
NASA Contractor Report 178130

leASE REPORT NO. 86-40

ICASE
APPROXIMATE ALGORITHMS FOR PARTITIONING

AND ASSIGNMENT PROBLEMS

M. Ashraf Iqbal

Contract Nos. NASI-17070, NASI-18107

June 1986

,

! NASA-CR-178130
19860020078

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NI\SI\
National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23665 [1111111111111 ~~~ !I~~~ 1111111111111

llBRARV ~OP.V

LANGLEY fii:SE~RCH CENTER
LIBRARY, NASA

H~~.~?TON, VIR3It11~

Approximate Algorithms for Partitioning and Assignment Problems

M. Ashraf Iqbal

Institute for Computer Applications in Science and Engineering
and

University of Engineering and Technology, Lahore, Pakistan

ABSTRACI'

We· consider the problem of optimally assigning the modules of a parallelJpipelined pro­
gram over the processors of a multiple computer system under certain restrictions on the inter­
connection structure of the program as well as the multiple computer system. We show that
for a variety of such programs it is possible to find in linear time if a partition of the program
exists in which the load on any processor is within a certain bound. This method, when com­
bined with a binary search over a finite range, provides an approximate solution to the parti-
tioning problem. .

The specific problems we consider are partitioning of (1) a chain structured parallel pro­
gram over a chain like-computer system, (2) multiple chain like programs over a host-satellite
system, and (3) a tree structured parallel program over. a host-satellite system.

For a problem with m modules and n processors, the complexity of our algorithm is no
worse than O(mnlog(WT/e», where WT is the cost of assigning all modules to one processor
and e the desired accuracy.

Supported by NASA Contracts NASl-17070 and NASl-18107 while the author was in residence at the In­
stitute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center.

i

1. Introduction

With the proliferation of relatively cheap parallel computers in the research as well as
the 'commercial field, it is becoming increasingly important to efficiently utilize the powerful
hardware. One important requirement is that the task being executed be partitioned over the
multiple computer system in an optimal fashion so as to minimize the total execution time of
the job. In general the problem of finding the optimal partition of an arbitrarily connected
distributed/parallel program over an arbitrarily connected multiple computer system is very
difficult If, however, the modules of the program communicate in a restricted manner and the
multiple computer system has a special structure then it is possible to solve some of the parti­
tioning problems. It has been shown in [1] that if the number of processors is limited to 2
then the partitioning problem can be solved efficiently for a distributed processor system.
Similarly if the interconnection structure of the distributed program is tree-like then it is possi­
ble to efficiently partition the program over any number of processors [2].

The problem of optimally partitioning a modular program in a parallel processing
environment is discussed in [3]. If the interconnection structure of the program is chain or
tree-like and the parallel processor is either connected as a chain or is a host-satellite system,
then [3] shows how the program may be partitioned optimally in polynomial time. Other
related research in this field, which includes sub-optimal or approximate solutions to the parti­
tioning problem, is reported in [4], [5] and [6].

In this paper we describe a fully polynomial time approximation scheme which provides
approximate solutions to most of the partitioning problems discussed in [3] and already solved
by using pure polynomial algorithms. In order to appreciate the usefulness of the approximate
solutions, one should bear in mind that data for the problem being solved is often only known
approximately. Hence an approximate solution may be as meaningful as an exact solution for
many of the practical problems [4] where the extra accuracy of the exact solution is not
needed and where the approximate solution can be obtained in a relatively short time [7].

In Section 2 we discuss an algorithm for finding the optimal partition of a chain struc­
tured parallel or pipelined program over a chain of identical processors. We assume that the
program is made up of m modules numbered l..m and has an intercommunication pattern such
that module i can communicate only with modules i+ 1 and i-I. Similarly we assume that the
multiprocessor of size n<m has also a chain like architecture. We work under the constraint
that each processor has a contiguous subchain of program modules assigned to it. Thus the
partitions of the chains have to be such that modules i and i+ 1 are assigned to the same or
adjacent processors. The optimal partitioning would then be the assignment of subchains of
program modules to processors that minimizes the load on the most heavily loaded processor.

The central result of Section 2 is that for a trial weight w, it is possible to find if a parti­
tion exists in which the load on each processor is less than or equal to w in time proportional
to O(mn). The optimal partition is then found by making a binary search in a given range to
find the partition for which w is minimum. The approach we use here is a fully polynomial
time approximation scheme [8] and is an extension of the method discussed in [4] for finding
the optimal partition of a one dimensional domain over a chain of processors.

In Section 3 and 4 we show that this technique can be used to optimally partition pro­
grams composed of multiple chains over a multiple computer system based on a single-host
and multiple-satellite architecture. The time required by the entire system to complete the

2

processing is detennined by the greater of (1) the individual load on the most heavily loaded
satellite and (2) the sum of the collective loads on the host.

We discuss the partitioning of a chain-like program over a shared memory system in
Section 5. In such a system, the total processing time is detennined by the greater of (1) the
individual load on the most heavily loaded processor and (2) the sum of communication costs
between all pairs of processors that communicate through the shared memory [3]. We use
Kernighan's approach [10] to design a probing function. The probing function returns true if
it is possible to partition the program such that the load on any processor and the total com­
munication cost is less than or equal to a trial weight w, and false otherwise. The optimal par­
tition is then found by making a binary search in a finite range.

In Section 6 we discuss an approach to optimally partition a tree-structured parallel or
pipelined program over a single-host multiple-satellite system. This algorithm is also based
on a probing function.

The paper concludes with a discussion of our results in Section 7.

2. An Algorithm for Partitioning Chains

We describe in this section how a chain structured parallel or pipelined program can be
optimally partitioned over a chain of identical processors. We assume that a chain structured
program is made up of m modules numbered l..m and has an intercommunication pattern such
that module i can communicate only with modules i+l and i-I. Similarly we assume that the
multiprocessor of size n<m has also a chain like architecture.

We work under the constraint that each processor has a contiguous subchain of program
modules assigned to it. Thus the partitions of the chains have to be such that modules i and
i+ 1 are assigned to the same or adjacent processors. The optimal partitioning would then be
the assignment of subchains of program modules to processors that minimizes the load on the
most heavily loaded processor.

It is convenient for us to assume that should the optimal assignment dictate that fewer
than the available n processors be used, we can simply ignore the impact of communicating
with the outside world through a subchain of unused processors. If desired, it is very simple
to account for this overhead by concatenating dummy modules to the chain.

Notation:

Wi time consumed in the execution of module i.

ci time to communicate between module i and i+l if the two modules are assigned
to different processors. We assume that Co (c,J, is the time for module.l (m) to
communicate with the outside world.

Definitions :

wmax maximum value of Wi for l~i$rn

W T load on a processor if all the m modules are assigned to it. Thus
m

WrcLWi + Co + cm•
i=1

O'k '}.

3

load on a processor if subchain ModulesU .. k] is assigned to it. It is given by
k

LWj + ck + cj-l'
i=j

total remaining load to be assigned given that module k is the last module
assigned to a processor. This is given by the following equation:

m
!ll? L Wi + Ck + Cm'

i=k+l

weight The weight of a partition is the weight of its heaviest subchain.

The assignment algorithm based on the function PROBEI (described below), takes
advantage of the fact that the load assigned to the most heavily loaded processor in the
optimal partition lies somewhere between WT and WT/n. This is because at worst all modules
are assigned to the same processor, which has load WT• At best load is uniformly distributed
over all processors with Wyln on each. The algorithm selects a trial weight W in the above
range and then uses the function PROBE1. The function PROBEl(w) returns true if it is pos­
sible to partition the chain of modules into subchains such that the load on each processor is
less than or equal to w, and false otherwise. The partition that function PROBEI obtains is
called a conservative partition.

2.1. The Algorithm

function PROBEl(Processors[1..n], Modules[1..m],w):boolean;
begin

j = 1; k = 0; p = 1; ~ = WT;

whilep ~ n do
begin

for x = j to m do
if 0j,;x ~ w and !lx < !lmin then

begin
!lmin = !lx;
k =x;
Assign subchain ModulesU .. k] to processor p;
if k = m then return(true);

end;
j = k+ 1; P = p+ 1;

end;
rcturnifalse);

end.

2.2. Discussion

In order to understand the working of the function PROBEI it is important to note that:

1. The function assigns ModulesU .. k] to processor p such that Ilk is minimum and .Qj.~w
for j$k5m. The corresponding minimum value of Ilk is denoted by !lmin'

4

2. If while assigning Modules[k+1..k'] to processor p+l it is found that ck+wk+l>w then
obviously it is not possible to have a conservative partition of weight wand the function
PROBEI returns false.

3. If while assigning Modules[k+1..x] to processor p+l, it is found that .1,?.1min when
Qk+l~w for k+l~ then the function again returns false. If instead the function
assigns some modules to processor p+l then either the condition Qk+l,x~w, will be
violated or the function will encounter a situation similar to (2). This can be explained
with the help of Fig. 1. Suppose Qk+l,x~w and ~?~min for k+l~$q, while Qk+l,x>w
imd ~x<~min for x>q. To make sure that the load on processor p+ 1 is less than or equal
to w the value of x should be equal to or less than q. But then Qx+l,q+l will become
larger than Qk+l,q+l because ~?~min and thus we are led to a situation similar to (2).
Thus if k=={), p+l is the first processor and Ql,x>WT for x>q then the optimal partition
will require that all m modules be placed on a processor; otherwise, the load on some
processors will become larger than W T.

In the following paragraphs we shall first examine a detailed example of how the func­
tion PROBEI works and then prove that if there exists a partition of weight w then the func­
tion PROBEI will always find that or a better assignment.

2.3. An Example

Before proving correctness, let us examine a detailed example of how the function
PROBEI tries to find a conservative partition of weight w. Fig. 2 shows a 10 module chain to
be mapped on a 4 processor chain with a trial weight w=20. The number below each module
is its execution cost while the number above each edge is the communication cost for the two
modules at the ends of that edge. Thus for module 4 the value of w4=6 and c4=12. The
value of WT for this problem is 54 (we have assumed that co=cm=O).

Fig. 3 (bottom) shows a plot (grey line) of Ql,x for processor 1 against x. It can be seen
from the figure that the load on processor 1 increases from zero, when no module is assigned
to it, to WT when all 10 modules are assigned to processor 1. The value of remaining load ~x
is also plotted (black line) against x. This decreases from WT, when no module is assigned to
processor 1, to zero when all the 10 modules are assigned to it. It is evident from Fig. 3 that
the rise of Ql,x and the fall of ~x with x, are not monotonic. Thus if we initially assign
Modules[1..2] to processor 1 and then further assign Modules[3 . .4] to it then the value of ~x
instead of decreasing, increases from 40 to 44. The reason for this behavior is non-uniform
communication costs.

The subchain Modules[l..x] is assigned to processor 1 such that ~ is minimum and
Ql~20. The value of x which satisfies the above constraints is 2. It can be seen from Fig. 3
that the condition (Ql~20) will still be satisfied if we further assign module 3 to processor 1,
but then the remaining load will increase which will make it impossible to find a conservative
partition of weight w=20 for the rest of the module chain in this example. The resulting
assignment of modules to processor 1 is shown in Fig. 3 (top).

Having assigned modules to processor 1 we plot the load on processor 2, Q3,x' (grey
line) and the remaining load ~x (black line) as a function of x in Fig. 4. The resulting

5

assignment of modules to processor 2, shown in Fig. 4 (top), is selected on the same basis
that 03,xS20 and ~ should be minimum. Finally we draw 06,x and !1x for processor 3 in Fig.
5.For the assignment of modules to processor 3, shown in Fig. 5 (top), the remaining load is
just equal to the trial weight and thus it is possible to find a conservative partition of weight
W of the module chain in the above example.

2.4. Proof of Correctness
Claim

Proof

If a problem with m modules and n processors has a partition of weight w,
PROBE! will find that or a partition of less weight.

By induction on n.

Consider the case n=2. Suppose the given partition of weight w assigns
Modules[l..jg] to processor I and ModulesUg+l..m] to processor 2.

Apply PROBE! to this problem. Suppose it assigns Modules[1.Jc] to processor I
and jc+l..m to processor 2. Because of the way in which PROBEI proceeds, /).jc
will be minimized under the constraint 01jc~W. But because n=2,

m
!1jc= L w,+Cjc+cm= 0jc+1,m = the weight of the second partition.

i=jc+1

Thus the weight of the second partition will be minimized under the constraint
that the weight of the first partition is ~w. If there exists a partition in which the
weight of both subchains is ~w, PROBE! will clearly find it. The claim is thus
true for n=2. Note that the proof is independent of m.

We will now show that if the claim is correct for n=k it is also correct for n=k+ 1.
Suppose we are given a chain of m modules which has a partition of weight w.
Assume that in this given partition, Modules[1..jg] are assigned to processor! and
jg+l..kg to processor 2.

Starting with module !, scan the modules from left to right to identify the module
jc such that 0ljc<W and !1jc is minimum. Delete the nodes[1..jcl.

Three cases are now possible:

Case(l) jc=jg: the subchain deleted corresponds to the first subchain of the given
partition. In this case the remaining nodesUc+ l..m] must have a partition
with weight wand n=k subchains (because the original chain was given
with n=k+l subchains).

Case(2)

Case(3)

jc<jg: this means that !1jc<!1j, which implies that OjCJkg<njg,kg~W, i.e. the
second subchain of the given partition has had its weight reduced below w.

j~jg: again only possible if !1jc<!1jg which implies that njJc,<njJcg~W, i.e. the
second subchain has had its weight reduced.

In all three cases the remaining nodesUc+1..ml must have a partition with weight
wand n=k subchains.

By applying PROBE! to the remaining chain jc+ l..m, we can obtain a partition of
weight w and n=k sub chains (since the algorithm is assumed correct for n=k).

6

By concatenating the deleted chain l..jc with the partition obtained above, we will
get a partition of weight w and n=k+ 1 subchains.

Now recall that node jc was selected under the constraint that nlje~W an.d 6.je was
minimum. Thus the deletion of l..jc followed by the application of PROBEI is
equivalent to the application of PROBEI for n=k+ 1. This proves that if the claim
is true of n=k it is also true for n=k+ 1.

We have already proved the claim to be true for n=2. It is therefore true for all
n.

The algorithm makes a binary search in the range Wyln, WT using the function PROBEI
to find the partition for which the weight of the heaviest subchain is minimum. For each trial
weight w the function PROBEl has to look at each module only once for each processor.
Thus for m modules and n processors the function PROBEI will perform O(mn) steps to find
a conservative partition, if it exists. If the above range is resolved to an accuracy of E then
the algorithm will find a conservative partition of weight w in time proportional to
O(mnlog2(WTIE» with the assurance that w is no greater than the weight of the heaviest sub­
chain in the optimal assignment by E. Thus the order of the algorithm is O(mnlog2(WTIE». It
is important to note that the time complexity of the algorithm is proportional to 10g(WpE)
unlike other fully polynomial time approximation schemes which are polynomial in liE [8].

3. Partitioning Multiple Chains across a Host-Satellite System

The algorithm presented in the previous section can be used to solve several other parti­
tioning problems in Host-Satellite Systems as shown in Fig. 6. Let us assume that each chain
has m modules, there are n satellites and that for each module i of satellite s the time required
to run it on the satellite, ei,s' and on the host, hi,s. For each pair of modules i and i+ 1 from
satellite s we have the time required for interprocessor communication, ci,s' should i be
assigned to the satellite and i+ 1 to the host. When these n chains are partitioned between the
host and the n satellites, the time required by the entire system to complete the processing is
determined by the greater of (1) the individual load on the most heavily loaded satellite and
(2) the sum of the collective loads on the host.

We represent the load on satellite s by Qk,s' provided Modules[1..k] are assigned to it. It
k .

is given by Lei,s+Ck,s. The remaining load, due to the rest of the modules of satellite s, is
i=1 I I

m
assigned to the host and is denoted by 6.s' which is equal to L hi,s+Ck,s.

i=k+l

The probing function, while trying to find a conservative partition of weight w, will
assign Modules[1..k] to satellite p such that Qk,s~W and 6.s is minimum. If the total load on

n
the host which is equal to L6.s ~w then the function returns true and the conservative parti­

s=1
tion, and false otherwise.

7

3.1. An: Example

Let us consider an example of two satellites each having 10 modules. For the sake of
simplicity assume that ei,s=hi,s. The two satellite chains are shown in Fig. 7 (top). nk,1 (the
load on satellite 1) and ~1 (the remaining load on the host) are plotted against k in grey and
black lines respectively in Fig. 7 (middle). In Fig. 7 (bottom) we plot the corresponding
values of nk,2 and ~2 for satellite 2, against k. The total load on the host is the sum of ~1 and
~2. For example if k=5 for satellite 1, and k=8 for satellite 2 then nk,1 and nk,2 will be 33
and 40 respectively and the total load on the host will be equal to 29+16=45.

For a trial weight w--44, the probing function will select k=7 for satellite 1. In this case
~1 will be 20. Note that for any other value of k either the value of nx,l is larger than w or
~l is not as small as 20 as shown in Fig. 7 (middle). Similarly for satellite 2, the selected
value of k is 8 and so ~2 will be 16. The total load on the host will then become 20+16=36
which means that a conservative partition with w=44 exists as shown (bold line) in Fig. 7
(top).

Thus for each satellite s, the probing function selects nk,s' such that ~s is minimum. All
satellite chains are independent of each other. Thus if ~p is minimum for each p, where

n
1~~, then L~p will also be minimum. Now if there exists a partition in which the total

p=l
proce~sing time is less than or equal to w then for each individual satellite s, this partition can
always be transformed into a conservative partition of weight w by increasing or decreasing k
until ~s becomes minimum and n~w. The only result of this transformation will be that the
load on the host will either decrease or remain the same. Thus if there exists a partition of
weight w then this approach will always find that or an equivalent assignment.

The algorithm makes a binary search in the range WT, Wr/n, where WT is given by equa­
tion (2), using the probing function to find the conservative partition of weight w for which w
is minimum.

(2)

Note that WT is the smaller of (I) total processing time if all modules are assigned to the
host and (2) total processing time if no module is assigned to the host. Thus if wmax is the
maximum value of hi,s for Ig~ and 1~~ then WT~n(wmax).

For each trial weight w the probing function has to look at each module at least once for
each satellite before a decision is made to assign this module to the satellite or not. Thus the
function will perform O(mn) steps to find a conservative partition of weight w if it exists. If
the range Wr. W:zIn is resolved to an accuracy of E then the algorithm will find a conservative
partition of weight w in time proportional to O(mnlog2(WTIE» with the assurance that w is no
greater than the worst load on any satellite and the total load on the host in the optimal
assignment by E.

8

4. Partitioning Distributed Programs in Host-Satellite System

Stone has solved the problem of partitioning a distributed program over a single-host and
single-satellite system in [1]. He has further studied the behavior of the optimal assignment as
a function of load on the host and shows that a nesting property holds [9]. As load increases
on the host, modules move away from the host and onto the satellite. At no point does an
increase in load cause a module to move from the satellite onto the host.

Subsequent work by Bokhari [3] shows how this property can be exploited when
finding optimal assignments in a single-host multiple-satellite system. We can consider the
individual programs to have chain-like structure, regardless of their actual interconnection.
The optimal assignment can be found using a Sum-Bottleneck path algorithm. The complexity
of this approach is dominated by the O(m4n) algorithm that finds the individual chains, for a
problem with n satellites, each executing a program with m modules. The partitioning of the
chains takes far less time than O(m4n) time.

We can find the partitioning of the chains using an approach similar to the one discussed
in the previous section. This takes O(mnlog(WpE)) time, where WT and E are as defined in the
previous section. The overall complexity of the algorithm is still O(m4n).

5. Partitioning Chains in Shared Memory System
Consider a chain of m modules numbered l .. m. Each module i has an associated execu­

tion cost Wi and each edge (iJ) has a communication cost Cij, should modules i and j be
placed on different processors in a shared memory system. Under such a system, the total
processing time is determined by the greater of (1) the individual execution load on the most
heavily loaded processor and (2) the sum of communication costs between all pairs of proces­
sors that communicate through the shared memory [3]. It has been shown by Kernighan [10]
that it is possible to find a partition of an m module chain into n disjoint subsets such that the
size of each subset is less than or equal to a given constant and the sum of costs on edges
joining nodes in different subsets is minimum in time proportional to Oem). Using this
approach we can design a probing function which can find if a partition of the chain-like pro­
gram exists in which the load on any processor is less than or equal to a trial weight w. If, in
the resulting partition the sum of communication costs on edges joining modules on different
processors is less than or equal to w then the probing function returns true and false other-

m m
wise. We can then make a binary search in the range LWj, Lw/n using the probing function

j=l i=1
to find the partition for which w is minimum assuming that there are n processors in the
shared memory system.

6. Partitioning Trees in Host-Satellite System
We consider the problem of partitioning a tree structured pipelined or parallel program

over a single-host, multiple-satellite system as shown in Fig. 10. We assume that there are m
nodes in the program tree and there are as many satellites as the number of leaf nodes of the
tree. We work under the constraints that (1) individual maximal subtrees of the given tree are
assigned to each satellite and (2) that the root is always assigned to the host. The total

9

processing time under such a system will be the larger of the load on the host and the worst
load on any satellite.

Notation:

hi

ei

c· ,

Definitions :

Wmax

load(i)

cost(l)

depth (i)

dmax

Host.Load

~. ,

time consumed in the execution of module i on the host.

time consumed in the execution of module i on any satellite (all satellites are
similar).

time required for communication if node i is assigned to a satellite and node
father(i) to the host.

maximum value of hj for lS;i$m.

load on a satellite if node i and all its children nodes are assigned to the satel­
lite. This is equal to the sum of individual e/s of the modules assigned to the
satellite plus ci.

cost of execution of node i and its children on the host. This is equal to the
sum of individual h/s of node i and its children.

load on the host if all m nodes of the program tree are assigned to the host.
m

This is equal to 'Lh j.
i=1

distance of node i from the root. The value of depth(root)=O.

the maximum value of depth (i) for ls;i$m.

total load on the host. If the program tree is partitioned over a host and n
satellites then for each satellite p there will be a node 1t(p) assigned to the
satellite while father(1t(p» will be assigned to the host. The value of
Host.Load will then be the sum of individual h/s of the modules assigned to

n
the host plus LC7t(P). In terms of WT this is given by:

p=1
n n

Host.Load=Wr Lcost(1t(P»+ LC7t(P)'

p=1 p=1

Suppose we have assigned all nodes to the host except the n sons of node i
n

numbered Ln. The value of Host.Load will then be Wr- 'L(cost(k)-Ck). If,
k=l

instead of assigning each son of node i to a separate satellite, node i itself is
assigned to a satellite then the new value of Hosuoad will be
Wr cost(i)+Cj. The difference between the two values of HosUoad is

n
denoted by ~j and is equal to ~,=(cost(i)-Cj)- 'L(cost(k)-cJ. Thus if ~j is

k=1
positive then the value of Host.Load will reduce by ~i if we assign a single
satellite to node i (and its children) instead of assigning a separate satellite to

10

each son of node i. For each leaf node i, the value of lli is coSt(i)-Ci.

The algorithm selects as before a trial weight w and then uses the function
PROBE_TREE (described below). The function PROBE_TREE(w) returns true if it is possible
to partition the program tree over the host-satellite system such that the load on any satellite
and the load on the host is less than or equal to w, and false otherwise. The resulting parti­
tion, if any, is called the conservative partition for a trial weight w.

6.1. The Algorithm

function PROBE_TREE(w):boolean;

procedure MERGE(ijather(i));
begin

ejather(i) = ejather(i)+ei;
hjather(l) = hjather(I)+hi;
remove edge(i,father(i));

end;

begin
for level=dmax down to 1 do

begin
for each node i at depth(i)=level do

if load(i»w then Merge(ijather(z));
end;

HosLLoad = WT;

for level=dmax down to 1 do
begin

for each node i at depth(i)=level do
if 1l1<O then Merge(ijather(i))

else HostJ..,oad = HostJ..,oad - lli;
end;

if HosLLoad~w then return(true) else returnifalse);
end.

6.2. Discussion

1. The function PROBE_TREE, while trying to find a conservative partition of weight w,
will assign a node i and its children to a satellite if and only if load(i)~w. Each node j
for which load(j»w is therefore merged with father(]) by combining the execution cost
ej (hj) with ejather(j) (hjather<J)) and removing the edgeUjather(j)). The problem is now
reduced to partitioning the new program tree, in which load(i)~w for each node i other
than the root, in such a fashion that the value of HosLLoad is minimum.

2. We assume that initially all m nodes are assigned to the host and thus the initial value of
HosLLoad is equal to WT• The function, while examining each leaf node i at

11

depth(i)=dmax' assigns it to a satellite if ~i~' If, on the other hand, ~,<O then node i is
merged with jather(i) by combining hi with hfalher(1) and removing the edge(ilather(i».
In the resulting partition the value of Host-Load will reduce by an amount equal to the
sum of individual ~/s for each leaf node i assigned to a satellite.

3. The function then looks at each node j at a depth one less than dmax• Remember that in
the previous iteration of the for loop each son of node j has either already been assigned
to a satellite or been merged with node j. If ~?-O then the value of Host-Load will
further reduce by ~j if the previous partition is moved up one level by assigning a satel­
lite to node j and to its children instead of keeping the previous partition in which each
son of node j has been assigned to a separate satellite. If however ~J<O then node j is
merged with jather(j) and the previous partition is maintained (assigning node j to a
satellite will increase the value of Host-Load instead of reducing it).

4. The function PROBE-TREE works from bottom to top in the program tree reducing the
value of HosLLoad at each iteration of the for loop by an amount equal to the sum of
individual ~/s for each node i examined during that iteration and not merged with its
father. Thus for each node j examined during an iteration, the decision to keep the previ­
ous' partition, or to move the partition up one level by assigning a single satellite to node
j, is solely dependent upon node j and its sons and is not influenced by any other nodes
examined during that iteration. The nodes merged with the root in the last iteration are
assigned to the host and the value of HosLLoad is compared with w.

5. The resulting value of Host-Load is equal to WT minus the sum of individual ~k's for
each node k of the program tree which is examined by the function and not merged with
jather(k). It is important to note that the policy according to which nodes are assigned to
satellites makes sure that the value of Host-Load reduces by a maximum amount.

6.3. An Example

Let us now consider an example of a tree structured program consisting of 32 nodes as
shown in Fig. 8(a). For the sake of simplicity it is assumed that the execution cost of a
module is the same on the satellite as well as on the host and is shown inside each node in
Fig. 8(a). The number associated with each edge is the communication cost for the two
modules at the ends of that edge. Trial weight w=140.

Each node i for which load(i»140 is merged with jather(i) and the edge(i!ather(i» is
removed. The nodes merged and the edges to be removed are shown in bold in Fig. 8(b). The
32 node program tree is thus transformed into a 28 node program tree as shown in Fig. 8(c).

Initially all the remaining 28 nodes are assigned to the host. The value of Host.Load
will then be equal to Wr=175. The value of ~i for each node i at depth(i)=5 is shown in bold
outside each node in Fig. 8(c). The function assigns each node i to a satellite if .1i~O and
merges it with its father if ~,<O, the resulting partition is also shown in the figure. The value
of HosLLoad for this partition is 175-(3+9+5+4+4+5+8)=137 .. The function goes up one level
and examines each node i at depth(i)=4. If the value of ~i>O then node i is assigned to a
satellite and the previous partition is moved up one level with the result that the value of
Host-Load further reduces by ~i' The resulting partition is shown in Fig. 8(d) with
HosLLoad=137-(7+5+14+9)=102. In the third iteration of the second outermost for loop, the

12

value of the Host-Load is further reduced by 6+9 as shown in Fig. 8 (e). The function then
examines each node at a depth equal to 2. The value of Host-Load is further reduced to 87-
(7+15+12)=53 with the partition shown in Fig. 8(f). In the last iteration 3 nodes are merged
with the root and are thus assigned to the host, the resulting partition is shown in Fig. 8(g).
The final value of Host-Load is however the same as in the last iteration equal to 53.

6.4. Proof of Correctness

Claim

Definitions :

height

1tw,h

Proof

If a tree structured program has a partltIon over a host satellite system in
which the worst load on any satellite and the load on the host is w, then the
function PROBE_TREE will find that or an equivalent assignment.

dmax+ I minus depth(i) for a node i. Thus height of root is dmax+ 1.

a partition which guarantees that the load assigned to the host is minimum
provided only nodes with heigh~h are permitted to reside on the satellites.

In a tree structured program, where each node i is already merged with
Jather(i), if load(i»w, the above claim will be true if the function
PROBE_TREE can find 1tw,dmax'

By induction on height.

Consider the case height=1. The function initially assigns all m nodes to the
host and thus the starting value of HosLLoad is Wr . During the execution of
the first iteration of the for loop, the function examines each leaf node i at
height=l and assigns it to a satellite if D.i~' If on the other hand D.,<O then
node i is merged with the Jather(i). In the resulting partition the value of
Host-Load will reduce by an amount equal to the sum of individual D./s for
each node i assigned to a satellite. Obviously, the partition found after the
first iteration will be 1tw l' ,
We will now show that if the function PROBE.J'REE can find 1tw,k after the
kth iteration then it can also find 1tw,k+l after the k+l th iteration of the for
loop.

After finding 1tw k the function looks at each node i at height equal to k+ 1. If ,
the value of ~i~ then for each node i the previous partition 1tw,k is moved up
one level by assigning a satellite to node i and its children instead of keeping
the previous partition, and thus the value of HosLLoad further reduces by ~i'
If however D.j<O then the previous partition 1tw,k is maintained. For each node
i examined at height=k+l, the decision to keep the previous partition or to
move the partition up one level is solely dependent upon ~i and is not
influenced by any other node examined during that iteration. Note that the
partition 1tw k+l will either be the previous partition 1tw k or the new partition
in which n~e i at height=k+ 1 is assigned to a satellit~ (along with its chil­
dren). It can not be any other partition because by definition, 1tw,k guarantees .

13

that the value of HosLLoad is minimum under the constraint that only those
nodes with heigh~ are permitted to reside on the satellites.

Thus if the function can find 1tw k after the kth iteration of the for loop then it
will be transformed into 1tw,k+l ;Uter the k+ 1 th iteration and into 1tw,dma• after
the last iteration.

The algorithm makes a binary search in the range WT, WTlm, and it uses the function
PROBE_TREE to find a conservative partition of weight w for which w is minimum. For
each trial weight w, the function PROBEJREE has to examine each node only once to
decide whether to assign the node and its children to a satellite or to merge it with its father.
Thus the function performs Oem) steps to find a conservative partition of weight w, if it
exists. If the range WT, WTlm is resolved to an accuracy of E then the algorithm will find a
conservative partition of weight w in time proportional to O(mlog2(WTIE» with the assurance
that w is no greater than the larger of the load on the host and the worst load on any satellite
in the optimal assignment by E.

7. Conclusions.
We have discussed a number of partitioning problems in the field of parallel, pipelined

and distributed computing. We have demonstrated that in a variety of such problems it is pos­
sible to design a probing function which can find out if a partition of a parallel program over
a multiple computer system exists in which the load on any processor is less than or equal to
a given weight w. It has been shown that for a parallel program with a chain or tree-like
interconnection structure, the probing function provides a trueljalse answer in linear time pro­
vided the processor system is also limited to a chain of processors or is a host satellite sys­
tem. The optimal partition is then found approximately by making a binary search in a finite
range to find the partition for which w is minimum.

In order to extend this approach to other problems, it is essential to find an efficient
probing function. The rule on which the probing function is based is dependent upon the
nature of the partitioning problem to be solved. For example, in the partitioning of a one
dimensional domain over a chain of processors, the probing function was simply a greedy
method [4] while in case of partitioning a chain-like program over a shared memory system it
was based on a dynamic programming approach described in [10]. Once an efficient probing
function is found for a problem, the optimal partitioning can be found by making a binary
search in a given range using the probing function.

Future work in this field requires that this approach be extended to multiple computer
systems with a richer interconnection structure like a binary tree, hypercube or a mesh. It
will be interesting to find if this approach can be efficiently applied to multiple computer sys­
tems composed of dissimilar processors. It also remains to be seen how efficiently this type of
approach can be applied to a two dimensional domain, with non-uniform work loads, which is
to be partitioned into areas requiring equal computational effort [11].

14

8. References

[1] H. S. Stone, "Multiprocessor scheduling with the aid of network flow algorithms," IEEE
Trans. Software Engineering, vol. SE-3, No.1, pp. 85-93, January 1977.

[2] S. H. Bokhari, "A shortest tree algorithm for optimal assignment across space and time
in a distributed processor system," IEEE Trans. Software Engineering, vol. SE-7, No.6,
pp. 583-589, November 1981.

[3] S. Bokhari, "Partitioning Problems in Parallel, Pipelined and Distributed Computing,"
ICASE Report No. 85-54, November, 1985.

[4] M. A. Iqbal, J. H. Saltz and S. H. Bokhari, "Performance Tradeoffs in Static and
Dynamic Load Balancing Strategies," ICASE Report No. 86-13, March, 1986.

[5] H. S. Stone and S. H. Bokhari, "Control of Distributed processes," Computer, vol. 11,
No.7, pp. 97-106, July 1978.

[6] V. M. Lo, "Heuristic algorithms for task assignments in distributed systems," Proc. 4th.
Int. Conf. Distributed Proc. Systems, pp. 30-39, May 1984.

[7]E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Science
Press, Inc., 1978.

[8] M. Garey and D. Johnson, Computers and Intractability, W. H. Freeman and Company,
1979.

[9] H. S. Stone, "Critical load factors in distributed computer systems," IEEE Trans.
Software Engineering, vol. SE-4, No.3, pp. 254-258, May 1987.

[10] B. Kernighan, "Optimal Sequential Partitions of Graphs," JACM, vol. 18, No.1, pp. 34-
40, January 1971.

[11] M. Berger and S. Bokhari, "A Partitioning Strategy for Non-Uniform Problems across
Multiprocessors," ICASE Report No. 85-55, November, 1985. To appear in IEEE Trans.
Computers.

Processor p

j k

15

~k= ~ . mm

Processor p + 1

k+! x

~min < ~x

q fl7

°k+ 1 x > W
I

Fig. 1 Subchain Modules[j.k] are assigned to Processor p whlle
Modules[k+ ! .. xl are assigned to Processor p+!. If x is smaller
than q then 0x+ l,q+ 1 > 0k+ l,q+ 1 because ~x > ~ k .

6

16

Module Chain

4 12 4 8 5 7 4

8 2

Processor Chal n

Fig. 2 A 10 module cha1n to be mapped on a 4 processor
chain. The number below each module 1s its execution
cost. The number above each edge is the communication
cost for the two modules at the ends of that edge.

17

Module Chain

Processor Chain

Remaining load Load on Processor 1
54 Llx °1 ,x r 51 I 53 54

50 44 45 1 44 42 I
40 •

34
33

29 • 25
20 I 20

I 17
16 j

9

0 I 0
o 2 3 4 5 6 7 8 9 10

------•• x

Modules[Lx] assigned to Processor 1

Fig. 3 The load on processor 1, 01 ,(grey line) and the ,x
remaining load Ll x (black line). Trial weight w = 20.

18

Module Cha1n

Processor Chal n

Remaining load Load on Processor 2
h. o x 144 3,x

I 42
40 j 39 40

31
30 I 37

29
,

25 I
20 l 19 20· 17

6
9

o I I 0
3 4 7

---~ x
5 6 8

Modules[3 .. x] assigned to Processor 2

9 10

Fig. 4 . The load on processor 2,° 3 x,(grey l1ne) and ,
the rema1n1ng load L\x (black l1ne).

19

Module Chain

Processor Chain

Remaining load
t.x

Load on Processor 3

°6 x I

25 26
29 • J 28 29 I 20 I

20 I 19
I

17
9

0 0
6 7 8 9 10
---~ •• x

Modules[6 .. x] assigned to Processor 3

Fig. 5 The load on processor 3, 06 x ,(grey line) and
I

the remaining load A x (black line).

Host

20

Satellites

Real-time
Environment

Fig. 6 A host satellite system processing real time data.

54
50

Remaining
load on host

A1

16

0
0 2

54 53 51

Remaining
load on host

A2

21

Sate1l1te 1

Satellite 2

42
44

45
Load on satellite 1

33 Ok 1 ,

29
25

20 20 17

• k 0
3 4 5 6 7 8 9 10

45
50

33 34

29 20
16

9
Load on satellite 2

Ok 2 • k
0

,
0

0 2 3 4 5 6 i 7 8 9 10

Host

Fig. 7 (top) The two satellite chains each having 10 modules. The number
below each module is its execution cost. The number above each
edge is the communication cost for the two modules at the ends of
that edge. (middle) The load on satellite l'Ok l' (grey 11ne) and the
remaining load on Host A 1 (black line). (bottom) The load on satellite 2

0k,2, (gr,ey,line) and the remaining load on Host A2 (black line).

Trial we1ght w =44.

22

FIg. 8(a) A 32 node tree-structured program tree to be partitioned over
a host-satellite system. The number inside each module is the
execut10n cost on the host as well as on a sate1l1te. The number
assoc1ated w1th each edge 1s the commun1cat1on cost for the
two modules at the ends of that edge. Tr1al we1ght w= 140.

23

Fig. 8(b) Each node I, for which /oad(,» 140 is merged with ratIJer(/)
and the edge(I: ratIJer(l)} is removed. The nodes merged and
the edges removed are shown in bold. The 32 node program
tree is thus transformed into a 28 node program tree.

24

Fig. 8(c) The partition (shown by a grey line) is generated by the
function when level= 5. For each node 1 at that level the
value of l1i is shown in bold below each node. The nodes
merged are shown in bold and are above the grey line.
Each node below the grey line is assigned to a satellite.
Thus net reduction in Host_Load is 3+9+5+4+4+5+8=38.

25

Fig. 8(d) The partition generated by the function when level= 4.
The value of 81 for each node i at that level is shown
in bold. Only those nodes which are above the grey line
are assigned to the host. The new value of HosLLoad
is 137-(7+5+ 14+9)= 1 02.

26

Fig. 8(e) The part1tlon generated by the funct10n when level = 3.
The value of Host_Load reduces further by 6+9= 15.

27

Fig. B(f) The partition generated by the function when level = 2.
The value of Host_Load further reduces by 7+ 15+ 12=34.

28

Fig. 8(g) The f1nal part1tion (shown by black l1ne) generated
when level = 1. The value of Host.-Load = 53.

Standard Bibliographic Page

1. Report No. NASA CR-178130 \2. Government Accession No. 3. Recipient's Catalog No.

lCASE . Renort No 86-40
4. Title and Subtitle 5. Report Date

APPROXIMATE ALGORITHM FOR PARTITIONING AND June 1986
ASSIGNMENT PROBLEMS 6. Performing Organization Code

7. Author(s)
8. Performing Organization Report No.

M. Ashraf Iqbal
86-40

9. Performing Organization Name and Address
10. Work Unit No.

Institute for Computer Applications in Science
and Engineering 11. Contract or Grant No.

Mail Stop l32C, NASA Langley Research Center NASl~17070, NASl-18l07
Hampton. VA 23665-5225

13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

Contractor Renort
National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, D.C. 20546
""" .'}, O'} ",

15. Supplementary Notes
.~

Langley Technical Monitor: Submitted to IEEE Trans. Computers
J. C. South

Final Report
16. Abstract

We consider the problem of optimally assigning the modules of a
parallel/pipelined program over the processors of a multiple computer system
under certain restrictions on the interconnection structure of the program as
well as the multiple computer system. We show that for a variety of such
programs it is possible to find in linear time if a partition of the program
exists in which the load on any processor is within a certain bound. This
method, when combined with a binary search over a finite range, provides an
approximate solution to the partitioning problem.

The specific problems we consider are partitioning of (1) a chain
structured parallel program over a chain-like computer system, (2) multiple
chain-like programs over a host-satellite system and (3) a tree structured
parallel program over a host-satellite system.

For a problem with m modules and n processors, the complexity of our
algorithm is no worse than O(mnlog(WT/ f», where WT is the cost
assigning all modules to one processor and f the desired accuracy.

17. Key Words (Suggested by Authors(s» 18. Distribution Statement

parallel processing, pipeline 61 - Computer Programming and
processing, distributed computing, Software
partitions 66 - Systems Analysis

Unclassified - unlimited
19. Security Classif.(of this report) J 20. Security Classif.(of this page) 21. No. of Pages 122. Price

Unclassified Unclassified 30 A03

For sale hy the National Technical Information Service, Springfield, Virginia 22161
NASA Lanlley Form 63 (June 19M)

of

End of Document

