine, in Sceaux. France in 1980. At the end of the first year she

transferred to the University of Miami, Florida. She graduated Summa Cum Laude in May

1984 with a Bachelor of Science degree in Electrical Engineering and a second major in

French.

In 1954, she came to Cornell University to pursue a Master of Science in Electrical

Engineering. She graduated from Cornell in August 1985.

She is a member of Tau Beta Pi, Eta Kappa Nu and TEPR.

11

DEDICATION

Acs meus pais,

minha irma IN/fa^cia

e meu noivo Hugh,

sem os quais esta tese

nab teria sido possivel

111

ACKNOWLEDGEMENTS

I would like to thank Professor Anthony P. Reeves, my committee chairman, for his

encouragement, guidance, and assistance in my research and writing of thi.t thesis and as a gra-

duate student in general I would also like to thank Professor Christopher C Pottle for serv-

ing on my committee.

I am grateful to the Schlumberger Foundation for providing me with the 1984-85 fel-

lowship.

I would like also to specially thanfc my family and my fiance Hugh for their continuous

love, encouragement and support through sometimes difficult times.

I thank also Paul Chau for his help in formatting my thesis. Thanks are also due to all

my colleagues in room 209 for their support and advice. They helped make this year not only

instructive, but also fun.

IV

TABLE OF CONTENTS

Chapter 1: INTRODUCTION

1.1 The MPP Architecture ._____-_____________--M____-_____-__-_. 2

1.1.1 The Array Unit: , 2

1.1.2 The PE Control Unit: •, I _ 6

1.1.3 The Staging Memory: . - 7

1.1.4 The Main Control Unit: .«M_«_____________________M___M_____. 7

1.1.5 The host machine: 7

L2 Outline

Chapter 2: SYSTEM AND PROGRAMMING TOOLS

2.1 MPP Limitations - 10

13. Software Structure . „ , - , ., • 10

22.1 Development System Tools . ,, . „, ,, ., 11

7.7.2 MPP-Compiler System ' 13

23 MPP Compiler Restrictions IS

Chapter 3: PERMUTATION AND ROTATION ALGORITHMS

3.1 Matrix Permutation — .. 22

TABLE OF CONTENTS (continued)

3.1.1 A Simple Permutation Algorithm - - - 23

3.1.2 The Heuristic Algorithm , 23

3.1-3 Algorithm Cost 26

3.1.4 Permutation Results - 26

3 3 Large Arrays • . • - • . 2 7

3^3 Matrix Rotation -_______-___>_--___-____«____>__>_-_______«_^^ 30

3.3.1 Nearest Neighbor -_-__________-____-__->__--_-________-_____>. 30

3.3.2 Bilinear Interpolation - . . . 31

3-3~3 Cubic Interpolation . 34

3J.4 Test Results ___ 35

3.4 The MPP Implementation of the Rotation Algorithm , 36

Chapter 4: THE ISING MODEL

4.1 The MPP Implementation • 45

Chapter 5: CONCLUSION

Appendix A:

6.1 VMS command file used to implement pp command - - -- 52

vi

TABLE OF CONTENTS (continued)

6.2 UNIX shell file used to implement pp command . 53

6.3 VMS command file used to implement rmpp command -- 54

6.4 Printmpp Function - 55

6.5 Printmppb Function 56

\

vu

LIST OF TABLES

Table 1.1. Speed of Typical Operations - 4

Table 2.1. MPP Limitations ' , , 10

Table 22. MPP Compiler Restrictions IS

Table 3.1. Cost for a near neighbor rotation on a 32 x 32 matrix centered at 16 16 27

Table 33. Cost for a near neighbor rotation on a 32 x 32 matrix centered at 1 1 , .,, 28

Table 3.3. Cost for perfect shuffle permutations for different matrix sizes - 28

Table 3.4. Permutation cost for a random permutation -_--.-______________-______. 28

Table 3J. Cost of bilinear interpolated rotation centered at coordinates 16 16 ———_ 36

Table 3.6. Cost of bilinear interpolated rotation centered at coordinates 1 1 _——____ 36

Table 3.7. Cost of cubic interpolated rotation centered at coordinates 16 16 • 37

Table 3,8. Cost of cubic interpolated rotation centered at coordinates 1 1 ____—_—_ 37

Table 3.9. Cost for a near neighbor rotation on a 128 x 128 matrix centered at 1 1 39

Table 3.10. Cost for a near neighbor rotation on a 128 x 128 matrix centered at 64 64

40

Table 3.11. Cost for a bilinear interpolation rotation on a

128 x 128 matrix centered at 1 1 - 40

Table 3.12. Cost for a bilinear interpolation rotation on a

128 x 128 matrix centered at 64 64 ... 40

Table 3.13. Timing of near neighbor rotation on a 128 x 128 matrix centered at 1 1

« , 41

Table 114. Timing of near neighbor rotation on a 128 x 128 matrix centered at 64 64

41

Table 3.15. Timing of bilinear interpolated rotation on a

128 x 128 matrix centered at 1 1 , 41

vui

LIST OF TABLES (continued)

Table 3.16. Timing of bilinear interpolated rotation on a

123 x 128 matrix centered at 64 64 , , , 42

Table 4.1. Timings of sections of the Ising program , 49

LIST OF FIGURES

Figure 1.1. MFP Block Diagram 3

Figure 1.2. PE Logic Diagram , 5

Figure 2.1. Steps of Parallel Pascal Development System . 12

Figure 23, Flowchart of MPP-Compiler System 15

Figure 3.1, Bilinear Interpolation - - 32

Figure 3i Bicubic Interpolation -—-_--_---_——————^——_—__— 35

Figure 3JJ, Ratio of number of rotations to n2 rotations

for near neighbor rotation with center of rotation at 1 1 and at matrix center

r 43

Figure 3.4. Ratio of number of rotations to n2 rotations

for bilinear interpolation rotation with center of rotation at

1 1 and at matrix center . 44

N 8 6 - 2 9 5 4 4
CHAPTER 1

INTRODUCTION _ \ * ft

0
This thesis is concerned with, programming tools and parallel algorithms created for the

Massively Parallel Processor (MPP) located at NASA Goddard Space Center. The goals of this

thesis are to create a user-friendly environment for high-level language parallel algorithm

development, as well as research the issues involved in implementing certain algorithms on

the MPP and compare the expected results with the achieved results.

Digital computers as we know them today have always had a certain degree of parallel-

ism, first for reliability purposes, and later also for greater performance. Parallelism, for the

purpose of increased performance, can be classified into the following types, [l].

- serial by bit

- serial by character

-"parallel word" but serial instruction

- parallel instruction execution/access

- parallel instruction execution units

- parallel instructions (SIMD)

- parallel instructions (MIMD)

The term parallel processing is usually used to refer to the last two types of parallelism

listed above, since those are the types that allow parallel work, on more than one set of data at

any single time. An SIMD (single-instruction stream, multiple-data streams) computer is com-

posed of several processors which perform the same operation on different pieces of data. An

MIMD. (multiple-instruction streams, multiple-data streams) computer, on the other hand, is

composed of several processors performing different operations on different pieces of data.

These two approaches underlie different purposes. SIMD computers are lockstep process-

ing type computers, while MIMD computers are asynchronous processing type. That

difference tends to make SIMD computers more specialized th«" MIMD, since they do not

allow for independence between their processors. The Massively Parallel Processor (MPP) pro-

duced by Goodyear Aerospace for NASA Goddard Space Center belongs to the SIMD class of

processors. It was developed for image processing of satellite data.

.1.1. The MPP Architecture

The block, diagram of the MPP is shown in Figure 1.1. It consists of the following five

main components. The Array Unit (ARU) processes two dimensional arrays of data. It is con-

trolled by the PE Control Unit which executes parts of the user program that contain array

operations. The Staging Memory handles the array I/O by both storing and rearranging array

data. The Main Control Unit (MCU) executes the application program, performs scalar opera-

tions and calls on the PE control unit to perform the array operations of the application pro-

gram. This is the main interface unit to the host machine. Finally, the host computer, a VAX

11/780, serves as the communication unit between the user and the MPP. [2].

1.1.1. The Array Unit:

The component that makes the MPP special is the ARU. Logically, it contains 16384 bit

processing elements CPE's) organized as a 128 by 128 square and operating at a basic cycle of

100 nsec. Physically, it contains an extra 128 by 4 rectangle of PFs that is used for reliability

purposes. When a PE fault is detected the ARU can be reconfigured by replacing the 128 by 4

rectangle containing the faulty PE by the extra rectangle. Each PE supports boolean and

arithmetic operations, is maskable and is capable of routing data to its orthogonal neighbors.

The speed of some typical operations can be seen in table 1.1. [3].

The MPP is constructed using a total of 2112 VLSI chips. This total includes the spare

column of chips for redundancy. Each chip contains eight PE's configured in a 2 by 4 array,

Staging
Memory

I /O
Control

Main Control
Unit

(MCU)

FIFO

PE Control
Unit

T
PE Array

Unit
(ARU)

global or func t ion

— control path •

data path

Figure 1.1. MPP Block. Diagram

Table 1.1. Speed of Typical Operations

OPERATIONS

ADDITION OF ARRAYS
8-BIT INTEGERS (9-BIT SUM)
12-BIT INTEGERS (13-BIT SUM
32-BIT FLOATING-POINT NUMBERS

MULTIPLICATION OF ARRAYS
(ELEMENT-BY-ELEMENT)

8-BIT INTEGERS (16-BIT PRODUCT)
12-BIT INTEGERS (2<)-BlT PRODUCT)
32-BIT FLOATING-POINT NUMBERS

MULTIPLICATION OF ARRAY BY SCALAR
8-BIT INTEGERS (16-BIT PRODUCT)
12-BIT INTEGERS (21-BIT PRODUCT)
32-BIT FLOATING-POINT NUMBERS

EXECUTION
SPEED

6553
4428
470

1861
910
291

2821
1489
373

'MILLION OPERATIONS PER SECOHD

an eight bit bi-directional data port, and a disable circuit that is used to disconnect the chip

from, its east-west neighbors. This last feature is useful when repairing the array using the

redundant PFs. The chip does not include PE memory so as not to complicate the chip design,

to allow the MPP to use more memory per PE at a faster access time and to allow future

expansion of PE memory without chip redesign.

Each PE contains six single bit registers (AAQG.P.S), a variable length shift register, a

full adder and some combinatorial logic. The logic diagram of a PE is shown in Rgure 1.2. [3].

The PE has four subunits that have independent control but share a common clock. They are:

logic and routing, arithmetic, I/O, and masking subunits. They are interconnected by a bi-

directional data bus which also connects to external PE memory.

The logic and routing subunit is formed by the P register and some supporting com-

binatorial logic. Register P can be logically combined with the state of the data bus and the

result would be stored in register P itself. When the routing is enabled the state of one of the

P registers in the north, south, east or west neighbor PFs is latched in P. This allows the rout-

ing of data between neighboring PFs.

ORIGINAL PAGE' IS
5 OF POOR QUALITY

a at

Figure 12. PE Logic Diagram

The arithmetic subunit contains a serial-by-bit adder formed by registers 3 and C and

a variable length shift register -whose output may be stored in A. The inputs for the adder

are registers P and A. Register A can be loaded directly from the data bus. Register B stores

the least significant bit and register C the carry. The variable length shift register is used to

improve the multiply and divide operation times.

The I/O subunit is formed by the S register and a two input multiplexor which selects

the input from either the data bus or the S register of the PE west neighbor. The data enters

the array coming from the west.

Finally, the Toa-ofe-ing subunit is formed by the G register which decides which PE's are

active. A PE will be active when its G register is enabled. It allows routing and arithmetic

operations to be masked separately. The ARU, composed of all the PEs, is controlled by the

PE control unit.

1.1.2. The PE Control Unit:

The PE control unit is a microprogrammed control unit with 64-bit words. It performs

all the basic array arithmetic operations of the application program, leaving no idle ARU

cycles. [4]. It also determines the connectivity between opposite edges of the ARU through a

3-bit code held in the topology register. Before the application program starts execution, the

PE control unit memory is loaded from the host computer.

The address of the bit-planes to be processed by the PFs is generated by the bit-plane

address generator in the PE Control Unit and then broadcasted to all PE random-access

memories in the ARU. The PE Control Unit is connected to the Main Control Unit by a first-

in-first-out buffer called the call queue. The call queue holds calls to PE control routines

from the Main Control Unit, which allows the Main Control Unit to work ahead on the

application program without waiting for a call to the PE control unit to complete.

Scalar information associated with an MCU call is put into a common register from the

call queue at the beginning of the called routine. At the end of the called routine, the con-

tents of the common register can be transmitted back to the MCU. The PE control unit, if

specified, can combine certain common register bits with the control lines by performing a

logical-OR operation. Since the MCU can initialize the common register when a PE control

unit routine is entered, this capability allows the main control to specify certain PE operations.

An example of an application of the logical-OR function is array multiplication. It is useful

for setting the lengths of the PE shift registers. Without this logical-OR capability, a different

multiplication routine would be needed for each shift register length. The logical-OR is also

useful to change the common register when the contents of this register have to be sent back

to the MCU.

The PE control unit allows operations like a global OR function to be performed on all

the elements of the array. Such an operation is extremely useful to the programmer since it

allows conditions to be determined based on the status of the whole array.

1.1.3. The Staging Memory?

The staging memory is connected to the I/O ports of the ARU and to a host computer. It

acts not only as a buffer to the ARU data but it also allows the arrays of data to be reordered.

Since the ARU ports transfer the data in a bit-sequential order, that is the most (or least)

significant bit of 16384 elements followed by the next bit of 16384 elements, etc, the reorder-

ing provided by the staging memory is necessary to organize the data in the normal order of

satellite imagery used in the host.

1.1.4. The Main Control Unit:

The Main Control Unit CMCU) is essentially a high-speed 16-bit minicomputer. It con-

tains 50 16-bit registers. [5J. Most of those registers are used to communicate with the PE con-

trol unit and through the I/O control unit to the Staging Memory. The main control memory

of the MCU is loaded by the host computer before an application program starts execution. It

holds instructions and scalar data for the MCU. This memory is also shared with the I/O con-

trol unit for the Staging Memory. It holds I/O programs for the I/O control unit. The MCU

communicates with the PE control unit through a FIFO buffer which was explained in section

L1.2.

1.1.5. The host machine:

The host computer is a VAX 11/780 running the VAX-VMS operating system. An

application ^u^i^m is split between the host computer and the MCU; the programmer

specifies which sections of the program are to be run on the MCU.

On the MCU prngiama have direct high speed access to the ARU, however there are

some important limitations. First the MCU only has 32 Kwords of memory, second the MCU

has no access to system peripheral devices other than the MPP and finally the MCU has no

hardware for scalar floating point arithmetic. On the VAX there is no restrictions on memory

space, full access to all peripherals (except direct access to the ARU) and a floating point

8

accelerator. Currently, the VAX is also shared with other users which can seriously affect

performance. The programmer must decide the trade-offs in splitting an application program.

A significant time penalty in transferring control and data through the UMBUS link which

connects these two systems must also be considered.

1.2. Outline

The goal of this work was to develop algorithms in a high-level language that would

take advantage of the MPP architecture described above. The high-level language for the

MFP is Parallel Pascal [6]. -which is a superset of standard Pascal for programming parallel

computers. In Parallel Pascal all conventional expressions are extended to array data types,

that is, arrays can be treated as units.

The development system used to create Parallel Pascal programs js divided in two major

parts. Hist, a Parallel Pascal to standard Pascal translator used in conjunction with a library

preprocessor, both developed under the UNIX operating system, allow for algorithm develop-

ment and testing on a serial computer. This system was adapted to run also under VAX-VMS,

the operating system used by the MPP VAX 11/780 host computer. The translator and the

system created around it allows the initial program development to be done in any serial com-

puter running UNIX or VMS. After this initial phase, an MPP compiler system running

under VMS is used to prepare the »ingiam« for execution on the MPP. This part of the work,

is done on the host machine.

These systems as well as other tools used for algorithm development are described in

greater detail in chapter 2. In chapters 3 and 4, algorithms that were implemented on the

MPP and performance measurements obtained are discussed. The algorithms include parallel

image rotations and an Mng model. For these algorithms expected results are compared to

obtained results, so that conclusions on how well these algorithms performed can be drawn.

CHAPTER 2

SYSTEM AND PROGRAMMING TOOLS

The algorithms implemented in this thesis were written in Parallel Pascal. Parallel Pas-

cal offers efficiency, portability as well as error detection and diagnosis facilities, features

which when combined create a more pleasant environment tha^ assembly language for pro-

gram development on the MPP. [61

Parallel Pascal contains three basic extensions to standard Pascal: [7\

1) expressions involving whole arrays are permitted;

2) the where - do - otherwise control statement is available. This statement ia a parallel

version of the if - then - else statement; the control expression must evaluate to a boolean

array. All array assignments within the controlled statements must be conformable with the

control array and are masked by it.

3) there are array reduction functions available. These functions reduce arrays according to

the or, and, minimum, maximum, stem or product operations.

Programming in Parallel Pascal on the MPP involves using a development system on a

serial computer to do the preliminary algorithm development work and then, using a compiler

to check for the limitations and restrictions of the MPP. The advantages of this two-step

approach are that the initial work can be done in any serial computer running UNIX or VMS

and having a Parallel Pascal development system, that is, independently of the MPP, there are

no compile time restrictions as the ones encountered when using the Parallel Pascal compiler

for the MPP, and, finally, different parallel array sizes can be used to test some of the algo-

rithms without being restricted to the 128 by 128 MPP size. This two-step approach is spe-

cially useful for users that are not in the same location as the MPP.

10

2.1. MPP T.imitations

Several programs written in standard Parallel Pascal that had successfully passed the

first phase had to be significantly modified to run on the MPP hardware. Modifications were

necessary because of the intrinsic limitations of the MPP. Table 2.1 contains a list of the more

significant limitations.

One of the limitations of the MPP is that the programmer has to explicitly assign pro-

grams, procedures and functions either to the host or to the MPP. This is done through a com-

piler switch {$H}. Parts of the program that will run on the host are preceded by a {$H+}

and parts that will run on the MPP are preceded by a {$H-}. These two instructions may

only appear before the program, procedure and function statements. This compiler switch

or target machine option affects the pmoramTniTig unit to which it is attached and all syntacti-

cally inner functions or procedures, except when those inner functions or procedures are pre-

ceded by their own target machine options.

2J2. Software Structure

The work in this thesis represents the first project on the MPP which: a) involved the

development of large programs and libraries and b) was conducted by remote access to the sys-

tem, Le. a 1200 baud telephone line from Cornell. Several system tools had to be developed

for effective remote use of the MPP.

Table 2.1. MPP Limitations.

1) The two lower dimensions of a parallel array have to be 128 by
128.

2) The local PE memory size is 1024 bits.
3) Programs, procedures and functions have to be assigned to the

host or the MPP by the programmer.
4) The local MCU memory size is 65K bytes.

11

. Development System Tools

The development system is used to develop and test Parallel Pascal programs in a serial

environment. It consists of two programs: extern, a Pascal external function preprocessor, and

ppt, the Parallel Pascal translator. Used in conjunction with them is a set of library functions

and a standard Pascal compiler.

For a Parallel Pascal program to run on a serial computer, it has to go through the fol-

lowing steps (see figure 2.1):

- the program extern will replace all the calls to external procedures and

functions by the procedures themselves, which are read from a set of libraries.

- the output of extern will be translated by ppt, the Parallel Pascal translator.

Any compiler detected errors will be reported in a listing at this stage. The

output will be a program in conventional Pascal.

- the program is compiled by a standard Pascal compiler.

In order to allow a user to easily translate a program from Parallel Pascal to Pascal, a

command file was created. By simply typing

pp jHename.pp

the user's program will be sent through extern and ppt and a listing file as well as a compiled

and linked program will be created.

The command pp on VMS is the same command used for the development system at

Cornell University. It was chosen so that all the documentation already available at Cornell

could be used without modifications at NASA. However, at NASA, outside the account

REEVES, used to develop this system, another command name must be used since pp invokes

the local Parallel Pascal compiler used in conjunction with the MPP. It has not yet been

decided which of the two systems will retain the name pp. The listings of the command file

for the VMS system can be found in section 6.1 of appendix A. Its corresponding shell script

in UNIX can be found in section 6.2 of appendix A.

12

name.pp

c preprocessor""^
extern __-^" libraries

> listing file

name.p or name.pas

" Pascal compiler"")

executable program

Figure 2.1. Steps of Parallel Pascal Development System

There are two sets of libraries containing Parallel Pascal functions and procedures. One

of them is defined to be used as part of the development system in conjunction •with extern,

while the other is targeted for use directly on the MPP and is accessed through a modified

version of extern called mppextern.

The only difference between extern and mppextern is that mppextern checks for a spe-

cial MPP library first and, if none is found, uses the standard library. Extern uses only the

standard library. Both libraries contain the same set of functions; however, the MPP-targeted

functions were modified to fit some of the limitations and restrictions of the MPP. Section 2.3

13

•will describe in detail some known. MPP restrictions and the changes to pnwraina written in

standard Parallel Pascal required by them.

2^2. MPP-Comtriler System

After an algorithm has been tested on the host using the development system, the pro-

gram can be adapted to use the MFP for its array computations. The MPP is considered as an

attached processor to the VAX 11/780. This section will discuss how to compile, assemble,

link and execute a Parallel Pascal program on the VAX. 11/780 and MPP systems. The

features added in order to create a more user-friendly environment for those users attempting

to use the MPP are also described.

Parallel Pascal programs can execute on the VAX 11/780, the MPP or on a combination

of both. [8]. Compiler switches can be used to specify on which system the code will execute;

however, all main, programs begin execution on the host machine.

The first system tool created implements all the steps needed to compile a program for

the MPP. To use this tool all that is required is typing the command:

rmpp filename The listing for the command file can be found in section 6.3 of

appendix A.

This command file does library preprocessing using mppextern to substitute all calls to

external functions by the body of these functions. The new file created has a t appended in

front of the old filename. A second command file, called repL, has been developed to do just

the library preprocessing step. The syntax for this command is

rept JUename,pp

In rmpp, once the automatic preprocessing is finished the resulting file is compiled,

assembled and linked according to the list of commands below:

S PP filename or SPPDEV filename

S MACRO Jiiename

14

S MCL filename

$ MPPLJNK filename

S CADLNK filename, filenameJtb

Figure 13. shows a flowchart of the different commands executed and all the different

files which are created. Each command includes several qualifiers to further specify which

actions should be taken by the system. These are provided by the command file.

The first command: PP filename when used inside the account REEVES would cause

problems since PP is locally defined to mean the Parallel Pascal translator and not the Parallel

Pascal compiler, which is what we want in this context. Fortunately, the people in charge of

the Parallel Pascal compiler suggest the use of the command PPDEV instead of PP when cal-

ling the Parallel Pascal compiler. PPDEV corresponds to the compiler in the system develop-

ment directory and which has some of the bugs of PP already filed. Since we use PPDEV

each time the compiler is called there is no possible ambiguity. To my knowledge, no one uses

anymore the command PP when referring to the Parallel Pascal compiler.

The compiler inputs Parallel Pascal source code and outputs P-code. The code generator

is invoked by the same command and it uses the P-code to produce MACRO (VAX assembly

language) and MCL (MCU assembly language) code. The code generator will only execute if

the compiler has not detected any errors. [8].

The files generated by the compiler are:

- JHenameMs: Parallel Pascal listing file

- fiLename.pcdi P-code file

The compiler switches to produce the IAS and pcd files are default. These switches can be

turned off by including {$L-} and {$C-} respectively in the program. However, in the absence

of a P-code file the code generator will not be able to run.

Another of the compiler switches {$H} was mentioned before in section 2.1. It allows

the programmer to specify which parts of the program will run on the MCU and which parts

15

name.pp

1
compiler name.lis

name.pcd

(code generator) > name.cgl

name.mar

macro
assembler

compiler

code
generator

assemblers

linkers

name.exe name.mme name.mpe

PE

executable
files

VAX
input

input

Rgure 12. Flowchart of MPP-Compiler System

will run on the host. The switch {SD+} enables symbol debugging information to be passed to

the assemblers. The default is {SD-}, that is, option disabled. More information on these

16

switches and others can be found in the Parallel Pascal User's guide. [8]. The code generator,

which executes after the compiler, produces the following files

- JUename^gk a debug file

- fiLenamejnan VAX assembly code

- fiLenamejncb, MPP assembly code.

After the assembly files are produced, two different assemblers need to be used. One is

the VAX 11/780 assembler and the other one is the MPP assembler.

The VAX assembler is called by the command:

S MACRO filename or filenameJilAR

where MAR is the default extension for files to be assembled by the VAX assembler. Its out-

put is an object file with extension OBJ.

The MPP assembler is invoked by:

S MCL filename or filenameJVICL

where MCL is the default extension for files to be assembled by the MPP assembler and stands

for Main Control Language. By default it outputs an object file filename^IOB. An MCL list-

ing can also be created by using the /LJS qualifier.

The next step is to link the assembled programs. Two links are necessary. The first one,

for the MCU-resident code, provides a symbol table that will be used in conjunction with the

second Knkr. It is invoked by the command MPPLINK. The second link is called CADLNK

and is used to link together the symbols from the MCU code to the ones from the VAX

resident code. These two linics have to be performed in this order.

The symbol table created by the MCU linker contains symbol definitions for all global

symbols in the image. It is created by default if an executable file is created. Its extension is

STB. This symbol table is used as input to the subsequent VAX linker. The VAX linker is

called by:

S CADLNK fileaameOOBJ), filename^TB, (PPDEVRUN/lib)

17

When the VAX linker is invoked, the host-resident object module is linked to the global

symbols denned by the MPP linker. An extra runtime library can also be linked with the

program. For the moment, to use this library the statement added to the CADLNK command

is PPDEVRUN/lib.

The MPPLINK produces two files, filenamaAIME and filenamtMPE. Filename^lME and

filenameAIPE contain the executable code for the MCU and the PE array respectively. The

VAX linker produces filenameJEXE, which contains the executable code for the VAX.

To execute the jm'igram the command

S CAD filenameOMME) filenameCMPE) filenameCEXE)

has to be given. If compilation, assembly and linkage didn't produce any errors, then that

command can be typed after successful completion of the rmpp command, which includes all

the commands described above.

The CAD command will initiate a CAD (Control and Debug) session. [9]. The Control

and Debug (CAD) program is an interactive program that allows the user to control the MPP.

Its debugging portion allows the programmer to:

a) load MPP programs.

b) control execution of the program.

c) display data.

d) detect, locate and patch errors.

The total program compilation takes a long time. Therefore, it is usually worthwhile to exe-

cute the compilation in batch mode. This frees the terminal for further work, which is espe-

cially helpful when all the communication is done over a long distance phone line.

In order to submit a program for batch processing all that is required is to create a com-

mand file that sets the default directory to the directory where the file is located and then

gives the command to be executed in batch. The general format of this file is

S sd {directory/

$! command to be executed

IS

Once this file exists the batch task is initialized by typing:

batchm command _fle.

The command batchm is a simplification that can be used instead of the system command

submpp followed by several qualifiers. It automatically uses the qualifiers best suited for

someone working over the phone line and therefore without direct access to hard copies of log

files produced during the batch job.

2.3. MPP Compiler Restrictions

Modifications to standard Parallel Pascal programs for them to run on the MPP due to

the limitations listed in table 2.1 were anticipated. However, we found out that since the sys-

tem is still being developed, there are also several restrictions to the theoretically possible

operations. Table 23. contains a list of the main compiler restrictions. Substantial additional

program modifications were necessary and new pinoi-amming tools had to be developed.

Table 22. MPP Compiler Restrictions.

1) The MPP has no high-level I/O, all high-level I/O is done on
the host.

2) MPP-host interface restrictions
- An MPP-resident routine can only call other MPP-resident
routines.
- An MPP-resident routine may not reference a variable
defined in a host-resident routine.
- Non-parallel arrays cannot be converted to parallel
arrays or vice-versa.
- Parallel arrays can only be passed by reference.
- A maYimuin of one kilobytes can be passed at a time.
- Arguments passed cannot be used as loop counters,
(supposedly fixed)

3) Several primitive functions are not currently implemented on
the MPP array, e.g. ordf transpose.

4) The number zero cannot be used as a parameter in the functions
shift and rotate.

5) No good timing mechanism to time long operations.
6) Parallel array elements cannot be individually indexed.

19

For example, since for the moment there is no high-level language I/O on the MPP, and

copying of parallel arrays to the VAX is not currently implemented, a mechanism to con-

veniently inspect parallel array data was necessary. Therefore, a function that accesses any

element of an array was created. This function is called occessmpp. Its inputs are the matrix

whose value is to be accessed and two integers which are the coordinates of the value to be

accessed. The top left corner of the matrix has coordinates (1,1). The output from the access

function is a single value of the same base type as the matrix. It is the value of the matrix at

the coordinates requested. There is also a version of occessmpp for boolean matrices. The

boolean access function is called occessmppb. The two library functions can be found in sec-

tions 6.4 and 6-5 of Appendix A.

Both these functions create a temporary mask. This mask, is all zeros, except for the posi-

tion denned by the input coordinates. The value selected by the magic is stored in a matrix

whose other values are zero for occessmpp and false for occessmppb. By using the sum and

or reduction functions, respectively for occessmpp and occessmppb, the temporary matrix is

reduced to a single value Which constitutes the output of the access functions. To read several

values out of a matrix the access functions have to be called several times. The approach of

transferring a single value at the time from the MCU to the host, instMrf of transferring a

whole array, was chosen to avoid problems do to the limited size of arrays that can be passed

between the two machines.

The access function is only a first step that allows programmers to verify small parts of

their matrix results, given the current constraints imposed by the MPP system. More power-

ful tools need to be developed to create a high-level I/O for the MPP.

Another restriction is that an MPP-resident routine may not reference a variable denned

in a host-resident routine. The solution is to explicitly pass to the MPP-resident routine all

variables in the host-routine that have to be referenced.

For the problem with the shift and rotate functions not being able to receive directly

the number zero as a parameter, the fix used was to create a local variable and assign to it the

20

integer zero. Then,- that variable was used when invoking the shift or rotate functions.

Possible solutions to the lack of a timing function able to measure long time intervals on

the MPP are still being studied. The current riming function is limit*** by the size of the

internal counter. A solution would be to reset the internal counter before it overflows and

before exiting the improved printing function, calculate the total time. Another different

approach, would involve the performance monitor of CAD. A command file would obtain the

memory locations of the lines between which a riming measurements is to done, and would

pass those values to the performance monitor. The performance monitor would then set

breakpoints at those locations and call the timer.

Once the programs developed were modified to take into account the restrictions and

limitations of the MPP, it was possible to verify their correctness directly on the MPP and to

obtain some performance measurements. The next two chapters present implementations and

performance measurements for image permutation and rotation algorithms and an Ising model.

CHAPTER 3

PERMUTATION AND ROTATION ALGORITHMS

The only permutation which is directly implemented by the MPP is the near neighbor

rotate (or shift). The direction of the rotation may be in any of the four cardinal directions.

In Parallel Pascal the main permutation functions are multi-element rotate and shift func-

tions; other permutations are built on these primitives.

The rotate function takes as arguments the array to be shifted and a displacement foe

each of the array dimensions. For example consider a one dimensional array a specified by

a: array [0-n] of integer;

The rotate statement

a >• rotateC a, 5);

is equivalent to

for i := 0 to n do

ofc] >• of(i + 5) mod (n 4-1)1

The rotation utilizes the toroidal end around edge connections of the mesh. The shift func-

tion is rirpi'k"' except that the mesh is not toroidally connected and zeroes are shifted into ele-

ments at the edge of the array; therefore, the shift function is not a permutation function in

the strict sense. The concept of the rotate and shift functions extend to n dimensions; on the

MPP the last two dimensions of the array correspond to the parallel hardware dimensions and

are executed in parallel, higher dimension operations are implemented in seriaL The cost of

the rotate function is dependent on the distance rotated. It also depends on the size of the data

elements to be permuted.

21

22

3.1. Matrix Permutation

The matrix permutation algorithm which is the basis upon which the rotation algorithm

is constructed, is a general algorithm for implementing arbitrary permutations of a two

dimensional matrix on mesh connected parallel processors. [7J. It is also capable of performing

any onto mapping. It uses a heuristic approach to reduce the execution time.

The permutation of a matrix a is specified by two coordinate matrices c and r which

have gjmiiar dimensions to a. The permuted matrix b also has the same dimensions as a. For a

matrix element b[i,j] the corresponding elements r{i,j] and c&j] specify the row and column

indices respectively of where the related element of a is located. That is, the permutation is

specified by

More formally, the data arrays involved in the permutation are specified by:

oj> : array [ljirow,l_ncol] of data; {where data is any base type}

r : array [l-nrow,l_ncol] of 1-nrowj

c : array [l.nrow,l-ncol] of 1-ncol;

In order to compute the relative distance that the data must be moved, two pixel ele-

ment identifying matrices idr and idc are "recomputed. They contain the following:

for all i,>

The relative distances to be moved are then specified by

rr > (r-idr) mod nrow,

re > (e-uf c) mod neo&

In a permutation the data may be shifted in any of the four quadrants in order to reach

a specified destination. However, in the following algorithms only positive data shifts are

23

considered, Le. in the up and left directions. The other three quadrants are covered by using

modulo arithmetic for shift distance calculations and implementing data movement with the

rotation function which utilizes the end around mesh connections. We have investigated a

modified heuristic algorithm which checks all four quadrants and moves in the optimal direc-

tion. Fewer data shift operations are required but the overhead due to checking alternative

directions is significantly higher.

3.1.1. A Dimple Permutation Algorithm

A simple naive algorithm to achieve an arbitrary permutation is to slide a over all the

possible positions of b, assigning the specified elements of a to each element of b when they are

in the correct position.

for &- 1 to nrow do
begin

for j*~ 1 to ncol do
begin

where (rr - 0 and (re *• /') do
b >a;

a .*= rotateCa, 0, l);
end;

a >» rotateCa, 1,0);
end;

This algorithm involves O (ji ̂ operations for an n x n matrix.

3.1.2. The Heuristic Algorithm

In many permutations which occur in practice there are well denned patterns for the

data. For example, near neighbor shifts are trivial with complexity 0 (l), perfect shuffles can

be implemented in O (n) time. The heuristic algorithm attempts to take advantage of the fact

that rr and re will be the same or similar for many elements. This is particularly true for

operations such as matrix warping.

The algorithm first slides (rotates) a as many locations up and left as possible such that

future backtracking will not be necessary. If any element of a is correctly positioned over b

24

(Le. (rr - 0) and (re » 0)), then b is updated. Otherwise, atr, which is a copy of the current

version of a, is slid in the upwards direction until all outstanding elements of b, for which

the current re - 0, are satisfied. The algorithm then shifts as far as possible up and left again

and repeats the above procedure until all elements of the result ma«fe are false, Le. b is com-

plete.

The following variables are used in the algorithm:

Variable declaration

maskjnasktr : array [l -nrow, 1 Jicoi] of boolean;

atr : array [l-nrow, \jicoL] of data;

rrt : array [ijtravr, 1-ncol] of 0-nrow;

ri, rit, lastrit : CLnrow;

Variable functions:

mask : the result mask, true values indicate elements of b

which have not yet received the correct element of a.

ri, d : row and column HfctatiM« for the up-left move.

master : a version of mask to process one column.

rit : a version of ri used to process one column.

atr : a version of a used to process one column.

rrt : a version of rr used to process one column.

lastrit : the last value of rit.

25

The Parallel Pascal version, of the heuristic algorithm is as follows

mask > (rr OO) or Crc OO);

while anyOna?&, 1 ,2) do
{ iterate until the permutation is complete }
begin

ri > minCrr, 1, 2);
d > minCrc, 1, 2);
{ move up and left as far as possible }
a >> rotateCa, ri, a);
rr>« rr- ri;
re J- re - a;
masfctr > Crr - 0) and Crc - 0);
{ satisfy elements for the current position }
if anj(masktr, 1, 2) then

air >*a
else

{satisfy each element for the given column}
begin

•where re - 0 do
rrt > rr

otherwise
rrt J" wow;

rtt > minCrrt; 1, 2);
master > rrt - ri£
{ the next seven statements implement }
{ the statement atr =• rotate (a, rit, 0) }
{ but also take advantage of the previous }
{ shifts}
if d O 0 then

begin
atr > a;
lastrit>-0;

end;
atr > rotateC air, rit - lastrit, 0);
lastrit >rtf;

end;
{ update b for the current location of a }
where masktr do

begin
b > atr;
rr > nrow,

masks* false;
end;

end;

This algorithm is bounded by n2 iterations. However, this must be considered a loose

bound since we currently do not know a permutation winch, would require all nz iterations.

26

The algorithm requires one iteration for a positive single element shift permutation but n-1

operations for a negative shift since the rotate is in the wrong direction,

3.1.3. Algorithm Cost

The cost of the naive algorithm is proportional to the number of rotate operations, Le.

(ji — l)2 * (the cost of a one element rotate operation plus two comparison operations). The

heuristic algorithm has two major cost components: the rotate operations as noted before and

the (min) reduction functions. The reduction functions are used to compute the multi-

element distance for moves. In the tables for the performance of the algorithm, both the total

number of element rotates and the total number of reduction operations are given.

The relative cost of a rotation and reduction is both system and data size dependent. For

the MPP, the cost of a reduction function is in the order of 4.2 IJLS whereas the single element

rotation of 32-bit data requires in the order of 12 /u to 9.6 fts- depending upon the number

of successive rotate operations. Therefore, the reduction functions may represent a significant

portion of the computation cost. With careful low level programming the reduction opera-

tions can be overlapped with data rotate operations such that their effective cost is in the order

of 1.4 fj.s. If the MPP was augmented with a small amount of additional hardware similar to

that outlined in10 then the reduction time could be reduced to 1.5 (JLS over half of which

could could be overlapped with data rotation operations. The heuristic algorithm always

requires less iterations and rotations than the naive algorithm; however, the additional over-

head of the reduction function may make it less efficient in some instances.

3.1.4. Permutation Results

The results of some permutations performed in order to obtain rotated matrices of size 32

x 32 are given in table 3.1 and 3^. These rotations are into mappings rather than permuta-

tions (see section 3.3.1 for details). For comparison, the naive algorithm requires 961 iterations,

961 rotate operations and zero reductions for any 32 i 32 matrix permutation or mapping.

27

Table 3.3 contains the results for perfect shuffle permutations for different size matrices: The

result for perfect and inverse shuffles are identical for any matrix size.

The perfect shuffle is an example of a permutation which does not exhibit the locality

property. The number of algorithm iterations needed to implement shuffles directly is

Oi — l)2. However, the separability prupeuy of the two dimensional shuffle is not being used.

If we use the permutation algorithm to the permutation in two stages, Le. first shuffle the

rows and then shuffle the columns, then n — 1 iterations are needed for each permutation.

Therefore, the perfect shuffle when implemented directly has complexity OGi2) , but when

computed in two stages the algorithm is much more effective and has O (n) complexity. The

results of implementing the perfect shuffle as two separable shuffles are also given in Table 3.3.

Table 3.4 shows the results of a random permutation; this demonstrates that the heuristic is

not effective when the mapping does not possess the locality property.

3JL Large Arrays

Frequently the data to be processed by a parallel processor will be in the format of

arrays which exceed the fixed range of parallelism of the hardware. Therefore, it is necessary

to have special algorithms that will deal with large arrays by breaking them down into blocks

manageable by the hardware, without loosing track of the relationships between different

Table 3.1: Cost for a near neighbor rotation on a 32 x 32 matrix
centered at 16 16.

Angle of rotation

0
15
30
45
60
.75
90

Matrix rotation mapping cost

iterations
0

124
262
505
741
724
528

rotations
0

562
620
837

1022
1019
1007

reductions
0

340
748

1464
2163
2119
1552

28

Table 12: Cose for a near neighbor rotation on a 32 x 32 matrix
centered at 1 1.

Angle of rotation

0
15
30
45
60
75
90

Matrix rotation mapping cost

iterations
0

235
437
625
779
889
993

rotations
0

304
517
683
829
956
992

reductions
0

666
1266
1825
2292
2631
2946

Table 3.3: Cost for perfect shuffle permutations for
different matrix sizes.

matrix *iz*

4 x 4
8 x 8
16x16
32x32

Direct Shuffle

iterations rotations
9

49
225
961

12
56

240
992

Cost

reductions
22

134
646

2822

Separable Shuffle

iterations
6

14
30
62

rotations
6

14
30
62

Cost

reductions
6

14
30
62

Table 3^4: Permutation cost for a random permutation.

matrix gfc»

32x32

Random Permutation

iterations
630

rotations
995

reductions
1851

blocks.

One scheme, which is frequently used on the MPP, is to partition the large array into

blocks which are conveniently stored in a four dimensional array. The range of the first

dimension of this array specifies the number of blocks in each row of the large matrix and the

range of the second dimension specifies the number of blocks in each column. Given a concep-

tual large matrix

mx : array [0-x,0-y] of btype;

29

which, is to be stored in an array a of type

array [l-n, 1-m, 1-p, 1-q] of btype;

Element i,j of the large matrix is mapped into the array a as specified by

ma&j] - a [l+» div p, 1+j drv q, 1+i mod p, l+j mod q]

For example, a 512 x 256 matrix could be stored in eight blocks as

la.: array [1-4,1-2,1.128,1.128] of real;

This data structure allows blocks to be manipulated independently. However, it still

preserves the positional relationships of those blocks in the original large matrix.

To simplify the manipulation of large arrays on the MPP, two Parallel Pascal library

functions Irotate and Ishift have been developed. These functions take an array argument

and two displacement arguments, like the primitive matrix rotate and shift functions, how-

ever, in this case the array argument is a four dimensional array which is treated like a con-

ceptually large matrix.

Many programs can be converted to operate on blocked rather than conventional

matrices by simply replacing all instances of rotate and shift with Irotate and Ishift respec-

tively. This is true for the permutation programs presented; however, in the case of the

heuristic permutation algorithm, this is not a very efficient solution. A better method is to

scan through the result blocks and perform permutations on only the input blocks that contri-

bute to the current result block being processed. This algorithm is shown below.

30

•var
inj.fr array [l-n,l-m,l-nrow,l_ncol] of data;
Irja array [l-n,l-m,l-nrow,l.jicol] of index;

begin
for i - 1 to n do

for / - 1 to m do
begin {process each result block}

rb >• 1 + lr{i,j] div nrow;
cb > 1 + Ictij] div ncol;
ro :- 1 -f Hi./] mod wow;
co >• 1 + U&,j] mod nco£
for k - 1 to n do

for Z =- 1 to m do
begin (consider each input blodc}

master (rb - k) and (c6 - I},
if anyGruuvki, 1,2) then

•where maskb do

end;
end;

end;

Perm2 is the heuristic algorithm presented previously with the modification that the ini-

tial mask value is passed as an argument. That is, only elements selected by the mask are per-

muted. An additional speedup is achieved by this since the heuristic works much better

when only a subset of elements are to be permuted.

3.3. Matrix Rotation

The permutation function described above serves as the basis for a general rotation algo-

rithm. Three rotation techniques are considered: nearest neighbor, bilinear interpolation and

bicubic interpolation. A rotation is specified by three parameters: the location of the origin of

rotation (r<y:o) and the rotation angle 9 . The starting point of all rotation algorithms is the

generation of the mapping matrices r and c from these parameters,

3.3.1. Nearest Neighbor

The nearest neighbor algorithm is simply an into mapping in which a result element is

assigned the value of the nearest rotated matrix element. In this case the new row and

31

column coordinate matrices, r and c, are denned as follows

r[i,j] - roundC (c0 - y)rin(0) + (» -

c[t,;3 -roundCC; - c<j)coj(0) + (i - r^^wiO) + c0

for all i and /; any values of the result which have near neighbors outside the range of the

input matrix are set to zero.

In performing a rotation, some elements are rotated off the result matrix and some ele-

ments are selected which are outside of the input matrix. In our algorithm result elements

for the latter case are simply set to zero. Therefore we have a permutation in which a subset

of the input elements map into a subset of the result elements; the size of these subsets

depends upon the angle and origin of the rotation. The rotation is achieved by using the valid

elements of r and c with the heuristic permutation algorithm.

3JL2. Bilinear Interpolation

For the bilinear interpolation algorithm a result element is computed from a weighted

sum of the four rotated input matrix elements which surround it. There are two possible

approaches to implementing this scheme. First, we can compute four permutations; each per-

mutation acquiring one of the four neighbors for each element. This is called multiple permu-

tations. This was the approach used until now.

The second method is to perform one permutation and then seek, the local neighborhood

of the rotated input matrix for the other near neighbors. The idea being that a local search

will require less computation than four complete rotations especially when the angle of rota-

tion is large. The local neighborhood of a single rotated matrix does not contain a complete set

of the near neighbor elements of the input matrix; some are lost due to grid spacing

differences. A complete set can be guaranteed, however, if we also include the local neighbor-

hood of a slightly perturbed, rotated input matrix. This scheme is called the double permuta-

tion method; both rotated matrices can be computed simultaneously with a single execution of

32

a slightly modified heuristic permutation algorithm. If we map a result element back to the

input matrix, it will be surrounded by four elements PI - P4 as shown in figure 12. These

points are moved to the processing element associated with the result P and the interpolation

is then computed in parallel.

For the interpolation algorithms, the matrices, rp and cp, contain the actual locations of

the rotated elements.

+ r0

,j] = (y - coXcord) + (i - r<fcinQ} + c0

for all i and /'.

The coordinate of the near neighbors are as follows

''top = KC O — y'Xrwifl) + G — record) + r0

~ 0 — coXcoy 9) + (i — roXrin 0) + c0

~" ^to ' *

Cf
PI ' i- s P2

i I
rfl I

I * P

P3 * * P4

Figure 3.1. Bilinear Interpolation

33

The interpolation fractions are:

rf =rp - rtop

cf = cp _ euft

Once the points PI - P4 have been obtained the interpolated result is computed as fol-

lows

P = (1 - cf >(1 - rf *P 1 + (1 - rf >c/*P2 + (l - ef >r/*P 3 + c/«r/*P4

The algorithm for the multiple permutation approach is as follows:

begin

b :=» coef 1 * perm(o, r, c);
{ value of top left neighbor }
c:-c + 1 ;
b :- coef2 * perm(o, r ^) + b;
{ value of top right neighbor }
r>r + 1 ;
b > coef 3 * permCo, r, c) + br,
{ value of bottom right neighbor }
oc- 1 ;
b >> coef 4 * permCa, r, c) + br,
{ value of bottom left neighbor }

end;

Perm is the heuristic permutation function. The final result of rotating a is stored in the

matrix 6.

The double permutation approach uses a modified permutation function which creates

the following matrices:

b 0, j]

and

d [i,j3 > c{ Kujl cO. jl + 1]

where

34

a is the original matrix

b is the rotated matrix

d is the shifted rotated matrix

r is the row coordinate matrix

and

c is the column coordinate matrix

To avoid loosing the value of the center of rotation, when the origin is located to the right of

the matrix center, the matrix is shifted left and, therefore, in the equation defining matrix d

we substitute a negative one for the constant one.

The second step in the double permutation algorithm is a local search performed on both

rotated and shifted rotated matrices in order to find all the values of the elements needed for

the interpolation. The local search has a constant ma-rimum cost for any size matrix. It there-

fore has an advantage over the multiple permutations approach, since every permutation in

that approach will become more costly as the matrix size increases.

For the worst case rotation angle (d - 45), it has been determined that a local search in a

5x5 window is sufficient to yield the values of all the elements needed to perform a bilinear

interpolation. The local search strategy implemented in our algorithm is a spiral search. The

elements are selected by comparing their row and column coordinates to those needed. Once

they match, their values can be obtained from the rotated matrix or from the rotated shifted

matrix.

3.3.3. Cubic Latergolatioa

The cubic interpolation version of the rotation algorithm is a simple extension of the bil-

inear interpolation scheme. The first step, finding the coordinate matrices r and c, is identical

to the bilinear interpolation case. After obtaining these matrices, the values of sixteen neighbor

points must be acquired. If the multiple permutations approach is used, then sixteen separate

permutations will be required. However, with the double permutation, scheme only a small

35

extension of the bilinear algorithm is needed. Tngtgarf of using a 5 x 5 window, which is the

case when four points have to be found, a 7 x 7 window is necessary to find sixteen points,

However, since the element will have rotated in a specific direction, the search window can be

reduced to a 7 x 5 window. Each row of points needed will use a different 7x5 window of

search.

Once all the values needed are found, the bicubic interpolation itself is done by, first,

performing a cubic interpolation for each of the four rows and, then, performing a fifth cubic

interpolation on the row points obtained.

As shown in figure 3.3, the reference point for the cubic interpolation computed in step

one is P6. The first four cubic interpolations are performed to obtain points pa, pb, pc and pd.

The fifth one yields the value of point P.

3.3.4. Test Results

The local search performed in the double permutation algorithm has a constant max-

imum cost for any size matrix. For any matrix the ma-rimum cost is 100 rotations and 25

reductions for the bilinear interpolation method and 552 rotations and 525 comparisons for

the cubic interpolation.

PI •

P5 *

P9 *

P13 *

P2 * +paP3 *

P6 * +pbP7 *
I i1 1

i * P

P10 * -f-pc Pll *

P14 « +pdP15 *

P4 *

P8 *

P12 *

P16 «

Figure 3.2. Bicubic Interpolation

36

The results for rotations losing bilinear interpolation for a 32 x 32 matrix are given in

table 3^ and 16 for different centers of rotation. The results of rotations applying cubic

interpolation are given in tables 3.7 and IS.

3.4, The MPP Tm-plementation. of the Rotation Algorithm

Some simple modifications of the rotation pii^i^mg -were necessary for them to run on

the MPP. However, after these changes were mqrf* it was possible to obtain values for the

number of rotations and reduction functions required during the permutation and, when it

Table 3-5: Cost of bilinear interpolated rotation centered at
coordinates 16 16.

angle of rotation

0
15
30
45
60
75
90

Double perm.

rotations reductions
1188 184
850 374

1011 766
1448 1503
1858 2174
1846 2151
1793 2001

Multiple perm.

rotations reductions
4092 649
2488 1416
2544 2978
3292 5916
4084 8602
4081 8491
4090 7920

Table 3.6: Cost of bilinear interpolated rotation centered at
coordinates 1 1

angle of rotation

0
15
30
45
60
75
90

Double perm.

rotations reductions
13 3

657 703
1050 1302
1389 1834
1702 2329
1931 2669
2086 2971

Multiple perm.

rotations reductions
4 6

1342 2705
2035 5093
2683 7238
3291 9230
3471 10627
3968 11780

37

Table 3.7: Cost of cubic interpolated rotation centered at
coordinates 16 16

angle of rotation

0
. 15

30
45
60
75
90

Double perm.

rotations reductions
1640 684
1302 874
1463 1266
1900 2003
2310 2674
2298 2651
2245 2501

Multiple perm.

rotations reductions
16368 2608
10072 5757
10394 12021
13300 23668
16341 34371
16315 33928
16360 31664

Table 3.8: Cost of cubic interpolated rotation centered at
coordinates 1 1

angle of rotation

0
15
30
45
60
75
90

Double perm.

rotations reductions
552 525

1109 1203
1502 1802
1841 2334
2154 2829
2383 3169
2538 3471

Multiple perm.

rotations reductions
272 30

7683 11132
9723 20589

11815 29104
13793 37047
15316 42586
15872 47088

exists, the interpolation phases. Tables 3.9 through 3.12 contain those values for the near

neighbor and the bilinear interpolation rotations. These values show that the heuristic permu-

tation and rotation algorithms are efficient when compared to the naive algorithm. From these

values, expected times, included in tables 3.13 to 3.16, were calculated. It was also possible to

obtain timings for the total running time of the program. The total time includes the host

running time, the MPP running time and also the time necessary to set up all calls to the

MPP. Several runs were effected to obtain the average values in tables 3.13 through 3.16.

The values for the total time obtained in the several runs varied approximately 1.5 sec in each

direction. Such a large variation is to be expected in the total time since it involves the host

running time which is highly dependent on the system load. The host running .time involves

38

only the input of the parameters necessary for the rotation like the center and the angle of

rotation.

The running time on the MPP is calculated using timing functions created by Jim

Abeles at NASA Goddard Space Center. These timing functions are:

pfmjrdt

pfmj[tart(nameznteger);

pfm_stop(nameanteger)

pfm_close

They use the CAD performance monitor to calculate the tima taken by a section of code.

The first function to be called is pfmJnU. It clears a counter register and attaches the perfor-

mance monitor to the MCU. The section of code to be timed has to be placed between a

pfm_start call and a pfm_stop call, both using the same integer to identify the section.

When a call to pfm_start is found, the counter starts being incremented. Once the

corresponding call to pfm_stop is reached, a call to the VAX is p?arf*, the VAX reads the

value from the counter register in the MCU and the difference between the starting and final

values of the counter is computed. The values accumulated for the different sections of code

timed and their total are printed when pfm_dose is called. At that time the performance

monitor is also detached from the MCU.

Tables 3.13 and 3.14 consist of the timings for the near neighbor rotation, tables 3.15 and

3.16 for the bilinear interpolation rotation. The MPP times include a variable overhead of

approximately 0.1 sec for each call made to an MCU-resident procedure. This overhead was

determined by timing a call to a dummy MCU-resident procedure. This dummy procedure

contained no statements in it. This overhead occurs because when an MCU-resident routine is

called the UNIBUS i'"fc between the host machine and the MCU is used. Therefore, the

transfer of about 1000 bytes involved in calling a routine takes approximately 1 msec. To call

a routine and then return would take twice that time, taken into account only the transfer of

information. However, to this has to be added also the time necessary to interface with the

39

VAX operating system. For the near neighbor and bilinear interpolation rotations, four calls to

MCU-resident routines were made in each case. These calls explain the difference of approxi-

mately 0.4 sec between the MPP times and the estimated times, which otherwise were very

The estimated times were calculated by considering the coat in microseconds of several

operations. These costs are based on an instruction cycle time for memory access and operation

on the MPP of 100 ns, For example, a shift or rotate operation costs 2n where n is 0.1 JJL sec

for Boolean, 0.8 /i sec for integer and 3*2 fjt sec for real variables. A cost of 2n was assigned to

elementary Boolean operations. Arithmetic operations were assigned a cost of 3n when they

involved two operands and an assignment.

A comparison between the ratios of the number of shifts to the n2 shifts for a 32 by 32

matrix and a 128 by 128 matrix, where n is the size of the matrix, demonstrates that even if

the size of the matrix increases, the ratios remain very similar for the same rotation angles

which is a good characteristic of this algorithm. Figures 3.4 and 3.5 show these ratios.

Table 3.9: Cost for a near neighbor rotation on a
128 x 128 matrix centered at 1 1.

Angle of rotation

0
15
30
45
60
75
90

Matrix

rotations
0

5114
8495

11103
13504
15516
16256

rotation mapping cost

reductions
0

7506
14046
20050
25121
28802
32385

40

Table 3.10: Cost for a near neighbor rotation on a
128 x 128 matrix centered at 64 64.

Angle of rotation

0
15
30
45
60
75
90

Matrix rotation

rotations
0

9183
10446
13589
16378
16375
16319

mapping cost

reductions
0

3594
7800

15777
23359
24331
16384

Table 3.11: Cost for a bilinear interpolation rotation on a
128 x 128 matrix centered at 1 1.

Angle of rotation

0
15
30
45
60
75
90

Matrix

rotations
101

9009
15689
21246
26228
30023
32614

rotation mapping cost

reductions
25

7555
14107
20034
21192
28893
32410

Table 3.12: Cost for a bilinear interpolation rotation on a
128 x 128 matrix centered at 64 64

Angle of rotation

0
15
30
45
60
75
90

Matrix rotation

rotations
101

11510
14648
21556
28282
28763
24676

mapping cost

reductions
25

3628
7826

15800
23378
24382
16409

41

Table 3.13: Timing of near neighbor rotation on a 128x128 matrix
centered at 1 1.

Angle of rotation

0
15
30
45
60
75
90

Matrix rotation timing (sec.)

total CPU time
5.49
5.56
5.41
5-50
5.46
5.15
5.42

MPPtime
0.54
0.61
0.47
0.58
0.55
0.58
0.48

Estimated
0.01
0.04
0.07
0.10
0.12
0.14
0.16

time

Table 3.14: Timing of near neighbor rotation on a 128x128 matrix
centered at 64 64.

Angle of rotation

0
15
30
45
60
75
90

Matrix rotation timing (sec.)

total CPU time
5.43
5.36
5.21
5.50
5.35
5.37
5.45

MPPtime
0.42
0.42
0.47
0.52
0.54
0-56
0.47

Estimated time
0.01
0.03
0.05
0.08
0.12
0.13
0.09

Table 3.15: Timing of bilinear interpolated rotation on a
128x128 matrix centered at 1 1.

Angle of rotation

0
15
30
45
60
75
90

Matrix rotation timing (sec.)

total CPU time
5.54
5.64
5.78
5.45
5.51
5.61
5.54

MPPtime
0-57
0.65
0.82
0.48
0-54
0.62
0-57

Estimated
0.01
0.05
0.08
0.10
0.13
0.16
0.19

time

42

Table 3.16: Timing of bilinear interpolated rotation on a
128x128 matrix centered at 64 64.

Angle of rotation

0
15
30
45
60
75
90

Matrix rotation timing (sec.)

total CPU time
5.50
5.39
5.41
5.53
5.44
5.46
5.41

MPPtime
0.52
0.44
0.46
0.53
0-59
0.59
0.48

Estimated time
0.01
0.03
0.05
0.10
0.14
0.15
0.10

43

t .00000

.875000 -

.750000 -

•625000 -

o ,5000001
03

.375000 -

.£50000 -

.125000 -

0.00000

Keg
32 bq 32 mat rvx centered at
128 bg 128 matr ix centered at.
32 bq 32 matr ix c^nc-^fed at matrix
128 bq 128 matr ix centered at. matr ix

Angle in Degrees

Figure 3̂ 3. Ratio of number of rotations to n2 rotations
for near neighbor rotation wita center of rotation
at 1 1 and at matrix center.

44

fD
or

2.20000

t.92500 -

1.65000 -

t.37500 -

i, 10000 H

.825000 -

•350000 -

•275000 -

0 .00000

32 bq "22. macr ix centered ai ft
128 bg 128 m a t r i x centered at. < l i l >
32 bq 32 macr ix cpnt^rsid ac tiairtx
128 bu 128 mat r ix centered ac. macr ix cenc-er

2t 36 t8 60 72

Angle in Degrees

Figure 3A Ratio of number of rotations to n 2 rotations
for bilinear interpolation rotation with, center of
rotation at 1 1 and at matrix center.

CHAPTER 4

THE ISING MODEL

Another application program developed for the MPP is an Ising model simulation. The

Ising model is a simplified model of a magnet in which the atomic magnetic moments or spins

are arranged on a lattice and can point only up or down. To completely specify the micros-

copic state of the system, it is enough to assign a value of +1 (up) or -1 (down) to spins

assigned to each point on the lattice. The Ising model is a suitable model for implementation

on the MPP since interactions between spins can only occur with the nearest neighbors on the

lattice. Such a structure maps well onto the physical configuration of the MPP.

4.1. The MPP Implementation

The purpose of this Ising model simulation is to calculate the energy as the sum over a

lattice of the product of neighboring spins divided by the number of interactions between

those spins. This energy is related to the strength of a spin-spin interaction k as well as to the

strength of the interaction with an imposed magnetic field h,

The lattice chosen for thi.« simulation is a three-dimensional array of spins of dimensions

128 by 128 by 128.

Since the Ising model has only two possible values for the spins: -1 and +1, the energy

could be easily calculated by summing over the four possible states of spin interaction. How-

ever, the number of states is an exponential function of the number of spins. For example,

even a small 10 by 10 lattice already has 2100 configurations to sum ovpr. The lattice we con-

sider in this simulation will have 22097132 possible configurations.

It is obvious that a direct approach to this problem is not possible. Another solution

would be to randomly select states and, based on them, estimate the sum. Unfortunately, the

45

46

majority of states in most systems with, a large number of particles do not make a significant

contribution, being energetically unfavorable, [ill Therefore, random sampling is an

inefficient and impractical solution.

The approach taken in most cases and also in this simulation is to generate states with

the probability they would have in nature. The method is called a Monte Carlo simulation

because random numbers are an important feature of this approach. A probabilistic model of

the system is used to determine numerical solutions. In other words, in^aH of analyzing the

system as a whole, we can analyze the behavior of a large number of individual particles.

Those particles exhibit a random behavior based on the model chosen. By considering each

particle as a separate experiment and taking the statistical average of many experiments, we

can obtain the necessary information about the system. [12].

The algorithm chosen <^r* be gummariTivi as follows

- generate a sequence of configurations by modifying each spin according to

the energy change, its neighbors influence and a comparison with a random

number.

- for each state, which is formed by a sequence of configurations and depends

on the value of the spin-spin interaction, calculate the average total energy.

In more details for our simulation to generate different configurations we start at an

arbitrary state. That arbitrary state is first created by initialing a set of 4O-bit shift registers

used to generate random numbers and a set of bits, in our case four bits, that will be used as a

feedback at the next step to generate the new set of random numbers.

The bits of the shift register set are initialized and modified depending on the results of a

random number generator. The bits of the integer returned are assigned to the shift registers.

There are no limits set on the size of the random integer returned by the random number

generator.

At high temperatures the spin-spin interaction k is small and the spins are almost

independent. On the other hand, at low temperatures the spin-spin interaction k is large and

47

the probability that the spins will be found in the .same state increases. Therefore, after the

first arbitrary state has been defined, for every new value of k a new table of probabilities for

a positive spin has to be created. That table gives the probability of a positive spin for each

possible sum of neighbors according to the energy associated with the spin-spin interaction and

the imposed magnetic field interaction h.

In this simulation, we calculate the effect of the six nearest neighbor spins on each spin

on every point on the lattice. The six nearest neighbors are those located to the up, down, east,

west, south and north directions. The possible spin sums for the neighbors range from -6 to

+6*. The probabilities for every sum are an exponential function of the spin-spin interaction

and the magnetic field interaction. They are defined as follows:

+e —a -t-A

where i is one of the possible sums.

After the probability table is initialized, the spins in the three-dimensional lattice can be

recalculated. Our simulation allows us to define the number of configurations or times the

spin lattice will be recalculated. That determines how many configurations will form a state

and so, how many configurations will be involved in determining the energy at each state.

To recalculate the spins in the lattice we proceed plane by plane. There are 128 planes

and each one of them is a 128 by 128 matrix. For each plane the sum of spins of the six

nearest neighbors is calculated at each site. Since this simulation was implemented on the

MPP, a parallel processor with dimensions 128 by 128, all those sums can be calculated in

parallel.

After the sum of the neighboring spins is calculated, a aew state is calculated by using

the set of bits and shift registers defined at the beginning of the simulation. It is here that the

set of bits is used, by exclusive-oring them with the old register array, to create the aew regis-

ter array.

48

Then, the spins are reset according to the probability table. However, all the spins are

not reset at once. A boolean njagir is irntiaiiwi to a checkerboard pattern and applied to each

one of the planes of the lattice. Where that mask is true the spins are reset according to the

spin sum of their neighbors. Once all the possible spin sums have been considered, the mask is

inverted.

At that point the same sequence of events, from the computing of all the neighbor sums

to the resetting of the spins over the masked lattice, is repeated. At that point a new next

state has been generated. For each one of the states created the average total energy for each

spin-spin interaction is calculated by taking the mean of the sums over the configurations gen-

erated.

Two different implementations of the Ising model were timed on the MPP. Their

difference was simply on the way the calls were m*ii* to the MCU-resident routines. In one

version, all the calls to the MCU routines were grouped under one general procedure which

was called by the VAX. In the other version, each one of the MCU routines were called

directly from the VAX. The only real difference between these two approaches when timing

is concerned is that the second version takes approximately 0.1 sec for each MCU procedure

calL In this program, this is not a very significant difference.

Different parts of the Ising model were rinwi. Table 4.1 lists average times in

microseconds for several sections of the Ising ^moram. Section 1 is the random number gen-

erator that returns a positive random integer. This random number generator is called 16384

times to completely initial;?^ the random matrix. Section 2 corresponds to the initialization of

the table of probabilities which gives the probability of a positive spin for each possible sum of

neighbors. This table is reinitialized every time the strength of the spin-spin interaction

changes. Section 3 calculates for a given bit plane the sum of spins of neighbors at each site.

It is computed the number of iterations selected and, for each iteration, it is computed 12S

times so that all bit planes are covered. Section 4 resets the spins according to the probabilities

calculated in section 2. It is computed the same number of times as section 3.

49

Table 4.1. Timings of sections of the Ising program

Sections of Ising
Section 1
Section 2
Section 3
Section 4

Measured Times (n sec)
16U

443L8
185.2

32290.2

Expected TimesC fjt sec)
27

4500
168

32330

The expected values were very close to the obtained values when the operations

involved mainly array manipulations.

CHAPTER 5

CONCLUSION

This thesis presented both tools and algorithms adapted to the Massively Parallel proces-

sor. The system and programming tools were created to be used in conjunction with the

Paralel Pascal development and MPP-compiler systems.

The tools include a command file that combines library preprocessing, translation from

Parallel Pascal to standard Pascal and compilation in one step, a command file that simplifies

the compilation, assembly and link-ing of Parallel Pascal programs and access functions to

overcome the current lack of high-level I/O functions to transfer parallel arrays from the

MPP to the host

All the features mentioned above create a user friendly environment for program

development and debugging. However, it is still necessary to add new functions to increase

the usefulness of the system. Examples of such functions are a more complete MPP I/O sys-

tem and either a preprocessor or a modification of the Parallel Pascal compiler that would

indicate when functions used by a program are not yet implemented.

Using the development system and tools mentioned above some algorithms were coded

and tested directly on the MPP hardware after being developed on the serial host. An

effective heuristic algorithm was developed for arbitrary permutations and data mappings for

the MPP was presented. This algorithm is very effective when large arrays are to be pro-

cessed, when few elements are to be moved or when many elements share a .similar motion

like it is the case with small angle rotations and well behaved permutations. An effective

technique for matrix rotation interpolation involving a local search scheme and based on the

above permutation algorithm was also studied.

50

51

It was possible to obtain results and timing measurements from the MPP for the algo-

rithms mentioned above. The timing results aggree well with the estimated times. The

estimated times were computed using average times for the matrix assignements, rotations and

reduction functions, and the number of rotations and reductions performed during the per-

mutation and interpolation phases of the rotation algorithms.

Another algorithm implemented on the MPP was the Tsipg modeL This model is ideal

for implementation on the MPP since interactions between atomic magnetic moments or spins

only occur with the nearest neighbors on the lattice and most operations are on Boolean data.

N86 29545 J t,f
•- -• '

APPENDIX A

6.1. \VMS command file used to implement pp commandX
L s_J

S!
$ 1 compile a parallel program using ppt
S!
S echo >• write sysSoutput
$ extern j- sysusrlireeves.ppascal]extern
$ ppt > sysusrlfreeves.ppascal]ppt
$!
$ on error then goto err
$1
Sint-0
Slst:-
Sppf >
Slbs>-
$ Jforeach i (Sargv)
$ count «• 1
forloop:
$ Jswitch ($i)
S arg - p'count*
S if arg .eqs. "" then goto endfor
$ lease -i:
$ if arg JIBS, "-r then goto c2
$ int-1
S goto endsw
S lease -s
c2:
S if arg Jies. "-S" then goto default
S Ists-'arg'
$ goto endsw
default:
$ name - ""fSparseCargJ1 NAME" T
S ext - *"fSparse(argB."TYPE"r
$ dir -""fSparseCarg^'DIRECTORVr
$ if ext Jies. " .PP" then goto pp
S . ppfr-'arg'
$ goto endsw
$1 else
pp:
S Ibs ^ Ibs*" "arg*
endsw:
$ count - count T 1
S goto forloop
endfon
S!
S name - '"fSpars^ppfJ'NAME')'"

Sdir - "•fSparsBCppfl'DIRECTORY'T"
$!
S if ext jies.".PP" then exit !no .pp file so do nothing

52

53

S c «• "wdir"'ttame'*

$d-"V.obj"
$ 1 - " VJis"
$ echo "*** Pascal Library Processor and ***"
$ eclio "*** Parallel Pascal Translator ***"
$ textern Slst Jibs <5ppf I ppt >Sb
$ ass/user 'ppf* sysSinput
S ass/user pptemp.tmp sysSoutput
$ extern 1st* Ibs*
$ ass/user pptemp.tmp sysSinput
$ ass/user V sysSoutput
S ass/user sysSerror terminal
$ ass/user T pplist
S ppt
S deass sysSinput
S deass sysSoutput
S del pptemp.tmp.*
S Itail -1 pplist I grep -s "No errors"
S!
$ tif (Sstatus ^ 0) then
S open/read pplist pplisuiat

loopl:
3 oldline - newlioe
$ read/end_of_file - exitloop pplist newline
S goto loopl
ezitloop:
$ close pplist
$ if oldline Jies.

"Syntax Analysis Complete, No errors detected." then goto err

S if int Jie, 1 then goto comp
S echo"*** Pascal Translator ***"
S ! pi -w Sb
$ echo "No interpreter on VMS."
$ exit
Stelse
comp:
$ echo "*** Pascal Compiler and Linker
$ pasV
S link, 'd'
$ exit
err:
Secho"*** No Compilation ***"
S del pptemp.tmp.*
Sexit

6-2* UNIX shell file used to implement DV

#
compile a parallel program using ppt
#
set int = 0
set 1st - ""

54

setppf-"
setlbs-""
f oreach i (Sargv)
switch (Si)
case -i:

set int - 1
breaksw

case -s
set 1st -Si
breaksw

default:
ifCSfce»~ pp)then

set ppf » Si
else

set Ibs - ($lts SO
endif
breaksw

endsw
end
if(Sppfre f pp) exit &LO .pp file so do nothing
set b - Sppf ir.p
set c - Sppf:r
echo "*** Pascal Library Processor and
echo "*** Parallel Pascal Translator
extern Slst Slbs . <Sppf I ppt >Sb
tail -1 pplist 1 grep -s "No errors*
if (Sstatus — 0) then
if (Sint — 1) then
echo "**» Pascal Translator «**"
pi-w$b
else
echo "*** Pascal Compiler
pc Sb -w -o $c
endif
else
echo "*** No Compilation
endif

6.3. VMS coTnTi^aTid file used to imnleqient nrtpp cornTnar|d

SI BUILD THE NECESSARY FILES TO EXECUTE A PROGRAM
SI ON THE MPP.
SI
SI Get the name of the file
SI
S if pl-eqs."" then inquire "file : " pi
$pa-""pl-+".pp"
S tempa - V + "•pi" + ".pp"
S assign/user 'pa' sysSinput
S assign/user 'tempa' sysSoutput
S run [reevesjnppjmppertern
S deassign sysSinput
S deassign sysSoutout
St
S!

55

SI Execute the compiler/code-generator
a
S PPDEV 'temp'
SI
SI Delete unnecessary
SI
$ DELETE 't
SI
SI Assemble the vax program.
SI
$ MACRO 'temp*
SI
SI Assemble the mpp program.
SI
$ MCL 'tempVlis/obj
SI
SI T,ink the mpp programs.
SI
S MPPLJNK/deb [devaney.primxelease]prlfix.psl/lib/map -
SI
SI T.inic the vax routines •with the mpp symbol tables.
SI
SCADLNK 'tempYtemp'.stb^PDEVRUN/lib
SI
SI The following message informs you how
S! to run the program. It is not executed
SI from this procedure!
S!
SCLR
S WRITE SYSSOUTPUT "To run the program type : CAD "temp' "temp7 "temp'"
SEXTT

6.4. Printrrtvo Function

#printmpp

{ function printmpp (x,y: integer; matrix: plr):btype; extern;}
{ SI S2 S3 SO }

var
mask: parallel array [1.128,1-128] of boolean;
temp: S3;
result: SO;

zero: integer;

begin (* of printmpp *)

zero :=• 0;
mask> true;

>. not(shift(mask,-l,zero) or shiftdnask^zero,-!));
> shift (mask,-x+it-y+l);

temp^=•0;
where mask do

temp := matrix;
result := sum

56

printmpp >• result;

end; (* of printmpp *)

63. Printmpvb Function

i^pnntmppb

{ function printmpp (x,y: integer; matrix: plb):boolean; extern;}
{ $1 52 $3 SO }
{ where plb is a parallel two-dimensional array of type boolean }

var
mask: parallel array [1.128,1-123] of boolean;
temp: S3;
result: SO,

zero: integer;

begin (* of printmpp *)

zero ?-0;
mask. :=• true;
mask > not(shift(mask,-l,zero) or shiftCmaslwero,-!));
roa.sk .*- shift Cmask,-x+l,-y+l);
temp > false;
where mask, do

temp > matrix;
result >* or (temp.1,2);
printmpp >- result;

end; (* of printmpp *)

57

REFERENCES

[I] Paul B. Schneck, "Issues in Parallel Computing: ,A Non-Euclidian Examination,"
Proceedings of the 1979 International Conference on Parallel Processing, (August
1979).

[2] W. C. Meilander, "History of Parallel Processing at Goodyear Aerospace," Proceed-
ings of the 1981 International Conference on Parallel Processing, (August 1981).

[3] John Burkley, "MPP VLSI Multiprocessor Integrated Circuit Design," Proceedings
of the 1982 International Conference on Parallel Processing, CAugust 1982).

[4] MPP PE Control tfnitfune 1983.
[5] MPP Main Control UnitAprH 1983.
[6] A. P. Reeves, "Parallel Pascal: An extended Pascal for Parallel computers,'' Journal

of Parallel and Distributed Computing 1(1984).
[7] AJ>. Reeves and GH. Moura, "Permutation and Rotation Functions for the Massively

Parallel Processor," in Computing Structures and Image Processing, ed. K.
Preston^Academic Press (in press) 0.

[8] Parallel Pascal User's Guide MUD220^s ("Version l"" Version 1
[9] Control and Debug (CAD) Users MantialApril 1983.
[10] A. P. Reeves, "On Efficient Global Information Extraction Methods For Parallel Pro-

cessors," Computer Graphics and Image Processing 14 pp. 159-169 (1980).
[II] S. Kirkpatrick and R. H. Swendsen, "Statistical Mechanics and Disordered Systems,"

Communications of the ACM 28 pp. 363-364 (April 1985).
[12] L. D. Kovach, Computer-oriented Mathematics, Holden-DayJno, San Francisco

(1964).

OF POOR QUAUT*
Appendix B

DATA MAPPING AND ROTATION FUNCTIONS
FOR THE MASSIVELY PARALLEL PROCESSOR

Anthony P. Reeves and Cristina H. Francf on da Sellos Moura

School of Electrical Engineering
Cornell University

Ithaca. New York 14853

The Massively Parallel Processor a a SIMD computer with
16334 processing elements connected La a 123 x 123 mesh. Such
an organization is ideal for problems which involve near neighbor
iterations, but for other problems which involve other data map-
pings it a often considered to be inefficient. la this paper a general
algorithm for implementing arbitrary permutations and mappings
on such systems is presented. Efficient matrix rotation- algorithms
based on this permutation, function are also '̂yi?1*^ Nearest
neighbor, bilinear interpolation and bicubic spline interpolation
schemes are considered. These algorithms are extended for the case
when the matrix to be processed is larger than the parallel

INTRODUCTION

A convenient way to interconnect a very large number of
processors is in a mo ^im«M««im^j nid or m»«h* thjq interconnec-
tion arrangement is very ample to implement, has a cost which
increases linearly with the number of processors and is very suit-
able for a large number of algorithms. An example of such a sys-
tem is the Massively Parallel Processor [l] which involves 16384
bit-serial processors organized in a 128 x 128. The MPP is pro-
grammed in a high level language called Parallel Pascal [2l

The only permutation function which is directly imple-
mented by the MPP is the near neighbor rotate (or shiftX The
direction of the rotation may be in any of the four cardinal direc-
tions, [n Parallel Pascal the mum oermutation functions are
multi-element rotate and shift functions: other permutations an
built on these primitives.

The rotate function talus a arguments the array to be
shifted and a displacement for each of the arrays dimimainret For
example consider a one dimensional array a specified by

<c array [0-ni of integer
The rotate statement

a:- rotateC a, J>.
is equivalent to

for i >• 0 to n do
afcl >• 4(» + J) mod (n 4-1)1

The rotation utilizes the toroidal end around edge connections of
the mesh. The shift function is similar except that the mesh is
lot loroidally connected and zeroes are shifted into elements at the
sdge of the array; therefore, the shift function is not a permuta-
tion function in the strict sense. The concept of the rotate and
soft functions extend to n dimensions; on the MPP the last two
dimensions of the array correspond to the parallel hardware
dimensions and ire executed in parallel, higher dimension opera-
tions are implemented in serial. The cost of the rotate function is
dependent on the distance rotated. It also depends on '-he size of
the data elements to be permuted.

Piers is ao simple known way to decompose in arbitrary-
permutation into a min ima l sequence of operations on an MPP like
system. In this paper a heuristic algorithm is described. The algo-

rithm exploits the local consistency of data which occurs in many
practical applications. An effective application of this algorithm to
matrix rotation is presented. For some permutations, such as the
perfect shuffle, which do not directly exhibit this consistency pro-
perty, the algorithm may not be very effective.

For many applications the physical fHmimyinn« of the parallel
hardware are smaller ^an the riitti«mHim« of the array to be pro-
cessed. In this case the data array is processed as a set of blocks. An
extension of the permutation algorithm to. deal with fh*« situation
is discussed,

The program and algorithm examples given in this paper use
the Parallel Pascal notation. This location involves three exten-
sions to standard Pascal:
1) expressions involving whole arrays are permitted;
2) the -when - do - otherwise) control statement is available.

This statement is a parallel version of the if - then. - else
statement; the control expression must evaluate to a Boolean
array. All array assignments within the controlled state-
ments must be conformable with the control array and an
masked by it.

3) the functions any and mn an the array reduction functions
or and minimum respectively.

.MATRIX PERMUTATIONS

The matrix permutation algorithm presented in ***** paper is
a general algorithm for implementing arbiuary permutations of a
two dimensional matrix on m»»h connected parallel processors. It
is also capable of performing any onto mapping. It uses a heuristic
approach to reduce the execution time.

The permutation of a matrix a is specified by two coordinate
matrices c and r which have similar dimensions to a. The per-
muted matrix A also H»< the «m» .-jim^fv«nM as a. For a matrix
element b(i,jj the corresponding elements r[i,jj and cii.il specify the
row and column i nrfirjm respectively of where the related element
of a is located. That is, the permutation is specified by •

More formally, the data arrays involved in the permutatk. a
ire specified by.

aj> : array (l-arow,l-aeol] of data;
(where data is any base type)
r : array [l_nrow,l-ncoll of 1-arow;
c : array [l-arow,l_ncoil of 1-acol:

In order to compute the relative distance that the data must
be moved, two pixel element identifying matrices idr and idc are
precomputed, They contain the following:

uidi.ll > I
for alii.].

OF i P«

The relative distances to be moved are then specified by

rr:- (r-wir) mod nrow,
re:- (c-trfc) mod nook

In a pcrmutatioa the data may be shifted in any of the four
quadrants in order co reach a specified destination. However, in
the following algorithms only positive data shifts are considered,
U. in the up and left directions. Toe other three quadrants are
covered by using modulo arithmetic for shift distance calculations
and implementing data movement with che rotation function
which utilizes the end around mesh connections. We have investi-
gated a modified heuristic algorithm which checks all four qua-
drants and moves in the optimal direction. Fewer data shift opera-
tions are required but the overhead due Co checking alternative
directions is significantly higher.

A simple permutation algorithm

A simple naive algorithm to achieve an arbitrary permuta-
tion is co slide a over all che possible positions of 6, assigning the
specified elements of a co each element of 6 when they are in the
correct position.

for u- 1 to nrow do
begin

for jy 1 to ncoi do
begin

where (rr - i) and (re - ;') do
6>o;

a:- rotateCa. 0, 1);
end;

a * rotateCa, L 0);
end;

This algorithm involves OC/t2) operations for an a i n
matrix.

The Heuristic algorithm

In many permutations which occur in practice there are well
denned patterns for the data. For example, near neighbor shifts are
trivial with complexity O(lX peifeci shuffles can be implemented
in 0(/i) rime. The heuristic algorithm attempts to take advantage
of the fact that rr and re will be the same or «i«iiiiir for many
elements. This is particularly true for operations such as matrix
warping.

The algorithm first slides (rotates) a, as many locations up and
left as possible such that future backtracking will not be neces-
sary. If any element of a is correctly positioned over b Cue. (rr -
0) and (re - 0)) then b is updated. Otherwise, air, which is a copy
of che current version of a, is slid in the upwards direction until
all outstanding elements of 4, for which the current re - 0. are
satisfied. The algorithm fh»n shifts as far as possible up and left
again and repeats the above procedure until all elements of the
result mask, are false. La. 4 is complete.

Tie following variables are used in the algorithm :

Variable declaration
maikjnasktr : array (l_/uw, l_/icol] of boolean;
atr : array [l-nrow, l-ncoi] of data;
rrt : array [l-jvow, l-tcoil of 0-nrow;
ri, rit, iastrit : 0-nrovr,

ri, a : row and column -<•>«•"•••« for the up-left move.
malar : a version of mask to process one column.
rit : a version of ri used to process one column.
<z£r : a version of a used to process one column.
rrt : a version of rr used to process one column.
burnt : the last value of rit.

The Parallel Pascal version of the heuristic algorithm is as
follows

O0)or(rc OOi

while anyGnaj*. 1 _J) do
begin { iterate until the permutation is complete 1

ri >• minCrr, 1. 2);
a, > minOc. 1. 2>.
a :<• rotatedi. ri, d\ { move up and left as far as possible }
rr> rr-ri;
re :» re - ct;
masker :- (rr - 0) indOc-0):
if anyOiuu&r, L, 2) then { satisfy elements for the

current position }
orrt-a

else
begin (satisfy each element for the given column)

when rc-Odo
rrtfrr

otherwise
rrt :» nrow,

rit :- min(m, 1. 2);
mas Jar ?• rrt - rit;
I the next seven statements implement }
{ the statement atr - rotate (a. rit, 0))
i but also take advantage of the previous shifts I
if d 00 then

begin
atr > <£
lastrit >0;

end;
atr :- rotate(atr, rit • iastrit, 0):
iastrify ric,

end;
where malar do {update b for the current location of a)

begin
b fatr,

res-neoft
mask >• false;

end;

Variable functions:
: :he result ma<lt, '-me values indicate elements of b
which have not yet received che correct element of a.

end;

This algorithm is bounded by a2 iterations. However, this
must be considered a loose bound "n" we currently do not know
a permutation which would require all n2 iterations. The algo-
rithm requires one iteration for a positive single element shift per-
mutation but a-1 operations for a negative shift since che rotate is
in che wrong direction.

Algorithm Cost

The cost of the naive algorithm is proportional to the number
of rotate operations, LC. n1 * (the cost of a one element rotate
operation plus cwo comparison operations). The heuristic algo-
rithm has two major cost components : the rotate operations as
noted before and the (min) reduction functions. The reduction
functions are used :o compute the multi-element distance for
moves. In che cables for the performance of the algorithm, both
the total number of element rotates and the total number of

reduction operation! are given.
The relative cost of a rotation and reduction is both system

and data size dependent. For the MFP, the cost of a reduction
function is in the order of 42 iu whereas the single element rota-
tion of 32-bit data require! in the order of 12 /a to 9.6 its
depending upon the number of successive rotate operations. There-
fore, the reduction functions may represent a significant portion of
the computation cost. With careful low level programming the
reduction operations can be overlapped with data rotate operations
such that their effective cost is in the order of 1.4 fa. If the MFP
was augmented with a small amount of additional hardware simi-
lar to that outlined in [3] then the reduction time could be
reduced to US ps over half of which could could be overlapped
with data rotation operations. The heuristic algorithm always
requires less iterations and rotations Mmn the naive algorithm:
however, the additional overhead of the reduction function may

i it ii^j efficient in some ina^nT^ti

Permutation Remits

The results of some permutations performed in order to
obtain rotated matrices of size 32 x 32 are given in Table 1 and Q.
These rotations are into mappings rather 'h»n permutations (see
the matrix rotation section for detailsX For comparison, the naive
algorithm requires 1024 iterations, 1024 rotate operations and zero
reductions for any 32 x 32 matrix permutation or mapping. Table
in contains the results for perfect shuffle permutations for
different size matrices. The result for perfect and inverse shuffles
are identical for any matrix size,

TABLE I: Con for a near neighbor rotation on a
32 x 32 matrix centered at 16 16.

Angle of rotation

0
15
30
45
60
75
90

Matrix rotation mapping cost

iterations
0

124
262
505
741
724
523

rotations
0

562
620
S37

1022
1019
1007

reductions
0

340
748

1464
2163
2119
1552

TAUT P [L Cost for a near neighbor rotation on a
32 x 32 matrix centered at 1 1.

Angle of rotation

0
15
30
45
60
75
90

Matrix rotation

iterations
0

235
437
625
779
389
993

mapping cost

rotations reductions
0

304
517
683
S29
956
992

0
666

1266
1825
2292
2631
2946

The perfect shuffle is an example of a permutation which
does aot exhibit the locality property. The number of algorithm
iterations needed to implement shuffles directly is (A — lX How-
ever, the separability property of the two riim»n«inna| shuffle is
not being used. If we use the permutation algorithm to the per-
mutation in two stages, us. tot shuffle the rows and then shuffle
the columns, then n — 1 iterations an needed for each permuta-
tion. Therefore, the perfect shuffle when implemented directly
has complexity OCrt2), but when computed in two stages the algo-
rithm is much more effective and has O(n) complexity. The
results of implementing the perfect shuffle is two separable
shuffles are also given in Table HL Table IV shows the results of a
random permutation: this demonstrates that the heuristic is aot
effective when the mapping does not posses the locality property.

TABLE IV: Permutation cost for a random permutation.

matrix size

32x32

PanHntn PeTmUtltiOn

iterations
630

rotations
995

reductions
1851

LARGE ASSAYS

Frequently the data to be processed by a parallel processor
will be in the format of arrays which exceed the flxfri range of
parallelism of the hardware. Therefore, it is necessary to have
special algorithms that will *»«! with large arrays by breaking
them down into blocks manageable by the hardware, without loos-
ing trade, of the relationships between different blocks.

One «Eh«m«, which is frequently used on the MPP, is to par-
tition the large array into blodu which are conveniently stored in
a four dimensional array. The range of the first dimension of this
array specifies the number of blocks in each row of the large
matrix and the range of the second dimension specifies the number
of blocks in each column. Given a conceptual large matrix

mx : array [0-x.O.y] of btype;

which is to be stored in an array a. of type

array [l_n. Ijn. 1-p, 1 -qj of btype

Element i.j of the large matrix is mapped into the array a as
specified by

ma(i.jj - «[W dlT p, l+j diT q, l+« mod p, !•(•/ mod q]

For example, a 512 x 256 matrix could be stored in eight blocks ac

la: array [1-44_24_J2S,1_12S] of real;

This data structure allows blocks to be manipulated indepen-
dently. However, it still preserves the positional relationships of
those blocks in the original large matrix.

To simplify the manipulation of large arrays on the MFP,
two Parallel Pascal library functions Iraau and Isfiift have been
developed. These functions take an array argument and two dis-

TAflLE Ht Cost for perfect shuffle permutations
for different matrix sizes.

matrix size

4 x 4
S x S
16 x 16
32x32

Direct Shuffle Cost

iterations
9

49
225
961

rotations
12
56

240
992

reductions
22

134
646

2822

Separable Shuffle Con

iterations
6

14
30
62

rotations
6

14
30
62

reductions
6

14
30
62

I

ORIGINAL P&3E IS
OF POOR QUALITY

placement arguments, like the primitive matrix rotate and shift
function! however, in :his case the array argument la i four
dimrnsional array which a treated lite a conceptually large
matrix.

Many program] can be converted to operate on blocked
rather than conventional matrices by simply replacing all
instance] of rotate and shift with [rotate and Ishift respectively.
This is true for the permutation programs presented: however, in
the case of the heuristic permutation algorithm, this is not a very
efficient solution. A better method is to scan through the result
blocks and perform permutations on only the input blocks that
contribute to the current result block being processed. This algo-
rithm is shown below.

TABLE Vt Comparison of perm2 and large blocked permutation
for a rotation centered at coordinates 16 16.

angle of rotation

o
15
30
45
50
75
90

Perm2

rotations comparisons
1138 184
8JO 374

10 11 766
1448 1503
1858 2174
1846 2151
1793 2001

Large perm.

rotations comparisons
3472 1552
7616 7552

11520 15408
16544 25232
21328 33552
25056 37760
22544' 33120

LaMr. array (l
lr£& array [l

i-m,l-arow,i_jicoil of data;
^— rryl-?tTtr>'qrit-jcoij of <p<^*^

begin
for i - 1 to n do

for /' - l to m do
begin (process each result block)

rb *• 1 + JrCi,;] dtr nraw,
co :- H- ldj.,j} div nook
ro V 1 +• lr[i,j] mod nrmr,
co:- I + ldi,j] mod ncot _
for i - 1 to n do

for I - 1 to m do
begin (consider each input block)

masko * (ro - k) and (co - rt
if any&nor&fr, 1. 2) then

where maskb do
lifey] :- perm2 (la [kl] .

ro, co, maskb);
end;

end;

PtrmZ \s the heuristic algorithm presented previously with
rhi» modification that the '"<**«! m««if value is m^y»H as an argu-
ment That is, only elements selected by the "t"lr. are permuted.
An T^Hflnnl soeedup is achieved by fhi« since the heuristic
works much better when only a subset of element] are to be per-
muted.

Table V contains the result] of the rotation mapping for the
case where a 32 x 32 matrix is considered co consist of 4 x 4 blocks
of S x S elements. The Large Perm result] an from using the Iro-
tate approach and che p*rm2 results an for the block scanning
algorithm.

TABLE V: Comparison of perm2 and large blocked permutation
for a rotation centered at coordinate) 1 1.

angle of rotation

0
15
30
45
60
75
90

Perm2

rotations reductions
13 3

657 703
1050 1302
1389 1834
1702 2329
1931 2669
2086 2971

Large perm.

rotations reductions
0 0

6768 7184
7616 10704
S352 13152
6896 11248
4112 5808
1856 1408

MATRIX ROTATION

One application of the permutation function is matrix rota-
tion mapping. Three rotation techniques are considered : nearest
neighbor, bilinear interpolation and bicubic interpolation. A rota-
tion is specified by three parameters : the location of th> origin of
rotation (r^c^) and the rotation angle i . The starting point of all
rotation algorithms is the generation of thi mapping matrices r and
cfrom these parameters.

Nearest neighbor

The nearest neighbor algorithm is simply an into mapping in
which a result element is assigned the value of the nearest rotated
matrix element. In this case the new row and column coordinate
matrices, r and c. are denned as follows

r[i ,J\ -round((c0- ;)jui(9) + (i -r^coiCfl) + r0)

c[i,j] -roundCC; - c^cos(9) + (i - rjsin«» +• c,)

for all i and j: any values of the result which have near neighbors
outside the range of the input matrix are set to zero.

In performing a rotation, some elements of the result matrix
are rotated and some elements are selected which are outside of
the input matrix. In our algorithm result element] for the latter
case are simply set to zero. Therefore we have a permutation in
which a subset of the input element] map into a subset of the
result elements; the size of these subsets depends upon the angle
and origin of the rotation. The rotation is achieved by using the
valid element] of r and c with the heuristic permutation algo-
rithm.

Example] of nearest neighbor rotation are shown in Fig. 1.
for an 8 x S matrix with the origin of rotation located at <X 1).
For a small angle of rotation most of the results have valid
mapped values; however, che heuristic algorithm is very effective
for this case because then is little movement of the data or rr and
cr are the same for many elements.

When the rotation angle is large there is a lot of data rear-
rangement but only a few elements are to be moved with the
rotation located at (1. IX For the naive algorithm 49 iterations are
needed for all rotations.

Bilinear Interpolation
For the bilinear interpolation algorithm a result element is

computed from a weighted sum of the four rotated Input matrix
elements which surround it. Then an two possible approaches to
implementing this scheme. First, we can compute four permuta-
tions each permutation acquiring one of the four neighbors for
each element. This is called muitiptt permutation.

The second method is co perform one permutation and caen
*ek :ne '.ocai neighborhood of the rotated input aatrix for :ne

OF POOR

U 12 13 14 13 IS 17 IS
21 22 13 24 23 25 17 28

31 31 33 34 33 36 37 33

41 42 43 44 1} 46 47 48

SI 32 53 34 33 56 37 58
61 52 S3 54 65 66 67 53

71 72 73 74 73 76 77 7S

31 12 S3 J4 15 36 37 3S
Input Matrii

11
22

22

33

44

55

33

66

0

12

12

24

33

45

56

57

0 0 0 0

0 0 0 0

14 0 0 0

23 15 0 0

23 26 17 0

36 27 27 IS

47 ' 37 25 0

57 48 0 0

43 degree rotation

35 iterations

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

11 12 13 0 0 0 0 0
21 12 23 14 15 IS 17 IS

31 32 33 24 2J 2S 27 2S

37 38
52
62
72
32

53
63
73

33

54 45 46 47 48 0
64 53 36 57 53 0
74 65 66 67 64 0
34 75 76 77 78 0

10 degree rotation

5 iterations

11

12

13
14

13

IS
17

IS

0

0

0
0

0
0

0
a

0

0
0

0
0

0
0

0

0
0
0

0

0

0

0
0

0

0
0

0
0
0

0
0

0

0
0

0

0

0
0

0

0

0
0

0
0
0

0
0

0
0

0
0

0

0
0

0
90 degree rotation

14 iterations

Figure 1. Sample Nearest Neighbor Rotations

other near neighbors, Toe idea being that a local search will
require lea computation than four complete rotations especially
when the angle of rotation is large. The local neighborhood of a
single rotated matrix does not contain a complete set of the near-
neighbor elements of the input matrix; some are lost due to grid;
spacing differences. A complete set can be guaranteed, however, if'
we also include the local neighborhood of a slightly perturbed.;
rotated input matrix. This scheme is called the dauzLt permutation
method; both rotated matrices can be computed simultaneously'
with a single execution of a slightly modified heuristic permuta-
tion algorithm.

If we map a remit element back to the input matrix it will!
be surrounded by four elements PI - P4 a shown in Fig. 2. Thesei
points are moved to the procesting element associated with thei
result P and the interpolation is then computed in parallel.

PI

rfl

The interpolation fractions arc

ef = cp — cufl

Once the points PI - P4 have been obtained the interpolated
result is computed as follows

.
(1 - cf >r/«P3 +-c/«r/«?4

The algorithm for the muitipit ptrmutation approach is as
follows

begin

P3 P4

Figure 2. HiHn»«r interpolation

For the interpolation algorithms, the matrices, rp
contain the actual locations of the rotated elements.

rp(i,j] = (c, -
c?(i,jl = 0 —

for all i and ;'.
The coordinates of the near neighbors are as follows

cp,,

<•«, = K«o-

!(/ - CoX<3«9) +• (i - c.,

.
b :* coef 1 * permCo. r, clr. {value of top left neighbor I
c :* c + I :
o :» coef2 • permCo. r &) -t. kr, (value of top right
neighbor I
r '» r •¥ \ \
a :- coef 3 * pennCo, r, c) + o; (value of bottom right
neighbor }

S >• coef4 « permCa, r, c) * 6; f value of bottom left
neighbor I

end;

Perm is the heuristic permutation function. The final result of
rotating a is stored in the matrix i.

The doublt permutation approach uses a modified permuta-
tion function which creates the following matrices

b [i.j] > a. Ki.il cii-iH

J[i.j]>4ni.lc£i.i]+ i]

ORIGINAL PAGE" 15
OF. POOR QUALITY

where
a is the original matrix
6 is the rotated matrix
i is the shifted rotated matrix
r is the row coordinate matrix

c is the column g»»"t'niiTj« matrix

To avoid loosing the value of the center of rotation, when the ori-
gin is located to the right of the matrix center, the matrix is
shifted left and, therefore, in the equation dunning matrix d we
substitute a negative one for the constant one.

The second step in the doubLt permutation algorithm is a
local search performed on both rotated and shifted rotated
matrices in order to find all the values of the elements deeded for
the interpolation. The local search has a constant m«rimmn con
for any size matrix. It therefore has an advantage over the multiple
permutations approach, since every permutation in chat approach
will become more costly as the matrix size increases.

For the worn case rotation angle (8 - 45). it has been deter-
mined that a local search in a 5 x 5 window is sufficient to yield
the values of *Ji the elements needed to perform a bilinear inter-
polation. The local search strategy implemented in our algorithm
is a spiral search. The elements an selected by comparing their
row and column coordinates to those needed. Once they mutch.
their values can be obtained from the rotated matrix or from the
rotated shifted maoix.

Cubic Interpolation

The cubic interpolation version of the rotation algorithm is a
simple extension of the bilinear interpolation scheme. The first
step, finding the coordinate T**i'''''*t r a*^ c, is i ***'**?rir |̂ eg the bil-
inear interpolation THit^. After obtaining these matrices, the values
of sixteen neighbor points must be acquired. If the multiple per-
mutations approach is used, then «*;r"«i separata permutations
will be required. However, with the doubts permutation scheme
only a mniLl extension of the bilinear algorithm is needed, _

Instead of using a 5 x 5 window, which is the case when
four points have to be found, a 7 x 7 window is necessary to find
sixteen points. However, since the element will have rotated in a
specific direction, the search window can be reduced to a 7 x 5
window. Each row of points needed will use a different 7x5
window of search.

Once all the values needed are found, the bicubic interpola-
tion itself is done by, first, pgrrnfmm; a cubic interpolation for
each of the four rows and. caen. performing a fifth cubic interpo-
lation on the row points obtained,

As shown in Fig. 3, the reference point for the cubic interpo-
lation computed in step one is P& The first four cubic interpola-
tions are performed to obtain points pa, pb, pc and pd. The fifth
one yields the value of point P.

PI

P5

P9

P2

P6

+paP3

I

P10 ' +pc Pll •

• P14 • -i-pdP15 •

Figure 3. Cubic Interpolation

P4

PS

P12

P16

Test Results

The local starch performed in the daubla permutation algo-
rithm ^a* a constant mMTiT^nr^ cost for any **** matrix. For any
matrix the maximum cost is 100 rotations and 25 reductions for
the bilinear interpolation method 2nd 552 rotations and 525 com-
parisons for the cubic interpolation.

The results for rotations n«ir»« bilinear interpolation for a 32
i 32 matrix are given in Table Vn and Vm for different centers
of rotation. The results of rotations applying cubic interpolation
are given in Tables DC and X.

TABLE VTt Cost of bilinear interpolated rotation
centered at coordinates 16 16

angle of rotation

0
15
30
45
60
75
90

Double perm.

rotations reductions
1188 184
850 374

1011 766
144S 1503
1858 2174
1846 2151
1793 2001

Multiple perm.

rotations reductions
4092 £49
2488 1416
2544 2978
3292 5916
4084 5602
4081 S491
4090 7920

TABLE Vm: Cost of bilinear interpolated rotation
centered at coordinates 1 1

angle of rotation

0
15
30
45'
60
75
90

Double perm.

rotations reductions
13 3

657 703
1050 1302
1389 1834
1702 2329
1931 2669
2086 2971

Multiple perm.

rotations reductions
4 6

1342 2705
203J 5093
2683 7238
3291 9230
3471 10627
3968 117SO

TABLE DC: Cost of cubic interpolated rotation
centered at coordinates 16 16

angle of rotation

0
15
30
45
60
75
90

Double perm.

rotations reductions
1640 684
1302 S74
1463 1266
1900 2003
2310 2674
2298 2651
2245 2501

Multiple perm.

rotations reductions
16368 2608
10072 5757
10394 12021
13300 23668
16341 34371
16315 33928
16360 31664

TABLE X: Con of cubic interpolated rotation
centered at coordinate! 1 1

angle of rotation

0
15
30
«
60

Double perm.

rotations reductions
552

1109
1502
1841
2154

75 i 2383
90 I 2538

525
1203
1802
2334
2S29

Multiple pGTSL

rotations reductions
' 272

7683
9723

11815
13793

3169 i 15316
3471 1 15872

30
11132
20589
29104
37047
42586
47088

6

OE POOR
IS

RESULTS USING THE MPP

The results for 32 X 32 matrices reported in tliis paper were
obtained with a Parallel Pascal Translator which translates Paral-
lel Pascal into standard Pascal for program development [4]. Some
of these functions have also been run on the MPP; in this case for
i 128 z 128 array. In Table XI and Table XH results for near
neighbor rotations are given and la tables Xffl and XIV results for
bilinear interpolation rotations are given.

Table XL Cost for a near neighbor rotation on a
123 z 12S matrix centered at 1 1.

Table XHi Cost for a near neighbor rotation on a
123 z 123 matriz centered at 64 64.

Angle of rotation

0
15
30
45
60
75
90

Matriz rotation mapping cost

rotations
0

9183
10446
13589
16378
16375
16319

reductions
0

3594
7800

15777
23359
24331
16384

Angle of rotation

0
15
30
45
60
75
90

Matrix rotation mapping cose

rotations
0

5114
S495

11103
13504
15516
16256

reductions
0

7506
14046
20050
25121
28802
32385

Table XHI: Cost for a bilinear interpolation rotation on a
123 x 123 matrix centered at 1 1.

In Figs. 4 and 5 comparisons an given between the 32 x 32
and 128 z 123 results. The cost shown is the ratio of the number
of shift operations required by the heuristic algorithm over the
number of shifts required by the ample algorithm for a single
permutation (Le, n2}. Them figures show that there is a very good
correspondence between the the results for the different size
matrices. That is, for the rotation algorithm the improvement
achieved with the heuristic algorithm is a constant which which is
independent of matrix ***»-

l .aoooo

Angle of rotation

0
15
30
45
60
75
90

Matriz rotation mapping con

rotations
101

9009
15689
21246
26223
30023
32614

reductions
25

7555
14107
20034
21192
28893
32410

J

. taiooo -t

0.30000 4-

32 by 32 matrix centered at (1,1)
128 by 128 matrix centered at (1,1)
32 by 32 matrix centered at matrii center
128 by 128 matriz centered at matrix center

Angle in Degrees

Figure 4. Ratio of the aumber of rotations to n. - rotations for near neighbor rotation with the
center of rotation at (1,1) and at the matriz center.

ORIGINAL PACF"IS
OF POOR QUALITY

Table XIV: COR for a bilinear interpolation rotation on a
128 x 128 matrix centered at 64 64.

Angle of rotation

0
IS
30
45
50
75
90

Matrix rotation mapping cost

rotations
101

11510
14648
21556
28282
28763
24676

reductions
25

3628
7826

15SOO
23378
24382
16409

CONCLUSION

An effective heuristic algorithm for arbitrary permutations
and data mappings for rnwh connected SMD processors has been
presented. This algorithm is particularly suited to the following

1. When only a few elements an to be moved.

2. When many elements snare a «pi|i*y motion, &g* *Trt»n angle
matrix rotation and warping.

3. When large arrays are to be processed.

It is less suitable when tne permutation or mapping is H*n<i»
and does not nave tne locality oroperty. Tne effectiveness of this
algorithm over a naive algorithm depends upon the system imple-
mentation parameters, and the size of the data co be manipulated.

An effective technique for matrix rotation interpolation has
been presented which involves a local search scheme. Excellent
results have been obtained especially for bicubic interpolation.

REFERENCES

1. K. E. Batcher, "Design of a Massively Parallel Processor."
IEEE Transactions on Computer! C-29C9) pp. 836-540 (Sep-
tember 193U

2. A. P. Reeves, "Parallel Pascal: An extended Pascal for Parallel
computers." Journal of ParaiUl and Distributed Computing
1 pp. 64-80 (1984).

3. A. P. Reeves, "On Efficient Global Information Extraction
Methods For Parallel Processors." Computer Graphics and
Image Processing 14 pp. 159-169(1980).

4. A. P. Reeves, "Parallel Pascal Development System," Cornell
Uniwtity Technicai Report. (January, 1985).

32 by 32 matrii centered at (l.l)
128 by 12S matrix centered at (1.1)
32 by 32 matrix centered at matrix center
128 by 128 matrix centered it matrix center

•) • oooao
16 18 60

Angle in Degrees

Figure 5. Ratio of the number of rotations to n- rotations for oil near interpolation rotation
with the center of rotation at (1,1) and at the matrix center.

OURNAI, OF PARALLEL AND DISTRIBUTED COMPUTING 1, 64-80 (1984)

^arallel Pascal: An Extended Pascal for Parallel Computers

ANTHONY P. REI-VI-S

School <>J Klecirkal Engineering. Cornell University, Ithaca, New York 14853

Parallel Pascal is an extended version of the conventional serial Pascal pro-
gramming language which includes a convenient syntax for specifying array oper-
ations. It is upward compatible with standard Pascal and involves only a small
Minuter of carefully chosen new features. Parallel Pascal was developed to reduce the
semantic gap between standard Pascal and a large range of highly parallel computers.
Two important design goals of Parallel Pascal were efliciency and portability. Por-
tability is particularly difficult to achieve since different parallel computers frequently
have very different capabilities.

I. INTRODUCTION

There is a large class of mainly scientific problems which require the
ivailability of highly parallel processors in order to compute results in a
easonable amount of time. Many diverse parallel computer architectures
lave been designed for these problems, which usually involve either pipeline
>r processor array schemes. A common feature of these architectures is their
ibility to perform some very high speed operations on arrays of data. How-
:ver, there is a very large variation between different architectures in the set
>f array operations which can be efficiently implemented and the size of the
irrays which can be efficiently processed. The term "parallel computer" in
his paper is used to indicate systems which have high-speed array-processing
:apabili(ies through hardware parallelism. Parallel Pascal is a programming
anguage for such parallel computers.

Conventional serial high-level programming languages are difficult to im-
>lement efficiently on parallel computers. Most parallel computers are cur-
ently programmed in either assembly language or a machine-dependent
pecial version of Fortran. The main advantages of a general high-level
anguage for parallel computers, such as Parallel Pascal, are portability,
>etter error detection and diagnosis facilities, and efficiency. Efficiency must
>e a prime consideration since with any parallel system extra hardware is
>eing used to achieve a high-speed performance. Portability is perhaps the

64
>743-7315/84 $3.00
'opyriglil © 1984 by Academic Pies*. Inc.

Ill rights of reproduction In any fnmi reserved-

PARALLEL PASCAL 65

most difficult goal to achieve while maintaining efficiency since different
parallel systems have very different data permutation capabilities.

There are three fundamental classes of operations on array data which are
frequently implemented as primitives on array computers hut which arc not
available in conventional programming languages; these are: data reduction,
data permutation, and data broadcast. These operations have been included as
primitives in Parallel Pascal.

Data reduction operations reduce the number of elements in the data by
applying an operator between array elements and returning the result. For
example, a typical reduction operation is to compute a vector which contains
the sums over the rows of a matrix. Parallel Pascal reduction functions arc
described in Section 4. Data selection may be considered to be a special type
of reduction function; however, selective data assignment requires a different
syntactic structure. Data selection and selective data assignment use a similar
syntactic form in Parallel Pascal and are described in Section 3.

Data permutation and data broadcast functions rarely need to be used in
conventional programming languages since random access to array elements
is usually adequately dealt with by index expressions. In a parallel system it
is usually much more efficient to do a data permutation in parallel. Data
permutation and broadcast functions are described in Section 5.

A single parallel control statement, the "where" statement, is defined in
Parallel pascal. It is similar to an "if" statement but with an array control
variable. The where statement is described in Section 6. A method of acces-
sing the individual bits of array data elements, which is possible with bit-
serial parallel computers, is outlined in Section 7.

Parallel Pascal was originally designed as a high-level language for
NASA's Massively Parallel Processor (MPP), which was constructed by
Goodyear Aerospace [I]. The MPP has a single-instruction unit and 16,384
processing elements organized in a 128 x 128 matrix with near-neighbor
interconnections. Other parallel computers with a similar interconnection
scheme include Illiac IV and the DAP. Parallel Pascal is also suitable for
parallel computers with a less restrictive interconnection scheme such as is
found with many pipeline systems, for example. In this case, it may be
necessary to implement some additional data-mapping functions in order to
take advantage of all the parallel computer's capabilities. This is discussed
further in Section 5.3. An in-depth description of Parallel Pascal and other
aspects of the MPP is given in [2] and also in |3|.

A Parallel Pascal-to-standard Pascal translator has been developed to allow
initial experimentation with different language features. This translator is
now being used for program development of Parallel Pascal programs on
conventional serial computers.

A compiler has been developed 13, 2] which converts a Parallel Pascal
program into a parallel P-code form. Interesting features of this P-code
language are outlined in Section 8. A parallel P-code code generator for the

66 ANTHONY P. REEVES

MPP has been developed by Computer Sciences Corporation. Parallel Pascal
is (lie first operational high-level language for the MPP.

A considerable effort was made to maintain the concepts of standard Pascal
in designing the extensions for Parallel Pascal. However, there were several
features of standard Pascal which cause problems in the parallel computer
context. These are discussed in Section 9.

2. PARALLEL EXPRESSIONS

In standard Pascal the only aggregate array operation defined for arrays is
to copy one array to another. For example, given the definition

var a, b, c: array [I . . I O J of integer;

the following statement is valid and means copy all elements of array b to
array a.

a := b;

In Parallel Pascal all conventional expressions are extended to array data
types. In a parallel expression all operations must have conformable array
arguments. A scalar is considered to be conformable to any type of com-
patible array and is conceptually converted to a conformable array with all
elements having the scalar value. For example, the statement

a := b + c + I;

is equivalent to

for i : = 1 to 10 do

In many highly parallel computers there are at least two different primary
memory systems; one in the host and one in the processor array. Parallel
Pascal provides the reserved word parallel to allow programmers to specify
the memory in which an array should reside. In standard Pascal an array type
is specified with the syntax

type newtype = array [indextypej of eltype;

where indextype specifies the number and range of the array dimensions and
eltype specifies (he type of the array elements. A parallel array type is
specified with the syntax

PARALLEL PASCAL

type newtype = parallel array (indextype] of ellype;

67

The parallel specifier exists only to provide information to the compiler as to
the variables' usage. In all usage in the language a parallel array is indistin-
guishable from a conventional array. In some systems there is no distinction
between host and processor memories; then the parallel specifier has no
effect. In any case, a compiler may decline to store the array where requested.

3. ARRAY SELECTION

Selection of a portion of an array by selecting cither a single index value
or all index values for each dimension is frequently used in many parallel
algorithms, e.g., to select the ith row of a matrix which is a vector.
Specification of a single index value is the standard indexing method in
standard Pascal. In Parallel Pascal all index values can be specified by eliding
the index value for that dimension. For example, given the definition

var a,b : array [I. .5, I.. l()| of integer;

in Parallel Pascal the statement

«UJ :=M,41;

assigns the fourth column of b to the first column of «. It is interesting to note
that standard Pascal already permits the assignment of whole arrays and of
subarrays when the rightmost dimensions have been completely elided; there-
fore, the following are valid statements in standard Pascal:

a :- b;

The second statement means assign the second row of b to the first row of a;
in Parallel Pascal this could also be specified by

a(\ ,] :=b\2,] ,

3.1. Subrange Constants

It is sometimes necessary to move data between arrays with different
dimensions. In Parallel Pascal subarrays consisting of consecutive sets of
elements may be specified. If subarrays wilh other than consecutive elements
are required then they must be packed into the consecutive form with per-
mutation functions. The concept of a constant subrange is introduced in order
to specify a consecutive subset of index values.

68 ANTHONY P. RUIIVRS

The syntax for (he constant subrange is

const identifier = low..high;

where low and high are either literals or previously defined constant
i'lcntiliers.

3.2. Subrange Indexing and Array Packing

Subrange constants may be used to index an array in Parallel Pascal. The
general syntax for a subrange index is

array-idenlifier|offset @ subrange-constant]

where offset is an optional conventional scalar index expression. The ordered
set of indices specified by a subrange index is the result of adding the value
of the offset expression to the values implied by the subrange constant. For
example, given the definition

var a, h : array {I.. 10J of integer;

the statement

is functionally equivalent to

for i : = I to 5 do

a[i + I] := fc|i + 31;

The main reason for the introduction of subrange indexing was to permit
blocks of data to be transferred between arrays having different dimensions.
It was not designed to be a tool for algorithm development. An alternative
specification of this operation, which was considered, was to use a new
standard procedure, called replace, which is analogous in style to the standard
Pascal pack and unpack functions. A possible syntax for replace is

replace^, Oal, Ra\, Oa2, Ra2, . . . , b, Ob\, Rb\, . . .)

where Oal is the offset of the first dimension of array a, Ra\ is the range of
the first dimension of array a, etc..

This syntax works well for vectors but results in a proliferation of argu-
ments for higher-dimensional arrays (four for each dimension). The more
syntactically complex subrange indexing scheme was chosen because it was
considered to be more readable for multidimensional arrays.

PARALLEL PASCAL 69

3.3. Array Conformabilily

In standard Pascal, data items combined together in an expression must be
type compatible. In Parallel Pascal, array data items in a parallel expression
must also be conformable, i.e., have the same rank (number of dimensions)
and the same range in each dimension. For example, given the definitions

var a, b : array 11.. 10j of integer;

c: array |0..9| of integer;

the statement

a : = a -i b\ ,Q; -

is conformable, while the statement r" «

a : = b + r;

is not conformable since the specified ranges of h and c are different.
While the exact range conformabilily requirement is in keeping with the

strong typing concepts of standard Pascal, there are occasions when the action
specified by the above statement is useful. The range requirement can be
explicitly circumvented by using subrange indexing. For example, the
statements

o STI 79

O &
O 9>
50 f

a := b + c|@0..9|;

o|@l..lOJ := b[@\. . lQ] r;

are all conformable and have the same effect.

4. REDUCTION FUNCTIONS

Array reduction operations are achieved with a set of standard functions in
Parallel Pascal which are listed in Table I.

TABLE I
REDUCTION FUNCTIONS

Syntax Meaning

sum(array, Dl, D2, . . . , Dn)
prod(array, Dl, D2, . . . , Dn)
all(array, DI.D2, . . . , Dn)
any (array, Dl, D2, Dn)
max(array, Dl, D2 Dn)

'min(nrray, Dl. D2 Dn)

Reduce array with arithmetic sum
Reduce array with arithmetic product
Reduce array with Boolean AND
Reduce array with Boolean OR
Reduce array with arithmetic maximum
Reduce array with arithmetic minimum

70 ANTHONY P. REEVES

The first argument of a reduction function specifies the array to he reduced
and the following arguments specify which dimensions are to be reduced. A
dimension is specified by a constant expression; the first dimension is dimen-
sion I. The dimension parameters must be constant expressions so that the
shape of the result is known at compile time.

I "or example, given the the definitions

var

a: array[I.. 10,1..5| of integer;

b : array(I.. IOJ of integer;

c: integer;

the following are correct Parallel Pascal statements

b : = sum(«, 2); (* sum the rows of a *)

c : = sum (a, I, 2); (* sum all elements of the array a *)

c : = max (ft, I); (* find the maximum value of b *).

Each dimension parameter of a reduction function implies that there will be
one less dimension in the result array; a scalar is considered to be an array
without any dimensions in this context.

5. PERMUTATION AND DISTRIBUTION FUNCTIONS

One of the most important features of a parallel programming language is
the facility to specify parallel array data permutation and distribution oper-
ations. In Parallel Pascal four such operations are available as primitive
standard functions; however, for some Parallel Processors it may be necessary
to specify more primitive functions for efficiency. The standard Parallel
Pascal functions for data permutation and distribution are given in Table II.

TABLE II
PERMUTATION AND DISIRIRUTION FUNCTIONS

Syntax Meaning

shifl(airay, 51, 52, . . . , Sn)
rotutc(array, 51, 52 Sn)
transposc(arniy> £)l, D2)
pinamir.irrav ilim. ranee)

End-off shift data within array
Circularly rotate data within nrray
Transpose two dimensions of array
Expand array along specified dimension

PARALLEL PASCAL 71

5.1. Shift and Rotate

The shift and rotate primitives are found in many parallel hardware archi-
tectures and, also, in many algorithms. The shift function shifts data by the
amount specified for each dimension and shifts zeros (null elements) in at the
edges of the array. Elements shifted out of the array are discarded. The rotate
function is similar to the shift function except that data shifted out of the array
are inserted at the opposite edge so that no data are lost. The first argument
to the shift and rotate functions is the array to be shifted; then there is an
ordered set of parameters, each of which specifies the amount of shift in its
corresponding dimension. There must be as many shift parameters as there
are dimensions in the array; the first shift parameter is associated with the first
dimension of the array.

For example, given the definitions

var

a, b: array (I..5, 0..9) of integer;

c, e/: array |0..9| of integer;

the statement

a : = shifUfc, 0, 3);

is functionally equivalent to

for / : = 1 lo 5 do

begin

for j : = 0 lo 6 do

a\ij\ : = h (i , j + 3],

for j : = 7 lo 9 do

a\i, j] : = 0;

end;

and the statement

c : = rotalc(J, 3);

is functionally equivalent to

for » : = 0 lo 9 do

•111 •— .l\li -I-

72 ANTHONY I'. Rlil-VRS

5.2. Transpose and Expand

While transpose is not a simple function to implement with many parallel
architectures, a significant number of matrix algorithms involve this function;
therefore, it has been made available as a primitive function in Parallel
I'ijscal. The first parameter to transpose is the array to be transposed and the
following two parameters, which are constant expressions, specify which
dimensions are to be interchanged. If only one dimension is specified then the
array is (lipped about that dimension.

The main data distribution function in Parallel Pascal is expand. This
function increases the rank of an array by one by repealing the contents of the
array along a new dimension. The first parameter of expand specifies the array
to be expanded; the second parameter, a constant expression, specifies the
number of the new dimension and the last parameter; a subrange or a subrange
type specifies the range of the new dimension.

This function is used to maintain a higher degree of parallelism in a parallel
statement; this may result in a clearer expression of the operation and a more
direct parallel implementation. In a conventional serial environment such a
function would simply waste space.

For example, given the definitions of a, b, and c as specified in Section 5.1,
the following statement adds a vector to all rows of a matrix O

ti

a := b + expand(c, I, 1..5); Q

i
The above statement is functionally equivalent to

e
for i: = I to 5 do 22

5.3. Oilier Functions

While the shift and rotate functions are adequate primitive functions for
highly parallel computers such as the MPP, which have near-neighbor mesh
interconnections, different primitive functions may be necessary for other
architectures. For example, consider an architecture which can directly im-
plement a perfect shuffle permutation and the algorithm to be implemented is
the Fast Fourier Transform (FFT). If a perfect shuffle function is available in
the high-level language then the FFP can be very clearly and efficiently
specified, whereas a specification using only shift and rotate would be very
difficult to write and the compiler would have to do a clever code optimization
in order to achieve an efficient implementation.

A solution which is consistent with the framework of Parallel Pascal is to
define the shuffle as a primitive permutation function for this computer archi-
tecture. Portability may be maintained by writing a library function for the
shuffle using only shift and rotate primitives. In this way an algorithm written

PARALLEL PASCAL 73

architecture. The efficiency of such a ported algorithm may not be very high
on the MPP and some reprogramming of the algorithm may be necessary.

Given the wide diversity of parallel processor architectures it is perhaps
unreasonable to expect that a single algorithm specification can be efficiently
compiled for all systems. The scheme proposed above for Parallel Pascal
permits simple porting of all algorithms to different architectures for
verification and provides a consistent notation for rcprognunming an algo-
rithm to tune it for a particular architecture. This scheme is made possible
because Parallel Pascal uses the conventional function syntax to specify
permutation primitives. In this way the use of new primitive functions is
syntactically indistinguishable from using a user-defined permutation func-
tion.

6. CONDITIONAL EXECUTION

An important feature of any parallel programming language is the ability
to have an operation operate on a subset of the elements of an array. In
standard Pascal each array element is processed by a specific sequence of
statements and there are a variety of program control structures for the
repeated or selective execution of statements. In Parallel Pascal the whole
array is processed by a single statement; therefore, an extended program
control structure is needed.

In the initial specification for Parallel Pascal all the standard Pascal control
structures were extended to accept an array control expression. These ex-
tended control structures proved to be very difficult to exactly specify within
the framework of standard Pascal. Furthermore, the need for the looping
control structures is much less in an environment which allows parallel
expressions. For example, the APL programming language, which involves
a very powerful array expression capability, does not have a direct program
loop control structure. In the test algorithms that were programmed only the
extended if statement was frequently used. The other control structures were
dropped from the language and the conditional execution statement was
renamed where due to semantic differences with the standard if statement.

The syntax of the Parallel Pascal where statement is as follows:

where array-expression do

statement

otherwise

statement

where array-expression is a Boolean- valued array expression and statement is
a Parallel Pascal statement. The otherwise and the second controlled state-
ment may be omitted.

74 ANTHONY P. REEVES PARALLEL PASCAL. 75

The execution of a where structure is defined as follows. First, the control-
ling expression is evaluated to obtain a Boolean array (mask array). Next, (he
first controlled statement is evaluated. Array assignments are masked accord-
ing to the Boolean control array. If there is an otherwise statement it is then
evaluated; in this case array assignments are masked with the inverse of the
control array.

For example, given the definition

the expression

var a, b, c:array (I . . 10] of integer;

where a < b do

c :=b

otherwise

c '.— a\

is functionally equivalent to

fo r / := I to 10 do

if til/] < b(i] then

else

:=a[i\;

The main semantic difference between the where-do-othcrwise structure
and the If-then-else structure is that with the former both controlled state-
ments are evaluated, independent of the value of the control expression, while
with the latter only one of the two controlled statements is evaluated.

Where statements may be nested provided that all of the controlling array
expressions are type compatible. Other standard Pascal control statements can
also be nested within where statements. Any array variable which appears on
the left-hand side of an assignment within a where-controlled statement must
be type compatible with the controlling array expression. Assignments to
other than array variables in a where statement are in no way affected by the
where statement. The effect of a where statement is local to the procedure
or function in which it occurs; that is, it does not affect the execution of any
procedures or functions called from within a where statement or an otherwise
statement.

The where statement provides Parallel Pascal with a conditional assign-
f.irilifv An alternative to conditional assignment which was not imple-

mented in Parallel Pascal is conditional evaluation. In (his case, all the
operations are masked; only data elements which contribute to mask selected
results are processed. This is conceptually more pleasing since only needed
computations are specified, whereas, with conditional assignment, extra com-
putations are conceptually performed which are discarded by the assignment
operation.

Conditional evaluation can also be useful for catching or avoiding excep-
tional conditions. For example, the following statement will successfully
execute if any element of a is zero and conditional evaluation rules are obeyed
but will cause a divide-by-zero error if conditional assignment is used since
the reciprocal of a is computed for all elements.

where a <> 0 do r : — I /a;

While conditional evaluation provides some additional capabilities, it also
introduces some semantic difficulties. The main problem occurs when an
array expression is passed to a procedure or function. What values are passed
for those elements for which the controlling expression is false? Another
problem arises with the use of standard functions which alter the shape of
arrays. At what point is the masking applied?

7. BIT PLANG INDEXING

A feature of several current highly parallel computers such as the MPP and
the DAP is that arithmetic is conducted at the bit level rather than the word
or number level. That is, the computer "word" or bit plane manipulated by
these computers is a single-bit slice through all elements in the array being
processed.

Some algorithms can be made considerably more efficient for these com-
puters if specified at the bit. plane level. Bit-plane indexing was added to
Parallel Pascal to enable a programmer to conveniently specify most of these
special algorithms without resorting to an assembly code subroutine.

A bit-plane index is specified by the last item in an index expression and
is separated from other indices by a colon. The result of a bit-plane-indexed
array has a Boolean element type. For example, given the definition

ya rn : array (I . . 5, I.. 10] of integer;

var b: array 11 ..5, I.. 10] or Boolean;

then the statement

76

is equivalent to

ANTHONY P. REEVES

b : = odd(ri);

PARALLEL PASCAL

9. PROBLEMS WITH STANDARD PASCAL

77

The next example subtracts one from Ihe selected array element if necessary
to make it exactly divisible by 2.

<i(3, 1:0] := false;

The least significant or first bit-plane is always bit-plane 0. Programming
with bit-plane indexing requires a knowledge of Ihe internal number repre-
sentation of the parallel processor and is a highly nonportable feature. Fur-
thermore, bit-plane indexing on a processor which does not operate at Ihe bit
level is usually very inefficient.

8. PARALLEL P CODE

The Parallel Pascal compiler consists of a syntax analysis "front end" and
a code generation "back end." These two phases of Ihe compiler communicate
through an intermediate language called Parallel P-code |4J. Hie compiler
and the P-code are based on Ihe P-4 Pascal Compiler [5].

Parallel P-code has Ihe following extensions relative to standard P-code for
parallel languages and computers. First, it provides a mechanism by which
nonprimilive types may be specified. This is needed because parts of an array
may be specified which do not have an explicit type declaration. For example,
Ihe column of a two-dimensional array may be selected and used within a
parallel expression; however, this column has not been previously defined by
an explicit type statement.

Second, Parallel P-code provides an abstract addressing scheme for allo-
cating and referencing automatically allocated variables. This is done to
permit optimizing stages and the code generator to determine the memory
system in which a dala item should reside. In many parallel computers there
are at least two dala memory systems, Ihe host memory and the parallel
computer memory.

Third, Parallel P-code provides mechanisms for operating upon arrays,
array subsets, and individual array elements. Fourth, it provides a symbolic
mechanism for defining and referencing Ihe fields of a record structure. This
is needed because of (he abstract addressing scheme of Parallel P-code.
Finally, it facilitates conditional assignment, i.e., the where statement, by
providing mechanisms for establishing, altering, and removing a Boolean
mask array. A mask stack facility is supported for nested where statements.

The initial Pascal language as designed by Wirlh is described in |d|; since
then, the ISO standard Pascal has been specified, a very readable account of
which is given by Cooper |7J, and an IEEE/ANSI standard has also been
specified |8J. There were two fundamental problems with standard Pascal
which made it difficult to use in the parallel processor context. First, strong
typing, one of the prime features of Pascal, made it very difficult lo write
general array subprograms which could operate on more than one size of
array. Second, there is no library facility or separate compilation facility in
standard Pascal. However, a large number of support functions are needed for
many of the anticipated applications.

9.1. Strong Typing

Strong typing is supported with varying degrees in standard Pascal. For
example, Ihe range of integers is well defined and may be redefined; however,
for real numbers there is no specification of either range or precision. Array
types are very strongly typed; two total arrays are only conformable if they
share a common type declaration. This has lo be relaxed in the confoi inability
of Ihe where statement in Parallel Pascal. A controlling array must be of
element type Boolean, while Ihe controlled arrays may be of any element
type. If two arrays have different clement types then Ihey must have com-
pletely separate type declarations.

A second fundamental problem is how lo define a procedure or function
which can deal with arrays of different sizes. The conformant array parameter
described in Ihe ISO standard (for Pascal level I), but not in the ANSI
standard, is a very good solution to this problem, especially in the parallel
environment. In this scheme, array type information is explicitly specified
wilh each array parameter. A subprogram may be specified to accept several
different types for an argument; however, all these types are known at com-
pile time, permitting an efficient code to be generated for each of them. This
may be especially important for some array computers where Ihe algorithm
for Ihe generated code may depend upon the array dimensions.

9.2. Library Subprograms and Separate Compilation

Standard Pascal has no library facility; all subprograms, i.e., procedures
and functions, must be present in the source program. A library preprocessor
was developed to allow the use of libraries without violating Ihe rules of
standard Pascal. Hie header line of a library subprogram is specified in Ihe
source program wilh an extern directive. The library preprocessor replaces
•Jie extern directive with the appropriate subprogram body. The type informa-
tion for the library subprogram is extracted from the declaration statement in
he source program. Therefore, library subprograms can be written lo work
with any user-specified array type.

78 ANTHONY P. REEVES

If a library subprogram is to be used for more than one array type in the
same block, then a subprogram declaration statement for each unique argu-
ment type is necessary. Each unique version of the subprogram is identified
by a user-specified extension to the subprogram name in both declaration and
usage.

Tor example, consider the ceiling function as defined below:

function ceilingU :*type) : rtype;

begin

where x < 0.0 do

ceiling : = trunc(jc)

otherwise

where Jt-trunc(jr) = 0.0 do

ceiling : = trunc(x)

otherwise

ceiling : = trunc(jt) + I;

end;

The following program fragment illustrates how more than one version of this
function could be specified for the library preprocessor.

type

ar = array 11.. 10] of real;

ai = array [1..10] of integer;

br - array 11.-8, l'.-8) of real;

bi = array 11.. 8, 1..8] of integer;

function ceiling.a(x:ar) :ai; extern;

function ceiling.b(x:br) :bi; extern;

var

ax :ar, ay :ai; bx:br; by :bi;

begin

PARALLEL PASCAL

ay :— ceiling.a(ax);

by : = ceiling.b(bx)\

The simple library preprocessor does not solve the separate compilation
problem: all requested library subprograms must be recompiled whenever a
change is made to the main program. However, it is an expedient solution lo
the library problem which will work with all Parallel Pascal compilers.
External, partially compiled subprograms could be inserted at the P-code
level or at the code generator level of a compiler. However, they should be
inserted before the optimization stage so that specific parallel computer sen-
sitivities to different array sizes may be considered.

10. CONCLUSION

A version of the Pascal programming language for parallel computers has
been developed which requires very few new language features. One of the
main features of this language is that permutations are achieved with con-
ventional function forms. In this way it is simple to introduce new per-
mutation functions for the efficient programming of a new parallel computer,
when necessary, without changing the language.

The obvious extension lo standard Pascal was to allow operations on
complete, and partially selected, arrays. Subrange constants were introduced
to permit data to be transferred between arrays of different sixes. Several
features were developed with current parallel computer architectures in mind.
These include: the parallel specifier for systems with more than one data
memory, conditional assignment instead of conditional evaluation, and bit
indexing for computers with bit-serial arithmetic.

The strong typing of arrays in standard Pascal was found lo be a problem
in some cases and had to be relaxed. Also, a library management capability
was considered to be very important. One of the attractive features of standard
Pascal is that as many decisions as possible are made at compile time rather
than at run time. This is a vitally important concept in any parallel language,
and has been maintained in Parallel Pascal, since runtime decisions on factors
such as array size can be very costly on parallel computers.

A version of the P-code intermediate language has been developed for
Parallel Pascal. This contains two major changes from standard P-code. First,
addressing is symbolic, rather than by direct memory offsets; this permits a
code generator to select the best memory system for the data. Second, new
operators have been introduced to deal with aggregate data structures.

80 ANTHONY P. REEVES

ACKNOWLEDGMENTS

I gratefully acknowledge the assistance of John Bruncr, who helped specify (he language
and wrole (he P-code compiler; Mark Porel and Tony Brewer, who developed the Parallel
Pascal translator; and Steve Elias, who dcvelo|>ed the library preprocessor. Most of this work
was supported by NASA Grant NAG 5-3.

REFERENCES
1. Batcher, K. E. Design of a Massively Parallel Processor. IEEE Trans. Contpiil. C-29,

Sept. 1981), 836-840.
2. Reeves, A. P., and Bruner, J. D. The language Parallel Pascal and other aspects of the

Massively Parallel Processor. Cornell University Tech. Rep., Dec. 1982.
3. Bnmer, J. D. Efficient implementation of a high-level language on a bit-serial parallel

matrix processor. Ph.D. thesis, Puidue University, 1982.
4. Bruncr, J. D., and Reeves, A. P. A parallel P-Code for Parallel Pascal and other high level

languages. 1983 International Conference on Parallel Processing, Aug. 1983.
5. Nori, K. V., Ainmami, U., Jensen, K., and Naegeli, H. The Pascal (P) compiler—

Implementation notes. Institul for Infonualik, EidgenocssischeTcchnischc, Zurich, I97S.
6. Jensen, K., and Wirlh, N. Pascal User Manual and Report. Springer-Verlag, New

York/Berlin. 1976.
7. Cooper, D. Standard Pascal Users Reference Manual. Norton, New York, 1983.
8. American National Standard Pascal Computer Programming Language. IEEE, New York,

1983.

•d. J.L. Potter, MIT Press, 1985
»p. 230-260.

Appendix D

PARALLEL PASCAL AND THE MASSIVELY PARALLEL PROCESSOR

Anthony P. Reeves
School of Electrical Engineering

Cornell University
Ithaca, New York 14853

INTRODUCTION .
Parallel Pascal is an extended version of the Pascal programming language which is

designed for the convenient and efficient programming of parallel computers. Parallel Pascal
was designed with the MPP as the initial target architecture. It is the first high level pro-
gramming language to be implemented on the MPP.

The Parallel Pascal language is outlined in the first section of this chapter; then language
restrictions on the current MPP compiler imposed by the MPP architecture are discussed.
Finally, algorithm techniques for efficiently programming the MPP are presented.

. Conventional serial high-level programming languages are difficult to efficiently imple-
ment on parallel computers. Most parallel computers are currently programmed in either
assembly language or a machine-dependent special version of Fortran. The main advantages
of a general high-level language for parallel computers, such as Parallel Pascal, are portability,
better error detection and diagnosis facilities, and efficiency. Efficiency must be a prime con-
sideration since with any parallel system extra hardware is being used to achieve a high speed
performance. Portability is perhaps the most difficult goal to achieve while maintaining
efficiency since different parallel systems have very different data permutation capabilities.
The efficiency of working programs can be enhanced, in some cases, by reprogramming a small
number of critical procedures in assembly code.

There are three fundamental classes of operations on array data which are frequently
implemented as primitives on array computers but which are not available in conventional
programming languages, these are: data reduction, data permutation and data broadcast. These
operations have been included as primitives in Parallel Pascal.

The design of Parallel Pascal was directed towards the MPP; however, it is also suitable
for other parallel computers with a similar interconnection scheme such as Illiac IV and the
DAP. Parallel Pascal is also suitable for parallel computers with a less restrictive interconnec-
tion scheme such as is found with many pipeline systems for example. In this case, it may be
necessary to implement some additional data mapping functions in order to take advantage of
all the parallel computers capabilities. A more detailed discussion of the language design is
given in [ij. An in depth description of Parallel Pascal and other aspects of the MPP is given
in [2] and also in [3].

A Parallel Pascal to standard Pascal translator has been developed to allow initial experi-
mentation with different language features. This translator is now being used for program
development of Parallel Pascal programs on conventional serial computers.

A compiler has been developed [3,2] which converts a Parallel Pascal program into a
parallel p-code form. Interesting features of this p-code language include: a mechanism for
non-primitive data types needed because of subarrays, an abstract addressing scheme for
automatically allocated variables to permit the code generator to decide the appropriate host
for the code, mechanisms for operating on arrays and subarrays, and a symbolic scheme for
referencing fields of a record structure. An description of this p-code is given in [4] and also
in [2]. A parallel p-code code generator for the MPP has been developed by Computer Sciences
Corporation.

PARALLEL EXPRESSIONS
In Parallel Pascal all conventional expressions are extended to array data types. In a

parallel expression all operations must have conformable array arguments. A scalar is con-
sidered to be conformable to any type compatible array and is conceptually converted to a
conformable array with, all elements having the scalar value. For example, given the
definition

var a, b, c: array [1-10] of integer;

the following statement

a > b + c + 1;

is equivalent to

for i > 1 to 10 do
a{i] > bft] + cG] + 1;

In many highly parallel computers including the MPP there are at least two different
primary memory systems; one in the host and one in the processor array. Parallel Pascal pro-
vides the reserved word parallel to allow programmers to specify the memory in which an
array should reside. In standard Pascal an array type is specified with the following syntax

type newtype = array [indextype] of eltype;

where indextype specifies the number and ranges of the array dimensions and eltype specifies
the type of the array elements. A parallel array type is specified with the syntax

type newtype - parallel array [indextype] of eltype;

The parallel specifier exists only to provide information to the the compiler as to the variables
usage. In all usage in the language a parallel array is indistinguishable from a conventional
array. In some systems there is no distinction between host and processor memories, then the
parallel specifier does not have any effect. In any case, a compiler may decline to store the
array where requested.

ARRAY SELECTION
Selection of a portion of an array by selecting either a single index value or all index

values for each dimension is frequently used in many parallel algorithms; e.g, to select the ith
row of a matrix which is a vector. Specification of a single index value is the standard index-
ing method in standard Pascal. In Parallel Pascal all index values can be specified by eliding
the index value for that dimension. For example, given the definition

var a,te array [l_5,1.10] of integer;

in Parallel Pascal the statement

assigns the fourth column of b to the first column of a. The following are valid statements in
standard Pascal

a>- b;

The second statement means assign the second row of b to the first row of a; in Parallel Pascal
this could also be specified by

SUBRANGE CONSTANTS
It is sometimes necessary to move data between arrays with different dimensions. In

Parallel Pascal subarrays consisting of consecutive sets of elements may be specified. If subar-
rays with other than consecutive elements are required then they must be packed into the
consecutive form with permutation functions. The concept of a constant subrange is intro-
duced in order to specify a consecutive subset of index values.

The syntax for the constant subrange is

const identifier =» lowJiigh;

where low and high are either literals or previously defined constant identifiers.

SUBRANGE INDEXING AND ARRAY PACKING
Subrange constants may be used to index an array in Parallel Pascal. The general syntax

for a subrange index is

array-identifierC offset @ subrange-constant]

where offset is ah optional conventional scalar index expression. The ordered set of indices
specified by a subrange index is the result of adding the value of the offset expression to the
values implied by the subrange constant. For example, given the definition

var a, b: array [1.10] of integer;

the statement

a[@2-6]:- b[3 @ l_5i

is functionally equivalent to

for i := 1 to 5 do
a[i + 1] := b[i -t- 3i

The main reason for introducing subrange indexing was to permit blocks of data to be
transferred between arrays having different dimensions. It was not designed to be a tool for
algorithm development.

ARRAY CONFORMABUJTY
In standard Pascal, data items combined together in an expression must be type compati-

ble. In Parallel Pascal, array data items in a parallel expression must also be conformable, Le.
have the same rank (number of dimensions) and the same range in each dimension. For exam-
ple, given the definitions

var a, b: array [1-10] of integer;
c: array [0-9] of integer;

the statement

a :=» a + b;

is conformable, while the statement

a := b •+• c;

is not conformable since the specified ranges of b and c are different.
While the exact range conformability requirement is in keeping •with the strong typing

concepts of standard Pascal, there are occasions when the action specified by the above state-
ment is usefuL The range requirement can be explicitly circumvented by using subrange
indexing. For example, the statements

a := b + c[@0>9l
a[@1.10]:- bC@l-10] + c;
a[@1.10] > bC@1.10] + c[@0-9i

are all conformable and have the same effect.

REDUCTION FUNCTIONS
Array reduction operations are achieved with a set of standard functions in Parallel Pas-

cal which axe listed in table 1.

Table 1: Reduction Functions

Syntax Meaning

sumtarray, Dl, D2, -, Dn)
prodCarray, Dl, D2, -, Dn)
allCarray, Dl, D2, -, Dn)
anyCarray, Dl, D2, -, Dn)
maxCarray, Dl, D2, -, Dn)
minCarray, Dl, D2. -^ Dn)

reduce array with arithmetic sum
reduce array with arithmetic product
reduce array with Boolean AND
reduce array with Boolean OR
reduce array with arithmetic
reduce array with arithmetic minimum,

The first argument of a reduction function specifies the array to be reduced and the fol-
lowing arguments specify which dimensions are to be reduced. A dimension is specified by a
constant expression; the first dimension is dimension 1. The dimension parameters must be
constant expressions so that the shape of the result is known at compile time.

For example, given the the definitions

var
a: arrayfl.10,1-5] of integer;
b: array[l_10] of integer;
c: integer;

the following are correct Parallel Pascal statements

b :=» sumCa, 2); (* sum the rows of a *)

c := sum(a, 1, 2); (* sum all elements of the array a *)
c ^ maxCb, l); C* find the maximum value of b *)

Each, dimension parameter of a reduction function implies that there will be one less dimen-
sion in the result array; a scalar is considered to be an array without any dimensions in this
context.

PERMUTATION AND DISTRIBUTION FUNCTIONS
One of the most important features of a parallel programming language is the facility to

specify parallel array data permutation and distribution operations. In Parallel Pascal four
such operations are available as primitive standard functions; however, for some Parallel Pro-
cessors it may be necessary to specify more primitive functions for efficiency. The standard
Parallel Pascal functions for data permutation and distribution are given in table 2.

Table 2: Permutation and Distribution Functions

Syntax Meaning
ShiftCarray, SI, S2, _, S n) e n d - o f f *hift rtata within array

rotateCarray, SI, S2, _* Sn) circularly rotate data within array
transposeCarray, Dl, D2) transpose two dimensions of array
expandCarray, dim, range) expand array along specified dimension

SHIFT AND ROTATE
The shift and rotate primitives are found in many parallel hardware architectures and

also, in many algorithms. The shift function shifts data by the amount specified for each
dimension and shifts zeros (null elements) in at the edges of the array. Elements shifted out
of the array are discarded. The rotate function is similar to the shift function except that
data shifted out of the array is inserted at the opposite edge so that no data is lost. The first
argument to the shift and rotate functions is the array to be shifted; then there is an ordered
set of parameters, each one specifies the amount of shift in its corresponding dimension. There
must be as many shift parameters as there are dimensions in the array; the first .shift parame-
ter is associated with the first dimension of the array.

For example, given the definitions

var
a, ts array [1-5,0-9] of integer;
c, d: array [0-9] of integer;

the statement

a :- shift(b, 0, 3);

is functionally equivalent to

f or i := 1 to 5 do
begin

for j :=» 0 to 6 do
a{i,j] := bkj+31

f or j > 7 to 9 do
aD.j] := 0;

c

end;

and the statement

c := rotateCd, 3);

is functionally equivalent to

for i .-= 0 to 9 do
cfi] := d[(i -I- 3) mod 10i

TRANSPOSE AND EXPAND
While transpose is not a simple function to implement with many parallel architectures,

a significant number of matrix algorithms involve this function; therefore, it has been made
available as a primitive function in Parallel Pascal. The first parameter to transpose is the
array to be transposed and the following two parameters, which are constant expressions,
specify which dimensions are to be interchanged. If only one dimension is specified then the
array is nipped about that dimension.

The main data distribution function in Parallel Pascal is expand. This function increases
the rank, of an array by one by repeating the contents of the array along a new dimension.
The first parameter of expand specifies the array to be expanded, the second parameter, a con-
stant expression, specifies the number of the new dimension and the last parameter, a subrange
or a subrange type, specifies the range of the new dimension.

This function is used to maintain a higher degree of parallelism in a parallel statement;
this may result in a clearer expression of the operation and a more direct parallel implementa-
tion. In a conventional serial environment such a function would simply waste space.

For example, given the definitions of a, b, and c as specified in section 5.1 the following
statement adds a vector to all rows of a matrix

a ?- b + expand(c, 1,1-5);

The above statement is functionally equivalent to the following

for i > 1 to 5 do

CONDITIONAL EXECUTION
An important feature of any parallel programming language is the ability to have an

operation operate on a subset of the elements of an array. In standard Pascal each array ele-
ment is processed by a specific sequence of statements and there are a variety of program con-
trol structures for the repeated or selective execution of statments. In Parallel Pascal the
whole array is processed by a single statement; therefore, an extended program control struc-
ture is needed.

The syntax of the Parallel Pascal where statement is as follows:

where array-expression do
statement

otherwise
statement

where array-expression is a Boolean valued array expression and statement is a Parallel Pascal
statement. The otherwise and the second controlled statement may be omitted.

The execution of a where structure is defined as follows. First, the controlling expres-
sion is evaluated to obtain a Boolean array (mask array). Next, the first controlled statement is
evaluated. Array assignments are masked according to the boolean control array. If there is
an otherwise statement it is then evaluated; in this case array assignments are masked with
the inverse of the control array.

For example, given the definition

var a, b, carray [1-10] of integer;

the following expression

where a < b do

otherwise

is functionally equivalent to

for i :=• 1 to 10 do
if a[i] <b[i]then

else

The main semantic difference between the where-do-otherwise structure and the if-
then-else structure is that with the former both controlled statements are evaluated, indepen-
dent of the value of the control expression, while with the latter only one of the two con-
trolled statements is evaluated.

Where statements may be nested provided that all of the controlling array expressions
are type compatible. Other standard Pascal control statements can also be nested within
where statements. Any array variable which appears on the left hand side of an assignment
within a where controlled statement must be type compatible with the controlling array
expression. Assignments to other than array variables in a where statement are in no way
affected by the where statement. The effect of a where statement is local to the procedure or
function in which it occurs; that is, it does not affect the execution of any procedures or func-
tions called from within a where statement or an otherwise statement.

BIT-PLANE INDEXING
A feature of several current highly parallel computers such as the MPP is that arith-

metic is conducted at the bit level rather than the word or number leveL That is, the com-
puter "word* or bit plane manipulated by these computers is a single bit slice through all ele-
ments in the array being processed.

Some algorithms can be made considerably more efficient for these computers if specified
at the bit plane level. Bit-plane indexing was added to Parallel Pascal to enable a programmer
to conveniently specify most of these special algorithms without resorting to an assembly code
subroutine.

A bit-plane index is specified by the last item in an index expression and is separated
from other indices by a colon. The result of a bit-plane indexed array has a Boolean element
type. For example, given the definition

var a: array [l«5,l>10] of integer;
var b: array [1.5,1-10] of Boolean;

then the statement

b :

is equivalent to

b :** oddCa);

The next example subtracts one from the selected array element if necessary to make it
exactly divisible by 2.

a[3,l:0] >• false;

The least significant or first bit-plane is always bit-plane 0. Programming with bit-plane
indexing requires a knowledge of the internal number representation of the parallel processor
and is a highly non portable feature. Furthermore, bit-plane indexing on a processor which
does not operate at the bit level is usually very inefficient

LIBRARY SUBPROGRAMS AND SEPARATE COMPILATION
Standard Pascal has no library facility; all subprograms LA, procedures and functions,

must be present in the source program. A library preprocessor was developed to allow the use
of libraries without violating the rules of standard Pascal. The header line of a library sub-
program is specified in the source program with an extern directive. The library preprocessor
replaces the extern directive with the appropriate subprogram body. The type information for
the library subprogram is extracted from the declaration statement in the source program.
Therefore, library subprograms can be written to work with any user specified array type.

If a library subprogram is to be used for more than one array type in the same block,
then a subprogram declaration statement for each unique argument type is necessary. Each
unique version of the subprogram is identified by a user specified extension to the subprogram
name in both declaration and usage.

For example, consider the ceiling function as defined below:

function ceilingCxrstype): rtype;
begin

where x < 0.0 do
ceiling :=» truncCx)

otherwise
where x-trunc(x) » 0.0 do

ceiling > trunc(x)
otherwise

ceiling > trunc(x>(-l;
end;

The following program fragment illustrates how more than one version of this function could
be specified for the library preprocessor.

type
ar - array [1-10] of real;
ai = array [1-10] of integer;

br - array [l_8,1.8] of real;
bi = array [US, 1-8] of integer;

function ceiling-aCsar) ai; extern;
function ceiling.bCsbr) :bi; extern;
var

axnr; ayai; bx±r; by.bi;
begin
* • •

ay > ceiling.a(ax);
by > ceiling.b(bx);

• • *

The simple library preprocessor does not solve the separate compilation problem: all
requested library subprograms must be recompiled whenever a change is made to the main
program. However, it is an expedient solution to the library problem which will work with
all Parallel Pascal compilers. External, partially compiled subprograms could be inserted at
the p-code level or at the code generator level of a compiler. However, they should be
inserted before the optimization stage so that specific parallel computer sensitivities to different
array sizes may be considered.

MPP COMPILER RESTRICTIONS
The Parallel Pascal compiler for the MPP currently has several restrictions. The most

important of these is that the range of the last two dimensions of a parallel array are con-
strained to be 128; Le, to exactly fit the parallel array size of the MPP. It is possible that
language support could have been provided to mask the hardware details of the MPP array
size from the programmer; however, this would be very difficult to do and efficient code gen-
eration for arbitrary sized arrays could not be guaranteed. Matrices which are smaller than
128 x 128 can usually be fit into a 128 x 128 array by the programmer. Frequently, arrays
which axe larger thaq 128 x 128 are required and these are usually fit into arrays which have
a conceptual size which is a multiple of 128 x 128.

A large matrix of dimensions (m * 128) x (n * 128) is specified by a four dimensional
array in the MPP version of Parallel Pascal which has the dimensions m x n x 128 x 128.
There are two fundamental methods for packing the large matrix data into this four dimen-
sional array, this packing may be directly achieved by the staging memory in both cases. In
the "crinkled" packing scheme a m x n matrix of adjacent large matrix elements is assigned to
each PE; adjacent submatrices are assigned to adjacent PFs. More formally, element (i,j) of the
large matrix is mapped to location [i mod m, j mod n, i div m, j div n] of the four dimensional
array.

The alternative packing scheme, called "blocked" packing, assigns adjacent large matrix
elements to adjacent PFs in blocks of 128 x 128. The large matrix is represented by a m x n
matrix of adjacent 128 x 128 blocks. More formally, element (i,j) of the large matrix is
mapped to location [i div 128, j div 128, i mod 128, j mod 128] of the four dimensional array.

The best method of large array packing is application dependent which is one reason that
large arrays are not handled automatically by the compiler.

Programming with large matrices stored as four dimensional arrays is very simple in
Parallel Pascal. In general, programs developed for a single 128 x 128 array are easily modified
to deal with large packed matrices. Simple arithmetic expressions directly extend to higher
dimensioned arrays, reduction functions may require additional dimension specifiers. Shift
and rotate operations require special consideration since care must be taken to correctly
transfer data between the boundaries of the submatrices. Generic library functions have been
written in Parallel Pascal to deal with large matrices. The functions Ishift and Irotate will
correctly manipulate large matrices stored with the blocked packing scheme and the functions
crshift and crrotate will deal with matrices stored with the crinkled packing scheme.

The hardware organization of the MPP currently imposes some further language restric-
tions. These could be removed with a more advanced version of the code generator. Host pro-
grams for the MPP can be run either on the main control unit (MCU) or on the VAX; in the
latter case the MCU simply relays commands from the VAX to the PE array. The advantages
of running on the VAX is a good programming environment, floating point arithmetic support
and large memory (or virtual memory). The advantage of running on the MCU is more
direct control of the MPP array.

Compiler directives are used to specify if the generated code should run on the MCU or
the VAX. With the current implementation of the code generator, only complete procedures
can be assigned to the MCU and only programs on the MCU can manipulate parallel arrays.
There are several other language restrictions for programs which are run on the MCU such as
no conventional I/O. Therefore, the programmer must isolate sections of code which deal with
the PE array in procedures which are directed to the MCU. A better strategy might be to run
the majority of the host program code on the VAX with only small sections which deal with
PE array on the MCU, then there would be no language restrictions for the programmer but
the code generator would be more complex.

LIBRARY PROGRAM DEVELOPMENT
Initial experience with developing algorithms for the MPP indicate that library func-

tions must frequently be developed in three different forms for ma-rim urn efficiency. The
basic form is a pure Parallel Pascal algorithm which takes the greatest advantage of the paral-
lel features of the language. This form will run directly on the MPP array for arrays with
the last two dimensions being 128 x 128.

The second form is for large arrays on the MPP, Le, arrays with dimensions which are
exact multiples of 128 x 128. In many cases, such as the near neighbor operations described in
the next section, the transformation to this form from the previous form is very simple. In
general, shift and rotate functions are replaced by Ishift and Irotate library functions.

The third form is for functions which are to be implemented on the VAX host com-
puter. While parallel algorithms will run correctly on the host computer such algorithms do
not take advantage of the direct indexing capabilities of the VAX and much more efficient
serial algorithms may be possible. Furthermore, any algorithms which use the bit-indexing
language features can usually be much more efficiently re programmed for the VAX since it
does not have an efficient bit indexing mechanism.

LIBRARY PACKAGES
The Parallel Pascal language provides basic efficient orthogonal primitives for developing

application programs. However, it is expected that for any specific application area application
directed primitive library functions will be required. Several application library packages
have already been developed for Parallel Pascal These include large matrix shift and rotate,
near neighbor functions, a general permutation function which is used for matrix rotation and
polynomial warping, a parallel random number generator, and pyramid data structure func-
tions.

In the next two sections, programming techniques will be illustrated with examples
from the near neighbor package and the permutation package.

THE NEAR NEIGHBOR LIBRARY PACKAGE
The near neighbor package illustrates how Parallel Pascal can provide a convenient

environment for specifying application primitives; the need for different forms of the same
function is also demonstrated. A near neighbor Can) operation is one in which each result ele-
ment of a matrix is computed by a function of only locally adjacent elements in a

10

corresponding input matrix. Near neighbor operations are frequently used in image processing
applications. Several high level languages for image processing include such operations as basic
primitives.

The basic unit frequently used in near neighbor operations is a small matrix (3 x 3 to 7 x
7) of constant values. The first nn library function, called mx3, is used for specifying 3x3
matrices. The use of this function is illustrated in the following example.

- type
mtype - array [1.3, 1.3] of integer;

function mx3(vOO, vOl, v02,
vlO, vll, v!2,
v20, v21, v22: integer): mtype; extern;

var me mtype;

me > mx3(-1, -1, -1,

-l! -l! -1>,

The matrix me is set with all boundary elements to -1 and the center element to 8 as is pic-
torially shown. A typical filtering operation is to convolve a large image matrix with a small
kernel matrix; the generic library function conv is designed for this operation. A possible
definition for conv is shown below:

type ...
mx - parallel array [1.128, 1.128] of eltype;

function convCmatrixmx; kernelantype)aiix;
var i,j: integer;

sum; TTIT;
begin

sumX);
f or b» 1 to 3 do begin

for j> 1 to 3 do begin
if (kernellij] OO) then
sum >- sum + kernel[i,j] * shift(matrix4-2,}-2);

end;
end;
conv > sum

end;
var...

ma, mbanx;

the convolution of ma with the kernel me is specified by

mb •>• convGna, me);

The contents of the kernel may also be expressed in the same statement; e.g,

mb := coavGna, mx3(0,1, 0,
0, 0, 1,
0, 1, 0);

Sparse kernels with only a few 1 elements occur frequently in some applications. In these
cases programmers often prefer to specify the kernel in a short-hand form consisting of a list
of the cardinal directions of the 1's. The library function mxd converts such a list to the 3 x

11

3 matrix; using this function, the above statement may be rewritten as

mb := convdna, mxddN, E, S]));

The large matrix version of conv is simply specified by changing the word shift to Ishift
of crshift, as is appropriate, and redefining mx to be a four dimensional array. Conv is also
reasonably organized for a serial processor. An improvement may be possible in this case by
explicitly writing the loops so that the convolution is computed in one pass through the data
since better use of a cache memory would result.

THE PERMUTATION LIBRARY PACKAGE
The need for more than one version of a library function for the same operation is illus-

trated with the permutation function. The matrix permutation function has three arguments
a data matrix to be permuted, a row matrix which indicates in which row from tne data
matrix the corresponding result element is to be obtained and a column matrix which indi-
cates in which column the result is to be obtained. The function returns the permuted matrix
(in fact any data mapping is possible). A serial version of this function is shown below:

type
pa - array [lolJiil, Io2,h,i2] of integer;

function permlsdnzpa; npa;
var

i. j: integer;
begin

for i :=• lol to nil do
for j :=» Io2 to hi2 do

perm2s(i,j] :
end;

This function is efficiently programmed for a serial computer such as the VAX host and
would execute in 0(n) time for a n x n data matrix. In contrast, this would be a very poor
algorithm for a parallel array. A single data transfer would require 0(n) time since only near
neighbor shifts are possible; therefore, the total algorithm would require 0(n) time.

We have developed a parallel algorithm for this task which .attempts to move all the
data together as much as possible. On a^arallel processor with 0(n) PFs this algorithm still
has a worst case time complexity of 0(n) but for many structured permutations such as rota-
tion and warping the complexity will be closer to 0(n).

The parallel algorithm -will execute much more slowly on a serial processor than the
serial algorithm since the serial algorithm makes direct use of the serial processors indexing
capability. The parallel algorithm can be easily extended to large matrices which are multi-
ples of 128 x 128 by directly replacing shift operations with Ishift operations; however, this
will not be optimal with respect to the number of shift operations needed. For example, with
the blocked storage scheme a horizontal shift which is a multiple of 128 steps requires no shift
operations at all since the data is already in the correct PE. A large matrix version of the
algorithm is currently under development which will attempt to minimiyg the actual number
of shift operations executed.

EXTENDED I/O
For many applications the standard I/O facilities of Pascal will be adequate. The staging

buffer of the MPP can be very useful for directly performing certain data permutations; these
permutations cannot be directly specified in the basic language of Parallel Pascal. A high level

12

language facility for using the staging buffer has not yet been implemented; a proposal for
how the staging buffer may be programmed and used is outlined below.

There are three new capabilities, made possible with the staging buffer, which we would
liifa to specify in the language.
1. File reformatting

Raw data files may not be in the correct format for the MPP array. For example we
may wish to do large matrix packing or select one band of a multiband file.

2. Sub-array file I/O
In some cases it is useful to assemble a large array from sub arrays (which may be
smaller than 128 x 128).

3. Data permutations
The staging buffer is capable of implementing a large range of data permutations. In
some cases it is effective to transfer data from the PE array through the staging buffer
and back, to the array in order to achieve a data permutation.
These new capabilities could be made available by introducing two new procedures to

Parallel Pascal and relaxing one of the Pascal I/O constraints as indicated below:

FILE REFORMATTING
File reformatting can be achieved by the " reformat" procedure which specifies a reorder-

ing of the dimensions of an array structure. For example consider that we have a disk file of
a set of 128 x 128 images with 6 bands. The file is declared as follows:

var f: file of parallel array [1-6, 1-128, 1-128] of 0-255;

This will work correctly if each image is stored on the disk, as a sequence of 6 consecutive 128
x 128 matrices. If the data is stored in pixel interleaved format (Le. as a sequence of 6 ele-
ment pixels) then the staging buffer must be set to do the format conversion; this can be
achieved with the following call to the reformat procedure:

refonnatCf, 2, 3, l);

This specifies that the ordering of the dimensions for the data on the disk is 2, 3, 1; La, the
disk file array has the shape 128 x 128 x 6.

SUB-ARRAY I/O
In general, array I/O is done with a file having records of type array; an I/O operation

then specifies the transfer of a complete array. Sub-array I/O may be achieved by relaying
the Pascal restriction that complete file data types must be read or written. The range of the
dimensions of the subarray must match the last dimensions of the file array. For example,
consider the 6 band image file described above and the following array declarations.

type ar = parallel array(l-128, 1-128] of 0-255;
var a: ar;

b: array [l_6] of ar;
With the conventional Pascal I/O restrictions only whole images can
be read; Le, readCf, b) is a valid statement whereas readCf, a)
is not since a is not the same type as the file type.

In the extended I/O scheme, readCf, a) is permitted and reads the bands of an image one
at a time. Parallel array files having the last dimensions smaller than 128 x 128 may be
declared in which case a variable in an I/O statement such as a must have a subrange index
for confonaability.

13

DATA PERMUTATIONS
Data permutations can be achieved with a "link" procedure which links two files.

Linked files form a virtual channel through the staging buffer and, in general, do not require
any disk space. The data permutation is specified by reformatting the two files.

The syntax for link is:
link(f,g);

where f and g are files.
T ink- also implies a "rewrite" on file f and a "reset" on file g.

For example: a transpose permutation could be specified as follows
type

at =» parallel array [l_128,1-128] of real;
var

fa, fte file of at;
a, teat;

reformatCfa, 2, l);
link(fa.fb);
write(fa, a);
readCfb, b);

The above set of statements is equivalent to

b :=• transposeCa, 2,1);

CONCLUSION
A version of the Pascal programming language for parallel computers has been developed

which required very few new language features. One of the main features of this language is
that permutations are achieved with conventional function forms. In this way it is simple to
introduce new permutation functions for the efficient programming of a new parallel com-
puter, when necessary, without changing the language.

No attempt was made with the first implementation of the MPP compiler to hide the
128 x 128 dimensions of the PE array. This was considered to be necessary in order to ensure
that efficient algorithms are developed and also ensure that the very limited local memory is
not squandered. Programming tools have been outlined for programming larger arrays. A
future compiler may hide these details from the user as effective programming techniques are
better understood.

The only extensions needed for Parallel Pascal to effectively use the MPP hardware are
the I/O extensions which consist of two new procedures and the relaxation of a standard Pas-
cal constraint. These enable the staging buffer to be effectively utilized for data permutations
and file reformatting.

Parallel Pascal provides convenient orthogonal efficient high level primitives on which to
build application programs. It is more difficult to efficiently program a parallel computer than
a serial computer; therefore, the establishment of library packages for application oriented
primitives is even more important than for the conventional serial case. Some of the program-
ming techniques for Parallel Pascal have been outlined in the context of packages which are
currently being developed.

ACKNOWLEDGEMENTS
I gratefully acknowledge the assistance of John Bruner who helped specify the language

and wrote the P-code compiler, Mark Poret and Tony Brewer who developed the Parallel

14

Pascal translator, and Steve Elias who developed the library preprocessor. Most of this work,
was supported with NASA grant NAG 5-3.

REFERENCES

1. A. P. Reeves, "Parallel Pascal: An extended Pascal for Parallel computers," Journal of
Parallel and Distributed Computing 1 pp. 64-80 (1984).

2. A P. Reeves and J. D. Bruner, "The Language Parallel Pascal and Other Aspects of the
Massively Parallel Processor," Cornell University Technical Report (December 1982).

3. J. D. Bruner, "Efficient Implementation of a High -level Language on a Bit-Serial Parallel
Matrix Processor," PhD. Thesis, Purdue University (1982).

4. J. D. Bruner and A P. Reeves, "A Parallel P-Code for Parallel Pascal and Other High
Level languages," 1983 International Conference on Parallel Processing, pp. 240-243
(August 1983).

N86-29 546

V
.•"

Appendix E

PARALLEL PASCAL
DEVELOPMENT SYSTEM

Anthony P. Reeves
School of Electrical Engineering

Cornell University
Phillips Hall

Ithaca, New York 14853

• Version 1.0

JANUARY 1985

PARALLEL PASCAL DEVELOPMENT SYSTEM

CONTENTS

Introduction
1. System commands

extern - Pascal External Library Preprocessor
pp - Parallel Pascal Translator and Compiler
ppt - Parallel Pascal Translator
ppascal - Parallel Pascal Language Summary

2. Library Programs

allm. - masked all reduction functions
anym - masked any reduction functions
blint - Bilinear interpolation procedure for a matrix
ceiling - round up to integer value
ciat - Cubic interpolation procedure for a matrix
compn - near neigbor comparison function
conv,convg - matrix convolution functions
crshift^rrotate - shift a large crinkled array on a parallel computer
crshiftg,crrotateg- shift a large crinkled array on a parallel computer
iconv, rconv, bconv- matrix convolution functions
irotate^irotate - Rotation matrix generators
Iblint - Bilinear interpolation procedure for a large matrix
Icint - Cubic interpolation procedure for a large matrix
lirotate,lnrotate - Rotation matrix generators for large matrices
Iperml - permute data in a large array on a parallel computer
Ishiftjrotate - shift a large array on a parallel computer
Ishif tg,lrotateg - shift a large array on a parallel computer
matrandjandinit- matrix random number generator
maxm - masked max reduction functions
minm - masked min reduction functions
mperm2 - Modified two dimensional mapping procedure
mx - input values into a square matrix
nearand, nearor, andnn, ornn- near neighbor logical functions
mvmet,recur - BASE assembly language functions
perm2,perm2s - General two dimensional mapping function
prodm - masked prod reduction functions
pyramid, bpyr - pyramid convolution functions
spread, gather - variable shift functions
summ - masked sum reduction functions
writemx,twodidjtwodids- general matrix functions
xconv - constrained matrix convolution function
xshift - constrained shift function

Library Function Subject Index

Parallel Pascal Development System

Anthony P. Reeves
School of Electrical Engineering

Cornell University
Ithaca, New York 14853

Abstract
The Parallel Pascal Development System enables Parallel Pascal programs to be

developed and tested on a conventional computer. It consists of several system programs,
including a Parallel Pascal to standard Pascal translator, and a library of Parallel Pascal sub-
programs. The library includes subprograms for using Parallel Pascal on a parallel system
with a fixed degree of parallelism, such as the Massively Parallel Processor, to conveniently
manipulate arrays which have different dimensions than the hardware. Programs can be con-
veniently tested with small sized arrays on the conventional computer before attempting to
run on a parallel system.

Introduction
This manual is organized in two sections: the first describes the system programs and the

second describes available library subprograms. The library documentation is organized alpha-
betically on the name of the library function; when more than one function is described, the
first listed name is used. A subject based index, which groups the library subprogram names
under logically ordered application headings, is given at the end of the manual.

In general, a user of this system need be aware of only one program, called pp, which is
used to compile and link Parallel Pascal programs on a conventional computer system. In
order to use this system, a user should read the documentation on pp, which is in section 1 of
this manual, and also be familiar with the Parallel Pascal programming language, which is a
superset of the Pascal programming language. The Parallel Pascal extensions to Pascal are
described in ppascaL which is also in section 1 of this manual; a more detailed discussion of
the language is given in [l]. An in depth description of Parallel Pascal and other aspects of
the MPP is given in [2] and also in [3J. For information on standard Pascal, the initial Pascal
language as designed by Wirth is described in [4] since then the ISO standard Pascal has been
specified, a very readable account of which is given by Cooper [5], and an IEEE/ANSI standard
has also been specified [6].

Library Subprograms
A set of library subprograms, written in Parallel Pascal, is available with this system.

Documentation for these subprograms is given in section 2 of this manual These subprograms
will be automatically inserted into a users program if the correct library file comment
specifier is given. See the detailed documentation for each library function to obtain this
specifier. User library subprograms may also be easily used; see the documentation on extern
in section 1 of this manual for the details of library program formats.

On a system with a fixed degree of parallelism, such as the Massively parallel Processor
(MPP), the last dimensions of parallel arrays are fixed by the hardware (the last two dimen-
sions must be 128 x 128 on the MPP). Arrays for such systems are categorized into four types:
regular, which exactly match the hardware; large, which have dimensions which are an exact
multiple of the hardware dimensions; small, which have dimensions smaller than the
hardware dimensions; and huge, which are too large to fit into fast primary memory and must
be accessed in regular sized blocks.

Regular arrays require no special treatment. Large arrays are organised as four dimen-
sional structures; a set of library subprograms makes the programming of these arrays very
similar to regular arrays. Programming for small arrays is usually very simple and applica-
tion dependent and is currently left to the programmer. Huge arrays are very difficult to deal
with in a general sense; some utilities are available for accessing arbitrarily located chunks
from large arrays which should be useful for these applications. In some cases different algo-
rithms should be used depending on where the program is to run; Le, on the host computer or
the parallel hardware, in some cases versions of the library functions to run on a serial host
computer are also available.

Implementation
This development system involves three programs pp, ppt and extern, Pp is a command

file which controls the compilation process; versions of pp are available for VAX-VMS and
UNIX. It first invokes extern to insert the bodies (in Parallel Pascal source code) of any
library subprograms and then invokes ppt to translate the complete Parallel Pascal program
into standard Pascal. If no errors are detected by ppt then the translated program is compiled
and linked with the host computers standard Pascal compiler and linker.

Ppt is a Parallel Pascal to Pascal translator, it is written in Pascal. It will only translate
a subset of the Parallel Pascal language; see the documentation on ppt for restrictions.

Extern is a library preprocessor; it is written in C A problem with the standard Pascal
language is that there is no subprogram library facility. Library subprograms are referenced
in a user program by a formal declaration statement and an extern directive. Additional infor-
mation may be passed with the extern statement to allow, for example, a library subprogram
to be used with different sized arrays. Library subprograms are specified as a Parallel Pascal
body with a dummy declaration statement. Users can easily develop their own library sub-
programs.

This development system has been implemented on VAX-11/780 computers for both
VMS and UNIX operating systems. It should work on any UNIX system which has a large
enough memory and a Pascal compiler. Ppt has also been run on a Perkin Elmer computer. For
a different computer system a Pascal compiler is necessary to compile ppt and to run the code
it generates, pp will have to be rewritten for the host operating system and, for the automatic
insertion of library subprograms, a C compiler will be necessary to compile extern.

References

1. A. P. Reeves, "Parallel Pascal: An extended Pascal for Parallel computers," Journal of
Parallel and Distributed Computing 1 pp. 64-80 (1984).

2. A. P. Reeves and J. D. Bruner, The Language Parallel Pascal and Other Aspects of the
Massively Parallel Processor," Cornell University Technical Report (December 1982).

3. J. D. Bruner, "Efficient Implementation of a High -level Language on a Bit-Serial Parallel
Matrix Processor," PhJD. Thesis, Purdue University (1982).

4. K. Jensen and N. Wirth, Pascal User Manual and Report, Springer-Ver lag (1976).
5. D. Cooper, Standard Pascal Users Reference Manual, W. W. Norton (1983).
6. , American National Standard Pascal Computer Programming Language, IEEE (1983).

EXTERN(l) PPS-PDS Users Manual EXTERN(l)

NAME
ertern — pascal external subprogram preprocessor

SYNOPSIS
extern [-s] libl Iib2 libn < infile > outfile

DESCRIPTION
Extern reads a source program on the standard input and replaces external function refer-
ences with the source code from library files. Library subprograms are specified in the source
program by a function or procedure statement followed by an extern directive. Up to 100
string constants (parameters) may be substituted for in the source code for each
function/procedure. The modified source program is written to standard output.

The external function source code is taken from library files which may be specified in the
command line for extern as shown in the synopsis or in library commands in the program
text. A program library command has the following format:

{^library libname }
or

(*Slibrary libname *)

where libname is the name of a library file. The program library commands are in the form
of Pascal comments so they we have no effect on a subsequent Pascal or Parallel Pascal com-
piler.

The library file names usually have a .pi extension. Extern first checks if a specified library
file name (or path name) is in the current directory. If no file is found, it then checks for the
same name with a .pi extension. It then checks in the system library directory first with the
file name as specified and then with a .pi extension. A library not found error is reported if
the file has still not been found.

Extern is designed to be used with any Pascal compiler; however, it has a special listing
feature when used with the Parallel Pascal Translator ppt(l). By default, it inserts ppt flags
(in comment statements) into the output file which prevents the inserted subprogram bodies
from appearing in the listing file. In this way, the listing file corresponds to the original
source file in both content and line numbers; any errors detected in the library functions will
still be reported. If the -s option is specified then all of the output file will appear in the sub-
sequent listing file.

Extern is rather primitive and does not understand much about Pascal syntax. External func-
tion and procedure declarations must start on a new line and the the declaration and extern
directive, with any required additional parameters, should appear consecutively without any
comment statements. (Comment statements bounded by '{}' which do not contain any semi-
colon symbols 'f should be ojcj. The key words 'function', 'procedure', 'extern' and library'
are only recognized if typed in lower case letters.

MULTIPLE INSTANCIES OF A FUNCTION
There are many cases when we may wish to have the same subprogram defined to operate on
arguments having different types in the same program block. Extern has a facility for
denning multiple versions of a library subprogram. The function name in the source program
can be followed by a dot 0) and a single character version identifier, e.g. function conv3.0,
convS.l. All instances of the subprogram usage in the source program body must have the
correct version identifier.

LIBRARY FILE FORMAT
Each function in a library file is delimited by a pound sign (#), as follows:

#funcl

A. P. Reeves PDS

EXTERN (1) PPS-PDS Users Manual EXTERN (1)

{local vars, body of fund, including arbitrary references to
the variables SO through. S99 as needed}
#func2
{local vars, body of func2, including arbitrary references to
the variables SO through S99 as needed}

The library function specification is similar to a pascal subprogram without the procedure or
function statement as this is provided by the source program.

The S variables are used to specify types which are taken from, the declaration of the function
in the source program. Types or constants which do not appear in the argument list may be
specified after the extern statement. The following example illustrates how S variables are
obtained from the function definition in the source file.

function conv3(varl:typel,var2^ype2):returntype; extern typeS, type4,type5;
SO is always the return type of the function. In this case,
Sl=*ypel, S2=-type2, S3=type3, S4~type4, S5»type5.

Extern will also preprocess external procedure definitions; in this case, SO is not defined,

AUTHORS
Steve Elias, Anthony P. Reeves

BUGS
key words are only recognized in lower case letters.
external functions and procedures must each be declared starting on a new line.
external function and procedure declarations should not contain comments.

A. P. Reeves PDS

PP(1) PPS-PDS Users Manual PP(l)

NAME
pp — Parallel Pascal translator and compiler

SYNOPSIS
pp name [-i] [-s] [libl Iib2 -]

DESCRIPTION
Pp is the Parallel Pascal compiler. If given a file name ending in .pp it will compile the file
and load it into an executable file having the same name as the original file -without the .pp
extension.

If the -i option is specified then the Pascal translator pi is used; the interpreter code is loaded
in to the file obj for interpretation by px. For program development -with small data sets the
-i option is strongly recommended as it is usually much faster.

If any file names without a .pp extension are specified then these are assumed to be library
files. Relevent subprograms will be extracted from these files by the externCl) library proces-
sor.

If the -s option is specified then the complete library functions will be written to the listing
file "pplist". In this case the listing line numbers will not correspond to the source program
line numbers.

Pp uses the Parallel Pascal translator ppt to convert the named file into a conventional Pascal
program which is stored in a file having the same name as the input file but with a .p instead
of the .pp extension. A listing of the translated program including any error messages is
stored in pplist. There are several Parallel Pascal language restrictions with the translator; see
pptCl) for details.
The translated program is compiled with pc by default and by pi if the -i option is specified.
If any errors are detected by ppt no further compilation takes place.

FILES
file.pp input file
fil&p translated Pascal file
file output file from pc
obj output file from pi
pplist Parallel Pascal listing

SEE ALSO
pptCl), pc(l), pi(l), pxCl), externCl)

AUTHOR
Anthony P. Reeves

A. P. Reeves LOCAL

PPT (1) PPS-PDS Users Manual PPT (1)

NAME
ppt — Parallel Pascal translator

SYNOPSIS
ppt <infile >outfile

DESCRIPTION
Ppt is a Parallel Pascal translator which, translates a Parallel Pascal program into a conven-
tional Pascal program. Ppt is itself written in Pascal (based on the P4 compiler) for portabil-
ity.

Ppt reads a Parallel Pascal source program from the standard input and writes the translated
program onto the standard output. The listing of the source program, including any error
messages, is stored in a file called pplist. Any errors are also reported to the terminal. Ppt
only translates a subset of the Parallel Pascal language; see the bugs section for details of the
language restrictions. WARNING - The first pass of ppt checks for a valid Parallel Pascal pro-
gram but does not check, for all the restrictions and limitations of the second pass.

Translator options are written as comments intermixed throughout the source program. Com-
ments are designated as option comments by a ^-character as the first character of the com-
ment as follows

(*$-Option sequence> <my comment> *)

Example: (*$l+,m- *)

The option sequence uses commas to separate options. Each option consists of a letter indicat-
ing the option desired and either a plus (+) or minus (-) to indicate whether to activate or
deactivate the option.
The following options are presently available:

1 - Create a listing of the source program as the syntax analysis is being conducted. Default
is 1+.

m - Map upper case letters to lower case letters. (All reserved words and standard functions
or procedures are only recognized in lower case.) Default is m-.

c - Output both the translated code and the original code to the standard output. (The origi-
nal code is written out within comments to not affect the actual program.) Default is c-.

uxxz-
T-in-iit the line length of the translated output to YTT characters where possible. The
range of acceptable values is from 80 to 132 characters. Default is u!32.

The options take effect directly after being issued and therefore they may be selectively
applied to the program sections.
Throughout the design of the translator emphasis was put on the production of reliable and
predictable translations and not on the production of efficient translations. There are some
necessary optimisations which were implemented that greatly reduce the amount of both data
space and instruction space used. These included temporary variable reusage and type match-
ing for Parallel Pascal functions.
An additional feature of ppt is the ability to declare a function or procedure as being external
to the program where it is called. The syntax for an external declared function or procedure
is shown below:

procedure identifier (parameter list); extern;

A. P. Reeves LOCAL

PPT(l) PPS-PDS Users Manual PPT(l)

-or-

function identifier (parameter list): resultjtype; extern:

FILES
infile Parallel Pascal inputfile
outfile Pascal output file
pplist file containing listing

DIAGNOSTICS
A detected error is indicated by placing an arrow followed by a number (which corresponds
to the appropriate error message) below the source line where the error was detected. For
each error number issued throughout the source program the corresponding error message is
printed out at the end of the listing. Error messages for Standard Pascal were obtained from
the Pascal User Manual and Report by Jensen and Wirth, the error messages added for the
Parallel Pascal features are listed below.

350: must be parallel array type
351: illegal type for parallel array
360: parallel arrays not compatible
361: parallel array not compatible with controlling array
362: result must be parallel type
363: parallel array not allowed
364: function result type must be parallel array
365: dimension not compatible with array
366: integer constant expected
367: at least one dimension expected
368: bit index type must be integer
369: error in number of standard function arguments
370: subrange exceeds array index limits
371: set type not compatible with array index type
372: index type must be scalar, subrange or set
373: bit indexing not allowed
374: illegal array type for bit indexing

AUTHORS
Anthony P. Reeves, Tony M. Brewer, Steve Elias, Mike Vernick

RESTRICTIONS
1. Constant subranges are not implemented

2. Bit indexing is only implemented for types integer and subrange.

3. Parallel arrays cannot have more than nine dimensions.

4 The index type of a parallel array must be integer.

5 All parallel identifiers declared by ppt have "pll" as a prefix to the identifier name.
Therefore a user identifier should not begin with this prefix. Also, standard parallel
functions are translated to have the same name but ending with a numeral; therfore
names of this form sould be avoided.

6 Input and output: Read, readln, write and writeln may have at most one parallel param-
eter which must be the first parameter of the I/O procedure except for possibly a file
specifier. If readln or writeln is used, then each element of the array would be read or
written using readln or writeln respectively not just the last element. All other

A. P. Reeves LOCAL

PPT(l) PPS-PDS Users Manual PPT(l)

Standard Pascal I/O facilities are restricted to non-parallel use.

Identifiers are limited to a ma-gimum of 10 characters.

A. P. Reeves LOCAL

Parallel Pascal: Summary

Anthony P. Reeves
School of Electrical Engineering

Cornell University
Ithaca, New YorJc 14853

INTRODUCTION

Parallel Pascal is an extended version of Pascal for programming parallel computers. This
summary briefly describes the extensions which have been made to PascaL

PARALLEL EXPRESSIONS
In Parallel Pascal all conventional expressions are extended to array data types. In a

parallel expression all operations must have conformable array arguments. A scalar is con-
sidered to be conformable to any type compatible array and is conceptually converted to a
conformable array with all elements having the scalar value. For example, given the
definition

•var a, b, c: array [1.10] of integer;

the following statement

a := b + c + 1;

is equivalent to

for i > 1 to 10 do
a[i] > b&] + eft] + 1;

In many highly parallel computers including the MPP there are at least two different
primary memory systems; one in the host and one in the processor array. Parallel Pascal pro-
vides the reserved word parallel to allow programmers to specify the memory in which an
array should reside. In standard Pascal an array type is specified with the following syntax

type newtype = array [indextype] of eltype;

where indextype specifies the number and ranges of the array dimensions and eltype specifies
the type of the array elements. A parallel array type is specified with the syntax

type newtype - parallel array [indextype] of eltype;

The parallel specifier exists only to provide information to the the compiler as to the variables
usage. In all usage in the language a parallel array is indistinguishable from a conventional
array. In some systems there is no distinction between host and processor memories, then the
parallel specifier does not have any effect. In any case, a compiler may decline to store the
array where requested.

ARRAY SELECTION
Selection of a portion of an array by selecting either a single index value or all index

values for each dimension is frequently used in many parallel algorithms; e.g, to select the ith
row of a matrix which is a vector. Specification of a single index value is the standard

PPASCAL(l) Parallel Pascal PPASCAL(l)

indexing method in standard Pascal In Parallel Pascal all index values can be specified by
eliding the index value for that dimension. For example, given the definition

var a,te array [1-5,1.10] of integer;

in Parallel Pascal the statement

>• b[,4i

assigns the fourth column of b to the first column of a. The following are valid statements in
standard Pascal

The second statement means assign the second row of b to the first row of a; in Parallel Pascal
this could also be specified by

SUBRANGE CONSTANTS
It is sometimes necessary to move data between arrays with different dimensions. In

Parallel Pascal subarrays consisting of consecutive sets of elements may be specified. If subar-
rays with other than consecutive elements are required then they must be packed into the
consecutive form with permutation functions. The concept of a constant subrange is intro-
duced in order to specify a consecutive subset of index values.

The syntax for the constant subrange is

const identifier » low-high;

where low and high are either literals or previously defined constant identifiers.

SUBRANGE INDEXING AND ARRAY PACKING
Subrange constants may be used to index an array in Parallel PascaL The general syntax

for a subrange index is

array-identifier[offset @ subrange-constant]

where offset is an optional conventional scalar index expression. The ordered set of indices
specified by a subrange index is the result of adding the value of the offset expression to the
values implied by the subrange constant. For example, given the definition

var a, be array [1-10] of integer;

the statement

a[@2-6] > b[3 @ l-5t

is functionally equivalent to

for i :=> 1 to 5 do

A. P. Reeves PP

PPASCAL(l) Parallel Pascal PPASCAL(l)

:- bfc + 3i

The Tnain reason for introducing subrange indexing was to permit blocks of data to be
transferred between arrays having different dimensions. It was not designed to be a tool for
algorithm development.

ARRAY CONFORMAEELTTY
In standard Pascal, data items combined together in an expression must be type compati-

ble. In Parallel Pascal, array data items in a parallel expression must also be conformable, Le.
have the same rank (number of dimensions) and the .same range in each dimension. For exam-
ple, given the definitions

var a, be array [1-10] of integer;
c: array [0-9] of integer:

the statement

is conformable, while the statement

a :» b + c;

is not conformable since the specified ranges of b and c are different.
While the exact range conformability requirement is in keeping with the strong typing

concepts of standard Pascal, there are occasions when the action specified by the above state-
ment is usefuL The range requirement can be explicitly circumvented by using subrange
indexing. For example, the statements

a > b + cC@0-9i
a[@l_10] > bt@l_10] + c;
a[@1.10] > b[@l-10] + c[@0-9l

are all conformable and have the same effect.

REDUCTION FUNCTIONS
Array reduction operations are achieved with a set of standard functions in Parallel Pas-

cal which are listed in table 1.

Table 1: Reduction Functions

Syntax Meaning
sumCarray, Dl, D2, _, Dn)
prodCarray, Dl, D2, _ Dn)
allCarray, Dl, D2, -, Dn)
anyCarray, Dl, D2, _, Dn)
maxCarray, Dl, D2, -, Dn)
minCarray, Dl, D2, _, Dn)

reduce array with arithmetic sum
reduce array with arithmetic product
reduce array with Boolean AND
reduce array with Boolean OR
reduce array with arithmetic maximum
reduce array with arithmetic minimum

A. P. Reeves PP

PPASCALCl) Parallel Pascal PPASCAL(l)

The fibrst argument of a reduction, function specifies the array to be reduced and the fol-
lowing arguments specify which dimensions are to be reduced. A dimension is specified by a
constant expression; the first dimension is dimension 1. The dimension parameters must be
constant expressions so that the shape of the result is known at compile time.

For example, given the the definitions

var
a: array[l-10,l-5] of integer;
b: array[l..lO] of integer;
c: integer;

the following are correct Parallel Pascal statements

b:- sum(a, 2); (* sum the rows of a *)
c > sum(a, 1, 2); (* sum all elements of the array a *)
c > maxCb, l); (* find the ma-rimum value of b *)

Each dimension parameter of a reduction function implies that there will be one less dimen-
sion in the result array; a scalar is considered to be an array without any dimensions in this
context.

PERMUTATION AND DISTRIBUTION FUNCTIONS
One of the most important features of a parallel programming language is the facility to

specify parallel array data permutation and distribution operations. In Parallel Pascal four
such operations are available as primitive standard functions; however, for some Parallel Pro-
cessors it may be necessary to specify more primitive functions for eificiency. The standard
Parallel Pascal functions for data permutation and distribution are given in table 2.

Table 2: Permutation and Distribution Functions

Syntax Meaning
shif tCarray, SI, S2, -, Sn) end-off shift data within array
rotate(array, SI, S2, _, Sn) circularly rotate data within array
transposeCarray, Dl, D2) transpose two dimensions of array
expandCarray, dim, range) expand array along specified dimension

SHIFT AND ROTATE
The shift and rotate primitives are found in many parallel hardware architectures and

also, in many algorithms. The shift function shifts data by the amount specified for each
dimension and shifts zeros (null elements) in at the edges of the array. Elements shifted out
of the array are discarded. The rotate function is similar to the shift function except that
data shifted out of the array is inserted at the opposite edge so that no data is lost. The first
argument to the shift and rotate functions is the array to be shifted; then there is an ordered
set of parameters, each one specifies the amount of shift in its corresponding dimension. There
must be as many shift parameters as there are dimensions in the array; the first shift parame-
ter is associated with the first dimension of the array.

For example, given the definitions

var
a, b: array [l_5,0-9] of integer;

A. P. Reeves PP 4

PPASCAL(l) Parallel Pascal PPASCAL(l)

c, d: array [0.9] of integer;

the statement

a > shif t(b, 0, 3>,

is functionally equivalent to

for i >» 1 to 5 do
begin

for j .-= 0 to 6 do

for j > 7 to 9 do
a(i.j]>0;

end;

and the statement

c > rotate(d, 3);

is functionally equivalent to

for i > 0 to 9 do
c£i] > d[G + 3) mod 101

TRANSPOSE AND EXPAND
While transpose is not a simple function to implement with many parallel architectures,

a significant number of matrix algorithms involve this function; therefore, it has been made
available as a primitive function in Parallel Pascal. The first parameter to transpose is the
array to be transposed and the following two parameters, which are constant expressions,
specify which dimensions are to be interchanged. If only one dimension is specified then the
array is flipped about that dimension.

The main data distribution function in Parallel Pascal is expand. This function increases
the rank of an array by one by repeating the contents of the array along a new dimension.
The first parameter of expand specifies the array to be expanded, the second parameter, a con-
stant expression, specifies the number of the new dimension and the last parameter, a subrange
or a subrange type, specifies the range of the new dimension.

This function is used to maintain a higher degree of parallelism in a parallel statement;
this may result in a clearer expression of the operation and a more direct parallel implementa-
tion. In a conventional serial environment such a function would simply waste space.

For example, given the definitions of a, b, and c as specified in section 5.1 the following
statement adds a vector to all rows of a matrix

a :=» b -t- expandCc, 1,1-5);

The above statement is functionally equivalent to the following

for i:- 1 to 5 do
afrj > bCJ + c;

A. P. Reeves PP

PPASCALCl) Parallel Pascal PPASCAL(l)

CONDITIONAL EXECUTION
An important feature of any parallel programming language is the ability to have an

operation operate on a subset of the elements of an array. In standard Pascal each array ele-
ment is processed by a specific sequence of statements and there are a variety of program con-
trol structures for the repeated or selective execution of statments. In Parallel Pascal the
whole array is processed by a single statement; therefore, an extended program control struc-
ture is needed.

The syntax of the Parallel Pascal where statement is as follows:

where array-expression do
statement

otherwise
statement

where array-expression is a Boolean valued array expression and statement is a Parallel Pascal
statement. The otherwise and the second controlled statement may be omitted.

The execution of a where structure is denned as follows. First, the controlling expres-
sion is evaluated to obtain a Boolean array (mask array). Next, the first controlled statement is
evaluated. Array assignments are masked according to the boolean control array. If there is
an otherwise statement it is then evaluated; in this case array assignments are masked with
the inverse of the control array.

For example, given the definition

•vax a, b, can-ay [1-10] of integer;

the following expression

where a < b do
c >=• b

otherwise
c >» a;

is functionally equivalent to

for i > 1 to 10 do
if a[i] <b(i]then

ctU
else

The main. semantic difference between the where-do-otherwise structure and the if-
then-else structure is that with the former both controlled statements are evaluated,
independent of the value of the control expression, while with the latter only one of the two
controlled statements is evaluated.

Where statements may be nested provided that all of the controlling array expressions
are type compatible. Other standard Pascal control statements can also be nested within
where statements. Any array variable which appears on the left hand side of an assignment
within a where controlled statement must be type compatible with the controlling array
expression. Assignments to other than array variables in a where statement are in GO way
affected by the where statement. The effect of a where statement is local to the procedure or
function in which it occurs; that is, it does not affect the execution of any procedures or func-
tions called from within a where statement or an otherwise statement.

A. P. Ree-ves PP

PPASCAL(l) Parallel Pascal PPASCAL(l)

BIT-PLANE INDEXING
A feature of several current highly parallel computers such as the MPP is that arith-

metic is conducted at the bit level rather than the word or number level That is, the com-
puter "word" or bit plane manipulated by these computers is a single bit slice through all ele-
ments in the array being processed.

Some algorithms can be made considerably more efficient for these computers if specified
at the bit plane level. Bit-plane indexing was added to Parallel Pascal to enable a programmer
to conveniently specify most of these special algorithms without resorting to an assembly code
subroutine.

A bit-plane index is specified by the last item in an index expression and is separated
from other indices by a colon. The result of a bit-plane indexed array has a Boolean element
type. For example, given the definition

Tar a: array [1̂ ,1.10] of integer;
var b: array [l«5,l»10] of Boolean;

then the statement

b>-a[:0l

is equivalent to

b x oddCa);

The next example subtracts one from the selected array element if necessary to make it
exactly divisible by 2.

a[3,l:0] > false;

The least significant or first bit-plane is always bit-plane 0. Programming with bit-plane
indexing requires a knowledge of the internal number representation of the parallel processor
and is a highly non portable feature. Furthermore, bit-plane indexing on a processor which
does not operate at the bit level is usually very inefficient.

A. P. Reeves PP

ALLM(2) PPS-PDS Users Manual ALLM(2)

NAME
allm — masked all reduction functions

SYNOPSIS
{ ^library reduce.pl}

function allml(arg, mask: vec): boolean; extern;
function aUin2(arg, mask: mat): boolean; extern;
function aUm3(arg, mask: arr3): boolean; extern;
function allm4(arg, maA; arr4): boolean; extern;
function allm5(arg, mask: arr5): boolean; extern;

TYPES
vec: a vector of type boolean
mat: a matrix of type boolean
arrS: a three dimensional array of type boolean
arr4: a four dimensional array of type boolean
arr5: a five dimensional array of type boolean

DESCRIPTION
These functions reduce the first argument where there are true elements in the boolean mask
second argument. All dimensions are automatically reduced and the final result is always a
scalar value. The range of the dimensions of arg and mask must match. The following func-
tions are available:

allml all reduction for vector arguments

allm2 all reduction for matrix arguments

allmS all reduction for three dimensional arrays

allm4 all reduction for four dimensional arrays
aUm5 all reduction for five dimensional arrays

A. P. Reeves PPL

ANYM(2) PPS-PDS Users Manual ANYM(2)

NAME
anym — masked any reduction functions

SYNOPSIS
{ $library reduce.pl}

function anymlC arg; mask: -vec): boolean; extern;
function anym2(arg, mask: mat): boolean; extern;
function anym3(arg, mask: arr3): boolean; extern;
function anym4(arg, mask: arr4): boolean; extern;
function anym5(axg, mask: arr5): boolean; extern;

TYPES
vec a vector of type boolean
mac a matrix of type boolean
arrS: a three dimensional array of type boolean
arr4: a four dimensional array of type boolean
arr5: a five dimensional array of type boolean

DESCRIPTION
These functions reduce the first argument where there are true elements in the boolean mask
second argument. All dimensions are automatically reduced and the final result is always a
scalar value. The range of the dimensions of arg and mask must match. The following func-
tions are available:

anyml any reduction for vector arguments

anym2 any reduction for matrix arguments

anym3 any reduction for three dimensional arrays

anym4 any reduction for four dimensional arrays

anymS any reduction for five dimensional arrays

A. P. Reeves PPL

BUNT(2) PPS-PDS Users Manual BLINT(2)

NAME
blint — Bilinear interpolation procedure for a matrix

SYNOPSIS
{$library blint.pl}

procedure blint(ro,co: real; rp,cp: pli; rf,cf: plr; msk; plb; b,d: plr; var result: plr);
extern mxrowl, mxrowh, mxcoll, nxxcolh;

TYPES
plr = array [nixrowLjirxrowlynxcoll-mxcolh] of btype;
pli «• array [mxrowLmxrowh^nxcoll-mxcolh] of itype;
plb = array [mxrowLmxrowh^nxcolLjnxcolh] of boolean;

Where btype is any type and itype is an integer or subrange base type

EXTERN CONSTANTS
mxrowl = the smallest row number of the input matrix
mxrowh - the largest row number of the input matrix
mxcoll * the smallest column number of the input matrix
mxcolh =- the largest column number of the input matrix

DESCRIPTION
BUnt is a procedure that can be used in conjunction with irotate (see rotation(2)). It performs
a local search to find three out of four vertices of a square that contains the point whose value
we want to interpolate. The fourth point is the top left corner of the square and is immedi-
ately defined from the matrices rp and cp (row and column coordinates) and matrix b (value
of the point). Matrix d is a horizontally shifted version of matrix b. Matrices rf and cf contain
the coefficients used to perform the interpolation. The false values in matrix msk indicate the
positions in the rotated matrix that will be filled with zeros. The coordinates ro and co are the
center of the rotation computed in irotate.

The bilinear interpolation is performed in the following way:

ta 4.1c cf
PI * - h * P2

I I
rf'l I

I _ * P

P3 * * P4

P = (1 - cf >(1 - rf >P1 + (1 -if >cf»P2 + (1 - cf>rf*P3 + cf*rf«P4

for all points P in the matrix.

AUTHOR
Cristina Moura

SEE ALSO
rotation(2),lblint(2),cint(2)

A. P. Reeves PPL

CEILING(23 PPS-PDS Users Manual CEILING(2)

NAME
ceiling — round up to integer value

SYNOPSIS
(Slibrary math.pl }

function ceiling(xatype): rtype; extern;

TYPES
atype: an arbitrary shaped array of element type real
rtype: an array with similar dimensions to atype of element type integer or subrange

DESCRIPTION
Ceiling converts a real array to an integer array rounding each element to the smallest integer
not less than the element.

A. P. Reeves PPL

CINT(2) PPS-PDS Users Manual CINT(2)

NAME
cint — Cubic interpolation procedure for a matrix

SYNOPSIS
{(library ciat.pl}

procedure cint(ro,co: real; rp,cp: pli; rf.cf: plr; msk: plb; b,d: plr; var result: plr);
extern mxrcwl, mxrowh, mxcoll, mxcolh;

TYPES
plr = array [mTmwi-mTrnwh,TnTcnn_niTcnih] of btype;
pli «• array [mxrowLjnxrowlynxcoll-nixcolh] of itype;
plb - array [mxrowLnixrowlvnxcoll-mxcolh] of boolean;

Where btype is any type and itype is an integer or subrange base type

EXTERN CONSTANTS
mxrowl»the smallest row number of the input matrix,
mxrowh - the largest row number of the input matrix
mxcoll - the smallest column number of the input matrix,
mxcolh - the largest column number of the input matrix.

DESCRIPTION
Cint is a procedure that can be used in conjunction with irotate (see rotation(2)X It performs a
local search to find fifteen out of sixteen points located around the point whose value we want
to interpolate. The sixteenth point is immediately defined from the matrices rp and cp (row
and column coordinates) and matrix b (value of the point). Matrix d is a horizontally shifted
version of matrix b. Matrices rf and cf contain the coefficients used to perform the interpola-
tion. The false values in matrix msk indicate the positions that will be filled with zeros in the
rotated matrix. The coordinates ro and co are those of the center of the rotation computed in
irotate.

The cubic interpolation for sixteen points is done by, first, performing a cubicinterpolation for
each one of the four rows and, then, based on the points obtained, performing a fifth cubic
inter polation.

PI * P2 * +paP3 * P4 *

P5 « P6 « +pbP7 « P8 «

P9 * P10 « +pc Pli * P12

P13 * P14 * +pdP15 * P16

We already have the value and position of point P6 through matrices rp,cp and b. The first
four cubic interpolations are performed to obtain points pa, pb, pc and pd. The fifth one yields
the value of point P.

AUTHOR
Cristina Moura

A. P. Reeves PPL

CEV7

PPL

COMPN(2) PPS-PDS Users Manual COMPN(2)

NAME
compn — near neigbor comparison function

SYNOPSIS
{$lihrary mx.pl}

compn (mantype; wrwtype);mtype; extern size;
TYPES

mtype = parallel array [lolJxll, lo2Jii2] of boolean;
wtype a array [CLsize, CLsize] of 0-2;

DESCRIPTION
Compn compares the local neighborhood of each element of the boolean input matrix m with
the window w. If a match occures then the result element is true, otherwise it is false. A zero
in w matches with false in m, a one in w matches with true in m and a two in w is a don't
care.

AUTHOR
A. P. Reeves

A. P. Reeves PPL

CONV(2) PPS-PDS Users Manual CONV(2)

NAME
conv,convg — matrix convolution functions

SYNOPSIS
{$library convolve }

function convGnatrixnntype; kerneldctype)atype; extern size;

function convg(matrixnngtype; kerneldcgtype)a^type; extern kll, khl, k!2, kh2,
mshift;

TYPES
rtype = parallel array [lol-hi2, Iol-hi2] of rbtype;
mtype - parallel array [lolJxLl, lo2-M2] of mbtype;
ktype - array [0_size-l, 0-size-l] of kbtype;

mgtype =• parallel array(idxtype] of mbtype;
rgtype - parallel array! idxtype] of rbtype;

- arraytkll-kn, kl2-kh2] of kbtype;

where rtype, mbtype and kbtype are base types; rbtype must be conformable with, the pro-
duct of a kbtype with a mbtype.

EXTERN CONSTANT
size is a constant specifying the size of the kernel.

DESCRIPTION
Conv is a convolution function which convolves a small matrix with a large matrix. The
small matrix is typically stored in the host computer. The result matrix has the same dimen-
sions as the large matrix. For the highest large matrix index values the small matrix will
overlap the large matrix edge. Zero values are used for large matrix elements beyond this
edge. If it is desired that the result matrix is centered on the input matrix; Le. a result ele-
ment is computed from the same spatially located element in the input matrix and its near
neighbors, then this may be achieved by preshifting the input matrix or postshifting the
result matrix.

Convg is an extended version of conv. For this function the kernel index range is not con-
strained to start at zero and is explicitly specified by the extern parameters. Furthermore, the
shift function used by convg is also specified by an extern parameter. For example, Ishift or
crshift could be specified which would indicate that the function is to operate on large
(blocked or crinkled) matrices. If any function other than standard shift function is to be
used then it must be formally declared before convg is declared.

AUTHOR
Gary Ross and A. P. Reeves

SEE ALSO
Ishif t(2), crshif t(2)

A. P. Reeves PP

CRSHIFr(2) PPS-PDS Users Manual CRSHEFT(2)

NAME
crshift,crrotate — shift a large crinkled array on a parallel computer

SYNOPSIS
{Slibrary lshift.pl }

function crshift(adarray; r,c: integer klarray;
extern n, m, prow, pcol, labool;

function crrotate< adarray; r,« integer)darray;
extern n, m, prow, pcol, labool;

TYPES
larray = parallel array [0-n, 0-m, 0-prow, 0_pcol] of btype;
labool =» parallel array [0_n, 0-m, 0-prow, O.pcol] of boolean;

where btype is any base type.

DESCRIPTION
Crshift is a large matrix shift function for arrays stored with the crinkled format for paral-
lel processors, such as the MPP, which have a fixed range of parallelism for the two parallel
dimensions. Crrotate is similar to crshift except that a rotate operation rather than a shift
operation is performed. The second and third arguments to crshift specify the amount the
matrix is to be shifted in each dimension in a similar way to the standard shift function.

The large matrix is stored in a four dimensional array structure; the last two dimensions of
this array specify the block size which can be directly processed in parallel by the hardware.
The range of the first dimension of this array specifies the number of blocks in each column of
the large matrix and the second dimension specifies the number of blocks in each row. There-
fore, the dimensions of the large matrix are ((n + l) * (prow + l)) by (Cm + l) * (pcol 4- l)).

With the crinkled storage scheme, adjacent elements of the large matrix are stored in different
blocks; single element shifting is slightly more efficient with this format when compared to
storing adjacent elements in blocks. The crinkled storage scheme is illustrated with the fol-
lowing example. Consider that we have a large matrix .m-r, which is conceptually specified as
follows:

mx: array[0-x,0-y] of btype;

and which is stored in the array

a: larray;

the mapping of element i,j of the large matrix into the array a is specified by

mxfi,j] - a[i mod cdl, j mod cd2, i div cdl, j div cd2]

where
cdl - n +• 1
cd2 =• m + 1

A. P. Reeves PPL

CRSHIFTG(2) PPS-PDS Users Manual CRSfflFTG(2)

NAME
crshiftg,crrotateg — shift a large crinkled array on a parallel computer

SYNOPSIS
{Slibrary gshift.pl}

function, crshiftg(adarray; r,c: integer)darray;
extern nl, no, ml, mh, prowl, prowh, pcoll, pcolh, labool;

function crrotateg(a:larray; r,c: integer):larray;
extern nl, nh, ml, mh, prowl, prowh, pcoll, pcolh, labool;

TYPES
larray «- parallel array [nl-nh, ml-mh, prowLprowh, pcolL-pcolh] of btype;
labool =» parallel array [nl-nh, ml_tnh, prowLprowh, pcolL.pcolh] of boolean;

where btype is any base type.
DESCRIPTION

Crshif'tg and Crrotateg are extended versions of the functions Crshift and Crratate. With
these extended functions it is possible to have values other than zero for the first index value
of array index ranges.
Crshif tg is a large matrix shift function for parallel processors, such as the MPP, which have
a fixed range of parallelism for the two parallel dimensions when the crinkled format is used
for large matrix storage. Crrotateg is .similar to crshiftg except that a rotate operation rather
than a shift operation is performed. The second and third arguments to crshiftg specify the
amount the matrix is to be shifted in each dimension in a similar way to the standard shift
function.
The large matrix is stored in a four dimensional array structure; the last two dimensions of
this array specify the block size which can be directly processed in parallel by the hardware.
The range of the first dimension of this array specifies the number of blocks in each column of
the large matrix and the second dimension specifies the number of blocks in each row. There-
fore, the dimensions of the large matrix are ((nh-nl+l) * (prowh-prowl+l)) by ((mh-ml+l) *
(pcolh-pcoll+l)X
With the crinkled storage scheme blocks do not contain adjacent large matrix elements. This
method is slightly faster for single element shifts than storing adjacent elements in blocks.
The crinkled storage format is illustrated with the following example. Consider that we have
a large matrix ,m-r, which is conceptually specified as follows

mx: array[0_x,0-y] of btype;

and which is stored in the array

a: larray;

the mapping of element i,j of the large matrix into the array a is specified by

mx[i,j] = a[i mod cdl, j mod cd2, i div cdl, j div cd2]

where
cdl =» nh - nl + 1
cd2 = mh - ml + 1

A. P. Reeves PPL

CONVN (2) PPS-PDS Users Manual CONVN (2)

NAME
iconv, rconv, bconv — matrix convolution functions

SYNOPSIS
{$library convn.pl }

function iconv4(niatrixatype; kdternel Mtype; extern;
function rconv2(matrixa-type; kdternel)u-type; extern;
function bconv5(inatrix:btype; kdternel):btype; extern;

TYPES
itype - parallel array [CLx, 0-y] of integer;
rtype =• parallel array [0-x, 0_y] of real;
btype - parallel array [CLx, O.y] of boolean;
kernel = parallel array [CLsize-1, O.size-1] of (real, integer or boolean);

NOTES
1) The type of data specified by kernel must be compatible with, the type specified for itype,
2) The function name specifies the size of the kernel and the type of matrices involved (see
description).

DESCRIPTION
The functions iconv, rconv, and bconv are all convolution functions. Selection of the proper
function is determined by the data type involved in the convolution. Iconv is used if integer
values are used, rconv is used with real valued matrices and bconv is used with boolean
matrices. In addition to specifying the type of matrices involved, the size of the convolution
kernel must be included in the function name. Fucntions exist to do convolution using kernels
of size 2x2 to size 5x5. For example to do an integer valued convolution with a kernel of size
4x4 the function iconv4 would be used.

AUTHOR
Gary Ross conv(2)

A. P. Reeves PP

ROTATION (2) PPS-PDS Users Manual ROTATION (2)

NAME
irotateoirotate — Rotation matrix generators

SYNOPSIS
{Slibrary rotation.pl}

procedure irotate (var rp^pli; var cprpli; var mskrplb; var rfrplr; var cfrplr;
idl, id2:pli); extern mxrowl, mxrowh, mxcoll, mxcolh;

procedure nrotate (var rp^jli; var cpqsli; var mskqplb; ro,co,theta:btype; idl,
extern mxrowl, mxrowh, mxcoll, mxcolh;

TYPES
plr - array [mxrowljixrowhjaxcolLjnxcolh] of btype;
pli - array [mxrowLinxrowh^nxcolLjnxcolh] of itype;
plb - array [mxrowl-mxrowlvnxcolLjiixcolh] of boolean;

Where btype is any type and itype is an integer or subrange base type

EXTERN CONSTANTS
mxrowl =• the smallest row number of the input matrix
mxrowh - the largest row number of the input matrix
mxcoll - the smallest column number of the input matrix
mxcolh = the largest column number of the input matrix

DESCRIPTION
Irotate generates permutation matrices for realizing a given rotation transformation. Irotate is
a version of the rotation procedure to be used in conjunction with the interpolation procedures
blint or tint (see blint(2) and cint(2)). The rotation is specified by the coordinates of its
center, ro and co (row and column^ and by its angle theta. It returns two matrices containing
the truncated row and column coordinates for rotation of the original matrix, respectively rp
and cp, and a mask msk whose false elements indicate the positions in the rotated matrix that
will be filled with zeros. It also returns two matrices containing the differences between the
original rotated point and its truncated value, both for the row and column coordinate,
respectively rf and cf. Idl and id2 are two index identifying matrices as created by twodid
(see mat(2))

Nrotate is a version of the rotation procedure to be used in near neighbor operations. It
returns the same arguments as irotate except for rf and cf.

AUTHOR
A. P. Reeves

SEE ALSO
mat(2), blint(2), cint(2)

A. P. Reeves PPL

LBUNT(2) PPS-PDS Users Manual LBUNT(2)

NAME
Iblint — Bilinear interpolation procedure for a large matrix

SYNOPSIS
{$library lblint.pl}

procedure IblintC ro,co: btype; rp,cp: LINT; rf,cf: LARRAY; msk: LBOOL; b,d: LINT;
var Iresult: LARRAY); extern nl,7i,m l,m,NL>NELML>MH,naT;

TYPES
LARRAY - array [NLJVJH^I1-^HJ>ROWLJROWHJ5COLL-PCOLH] of btype;
LINT - array [NI^NH^II^MILPROWL-PROWILPCOLI-PCOLH] of itype;
LBOOL » array [NI^NH^DLJ^H^ROWI^ROWH,PCOLL-PCOLH] of boolean;
nar - array [^^-J^ILML_MH] of boolean;

Where btype is any type and itype is an integer or subrange base type

DESCRIPTION
Lbiint is a modified version of blint that can be used in conjunction with lirotate (see Irota-
tion(2)X It performs a local search to find three out of four vertices of a square that contains
the point whose value we want to interpolate. The fourth point is the top left corner of the
square and is immediately defined from the matrices rp and cp (row and column coordinates)
and matrix b (value of the point). Matrix d is a horizontally shifted version of matrix b.
Matrices rf and cf contain the coefficients used to perform the interpolation.

The bilinear interpolation is performed in the following way:

* P2

P3 * « P4

P - (1 - cfXl - rf>Pl + (1 -rf>cf*P2 + (1 - cf>rf*P3 + cf«rf*P4

for all points P in the matrix.

The large matrices are stored in a four dimensional array. The last two dimensions of this
array specify the block size which can be directly processed in parallel by the hardware. The
range of the first dimension of this array specifies the number of blocks in each row of the
large matrix and the second dimension specifies the number of blocks in each column. There-
fore, the dimensions of the large matrix are
((NH - NL + 1>(PROWL - PROWH + l)) by ((MH - ML + 1>(PCOLH - PCOLL + l)).

The arguments nl, n, ml and m specify also the dimensions of the large matrix. That is (n -
nl + 1) by Cm - ml + l).
The function Irotateg (Slibrary large.pl) has to be declared before Iblint can be used.

AUTHOR
Cristina Moura

SEE ALSO
lrotation(2),blint(2),cint(2)

A. P. Reeves PPL

LCINT(2) PPS-PDS Users Manual LCINTC2)

NAME
Icint — Cubic interpolation procedure for a large matrix

SYNOPSIS
Ullbrary lcint.pl}

procedure lcint(rtvxx btype; rp,cp: LINT; rf,cf: LARRAY; msk: LBOOL; b,d: LINT;
Tar Iresult: LARRAY); extern mxro-wL mxrowh, mxcolL mxcolh, ML, NH, ML, MH,
nar;

TYPES
LARRAY - array [M-JJH ÎLJVIHJ)ROW1JROWHJ>C01-1-PCOLH] of btype;
LINT - array [NLJJH^IJVIHJROWIJROWH^COIX-PCOLH] of itype;
LINT - array [NI^NH^H^MH^ROWl-PROWH^COLL-PCOLH] of boolean;
nar =• array [Nl-NILML-MH] of boolean;

Where btype is any type and itype is an integer or subrange base type

DESCRIPTION
Leant is a modified version of cint (see cint(2)) that can be used in conjunction with lirotate
(see IrotationGO). It performs a local search to find fifteen out of sixteen points located around
the point whose value we want to interpolate. The sixteenth point is immediately defined
from the matrices rp and cp (row and column coordinates) and matrix b (value of the point).
Matrix d is a horizontally shifted version of matrix b. Matrices rf and cf contain the
coefficients used to perform the interpolation.

The cubic interpolation for sixteen points is done by, first, performing a cubicinterpolation for
each one of the four rows and, then, based on the points obtained, performing a fifth cubic
interpolation.

PI * P2 » +paP3 * P4 *

P5 * P6 « +pbP7 * P8 *

P9 * P10 * +pc Pll * P12 *

P13 * P14 * +pdP15 * P16 «

We already have the value and position of point P6~ through matrices rp,cp and b. The first
four cubic interpolations are performed to obtain points pa, pb, pc and pd. The fifth one yields
the value of point P.

The large matrices are stored in a four dimensional array. The last two dimensions of this
array specify the block size which can be directly processed in parallel by the hardware. The
range of the first dimension of this array specifies the number of blocks in each row of the
large matrix and the second dimension specifies the number of blocks in each column. There-
fore, the dimensions of the large matrix are
((NH - NL + 1>(PROWL - PROWH + l)) by ((MH - ML H- 1>(PCOLH - PCOLL -f OX
The arguments mxrowLmxrowh, mxcoll and mxcolh specify also the dimensions of the large
matrix. That is (mxrowh - mxrowl + 1) by (mxcolh - mxcoll -t-1).

A. P. Reeves PPL

LCINT (2) PPS-PDS Users Manual LCEMT (2)

The function Irotateg (Slibrary large.pl) has to be declared before Icint is used.

AUTHOR
Cristina Moura

SEE ALSO
lrotation(2),blint(2)4blint(2),cint(2)

A. P. Reeves PPL

LROTATION (2) PPS-PDS Users Manual LROTATION (2)

NAME
lirotatejnrotate — Rotation matrix generators for large matrices

SYNOPSIS
{{library lrotation.pl}

procedure lirotate (var rp:LJNT; -var cpiINT; var msfoT.BOOL; Tar rf iLARRAY;
var cf:LARRAY; ro, co, thetaibtype; idl, id2dJNT);
extern ML, NH, ML, MH, PROWL, PROWH, PCOLL, PCOLH;

procedure Inrotate kvar rpdLJNT; var cpsLENT; Tar mskiLBOOL; ro, co, thetaibtype;
idl, id2dJNT);
extern NL, NH, ML, MH, PROWL, PROWH, PCOLL, PCOLH;

TYPES
LARRAY =• array [NL^ra^II^MH^ROWI^ROWHJCOLL-PCOLH] of btype;
LINT - array [NLJSIH^ILJ^HJROWI^ROWHJ>(X)1J--PCOLH] of itype;
LBOOL - array [MJra^ILMH^ROWI^ROWHJCOIJ-^ of boolean;

Where btype is any type and itype is an integer or subrange base type

DESCRIPTION
Lirotate is a large matrix version of irotate for interpolation (see rotation(2)).

It returns two matrices, rp and cp, containing the truncated, rf and cf, row and column coor-
dinates for rotation of the original matrix, as well as two matrices, rf and cf, containing the
differences between the original rotated points and their truncated values.

Lnrotate is a large matrix version of nrotate for near neighbor (see rotation(2)).

It returns two matrices, rp and cp, containing the row and column coordinates for rotation of
the original matrix, rounded to its near neighbor coordinates.
For both lintrotat and Inearotat the large matrix is stored in a four dimensional array
structure; the last two dimensions of this array specify the block size which can be directly
processed in parallel by the hardware. The range of the first dimension of this array specifies
the number of blocks in each row of the large matrix and the second dimension specifies the
number of blocks in each column. Therefore, the dimensions of the large matrix are
((NH - NL + 1) * (PROWH - PROWL + 1)) by ((MH - ML + l) * (PCOLH - PCOLH + l)).

SEE ALSO
mat(2)^otation(2)

A. P. Reeves PPL

LPERM2(2) PPS-PDS Users Manual LPERM2(2)

NAME
Iperm2 - permute data in a large array on a parallel computer

SYNOPSIS
{$library perm2.pl}

function Iperm2(™« larray; r,cs lint; msk: Ibool): larray;
extern nl, nh, ml, Tnh, prowl, prowh, pcoll, pcoln, btype;

TYPES
larray - parallel array [nLnh, mLmh, prowLprowh, pcolLpcolh] of btype;
lint =• parallel array [nl-nh, ml_mh, prowLprowh, pcolLpcolh] of integer;
Ibool =» parallel array [nl_nfr , ml-mh, prowLprowh, pcolLpcolh] of boolean;
pi «• parallel array [prowLprowh, pcolLpcolh] of integer;

where btype is any base type.

VARS
idl,id2:pi;
Idl and id2 are globally declared index identifying variables as created by twodid (see
mat(2)). These should be initialized before using Iperm2-

DESCRIPTION
Lperm2 is a large matrix permutation function for parallel processors, such as the MPP, which
has a fixed range of parallelism for the two parallel dimensions. It is similar in concept to
perm2(2) but operates on large matrices stored in the blocked format. The second and third
arguments to Iperm2 specify the conceptual large matrix index coordinates for the data to be
permuted. The fouth argument specifies the permutation conditions - true where permutation
is possible and false where permutation is out of range. In the false condition, zero will be put
in place of data in the resulting matrix.
The large matrix is, in fact, stored in a four dimensional array structure; the last two dimen-
sions of this array specify the block size which can be directly processed in parallel by the
hardware. The range of the first dimension of this array specifies the number of blocks in
each column of the large matrix and the second dimension specifies the number of blocks in
each row. Therefore, the dimensions of the large matrix are ((nh-nl+l) * (prowh-prowl+l))
by (Cmh-ml+l) « (pcolh-pcoU+l)).

SEE ALSO
mat(2), perm2(2)

A. P. Reeves PPL

LSHEFTC2) PPS-PDS Users Manual LSHIFT(2)

NAME
ishiftjlmtate — shift a large array on a parallel computer

SYNOPSIS
{Slibrary lshift.pl}

function lahift(adarray; r,cs integer)darray;
extern n, m, prow, pcol, labool;

function lrotate(atlarray; r,c: integer):larray;
extern n, m, prow, pcol, labool;

TYPES
larray = parallel array [0-n, CLm, 0-prow, 0-pcol] of btype;
labool - parallel array [0-n, 0-m, 0_prow, O.pcol] of boolean;

where btype is any base type.

DESCRIPTION
Lshift is a large matrix shift function for parallel processors, such as the MPP, which have a
fixed range of parallelism for the two parallel dimensions. Lrotate is .similar to Ishift except
that a rotate operation rather than a shift operation is performed. The second and third argu-
ments to Ishift specify the amount the matrix is to be shifted in each dimension in a similar
way to the standard shift function.

The large matrix is, in fact, stored in a four dimensional array structure; the last two dimen-
sions of this array specify the block size which can be directly processed in parallel by the
hardware. The range of the first dimension of this array specifies the number of blocks in
each column of the large matrix and the second dimension specifies the number of blocks in
each row. Therefore, the dimensions of the large matrix are (Go. + l) * (prow + l)) by ((m -f
1) » (pcol + OX
Each block of the array structure contains consecutive elements from the large matrix. For
example, consider that we have a large matrix .m-r, which is conceptually specified as follows

mx: array[0-x,0-y] of btype;

and which is stored in the array

a: larray;

the mapping of element i,j of the large matrix into the array a is specified by

mx[i,j] = a[i div cdl, j div cd2, i mod cdl, j mod cd2]

where
cdl = prow + 1
cd2 = pcol + 1

SEE ALSO
lshiftg(2)

A. P. Reeves PPL

LSHIFTG(2) PPS-PDS Users Manual LSHIFTG(2)

NAME
Ishif tgjrotateg — shift a large array on a parallel computer

SYNOPSIS
{$llbrary gsiuft.pl }

function Ishif tg(adarray; r,c: integer)darray;
extern nl, nh, ml, m*, prowl, prowh, pcoll, pcolh, labool;

function lrotateg(a:larray; r,c: integer)darray;
extern nl, nh, ml, Tnh, prowl, prowh, pcoll, pcolh, labool;

TYPES
larray = parallel array [nl-nh, ml-mh, prowLprowh, pcolLpcolh] of btype;
labool => parallel array [nl-nh, mUmh, prowLprowh, pcolLpcolh] of boolean;

where btype is any base type.
DESCRIPTION

Lshiftg and Irotateg are extended versions of the Ishift and Irotate functions. For these
extended functions the initial index values of the array ranges are no longer constrained to be
zero.

Lshiftg is a large matrix shift function for parallel processors, such as the MPP, -which have a
fixed range of parallelism for the two parallel dimensions. Lrotateg is similar to Ishiftg except
that a rotate operation rather than a shift operation is performed. The second and third argu-
ments to Ishiftg specify the amount the matrix is to be shifted in each dimension in a similar
way to the standard shift function.

The large matrix is, in fact, stored in a four dimensional array structure; the last two dimen-
sions of this array specify the block size which can be directly processed in parallel by the
hardware. The range of the first dimension of this array specifies the number of blocks in
each column of the large matrix and the second dimension specifies the number of blocks in
each row. Therefore, the dimensions of the large matrix are ((nh-nl+l) * (prowh-prowl+l))
by (Cmh-ml+1) * (pcolh-pcoll+l)).
Each block of the array structure contains consecutive elements from the large matrix. For
example, consider that we have a large matrix ,my, which is conceptually specified as follows:

mx: array{0-x,0-y] of btype;

and which is stored in the array

a: larray;

the mapping of element i,j of the large matrix into the array a is specified by

mx[i,j] - a[i div cdl, j div cd2, i mod cdl, j mod cd2]

where
cdl » prowh - prowl •+• 1
cd2 = pcolh - pcoll + 1

SEE ALSO
Ishift(2)

A. P. Reeves PPL

MATRAND (2) PPS-PDS Users Manual MATRAND (2)

NAME
matrand^andinit — matrix random, number generator

SYNOPSIS
{$library matrand }

function matrand; extern
diTTi,m,mrnl>mrarid>mbooI,paurang,coef>ncoef^tate, window;

procedure randinit; extern

TYPES and VARS
const

dim = 128; (* size of matrix or mpp dimensions *)
m =- 40; (* number of bits in the shift register *)
mml = 39; (* m - 1 *)
mrand = 14; (* number of bits in generated random number *)

type
index - 1-dim;
mbool - parallel array[index4ndex] of boolean;
pai =• parallel array{index4ndex] of integer;
rang - CLmml;

var
coef2trray(l jm] of rang; (* list of feedback bits *)
ncoefdntegerK* number of feedback bits *)
state: parallel arraytrang^ndex^ndex] of boolean;

(* array of shift registers *)
windowrang; (* index of last random bit of shift register *)

DESCRIPTION
Matrand is a function that returns an array of pseudo-random integers. Randinit initializes
the random number register used by matrand. This register contains a random seed for every
element of the random matrix. Initial seed random numbers are generated serially by ran-
dinit.

All constants, types and variables used by matrand are passed in the extern statement so that
multiple random number generators with different parameters may be used in the same pro-
gram.

AUTHORS
E Finnerty, AJ^Reeves

BUGS
Randinit calles srand for a single positive integer random number. Srand uses overflow
integer arithmetic. It could be replaced with a conventional Pascal random number generator.

A. P. Reeves PPL

MAXMC2) PPS-PDS Users Manual MAXM(2)

NAME
— masked max reduction, functions

SYNOPSIS
{ Slibrary reduce.pl }

function maxml(arg : veer, mask: vec): btype; extern;
function •mn^rm'jf arg : matr, mask: mat): btype; extern;
function -ma-rm^f arg : arr3r, mask: arr3): btype; extern;
function maxm4(arg : arr4r, mask: arr4): btype; extern;
function maxm5(arg : arrSr, mask: arrS): btype; extern;

TYPES
vec a vector of type boolean
mat: a matrix of type boolean
arrS: a three dimensional array of type boolean
arr4: a four dimensional array of type boolean
arr5: a five dimensional array of type boolean
vecn a vector of btype
matr: a matrix of btype
arrSr: a three dimensional array of btype
arr4n a four dimensional array of btype
arr5n a five dimensional array of btype

where btype is a numeric base type

DESCRIPTION
These functions reduce the first argument where there are true elements in the boolean mask
second argument. All dimensions are automatically reduced and the final result is always a
scalar value. The range of the dimensions of arg and mask must match. The following func-
tions are available:

maxml
max reduction for vector arguments

max reduction for matrix arguments

maxm.3
max reduction for three dimensional arrays

maxm.4
max reduction for four dimensional arrays

maxaiS
max reduction for five dimensional arrays

A. P. Reeves PPL

MEMM(2) PPS-PDS Users Manual MINM(2)

NAME
minm — masked min reduction functions

SYNOPSIS
{ Slibrary reduce.pl}

function minml(arg : veer, mask: vec): btype; extern;
function mi^n-mX arg : matr, mask: mat): btype; extern;
function minm3(arg : arrSr, mask: axr3): btype; extern;
function minm4(arg : arr4r, mask: arr4): btype; extern;
function minm5(arg: arr5r, mask: arr5): btype; extern;

TYPES
vec a vector of type boolean
mat: a matrix of type boolean
arrS: a three dimensional array of type boolean
arr4: a four dimensional array of type boolean
arr5: a five dimensional array of type boolean
vecn a vector of btype
matr: a matrix of btype
arrSr: a three dimensional array of btype
arr4n a four dimensional array of btype
arr5r: a five dimensional array of btype

where btype is a numeric base type

DESCRIPTION
These functions reduce the first argument where there are true elements in the boolean mask
second argument. All dimensions are automatically reduced and the final result is always a
scalar value. The range of the dimensions of arg and mask must match. The following func-
tions are available:

minml min reduction for vector arguments

minm2 min reduction for matrix arguments

minm3 min reduction for three dimensional arrays
minm4 min reduction for four dimensional arrays

minm5 min reduction for five dimensional arrays

A. P. Reeves PPL

MPERM2 (2) PPS-PDS Users Manual MPERM2 (2)

NAME
mperm2 — Modified two dimensional mapping procedure

SYNOPSIS
{Slibrary mperm2.pl }

procedure mperm2Gnucparvar perm2:pa;var permSrpa; npi; cqsi; ro,co:btype);exteni
lol, Ml, Io2, M2;

TYPES
pa «• array [lol-hil4o2Jii2] of bltype;
pi - array [Iol-hil,lo2-hi2] of itype;
Where btype and bltype are any type and itype is an integer or subrange base type.

VARS
idl,id2: pi;
Idl and id2 are two global index identifying matrices as created by twodid (see mat(2)X These
must be initialized before using mperm2.

DESCRIPTION
Mperm.2 is a modified version of the two dimensional mapping function perm2 (see perm2(2))
which can implement any into mapping and produces also

perm2[i.j] >

cl[i,j] >• cfcj] + e;
perm3(i,j] ^

where e can be 1 or -1 depending on the values of co
(the column value of the point of rotation) and hi2.

That is, the r and c matrices contain the row and column indices, respectively, of where each
element in perm2 is to be obtained from in mx and rl and cl the indices for permS.

AUTHOR
Cristina Moura

SEE ALSO
mat(2),perm2(2)

A- P. Reeves PPL

MX (2) PPS-PDS Users Manual MX (2)

NAME
mx — input values into a square matrix

SYNOPSIS
{$library mx.pl}

function mx3(TOO, rOl, T02,
TlO, Til, T12,

T20, T21, T22 :btype) a-type; extern;

TYPES
•vij m The value to go into location (i,j)
rtype =- parallel array [CLx, 0»x] of btype;

where btype is any base type;

DESCRIPTION
MX inputs the values of elements of a square matrix into the matrix. It can be used to input
values into arrays of size 2x2 to 5x5 . There are four different mx functions, one for each size
matrix. To get the appropriate function use mx# where # is the size of the array (Note: # =
x+1 from the type definitions above).

AUTHOR
Gary Ross

A. P. Reeves PP

NN (2) PPS-PDS Users Manual NN (2)

NAME
nearand, nearer, andnn, omn — near neighbor logical functions

SYNOPSIS
{$library nn.pl }

function nearandCmatrixrmtype ; k3:ktype): mtype; extern;
function nearorCnoatrixnntype; k3:ktype): mtype; extern;

function andnnCmatrixantype; mask:dirset): mtype; extern;
function ornnCmatrixantype; maskxlirset): mtype; extern;

TYPES
mtype =• parallel array [lolJiil, lo2Jii2] of boolean;
ktype - parallel array [0-2, 0.2] of integer;

neighbors
dirset =* set of neighbors;

DESCRIPTION
The near neighbor logical functions logically combine (AND or OR) each matrix element with
its near neighbors according to the second argument. The set of neighbors to be combined is
specified in two different ways.

In nearand and nearer the set of neighbors is specified by a 3x3 kernel. Those neighbors that
axe to be selected will have positive (or true) values in the corresponding position in the
kerenel.

In andnn and ornn the set of neighbors is specified by a direction set. The directions are NW,
N, NE, W, E, SW, S, SE corresponding to compass directions, as well as C indicating the central
element.

AUTHOR
Gary Ross

A. P. Reeves PP

BASE (2) PPS-PDS Users Manual BASE (2)

NAME
niMinetjecur — BASE assembly language functions

SYNOPSIS
{Slibrary base.pl}

function nnC&direction, b:bplane):bplane; extern; (* edge false *)
function nnetCdcdirection, b:bplane):bplane; extern; (* edge true *)

procedure recurOrar nbplane, b:bplane):bplane; extern;

procedure readbpCvar bp:bplane); extern;
procedure writebpCbp: bplane); extern;

CONST
diml = (» first dimension of the bitplane matrix *)
<1Sm2 - (* second dimension of the bitplane matrix *)

TYPES
bplane = parrallel array [l-diml, I_dim2] of boolean;
directon = set of 0.8;

VARS
terminated: boolean;

DESCRIPTION
These functions form the primitives for the BASE binary array processor (BAP) assembly
language. The may also be used for general BAP operations and for implementing other BAP
assembly languages.

Nn computes an OR function over the selected near neighbors of a bitplane (boolean matrix).
The near neighbors are labeled as follows:

123
8 0 4
7 6 5

Nnet 13 similar to nn except that near neighbor values outside the edge of the matrix are con-
sidered to be true rather than false.
recur is used to implement recursive instructions. It compares the old and new values for
each iteration of the instruction and sets terminated to true when they are identical. See the
example section for the use of this function.
Readbp reads a bitplane matrix from a file. The data values in the file are either 0 or 1 which
are converted to false and true respectively. Writebp writes a boolean bitplane to a file using
the 0 1 format.

EXAMPLES
Examples are given below of the syntax structures which are valid for the BASE instruction
set. Other BAP instruction sets may be emulated.

const NW = 1; N = 2; NE - 3; E = 4; SE = 5; S =• 6; SW = 7; W = 8;
begin

(* Boolean *)
r := {Boolean function of three variables};

A. P. Reeves PPL

BASE C 2) PPS-PDS Users Manual BASE (2)

(* Simple near neighbor *)
begin

t > nn([{direction list}], {bplane variable});
{the bplane variable may be proceeded by not}

r :=• {Boolean expression of two variables and t}
end
(In most cases a single statement involving nn may be used}

(* Recursive near neighbor *)
repeat recurCr, {simple near neighbor expression}) until terminated;

(* Global feature extraction *)
bor > anyGbplane variable}, 1, 2);
isum > sum(ord({bplane variable}), 1, 2);

(* Examples *)
r :=a;
r :=» a and b or c and d;
r := a Ob;

r := nnetdWl a);
r ^ a and nn([NAE,Wl a);
r > nndl-8], a);

repeat recur(r, r or nndNl r)) until terminated;
repeat recur(r, r and not nndl-Sl not r)) until terminated;

bor := anyCa, 1, 2);
end.
(* bitplane stacks may be defined as an array of bitplanes *)
var

bpsc array[0-7] of bplane;
(* bpst array[0-7, 1-diml, I_dim2] of Boolean *)
(* bpst{0] is the least significant bitplane *)

AUTHOR
A-PJR.eeves

A. P. Reeves PPL

PERM2(2) PPS-PDS Users Manual PERM2(2)

NAME
perm2,perm2s — General two dimensional mapping function

SYNOPSIS
(Slibrary peno2.pl }

function perm2(mjcrpa; r^pi; crpi)rpa;extern lol, Ml, Io2, M2;

function perm2s(mxrpa; rrpi; crpi);pa; extern lol, nil, Io2, M2;

TYPES
pa - array [Iol-hil4o2-hi2] of btype;
pi - array [Iol-hil,lo2-hi2] of itype;
Where btype is any type and itype is an integer or subrange base type.

VARS
idl,id2: pi;
Idl and id2 are two global index identifying matrices as created by twodid (see mat(2)). Tliese
must be initialized before using perm2.

DESCRIPTION
Perm2 is a general purpose two dimensional mapping function which can implement any into
mapping. It is designed for a parallel computer architecture and uses a heuristic approach to
reduce the execution time.

Perm2s is a version of perm2 designed for serial computers. The transformation implemented
by perm2 and perm2s is as follows:

perm2[i,j]
That is, the r and c matrices contain the row and column indices, respectively, of where each
element in perm2 is to be obtained from in mx

AUTHOR
A. P. Reeves

SEE ALSO
mat(2)

A. P. Reeves PPL

PRODM(2) PPS-PDS Users iManual PRODM(2)

NAME
prodm — masked prod reduction functions

SYNOPSIS
{ $library reduce.pl}

function prodm l(arg : veer, mask: vec): btype; extern;
function prodm2(arg : matr, mask: mat): btype; extern;
function prodm3(arg : arr3r, mask: arr3): btype; extern;
function prodm4(arg: arr4r, mask: arr4): btype; extern;
function prodm5(arg : arr5r, mask: arr5): btype; extern;

TYPES
vec a vector of type boolean
mat: a matrix of type boolean
arrS: a three dimensional array of type boolean
arr4: a four dimensional array of type boolean
arr5: a five dimensional array of type boolean
veer; a vector of btype
matr: a matrix of btype
arrSr: a three dimensional array of btype
arr4r: a four dimensional array of btype
arr5r: a five dimensional array of btype

where btype is a numeric base type

DESCRIPTION
These functions reduce the first argument where there are true elements in the boolean mask.
second argument. All dimensions are automatically reduced and the final result is always a
scalar value. The range of the dimensions of arg and mask, must match. The following func-
tions are available:

prodml
prod reduction for vector arguments

prodm2
prod reduction for matrix arguments

prodmS
prod reduction for three dimensional arrays

prodm4
prod reduction for four dimensional arrays

prodm5
prod reduction for five dimensional arrays

A. P. Reeves PPL

PYRAMID(2) PPS-PDS Users Manual PYRAMID(2)

NAME
pyramid, bpyr— pyramid convolution functions

SYNOPSIS
{$library pyraTnid.pl }

function pyramid (imagogtype; weigb.tsrwtypel):rtype;
extern nrows ncols type;

function bpyr(image:btype; weightsrwtype2):btype;
&ir+tw^ •n^fN^xro T«^*f\le*extern nrows ncols;

function pyrmskg(idfcitype; id2dtype):btype extern 0, nrows, 0, ncols;
function pyrgen(idlritype? id2:itype; up:boolean; dinuintegerMtype;

extern 0, nrows, 0, ncols;

TYPES
gtype - parallel array [0-nrows, 0-ncols] of (real or integer);
wtypel - parallel array [0-13] of (real or integer);
btype - parallel array [0-nrows, CLncols] of boolean;
itype - parallel array [0-nrows, 0-ncols] of integer;
wtype2 - parallel array [0,13] of boolean;

EXTERN CONSTANTS
nrows =« The largest row number of the image matrix
ncols =• The largest column number of the image matrix
type =• The data type of the weights vector (Le the word integer)

VARS
idl,id2,upl,dnl,up2,dn2: itype
pyrmsk: btype;
Idl and id.2 are two global index identifying matrices as created by twodid (see mat(2)).
These must be iniatailized first. The other matrices specify transformations for managing
pyramid data; see the description section for their initialization.

DESCRIPTION
The functions pyramid and bpyr are convolution functions for pyramid structure images
stored in a two dimensional matrix. The successive levels of the pyramid structure are stored
in successive rows of the image matrix with the lowest level image (l pixel image) being
located at position [0,0] in the input matrix, Pyramid is designed for use with mnumeric data
while bpyr is suitable for boolean data.

The pyramid operations require several constant matrices; these are declared globally for
efficiency. The global variables are generated with the functions twodid (see mat(2)), pyrmskg
which generates the boolean pyramid constraint mask, and pyrgen which generates all shift
matrices used for moving up and down the pyramid. A typical program code for setting up
these matrices is dhown below:

twodid(idl, id2);
pyrmsk. > pyrmskgGdl, id2);
upl > pyrgen (idl, id2, true, 1);
dnl := pyrgen (idl, id2, false, 1);
up2 > pyrgen (idl, id2, true, 2);
dn2 :*• pyrgen (idl, id2, false, 2);

A. P. Reeves PPL

PYRAMEX2) PPS-PDS Users Manual PYRAMID(2)

The weight vector for the pyramid convolution is organized as follows

w[0] parent

w[2] w[3]
w[4] w[5] w[6] same plane near neighbors
w[7] w(8] w[9]

w[lO] w{ll] children
w[l2] w[l3]

The gather library function may be used to do explicit pyramid manipulation. An upward
shift of all levels of the pyramid can be achieved with:

pyr > gather (gather (pyr, upl, l), up2, 2);

A downward shift of all levels of the pyramid can be achieved with:

pyr > gather (gather (pyr, dnl, 1), dn2, 2);

Horizontal shifting of all levels of the pyramid can be achieved with the library function
xsfdft with the mask pyrmsk as follows:

pyr >• xshif t (pyr, x, y, pyrmsk);

SEE ALSO
xshif t(2), conv(2X zconv(2), varshif t(2) ,mat(2)

AUTHOR
Gary Ross and A. P. Reeves

A. P. Reeves PPL

VARSHIFT(2) PPS-PDS Users Manual VARSfflFT(2)

NAME
spread, gather— variable shift functions

SYNOPSIS
{$library shift.pl}

function spreadCorigntype; shmaskantype; dimantegerMtype;
extern nrows, ncols;

function gatherCorigutype; shmasknntype; dimiintegeiOitype;
extern nnyws, ncols;

TYPES
itype «• parallel array [O-nrows, 0_ncols] of (integer or real);
mtype =- parallel array [0-nrows, CLncols] of boolean;

EXTERN CONSTANTS
nrows - the highest row number of the input matrix
ncols - the highest column number of the input matrix

VARS
idl,id2: itype;
Gather accesses idl and id2 which are two global index identifying matrices as created by
twodid (see mat(2)). These must be initialized before using gather; gather does not change
their values.

DESCRIPTION
The functions spread and gather are both two dimensional variable shift functions. Given a
two dimensional input matrix, a shift mask and a direction these functions will shift each ele-
ment of the input array an amount specified by the shift mask.

Shifting can only be done in one direction at a time, therefore the direction must be specified
by the value of the parameter A\m.

The difference between the two functions is in how the shift mask (shmask) specifies where to
shift each element. For the function spread, the shift mask indicates how far the correspond-
ing element in the input matrix should be moved. Both positive and negative values are
allowed for the shift mask. For the function gather, the shift mask defines where the result
at the corresponding location expects to get its value from (Le. the row number or the column
number, depending on the direction specified).

CAUTIONS
In the function spread it is possible for more than one element to be shifted to the same loca-
tion. If this occurs the element that is shifted the farthest will be the final result. (Note the
shift mask is converted to be all positive values and the shifts performed are actually rotates.
Thus a shift value of -1 is actually shifted farther than a shift value of +1)

Just as likely in the function spread is that nothing is shifted to a given location in the result.
In this instance the resulting value will be zero.
In the function gather, the shmask should consist of non-negative values only. A negative
value in the shift mask indicates that the resulting value at the corresponding position in the
result will be zero.

AUTHOR
Gary Ross

A. P. Reeves PP

SUMM(2) PPS-PDS Users Manual SUMM(2)

NAME
summ — masked sum reduction functions

SYNOPSIS
{ Slibrary reduce.pl}

function summl(arg : veer, mask: vec): btype; extern;
function summ2(arg : matr, ma^Tc; mat): btype; extern;
function summ3(arg : arrSr, mask: arr3): btype; extern;
function summ4(arg : arr4r, mask: arr4): btype; extern;
function summ5(arg : arrSr, mask: arr5): btype; extern;

TYPES
vec a vector of type boolean
mat a matrix of type boolean
arri a three dimensional array of type boolean
arr4: a four dimensional array of type boolean
arr5: a five dimensional array of type boolean
veer: a vector of btype
matn a matrix of btype
arrSr: a three dimensional array of btype
arr4r: a four dimensional array of btype
arr5n a five dimensional array of btype

where btype is a numeric base type

DESCRIPTION
These functions reduce the first argument where there are true elements in the boolean mask
second argument. All dimensions are automatically reduced and the final result is always a
scalar value. The range of the dimensions of arg and mask must match. The following func-
tions are available:
sum-mi

sum reduction for vector arguments
sum m 2

sum reduction for matrix arguments

summ.3
sum reduction for three dimensional arrays

summ.4
sum reduction for four dimensional arrays

summ5
sum reduction for five dimensional arrays

A. P. Reeves . PPL

MAT(2) PPS-PDS Users Manual MAT(2)

NAME
writernx,twodid,twodids — general matrix functions

SYNOPSIS
{Slibrary mat.pl }

procedure •writenxxOnx^type^fintrinteger); extern lol, nil;

procedure twodidCvar idl:ptype; var idiptype); extern Iol,hil,lo2,hi2;
procedure twodidsCvar idl:ptype; var id2q>type); extern lol,Ml,lo2,hi2;

TYPES
ptype - array [lol_hilJlo2Jii2] of ntype;
Where ntype is a numeric base type: real, integer or subrange.

DESCRIPTION
Writemx is a convenient procedure for printing the contents of a small numeric matrix. The
fmt parameter specifies the field width for each element to be printed. Writemx is not clever
enough to know when the width limit on an output line has been exceeded.

Twodid generates two integer matrices idl and id2 which can be used for identifying each
element in a parallel array operation. The contents of these arrays are defined as follows

Twodids is a serial version of twodid.
AUTHOR

A. P. Reeves

A. P. Reeves PPL

XCONVC2) PPS-PDS Users Manual XCONV(2)

NAME
xconv — constrained matrix convolution function

SYNOPSIS
($library convolve.pl }

function xconv(iniage:gtype^c:kerneljniaskantype):gtype;
extern size;

TYPES
gtype = parallel array [0_x, CLy] of (real or integer);
kernel= parallel array [0_size-lf 0_size-l] of (real or integer);
mtype =• parallel array [0_x, 0-y] of boolean;

EXTERN CONSTANT
size: integer constant specifying the size of the kernel.

(ie. for a 3 x 3 kernel size=»3)

DESCRIPTION
Xconv is a version of matrix convolution where pseudo-edges are defined internally to the
image matrix by use of a boolean mask matrix. The definition of edges internal to the image
matrix prevents data from crossing the defined boundaries.

SEE ALSO
xshif t(2), conv(2)

AUTHOR
Gary Ross

A. P. Reeves PP

XSfflFT(2) PPS-PDS Users Manual XSHIFT(2)

NAME
xshif t — constrained shift function

SYNOPSIS
Ulibrary shift }

function xshiftCorigatype; x,y:integer; maskantype)utype;

TYPES
itype = parallel array [0«x, 0>y] of (integer or real);
mtype = parallel array [0-x, 0_y] of boolean;

DESCRIPTION
Xshift is a two dimensional shift function where the boolean matrix mask defines pseudo-
edges inside the array being shifted. The mask plane should be set to true only in those places
where the user wishes to define an lower edge or a right edge. This definition introduces a
non-symmetrical response in doing a shift. When shifting down or to the right the effect is as
if an edge existed where defined in the mask. When shifting up the effect is the same as hav-
ing an edge one row down from where it is defined in the mask. Also when shifting left, the
effect is as if there were an edge one column to the right of where it is defined in the mask.

NOTE
It may be useful to think of the edge mask as defining an edge which is half a pixel down and
half a pixel to the right of where it is defined in the edge mask.

AUTHOR
Gary Ross

A. P. Reeves PPL

LIBRARY FUNCTION SUBJECT INDEX

General Utilities
ceiling - round up to integer value
matrand^andinit - matrix random number generator
writemx,twodid,twodids- general matrix functions

Masked Reduction Functions
allm - masked all reduction functions
anym - masked any reduction functions

- masked max reduction functions
- masicyl min reduction functions

prodm - masked prod reduction functions
summ - masked sum reduction functions

Large Array Utilities
crshif%crrotate - shift a large crinkled array on a parallel computer
crshift&crrotateg - shift a large crinkled array on a parallel computer
Ishiftjrotate - shift a large array on a parallel computer
Ishiftgjrotateg - shift a large array on a parallel computer

Permutaion Functions
perm2,perm2s - General two dimensional mapping function
mperm2 - Modified two dimensional mapping procedure
Iperm2 - permute data in a large array on a parallel computer
spread, gather - variable shift functions
xshift - constrained shift function

Matrix Rotation Functions
irotate^irotate - Rotation matrix generators
blint - Bilinear interpolation procedure for a matrix
cint - Cubic interpolation procedure for a matrix
lirotatejnrotate - Rotation matrix generators for large matrices
Iblint - Bilinear interpolation procedure for a large matrix
Icint - Cubic interpolation procedure for a large matrix

Near Neighbor and Convolution Functions
compn - near neigbor comparison function
conv,convg - matrix convolution functions
iconv, rconv, bconv - matrix convolution functions
mx - input values into a square matrix
nearand, nearer, andnn, ornn- near neighbor logical functions
niunnetjecur - BASE assembly language functions
pyramid, bpyr - pyramid convolution functions
xconv - constrained matrix convolution function

