
!

NASA Contractor Report 178129

leASE REPORT NO. 86-46

ICASE
STATISTICAL METHODOLOGIES FOR THE CONTROL

OF DYNAMIC REMAPPING

Joel H. Saltz

David M. Nicol

Contract No. NASI-18l07

July 1986

\
\ NASA-CR-178129
\ 19860020079

l~_----.../

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NI\SI\
National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23665

[llllmllllll ~ ~~ ~~I~I~ 1111111111111
\

LIBRARV GOPV
illJiJ'" 1" iliHI: ". L.;. u

LANGLEY RESEARCH CENTER
LIBRARY, NASA

HM.~PTON, VIRGltllA

Statistical Methodologies for the Control of
Dynamic Remapping

Joel H. Saltz
David M. Nicol

Institute for Computer Applications in Science and Engineering

Abstract

Following an initial mapping of a problem onto a multiprocessor machine or computer network,
system performance often deteriorates with time. In order to maintain high performance, it may be
necessary to remap the problem. The decision to remap must take into account measurements of per­
formance deterioration, the cost of remapping, and the estimated benefits achieved by remapping. We
examine the tradeoff between the costs and the benefits of remapping two qualitatively different kinds
of problems. One 'problem assumes that performance deteriorates gradually, the other assumes that per­
formance deteriorates suddenly. We consider a variety of policies for governing when to remap. In
order to evaluate these policies, statistical models of problem behaviors are developed. Simulation
results are presented which compare simple policies with computationally expensive optimal decision
policies; these results demonstrate that for each problem type, the proposed simple policies are
effective and robust

This research was supported by the National Aeronautics and Space Administration under NASA Contract
Number NASI-ISIO? while the authors were in residence at]CASE. NASA Langley Research
Center, Hampton, VA 23665 . .

i

1. Introduction

The performance of message passing multiprocessors and of distributed systems often hinges on

the way in which data is distributed throughout the memories of the individual processors in the sys­

tem or network. In many computational problems a discrete model of a physical system is assumed,

and a set of values is calculated for every domain point in the model. Portions of a domain are

assigned to the memory of each processor, and each processor assumes responsibility for calculations

that relate to the subdomain assigned to its memory. As the problem proceeds, for reasons to be dis­

cussed later, changes may occur in the amount of work required for the calculations and communica­

tions pertaining to the portion of the problem assigned to a processor. Due to the coupling between

subdomains, the rate at which progress is made in solving the problem is limited by the maximally

loaded processor. System performance deteriorates in time, often in a relatively gradual way, and at

some point a remapping of the problem onto the processors may be advantageous. We shall call these

types of problems varying demand distribution problems. Statistical models are developed of the

behavior of this kind of problem and through the use of these models, policies are evaluated for decid­

ing when remapping should occur.

In a wide variety of applications, the patterns of processor use and memory access are determined

directly or indirectly by a population of users or programs whose requirements are difficult to antici­

pate. Database management systems are examples of such applications. When a database management

system is mapped onto computer systems so that responsibility for computations and communications

pertaining to subsets of the stored information is assigned to a given processor, the distribution of work

among the processors is highly dependent on the nature of the queries received. A related problem

occurs in the parallel simulation of digital circuitry. When responsibility for computations concerning

particular circuit elements are assigned to each processor, the distribution of work among processors

becomes highly dependent on the portions of the circuit currently undergoing testing. The system per-

-2-

formance is closely linked to the distribution of work among the processors, and this distribution

depends on often unpredictable inputs to the program.

Once a partition is chosen, it is necessary to monitor the performance of the system to determine

whether changes in the nature of the inputs have caused a statistically demonstrable deterioration in

system performance. The repartitioning of these applications may cost substantial overhead and conse-

quently should be undertaken only when an overall benefit can be anticipated. If deterioration in sys-

tern performance has taken place, it needs to be determined whether repartitioning might be

worthwhile. A period of time in which a program exhibits no statistically demonstrable change in

behavior will be called a phase. Problems which consist of a number of consecutive phases will be

called multiphase problems. In this paper we shall discuss probabilistic models that describe varying

demand distribution problems and problems exhibiting multiphase behavior. Policies for weighing the

costs and benefits of partitioning for both types of problems will be evaluated.

2. Varying Demand Distribution Problems

Varying demand distribution problems assume a discrete model of a physical system, and calcu-
,

late a set of values for every domain point in the model. These values are often functions of time, so

that it is intuitive to think of the computation as marching through time. When such a problem is

mapped onto a message passing multiprocessor machine, or a shared memory machine with fast local
,

memories, regions of the model domain are assigned to each processor. The running behavior of such a

system is often characterized as a sequence of steps, or iterations. During a step, a processor computes

the appropriate values for its domain points. At the step's end, it communicates any newly computed

results required by other processors. Finally, it waits for other processors to complete their computa-

tion step, and send it data required for the next step's computation.

The computational work associated with each portion of a problem's subdomain may change over

the course of solving the problem. This may be true if the behavior of the modeled physical system

-3-

. changes with time. The distribution of computational work over a domain may also change in problems

without explicit time dependence because during the course of solving a problem, for example, more

work may be required to resolve features of the emerging solution. Since time stepping is often used

as a means for obtaining a steady state solution, there is considerable overlap between the above men­

tioned categories. Because of the synchronization between steps, the system execution time during a

step is effectively determined by the execution time of the slowest, or most heavily loaded processor.

We can then expect system performance to deteriorate in time, as the changing resource demand causes

some processor to become proportionally overloaded. One way of dealing with this problem is to

periodically redistribute, or remap load among processors.

Changing distributions of computational work over a domain arise through the use of adaptive

methods in the solution of hyperbolic partial differential equations in which extra grid points are placed

in some regions of the problem domain in order to resolve all features of the solution to the same

accuracy [1],[2],[3],[4], [5],[6]. A number of studies have investigated methods for redistributing load

in message passing processors for this type of problem [7],[8],[9]. Changing distributions of computa­

tional work can also occur when vortex methods are applied to the numerical simulation of incompres­

sible flow fields. In these methods, invicid fluid dynamics is modeled by parcels of vorticity which

induce motion in one another [10], [11]. The number of vortices corresponding to a given region in

the domain varies during the course of the solution of a problem. Methods for dynamically redistribut­

ing work in this problem have been investigated [12].

In multirate methods for the solution of systems of ordinary differential equations[13], different

variables in the system of equations are stepped forward with different timesteps. The size of the

timesteps in the system is generally equal to that of a globally defined largest timestep divided by an

integer. The size of the different timesteps utilized may vary during the course of solving the problem,

and hence the computational work associated with the integration of a given set of variables may

-4-

change. Methods for solving elliptic partial differential equations have been developed where iterations

on a sequence of adaptively defined meshes are carried out [14],[15],[16],[17],[18] Generally both the

total amount of computational work required by each of the meshes and the distribution of work within

the domain changes as one moves from one mesh to the next. In time driven discrete event simula­

tions [19], one simulates the interactions over time of a set of objects. Responsibility for a subset of

objects is assigned to each processor. Over the course of the simulation, subsets of objects may differ

in activity, and hence in their computational requirements. This problem may also arise in parallel

simulations which proceed in a loosely synchronized manner, such as those described in [20], [21],

[22J, [23], [24], [25].

There are two fundamentally different approaches to such remapping. The decentralized load

balancing approach is usually studied in the context of a queueing network

[26],[27],[28],[29],[30],[31], [32]. Load balancing questions are then focused on "transfer policies", and

"location policies"[26]. A transfer policy governs whether a job arriving at a service center is kept or

is routed elsewhere for processing. A location policy determines which service center receives a

transferred job. Decentralized balancing seems to be the natural approach when jobs are independent,

and when a global view of balancing would not yield substantially better load distributions.

However, a large class of computations is not well characterized by a job arrival model, and it

may be advantageous to take a global, or centralized perspective when balancing. We will call a global

balancing mechanism "mapping" to distinguish it from the localized connotations of the teno load

balancing. A centralized mapping mechanism can exploit full knowledge of the computation and its

behavior. Furthermore, dependencies between different parts of a computation can be complex, mak­

ing it difficult to dynamically move small pieces of the computation from processor to processor in a

decentralized way. Global mapping is natural in a computational environment where other decisions

are already made globally, e.g. convergence checking in an iterative numerical method. Yet the execu-

-5-

tion of a global mapping algorithm may be costly. as may the subsequent implementation of the new

workload'distribution. A number of authors have considered global mapping policies under varying

model assumptions. for example. see [33]. [34]. [35]. [36], [37]. [38]. and a comparison between glo­

bal and decentralized mapping strategies is reported in [39].

For the types of problems we describe, remapping the load with a global mechanism is tan­

tamount to repartitioning the set of model domain points in regions. and assigning the newly defined

regions to processors. A mapping algorithm of this sort is studied in [7] and the performance of this

mapping algorithm in the context of vortex methods is investigated in [12]. Decision policies deter­

mining when a load should be remapped become quite important. The overhead associated with remap­

ping can be high. so it is important to balance the overhead cost of remapping with the expected per­

formance gain achieved by remapping. While this is a generic problem, the details of load evolution. of

the remapping mechanism. and of various overhead costs are system and computation dependent. In

order to study general properties of remapping decision policies, it is necessary to model the behavior

of interest. and evaluate the performance of decision policies on those models. In the present paper we

consider remapping of varying demand distribution problems using three different stochastic models.

The evaluation of policies for memory management in multiprogrammed uniprocessor systems

has successfully employed a number of stochastic models to reflect the memory requirements of typical

programs [40],[41]. In these models. the principal of memory reference locality plays a central role.

Evaluating policies for scheduling a remapping in message passing machines is somewhat similar in

spirit to the evaluation of paging algorithms in multi programmed uniprocessor systems. The principal

of locality that we attempt to capture here is the locality of resource demand. The computational work

corresponding to the problem region assigned to a given processor will often vary in a gradual fashion.

In this paper we consider two models which describe this evolution probabilistically. The first model

assumes that the computational requirements of each partition region behaves as a Markov chain,

-6-

independently of any other region; this is called the Multiple Markov chain (MUM) model. The MUM

model has the advantage of being analytically tractable in several ways. However, for many problems

it may not be reasonable to assume independence in load evolution between panition regions. We

address this issue with a second, less tractable model, the Load Dependency (LD) model. These

models attempt to capture the dynamics by which the distribution of computational load changes in

time, and are characterized by a small number of important parameters. Through the use of these load

evolution models, we are able to evaluate policies for deciding when load should be remapped.

3. The Multiple Markov Chain Load Model

We describe both the drifting load and synchronization aspects of varying demand distribution

problems with the Multiple Markov chain (MUM) model. MUM characterizes a processor's changing

load by a discrete Markovian birth-death process. The state s of the chain is a positive integer describ-

ing the execution time of the processor at a step. We also assume that s ~ L for some L. The transi-

tion probabilities out of s reflect the principle of locality, where all one step transitions are to neighbor-

ing states. When s is between 2 and L-l, the probability that the chaip will make a one step transition

to state s+ I is p/2, the probability of a one step transition to s-1 is p/2 and the probability that the

chain will not make a transition is I-p. For s = I or s = L, the state remains the same with probability

1 - p/2, and moves to the single neighboring state with probability pl2.

A system of N parallel processors is modeled by an independent and identically distributed col-

lection of birth-death processes. We let ~{n) represent the time required by the jth processor to com-

plete the nth step. The time required for the system as a whole to complete the nth step is given by

Tmax(n) = max {T,{n)}.
I$jSN

We thus model synchronization by requiring the system to wait for the longest running processor. The

average processor execution time during the nth step is simply

-7-

_ 1 N
T(n) = - "LTj{n).

N j=1

One measure of system performance during the nth step is the difference between the system execution

time and average processor execution time at that step. In fact, this difference plays a key role in our

remapping decision policy. Another parameter playing a key role is the cost of remapping once,

denoted by C. This cost includes both the communication costs and the computational overhead

required for performing a remapping operation. Note that for the sake of tractability, the cost of

remapping is assumed here to be independent of the way in which load is distributed at the time

remapping occurs. The cost of remapping may be affected in a problem and machine dependent way

by the distribution of load prior to balancing.

Figure la depicts the behavior of the MUM model for varying numbers of chains. The perfor-

mance shown is the average (per step) processor utilization as a function of step, taken over 500 simu-

lations or sample paths, where p = 0.5 and each chain has 19 states. Performance declines more

quickly and to a lower level as one simulates a problem with an increasingly large number of indepen-

dent processors. For a given number of chains, the performance decline arises from the fact that the

expected value of T(n) remains relatively constant as n increases, while the expected value of T max(n)

increases in n. Figure Ib depicts the performance of single sample paths of the MUM model using

varying numbers of chains, where as before p = 0.5 and each chain has 19 states. Note that the

decline in performance as a function of step is true only in the sense of comprising a long term trend;

each curve has many local maxima and minima. This point is particularly important, because any

dynamic real time remapping policy mechanism is concerned with the current single sample path

defined by the computation's execution.

In considering the performance of the MUM model, both C and the difference T max(n) - T(n) are

viewed as costs; if the computation is first remapped at step n, then the average cost per step is

denoted W(n), and is given by

-8-

fI

L(TmaxCJ) - Tv) + C
Wen) = ""F_l ______ _

n

In [42] we show that that for the MUM mode], as long as the Markov chains are not extremely active,

E[Tmax(n)1 - E[T(n)] is an increasing function of n. It is also shown there that if E[T maxCn)] - E[T(n)]

is an increasing function of n, then E[W(n)] has at most one local minimum. Furthermore, if that

minimum exists at n, and if remapping "resets" the behavior of E[T max(n)] - E[T(n)], then the optimal

fixed-interval remapping policy (which includes never remapping) is to remap every n steps.

An intuitively appealing remapping decision policy is to monitor system performance and to

remap when the experimentally measured Wen) is minimized. Even though the expected value of Wen)

may have at most one minimum, we have no such guarantee for a given simulation or sample path.

The Stop at Rise (SAR) remapping policy chooses to remap when the first local minimum m of Wen)

is detected. Note that we cannot know that a local minimum of Wen) was achieved at step m until step

m+l, consequently we must remap at m+l and achieve average cost W(m+l).

Figure 2 shows the values of Wen) achieved by simulation runs based on the MUM model when

p = 0.5, L = 19, and C = 8. It is interesting to note that the value of Wen) at its first local minimum

tends to be quite close to the minimum value of Wen). For a variety of MUM model parameter values,

simulations were carried out comparing the expected value of the global minimum of Wen) to the

expected value of the local minimum of Wen). The differences between the global and the local

minima were observed to quite minor.

We studied the performance of the SAR policy by comparing it to three other policies: the

optima] policy, the "remap every m steps" policy, and the policy which never remaps. It is possible to . .

compute the expected time required to complete small sized problems when the optimal Markov deci-

sion policy is utilized to decide when to remap. Figure 3 compares a performance metric for the Mar-

kov decision policy, SAR, and a non-remapped system for three chains, 100 steps, and various

-9-

remapping costs. The SAR data is the average of 500 simulation runs for each value of C. As the

remapping cost increases, the discrepancy between the performance obtained through the optimal deci-

sion policy and SAR increases. With increasing remapping cost, both the performance of the optimal

decision policy and of SAR approach the performance obtained when no remapping is performed.

The performance metric used in figure 3 for all policies depicted in that figure is an estimate of

n
processor utilization: the ratio of the expected LXV) to the expected total time spent by the system to

j=1

solve the problem, including the cost of all remappings. This measure is useful in figure 3 as it is

straightforward in the case of the optimal policy to calculate the expected time required to complete a

n
problem as well as the expected LT{J). For all subsequent figures, performance data is obtained by

j=l

simulation, and the easily computed average performance over all simulations is utilized, i.e. the mean

n
of the ratio of the LTV) to the total time spent by the system to solve the problem, including the cost

j=1

of all remappings. Both performance measures were computed for all simulations, and found to differ

from each other by less than one percent.

One simple but intuitive remapping policy is the "remap every m steps" policy, or fixed interval

policy. This policy is insensitive to statistical variations in a system's performance, and requires pre-

run-time analysis to determine an effective value of m. However, we might well choose to employ a

fixed interval policy if it is costly to measure system performance at every step. In this case, we would

attempt to choose m to optimize the system's expected performance. In figure 4, we compare the per-

formance obtained through the use of: (1) SAR • (2) the fixed interval policy for a wide range of

values of m, and (3) not remapping at all. The performance obtained in a system using the MUM

model with eight independent processors is depicted. Each problem consists of 400 steps, each data

point is obtained through 200 simulations, and remapping costs of 2 and 8 are assumed. For the SAR

policy, we plotted performance against the calculated average number of steps between consecutive

-10-

remappings. In the fixed interval policy, we plotted performance against m, the fixed number of steps

between remappings. The number of steps between remappings has no meaning when no remapping is

done, the performance obtained when no remapping occurs is plotted as a straight horizontal line to

facilitate comparison with the other result". The calculation of the performance obtained through the

use of the optimal Markov decision policy is not practical in this case due to the long run times and

large memory requirements that would be required.

It is notable that SAR's performance was comparable and in fact slightly higher than that

obtained by remapping at the optimal fixed interval. The average number of elapsed steps between

SAR remappings corresponds closely to the optimal fixed interval remapping policy. Similar results

were obtained in other cases using the MUM load model. These results are encouraging for two rea­

sons. Since SAR adapts to statistical variations in the system's behavior, we would hope that it can

outperform a non-adaptive policy. Our data shows that SAR outperforms the optimal fixed interval

policy. Secondly, SAR appears to find the "natural frequency" of remapping for a given remapping

cost. While the exact number of steps between remappings may vary with the system's sample path,

the average number of steps between remappings is close to that of the optimal fixed interval policy.

Note also that the performance obtained by SAR is markedly superior to the performance obtained

when no remapping is performed. From extensive simulation results not presented here, we found that

the difference between the performance obtained by SAR and the performance obtained when no

remapping is performed increases with the number of chains. This ·is consistent with the observed

results in figures 3 and 4.

In the face of uncertainity about future problem behavior, it is reasonable to design a remapping

decision policy which optimizes performance locally in time. The SAR policy does this by attempting

to minimize W(n), a statistic which measures performance since the last remapping. Performance

experiments show that the SAR policy effectively finds the "natural frequency" of remapping as a

-11-

function of the rate at which resource demand changes, and the cost of remapping. As such, SAR is a

promising policy for real remapping situations. We will next demonstrate that the SAR policy can also

be effectively employed with computational models other than the MUM model.

4. Load Dependency Model

While the MUM model is analytically tractable, some of its assumptions may not be realized in

practice. For example, MUM assumes that a processor's load drift is stochastically independent of any

other processor's load drift. It is easy to construct examples where this assumption is violated. This

flaw could be corrected by allowing correlation between chains' transitions, but then an appropriate

model of correlation would have to be determined. MUM also assumes homogeneous Markov chains;

there is no problem in allowing heterogeneous chains, but the analysis we have developed does not

apply to such a model. More seriously, the MUM model implicitly assumes that the transitional

behavior of a processor's computational load is determined by the processor, rather than the load. This

flaw is corrected in a model where the distinction between a processor and its load is clearly drawn.

We call this the Load Dependency (LD) model.

The LD model directly simulates the spatial distribution of computational load in a domain. We

consider a two dimensional plane in which activity occurs, for example, a factory floor. To simulate

this activity we impose a dense regular grid upon the plane; each square of the grid defines an activity

point. We suppose that activity in the plane is discretized in simulation time, and model the behavior

of activity as follows. Each time step a certain amount of activity may occur at an activity point. This

activity is simulated (for example, arrival of parts to a manufacturing assembly station), causing a cer­

tain amount of computation. By the next time step some of that activity may have moved to neighbor­

ing activity points. This movement of activity simulates the movement of physical objects in a physi­

cal domain, and is modeled by the movement of work units. A work unit is always positioned at some

activity point, and has a weight describing its computational demand at that activity point. From one

-12-

time step to the next, a work unit may move from an activity point to a neighboring activity point; this

movement is governed probabilistically. In the LD model, the probability that a work unit will move

from one activity point to another, as the problem goes from one time step to the next is called the

transition probability linking the two activity points.

We employ binary dissection [7] to partition the activity points into N activity regions, where the

points in ·an activity region form a rectangular mass. The weight of an activity point is taken to be the

sum of the weights of work units at the point, at the time that the partitioning is performed. The com-

putational load on a processor during a time step is found by adding the weights of all work units

resident on activity points assigned to that processor.

In a wide variety of problems, including those mentioned in section 1 as examples of varying

demand distribution problems, data dependencies are quite local. Decomposition of a domain into con-

tiguous regions with a relatively small perimeter to area ratio is thus generally desirable for reducing

the quantity of information that must be exchanged between partitions. Furthermore, due to the local

nature of the data dependencies, the communication required between partitions in a binary dissection

will generally be greatest in partitions that are in physical proximity. The analysis in [7] shows that

this type of partition is effective for static remapping, and is easily mapped onto various types of

parallel architectures. Estimates are also obtained of the communication costs incurred when binary

dissection is used to partition a problem's domain, and the resulting partitions are mapped onto a given

architecture. The communication cost estimates obtained by such analysis are inevitably problem,

mapping and architecture dependent.

A processor's load changes from one time step to the next when a work unit either moves to an
,.'"' ~

activity point assigned to another processor, or similarly moves from an activity point in a different

processor. This explicit modeling of work unit movement removes the most serious flaw with the

MUM model. Unlike the MUM model, the change in a processor's computational load from one time

-13-

step to the next is explicitly dependent on its own load, and on the loads of processors with neighbor-

ing activity regions.

To ensure the correctness of the simulation, we require that all computation associated with a

time step be completed before the simulation advances to the next time step. Thus, as in the MUM

model, the time required to complete a time step is the maximum computation time among all proces­

sors. Again like the MUM model, as time progresses any initial balance will disappear, and average

processor utilization will drop. This is particularly true if the work unit movement probabilities are

anisotropic, i.e. work movement probabilities vary with the direction of movement.

The SAR policy can also be used with the LD model, since the Wen) statistic requires only the

mean processor execution time, the maximum processor execution time per time step, and the remap­

ping cost C. The performance of SAR on the LD model was examined by once again comparing SAR

to the performance of fixed interval polices. Figure 5 plots expected processor utilization as a function

of time for remapping costs of 50 and 100 work units, when a 64 by 64 mesh of activity points is ini­

tialized with one work unit per activity point, and 16 processors are employed. The transition proba­

bilities are anisotropic (given in the figure legend), so that the work tends to drift to the upper right

portion of the mesh over time. Not taken into account here is the cost of the interprocessor communi­

cation that occurs at the end of each step when partitions exchange newly computed results. As was

observed in the MUM model the the performance of the SAR rule and the average number of elapsed

steps between SAR remappings corresponded closely to that of the fixed interval leading to the optimal

performance. In figure 5, the performance of SAR for a given cost is superior to that obtained from

fixed load balancing at the optimal frequency. In other simulations, the performance obtained from

SAR was comparable to, but slightly below that obtained from the optimal fixed load balancing

method. Note that the performance obtained by SAR in figure 5 is markedly greater than that obtained

when no remapping is performed. We shall now shift attention to the other type of multiprocessor per-

-14-

formance pattern we are considering here. In this case we will also describe a probabilistic model for

this type of problem and propose and evaluate policies for weighing partitioning costs and benefits.

5. Multiphase Problems

The patterns of computation and memory access of many programs are highly dependent on data

that become available only at run-time. The effective partitioning of a database between a number of

communicating processes is a function of the information stored in the database as well as the transac­

tions that are to be executed. Methods for partitioning logical objects or relations among processors

involve deciding how to partition the relation and how to assign the resulting partitions to processors

[43],[44]. A related area of active research has involved finding the optimal distribution of files among

processors in a message passing machine or computer network, given a set of transactions involving

the files. For a review of this work see [45].

A similar problem occurs during the computer aided design and design testing of VLSI com­

ponents. Testing is generally performed using computer simulation, for which the time costs often

grow exponentially with the number of components to be simulated. A logic network can be charac­

terized as a collection of functional units whose executions are constrained by precedence relations

defined by input and output lines. Examples of such functional units are AND and OR gates, a more

complex functional unit might be an instruction decoder. Typical logic simulators will simulate a func­

tional unit only when at least one of its input values change. Hence in this case as well, the perfor­

mance achievable by any given problem partitioning is sensitive to the probabilistic distribution of

input values [25].

Once a partition is chosen, monitoring the performance of the system to determine whether a

phase change has occurred may be essential for the efficient functioning of the multiprocessor system.

If a computation mapped onto a parallel computer experiences a phase change, the computation's

mapping may no longer effectively exploit parallelism, particularly if the mapping was chosen to

-15-

optimize performance during a previous phase. It may then be desirable to remap the computation

when a phase change occurs. However, it is generally unreasonable to assume that phase changes can

be predicted and identified a priori. It is necessary then to detect and ~eact to phase changes as they

occur. However, several problems exist which must be considered. The phase change detection

mechanism may not be completely reliable; it may report a phase change when none has occurred, or

fail to report a true phase change. Furthermore, the delay cost of remapping the computation may be

high; the cost of remapping must be balanced against the resulting expected performance gains. We

have treated these problems in the framework of a Markov Decision Process. Within this framework,

we are able to demonstrate the structure of a decision policy which minimizes the computation's

expected execution time. One of our major results is that the optimal decision policy is a threshold

P9licy: we remap when the probability that a phase change has occurred is high enough. Our second

major result is that optimal performance is relatively insensitive to precise estimation of the parameters

which determine the optimal policy. Our empirical work suggests that the dominant issue in this prob­

lem is the accurate detection of phase changes. We next describe our model of the problem, and

present these results.

6. Phase Change Model

Our model of the problem makes several simplifying assumptions. First, we suppose that the

computation will undergo at most one phase cha,nge. We will later argue that our empirical data shows

that further mathematical detail is unnecessary. Note that this assumption differs from the MUM or LD

models of load drift we have already discussed. In the current model, a change in behavior is assumed

to occur abruptly, rather than gradually. A significant assumption is that the computation's behavior

can be described as consisting of a number of cycles. For a given problem, a cycle represents a

specified unit of work, and at the beginning of each cycle we assume that a measurement of system

performance is available. We assume the existence of a phase change detection mechanism. Because

-16-

the detection of a phase change is likely to be problem and system dependent, we do not attempt to

treat change detection other than to assume that the mechanism is not completely reliable. We model

its unreliability by assuming that every invocation of the detection mechanism has a probability n of

reporting that a phase change exists when it actually does not exist, and a probability p of it failing to

report an existing phase change.

Our remapping decision process will invoke the phase change detection mechanism at the begin­

ning of every cycle. To model the uncertainity in the occurrence of the phase change, we assume that

the probability of a phase change having occurred since the last change test is $. When invoked, the

change detection mechanism attempts to determine whether the phase has changed any time in the past,

presumably on the basis of the computation's recent behavior. Upon receiving the mechanism's report,

the decision process will update the probability of a phase change having already occurred. This proba­

bility is a function of the mechanism's report, n, p, $, and a prior probability of change. The decision

process then decides whether to remap on the basis of the calculated probability. For this reason, we

call the sequence of change test and decision a decision step. We will let Pn denote the probability of

change which is calculated by the nth decision step.

We intuitively understand that the decision to remap should be a function of the costs and

benefits of remapping. We next define model parameters which capture these costs and benefits. We

make the reasonable assumption that the time required for the system to execute a cycle depends on

the mapping, and whether the mapping was designed to exploit parallelism during that cycle's phase.

We let eo denote the mean time to execute a cycle before a phase change. We let en denote the mean

time to execute a cycle after a phase ~hange, but before a remapping.;We let eR denote the mean time

to execute a cycle after a phase change, and after a remapping. We suppose that eR < en, which simply

says that remapping after a phase change leads to higher performance during the new phase. In fact,

the difference en - eR is interpreted as the per cycle cost of not remapping after a phase change. We

-17-

also explicitly identify the costs of remapping. We let Dd be the expected time delay of calculating

and testing a new mapping. For reasons which will become apparent later, we separate this cost from

the cost Dr of actually implementing the new mapping.

We also contend that the decision to remap should consider the remaining length of the computa-

- tion. If the remaining computation is quite short, then it is likely that the benefits of remapping after a

phase change cannot outweigh remapping's overhead costs; conversely, a long computation may admit

remapping early in the computation even if the per cycle performance gain is small. We model our

uncertainity in the duration of the computation by supposing that the computation requires a random

number of cycles, denoted M. For tractability reasons, we assume that M is bounded from above by

some constant, and that M has an increasing failure rate function. The latter requirement simply means

that the longer the computation runs, it becomes more likely that the computation will terminate with

the next cycle. Table I below summarizes our model parameter definitions. After the nth cycle, the

decision proces.s invokes the phase change detection mechanism and calculates a new probability Pn of

the phase change having occurred. Our model does not attempt to capture the cost of invoking the

Table I

Model Parameter Definitions

Notation Definition
n Decision Step Number
M Random number of decision steps
eo Decision Interval Pre-Change Execution Time, Original Partition
eB Decision Interval Post-Change Execution Time, Original Partition
eR Decision Interval Post-Change Execution Time, New Partitio.n
Dd Delay to Calculate and Test New Partition
Dr Delay to Implement New Partition
a. Change Test False Positive Error
~ Change Test False Negative Error
<\I Time of Change Failure Rate Probability

-18-

mechanism. On the basis of the value of Pm the decision process decides whether to generate a new

mapping (based on the computation's post-change behavior). The decision to retain the current map-

ping causes no further activity until the end of the next cycle. If the phase change has not occurred,

the expected execution time of the next cycle is eo; if the phase change has occurred, then the

expected execution time of the next cycle is en. The decision to remap initially has two components.

A new mapping is calculated on the basis of the computation's recent behavior. We then suppose that

it is possible to estimate the performance of the computation under the new mapping (this issue is dis-

cussed in [46]). We can then compare the performance of the new mapping with the performance of ,

the old, and implicitly verify whether the phase change has occurred. The delay associated with calcu-

lating and testing a new mapping is Dd• If the testing phase reveals that the phase change has not

occurred. then the new mapping is rejected, the probability of a phase change having already occurred

is set to zero, and the decision process continues as before. If the new mapping is accepted, then a

delay Dr is required to implement it. The decision process then stops, with the expectation that every

remaining cycle has a mean execution time of eR'

We place the remapping decision problem in the context of a Markov decision process [47] by

defining the state of the process at the nth decision step to be <Pmn>, the probability of the phase

change having already occurred coupled with the decision step identifier n. The immediate costs of the

possible decisions have been identified as mean per cycle execution costs, and remapping overhead

costs. The cost of a decision policy is the expected sum of its decision cosle;; in our formulation that

sum is the expected execution time of the computation (including any remapping overhead). An

optimal decision policy is one which minimizes that expected sum. The optimal decision policy is

determined by the optimal cost function V(<pn,n», which expresses the expected future costs of using

the optimal decision policy. By the principle of optimality, the optimal cost function is expressed by

-19-

{
ER(<Pn,n»

V(<fn,n» = min EC(<Pn,n»

where ER(<Pn,n» is the minimized expected future costs given that remapping is chosen from state

<Pn,n> and EC(<Pn,n» is the minimized expected future costs given that remapping is not chosen from

state <Pn,n>. The optimal decision to make from state <Pntn> is the decision with the minimum value

of the expected future costs function. In [46] it is shown that the optimal decision policy for our prob-

lem has a particularly nice form. This result is stated as Theorem 1.

Theorem 1 : For every decision step n, there exists a threshold 1tn such that the optimal decision

at step n is to choose remapping if and only if Pn > 1tn•

Theorem 1 appeals to our intuition: to remap, we must be sufficiently certain that a phase change has

occurred. The magnitude of our required confidence is reflected in the value of the thresholds {1tn},

which are a function of all the model parameters we have identified.

While Theorem 1 gives a nice form for the optimal decision policy, there are severe problems

which prohibit its general use. In [46] we show that solving for the {1tn} is computationally intract-

able. Furthermore, that solution depends on the quantification of model parameters we may not be cer-

tain of. In particular, it may be unreasonable to expect a good estimate of the per cycle gain from

remapping. We addressed these concerns by conducting an empirical study which showed that optimal

performance can be nearly achieved without explicitly calculating the {1tn}, and without precisely

estimating model parameters. This study focused on a simple decision heuristic whose performance is

close to that of the optimal policy. We now outline the details of the heuristic.

Like the optimal decision policy, the decision heuristic maintains the probability of change, and

reacts to high values of this probability. A threshold p is chosen so that p is approximately equal to

the probability of change which would occur after three successive phase change tests report a change.

When the probability of change exceeds p, a new mapping is computed. However, this mapping is not

"'20-

necessarily adopted immediately. The parameters en and eR are estimated to determine the gain from

remapping. Then, as a function of these and all other model parameters, a time threshold no is com­

puted as outlined in [46]. no represents a "break-even" point, Ten = 1 for all n ~ no, and Ten < 1 for

n < no. This means that if the computation is close enough to termination, the optimal decision policy

will not remap even if the probability of change is 1. Likewise, our heuristic will not adopt a remap­

ping if m ~ no, m being the current step. Supposing that m < no, our heuristic calculates pseudo­

optimal thresholds {'tn } for the steps between m and no. These thresholds are found by a linear inter­

polation between 'tm = 0.8 and 'tno = 1.0. The decision process then proceeds as though the {'tn } are

the optimal decision thresholds {Ten}.

Our study of the heuristic's performance assumed relatively small values of change test error pro­

babilities (a = 0.05, 13 = 0.2). It used <\> = lIE[M] , which says (approximately) that we expect that it

is as likely as not that a phase change occurs during the computation. We used remapping overhead

values of Dd = Dr = 100; and we used en = 200. We therefore implicitly assume that the remapping

overhead costs are essentially the same as a single post-change cycle under the original mapping. Our

cost structure only takes into account computational costs after a phase change, hence we assumed that

eo = O. The gain from a new mapping is G = en - eR. The study varied G, and it varied the length of

the computation. For simplicity, we assumed M to be a degenerate, constant random variable.

The empirical study accurately estimated the optimal thresholds {Ten} using a method described in

[46]. It also calculated the performance obtained if a new mapping is never chosen. Comparing the

performance of these two extreme policies, we calculated the percentage %n improvement possible

using the optimal policy. Using a simulation of our model, we measured the percentage of this gain

which is achieved by the heuristic, denoted %/1. Table II gives the values of %n and %/1 for varying

values of G and M.

-21-

Table II

%/1 and %H for varying values of G and M.

M G %/1 %H G %/1 %H G %/1 %11

10 5 0.0 50 4.7 55.2 100 19.2 75.3
50 5 0.48 54.8 50 11.3 93.4 100 32.4 95.5

100 5 0.5 82.9 50 12.2 95.1 100 33.9 97.1
1000 5 0.94 98.3 50 12.5 99.5 100 34.3 99.5

Obviously, when the gain achievable by remapping is small, there is very little difference

between using the optimal policy, and the policy which does nothing at all. If G is larger, the possible

performance gains are larger, and most of those gains are captured by our heuristic. It is also elear

that the length of the computation affects performance. As the length grows, our heuristic's perfor-

mance approaches that of the optimal decision policy.

The data gi ven above assumed that the decision heuristic knew precisely what the value of G

was. Because this is unrealistic, we re-examined performance under the assumption that the heuristic

grossly under or over estimates the value of G. For each pair of G and M, we caused the heuristic to

under-estimate G by factors of 10-1, 10-2, and 10-3• We also caused it to over-estimate G by factors

of 10, 102, and 103
• Table III lists the resulting %J1 as a function of G, M, and the estimation error

factor. This table clearly shows that the heuristic's performance becomes insensitive to estimation

error as the length of the computation increases. When the length of the computation is small and the

gain G is not estimated correctly, remapping can lead to a degradation in performance. The negative

percentages depicted in table III demonstrate this phenomenon. This data suggests the following con-

elusion, which is quite important if model parameters cannot be estimated:

If remapping costs are the same order of magnitude as a cycle execution time, and if the

number of cycles in a computation is modestly large, then most of the gain possible from

-22-

Table III

%11 as a function of G, M, and the estimation error factor.

G M 1O-j 10-2 10-1 10 102 103

50 10 -7.1 -16.7 -19.4 44.5 48.3 44.1
100 10 5.2 -3.5 0 77.0 77.1 74.3

5 50 35.2 35.1 34.6 -67.1 -97.7 -108.2
50 50 10.0 23.1 33.8 93.9 94.2 92.4

100 50 14.1 27.0 82.0 95.6 96.4 95.1

5 100 11.4 21.7 22.3 49.6 42.9 42.6
50 100 53.1 50.5 86.9 95.2 96.4 96.1

100 100 55.7 53.2 95.7 97.2 97.5 97.6

5 1000 92.7 92.6 95.3 98.4 98.3 98.4
50 1000 94.8 98.0 99.6 99.7 99.7 99.7

100 1000 95.2 99.2 99.6 99.7 99.7 99.7

remapping is achieved if the phase change is detected relatively accurately.

In particular, when the number of cycles in a computation is reasonably large, it is not critically

important to be able to estimate what the remapping gain will be. This observation also supports our

decision to model only one phase change. Not only would the explicit modeling of multiple phase

changes require more difficult analysis, but our data suggests the extra detail is not important. Good

performance depends on the relative costs of remapping, the length of the computation, and the accu-

racy of phase change detection. Since a high cost of remapping can be amortized over a long enough

computation, the dominant concern (for long computations) is accurate detection of a phase change.

7. Summary

The tradeoff between the costs and the benefits of remapping a variety of different kinds of prob-

lems are examined. In one case, the time-variant behavior of many scientific computations is charac-

terized by gradual changes in each processor's computational load. Coupled with the computation's

synchronization needs, performance declines gradually. Good processor utilization requires that the

-23-

computational load be balanced between processors, yet a good balance can't be sustained without

periodic, possibly expensive remappings. To treat this type of problem, we need to both model the

phenomenon of performance degradation, and develop remapping decision policies which effectively

determine when the computational load should be remapped onto the parallel machine. We have done

so using two different models of gradual load evolution. We have developed and studied an adaptive

remapping decision policy SAR which proves to be effective on both models. SAR does not depend

on the details of the model structure; rather, it attempts to minimize a statistic which measures the

long-term average system degradation (including that due to remapping) as a function of time. For

both load evolution models, the performance obtained through the use of SAR is compared to a variety

of policies for scheduling remappings.

We have also considered strategies for deciding when to remap problems whose behavior under­

goes unpredictable and sudden phase changes. We treat the problem of determining when and if the

stochastic behavior of the workload has changed enough to warrant the calculation of a new partition.

The problem is modeled as a Markov decision process, the solution to which is intractable. A heuristic

is proposed which triggers a remapping when a phase change has been detected and when it is possible

to estimate that the duration of the remaining computation duration is sufficiently large to allow perfor­

mance gains to outweigh remapping overhead. Simulation studies suggest that most of the possible

gains in performance that can be obtained through remapping can be captured by the heuristic. The key

conclusion of this study is that the timely detection of phase change is the most important issue in

achieving good performance. If phases tend to be long-lived, then the accurate estimation of perfor­

mance gains and performance overheads is not critical. If phases are short-lived, then the heuristic we

describe provides good performance if our model parameters can be accurately quantified.

The two types of remapping problems discussed here share common features. Both problems

arise due to the fact that a computation is distributed across a parallel computation, and that the

-24-

computation's stochastic behavior is not constant. In both problems a global remapping can tem­

porarily restore good system performance, but the decision to remap must weigh the performance gains

against the remapping overhead. The differences in these problems' behavior cause their respective

treatments to differ; however, these treatments are similar in that they both are adaptive, and they both

explicitly consider the appropriate costs and benefits involved in the decision. For both problems,

empirical studies of the proposed policies prove their effectiveness.

-25-

Acknowledgments

We thank Bob Voigt for his continuing support. We also thank Roger Smith, Paul Reynolds,
Dan Reed and Merrell Patrick for helpful discussions.

-26-

REFERENCES

[I J H • .J. HERGER and A. JAMESON, Automatic adaptive grid refinement for the
euler equations, AIAA Journal, 23 (1985), pp. 561-568.

[21 M. J. BERGER and J. OLIGER, Adaptive mesh refinement for hyperbolic
partial differential equations, J. Compo Phys., 53 (1984), pp. 484-512.

[3] W. D. GROPP, Local uniform mesh refinement with moving grids, Yale
Technical Report YALEU/DCS/RR-313, April 1984.

[4] M. M. RAl and T. L. ANDERSON, The use of adaptive grid generation method
for transonic airfoil flow calculations, AIAA Paper 81-1012, June 1981.

[5]

[6]

[7]

[8]

[9]

[10]

A. HARTEN
dimensional
1981.

and J. M.
hyperbolic

HYMAN, Self-adjusting
conservation laws, Los

grid methods for one­
Alamos Report LA-9105,

W. USAB and E. M. HURMAN, Embedded mesh solutions of the euler equation
using a multiple-grid method, Proceedings of the AlAA Computational
Fluid Dynamics Conference, Danvers, Mass., Paper 83-1946, July 1983.

M. J. HERGER and S. HOKHARI, The partitioning of non-uniform problems,
lCASE Report No. 85-55, November 1985.

W. D. GROPP, Local uniform mesh refinement on loosely-coupled parallel
processors, Yale Technical Report YALEU/DCS/RR-352, December 1984.

W. D. GROPP, Dynamic grid manipulation for PDEs on hypercube parallel
processors, Yale Technical Report YALEU!DCS!RR-458, March 1986.

C. ANDERSON and C. GREENGARD, On vortex methods, SIAM J. Numer. Anal.,
22 (1985), pp. 413-440.

[11] A. LEONARD, Vortex methods for flow simulation, J. Comp. Phys., 37
(1980), pp. 289-335.

[12] S. BADEN, Dynamic load balancing of a vortex calculation running on
multiprocessors, Computer Science Technical Report, University of
California Berkley, 1986.

[13] D. R. WELLS, Mult irate linear multistep methods for the solution of
systems of ordinary differential equations, Report No. UIUCDCS-R-82-
1093, University of Illinois, July 1982.

[14] D. BAI and A. BRANDT, Local mesh refinement multilevel techniques, Dept.
of Appl. Math., Weizmann Institute of Science Report, 1984.

[15] S. McCORMICK and J. THOMAS, The fast adaptive composite grid method for
elliptic equations, Math. Comp., 46 (1986), pp. 439-456.

-27-

[16] A. BRANDT, Multilevel adaptive solutions to boundary value problems,
Math. Comp., 31 (1977), pp. 333-390.

[I}] R. E. BANK, A multi-level iterative method for nonlinear. elliptic
equations, in Elliptic Problem Solvers (Martin Schultz, ed.), Academic
Press, New York, 1981.

[18] O. C. ZIENKIEWICZ and A. W. CRAIG, Adaptive mesh refinement and a
posteriori error estimation for the p-version of the finite element
method, in Adaptive Computational Methods for Partial Differential
Equations (Ivo Babuska, ed.), SIAM, Philadelphia, 1983.

[19] G. S. FISHMAN, Principles of Discrete Event Simulation, Wiley & Sons,
New York, 1978.

(20) K. M. CHANDY and J. MISRA, Distributed simulation: A case study in
design and verification of distributed programs, IEEE Trans. on Software
Engineering, SE-5, 5 (September 1979), pp. 440-452.

[21] A. I. CONCEPCION, Distributed simulation on multi-processors:
Specification, design, and architecture, Ph.D. Dissertation, Wayne State
University, January 1985.

[22] D. R. JEFFERSON and H. SOWIZRAL, Fast concurrent simulation using the
time warp mechanism, Rand Report to the Air Force, FN-1906-AFFR,
December 1982.

[23] J. K. PEACOCK, E. MANNING, and J. W. WONG, Synchronization of
distributed simulation using broadcast algorithms, Computer Networks, 4
(1980), pp. 3-10.

[24] P. F. REYNOLDS, Jr., A shared resource algorithm for distributed
simulation, Proceedings of the Ninth Annual International Computer
Architecture Conference, Austin, Texas (1982), pp. 259-266. Distributed
Compo

[25] D. M. NICOL and P. F. REYNOLDS, Jr., The automated partiti()ning of
simulations for parallel execution, Technical Report No. TR-85-15,
Department of Computer Science, University of Virginia, August 1985.

[26] D. L. EAGER, E. D. LAZOWSKA, and J. ZAHORJAN, Adaptive load sharing in
homogeneous distributed systems, IEEE Trans. on Software Eng., SE-12
(May 1986), pp. 662-675.

[27] G. J. FOSCHINI, On Heavy Traffic Diffusion Analysis and Dynamic Routing
in Packet Switched Networks, Computer Performance (K. M. Chandy and M.
Reiser, eds.), New York: North-Holland.

[28] L. M. NI, C. XU, and T. B. GENDREAU, A distributed drafting algorithm
for load balancing, IEEE Trans. on Software Engineering (October 1985),
pp. 1153-1161.

-28-

[29] J. A. STANKOVIC, An application of Bayesian decision theory to
decentralized control of job scheduling, IEEE Trans. on Computers, C-34 ,
2 (February 1985), pp.117-130.

[30] J. A. STANKOVIC, K. RAMAMRITHAM, and S. CHENG, Evaluation of a flexible
task scheduling algorithm for distributed hard real-time systems, IEEE
Trans. on Computers, C-34, 12 (December 1985), pp •. 1130-1143.

[31] D. TOWSLEY, Queueing network models with state-dependent routing,
Journal of the ACM, 27, 2 (April 1980), pp. 323-337.

[32] A. N. TANTAWI and D. TOWSLEY, Optimal static load balancing, Journal of
the ACM, 32, 2 (April 1985), pp. 445-465.

[33] W. W. CHU, L. J. HOLLOWAY, M. LAN, and K. EFE, Task allocation in
distributed data processing, Computer, 13, 11 (November 1980), pp. 57-
69.

[34] A. DUTTA, G.KOEHLER and A. WHINSTON, On optimal allocation in a
distributed processing environment, Management Science, 28, 8 (August
1982), pp. 839-853.

[35] D. GUSFIELD, Parametric combinatorial computing and a problem of program
module distribution, Journal of the ACM, 30, 3 (July 1983), pp. 551-563.

[16] H. S. STONE, Critical load factors in distributed computer systems, IEEE
Trans. on Software Engineering, SE-4, 3 (May 1978), pp. 254-258.

[37] J. A. BANNISTER and K. S. TRIVEDI, Task allocation in fault-tolerant
distributed systems, Acta Informatica, 20 (1983), pp. 261-281.

[38] S. BOKHARI, Partitioning problems in parallel, pipelined, and
distributed computing, ICASE Report No. 85-54, November 1985.

[39] M. A. IQBAL, J. H. SALTZ, and S. H. BOKHARI, Performance tradeoffs in
static and dynamic load balancing strategies, to appear in the
Proceedings of the 1986 International Conference on Parallel Processing.

[40] P. J. DENNING, Working sets pas t and present, IEEE Trans. on Software
Engineering, SE-6, 1 (January 1980), pp. 64-84.

[41] J. R. SPIRN, Program Behavior: Models and Measurement, Elsevier North­
Holland Inc., New York, 1977.

[42] D. M. NICOL ~nd J. H. SALTZ, Dynamic remapping of parallel computations
with varying resource demands, ICASE Report 86-45, June 1986.

[43] D. SACCA and G. WIEDERHOLD, Database partitioning in a cluster of
processors, ACM Transactions on Database Systems, 10 (1983), pp. 29-56.

-29-

[44] s. NAVATHE, S. CERl, G. WIEDERHOLD, pnd J. DOU, Vertical partitioning
algorithms for database design, ACM Database, 9 (1984), pp. 680-710.

[45] L. W. DOWDY and D. V. FOSTER, Comparative models of the file assignment
problem, ACM Surveys, 14 (1982), pp. 287-313.

[46] D. M~ NICOL and P. F. REYNOLDS, Jr., An optimal repartitioning decision
policy, ICASE Report 86-7, February 1986.

[47] S. ROSS, Applied Probability Hodels with Optimization Applications,
Holden and Day, San Francisco, 1971.

A
V
E
R
A
G
E

P
R
0
c
E
S
S
0
R

U
T
I
L
I
z
A
T
I
0
N

- - ------- -----.. - ---------..

0.95

0.9

0.85

0.8

0.75

0.71- \ ~

0.65

0.6
L 32 chains

"'- ~--~

0.55 -----------------------~--------

0.5 ,---I -- _-L-___ ...L-__ -L-__ _

o 20 40 60 Br) 100 120
STEPS

MUM Model: Expected Average Processor Utilization as a Function of Step Estimated from 500
Sample Paths. Each chain has 19 states, p 0.5.

Figure la

,J

I
W
0
I

A
v 0.9 E
R
A
G
E

I \/1 \ IV \/ " P \
R

2 chains

0 O.B
c
E
S
S
0

I ~~ u 1/ \ l I
I

I,..J

R t-'
I

U 0.7
T
I
L
I
Z
A
T
I 0.6
0
N

A,._

0.5 L I I

o 20 40 ()U 80 lUO '20
STEPS

MU}I Model: Average Processor Utilization as a Function of Step-Single Sample Path.
Each chain has 19 states, p 0.5.

Figure 1b

-32-

10
L
0 I
N i

I

G
9 ~

T I

E I
R
M

8 ,
A

I v
E
R

7 A
G
E

P 6
R
0
C
E

5 S
S
0
R

4 8 I
D
L
E 3

T ./ ,
I /"
M

// E 2

p 2 chains
E I
R

1

S
T
E
P

o 10 20 30 40 50 60 70 80 90 100

STEPS

MUM Model: Longterm Average Processor Idle Time per Step w(n) from Single Sample Path.

Each chain has 19 states, p = 0.5, load balancing cost = 8.

Figure 2

E
[
W
0
R
K

F
0
R

P
R
0
B
L
E
M
]
/
E
[
T
I
M
E

F
0
R

P
R
0
B
L
E
M
]

-33-

1.°

i
--.------.-

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50
o

i -I

I

I
I

J
I
I
I

optimal remapping J
I J

-J
- ____ I SAR

x

j
------x

no remapping ~

5 10 15 20 25

COST OF REMAPPING

MUM Model: Performance of Optimal Remapping Decision Policy Compared with Performance
of SAR.

Three chains, 100 steps, each chain has 19 states, p =.0.5, SAR performance
calculated from 500 sample paths.

Figure 3

I
I
I
I

~

30

P
E
R
F
o
R
M
A
N
C
E

-34-

0.85,---------.----------.---------.----------.---------.----------.----------

0.8

0.75 f
I

0.7

0.65

0.6

0.55

x

0.5
o

cost 2

..-Periodic remapping,
cost = 2

SAR cost 8

~x

no remapping
J.

10 20 30 40 so 60

PERIODIC: STEPS BETWEEN REMAPPINGS/SAR: AVERAGE STEPS BETWEEN REMAPPINGS

MUM Model: Performance of SAR Compared with Performance of Periodic Remapping.

Eight chains, 400 steps, each chain has 19 states, p = 0.5, each data point
calculated from 200 sample paths.

Figure 4

I

i ,
!

-;

I
I

!

I
i

I
I

~

,

J

70

1.0

0.9

P
E
R
F 0.8

o
R
M
A
N
C
E

0.7

0.6

-35-

--------~------~----~r_----~r_----_.------_.------_.------_.------_.I----

SAR, SAR,

C::st = ~ cost 100

Periodic remapping,
cost = 100

no remapping
~

.. _----------.~------

Periodic remapping,
= 50

.....
!
i
I

l
i

I
" j
~

X
I
I

i
0.5 ~ ____ _L _____ L_ ____ ~ ______ _L ______ _L ______ ~I ______ _L_ ._ .1 __ ._ . ___ J . ~

10 20 30 40 50 60 70 80 90

PERIODIC: STEPS BETWEEN REMAPPINGS/S~AVERAGE STEPS BETWEEN REMAPPINGS

LD Model: Performance of SAR Compared with Performance of Periodic Remapping

64 by 64 activity array initialized with one work unit per activity point.
Work unit transition probabilities: up - 0.1, right - 0.1, down - 0.05,
left - 0.05. ,Each data point calculated from 50 sample points.

Figure 5

100

Standard Bibliographic Page

I. Heporl No. NASA CR-178129 12. Government Accession No. 3. Recipient's Catalog No.
ICASE Report No. 86-46

.1. Title and Subtitle 5. Report Date
STATISTICAL METHODOLOGIES FOR THE CONTROL OF July 1986
DYNAMIC REMAPPING 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Joel H. Saltz, David M. Nicol 86-46

9. PfH,?{Et5J<t't!a'l!hai.i°t~illiWi fl1!4Aft1fp~ i ca t ions
10. Work Unit No.

in Science
and Engineering

11. CFm.fff!.. ~r8qlflt No. Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

...

1"2. Sponsoring Agency Name and Address 13. Type of Report and Period Covered
Contractor Report

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546 505-31-83 01 --

IS. Supplementary Noles
Langley Technical Monitor: Submitted to Proceeding ARO
J. C. South

Final Report
16. Abstract

Following an intial mapping of a problem onto a multiprocessor machine or
computer network, system performance often deteriorates with time. In order
to maintain high performance, it may be necessary to remap the problem. The
decision to remap must take into account measurements of performance
deterioration, the cost of remapping, and the estimated benefits achieved by
remapping. We examine the tradeoff between the costs and the benefits of
remapping two qualitatively different kinds of problems. One problem assumes
that performance deteriorates gradually, the other assumes that performance
deteriorates suddenly. We consider a variety of policies for governing when
to remap. In order to evaluate these policies, statistical models of problem
behaviors are developed. Simulation results are presented which compare
simple policies with computationally expensive optimal decision policies;
these results demonstrate that for each problem type, the proposed simple
policies are effective and robust.

17. Key Words (Suggested by Authors(s» 18. Distribution Statement

multiprocessor load balancing, 61 - Computer Programming and
dynamic load balancing, dynamic Software
remapping, message passing,
distributed computation, adaptive
regridding, simulation Unclassified - unlimited

~
\ 19. SecurilY Classl(of this report) 120.~ecB:itY C!cf'{(af this page) 121. ~ of pages122. Price

Unc assi fed nc ass e 37 A03

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA Langley Form 63 (June 198.5)

End of Document

