S6A4 —AAA-ADOF

e S R

—

oS PN
#roSPAN:
serospatiak

serospatiaie

wrospatiak
“ospatiot
~ §§ g g ,//

qerospaﬁq|e SOGIETE NATIONALE WOUSTRELLE s

37, BOULEVARD DE MONTMORENCY, 75781 PARIS CEDEX 16 - TEL. : 524-43-21

TEq ~AA1 - A0 ¥

4 [perfse - Doe

PUBLICATIONS 1985

NOM DE L'AUTEUR(S) : (T&AVERSE j-g.

DATEDELAt:.ONFERENCE: i O % Qoh(ﬁ\ﬂ 438'5—
LIEU DE LA CONFERENCE : COHO <(\L\‘G~e ¢)

SOCIETE ORGANISATRICE : (|
1 Fac

Tmsoe:.'zxposz(oumncmngo L Seae ia#ﬂ,ﬁé\aud_
ri%f% divers: g -« DEDX . = +.t
%&\ ,éxd;e,\:u..e_,{'s

NATURE E£T REFERENCES DE LA PUBLICATION
(conférence proceedings, titre de la revue et date...)

Adn de SAFzCoHP’ZgS'"(TFAC)

OU SE TROUVE LE TEXTE ORIGINAL, AVEC SES REFERENCES :

(/e.ng «Q\a».‘\"w @M /li%:wuz._

SOFTWARE FAULT-TOLERANCE BY DESIGN DIVERSTTY
DEDIX: A TOOL FOR EXPERIMENTS

A. Aviticxis, P. Guaniogberg', J-P3. Kelly, R°T. Lyu, L Sigiai®. PJ. Traverse’, K.S. Tia,
U. Voges*

UCLA Compuaer Science Depareners, University of California
Los Angeles, CA 90024, USA

Abgract. A large gumber of computing systems require very high levels of reliabilicy, availabitity,
ar safety. A fault-avoidance approach is not practial io maay cses, and is costly and difficutc for
softerare, if oot impossible. Cue way of reducog e effecs of an aror wntroduced during the
design of a program © 0 usc multiple versions of the program, independently designed from a
common specficaton. If these versions are designed by independenat programming teams, it is to
be expected that 2 fault in one versicn will got bave the samc behavior as any fault in the other
vessions. Since the errors in the output of the versions will be differeat and uncorrelated, it @5 pos-
sible to run the versions concurrently, coss-check thear results at prespecified poists, and mask
ertors. A DEsign Dlversity eXperimeans (DEDIX) testbed bas beca implemented at UCLA o
study the influenee of common mode errors which cag result in a failure of the entire system. The
iayered design of DEDCX and its decision algorithm are described. The usage of the system and
is appliaton in an ongoing experiment are explained.

Kcy voeds. Computer Architecture, Raliabilicy Theory, Distibuted Pacimeters Systems, Codiog

Errors, Fault Tolerance,

INTRODUCTION

A large oumber of contemporary compuling systcns
intended for process commol applicatons have stingent
reliability and availability requirements. This meass that
ttey mmet doliver the cumput iz 2 tioyely masner with 2
bigh probability of being correct. Such process coatrol
computers with high dependabilicy goals can be found, for
erample, in the suclear and acrospace industries. A sim-
ple and efficient way of reaching this dependability goal is
to use an error merking approach. An eaTor caa be
masked if the system is provided with eacugh redun-
dancy: ypically, the executon of multple (N-fold) com-
purations, cach computation having the same objectve
(AviZienis1982]. The output of each compumation then is
voted ¢a by 3 more or less sophisticated decision algo-
rithm. The result is aither 4 single output or ope output
for cach computation channe! which is aichin 3 specified,
acceprable toleranes,

In order 1o aligw dependable voting oa the ocutput, cnly a
misority of the computatca channels may produce an
erTor af a given dedsion point. This condition is ooc of
the basic assumptions needed for succoss{ul voting.
Furthermore, if
- the tapuss 0 each computation channel are coa-
sistett,
- the outputs are voted upon (in 2 more or less
sophisticated dedision {uncticn), and
- the probability of baving reiared ervors is suffi-
ciently low,
then, the output of the systea is suffideady dependable.

I On leave from Uppsela Universisy, Sweden
2 On leave from IEI-CNR. Piza, ltaly

3 On leave from LAAS. Toulouse, Fram.-j/ %Q‘.'FO‘ k#\'\ Ffe'
crmary

4 On izave from KFK, Karisruhe, FR.

Thee assumprions are usually satisfed. The most ou-
blexrme deals with related errors. This assumption is very
important, because, U ose error appean simultanecusly
ia & majority of chaanels, any decision funcion edll pro-
ducc 2n inoorrecx resule. Therefore, this protatility of
commen mode ertor bas to be kept low,

As long s cormain design criteria arc obeyed, these
related errors are oot likely to appear f they are dee o
internal physical faults (rupture of comneclion,e. g.), a3
these faulty are likely to bave an cffect caly on cae of the
channels at 2 tme. External faulc are more likely w pro-
duce related erors. Ways of dealing with these erroms
are to bave the channels loosely coupled, and to use dif-
fereat techoologies for the chaanels. Thew, as exteraal
fault will not strike the channels when they are i the
same state, aod they will not reace in the same way. They

Another source of related orrors are design aror.
lodeed, the N copies of faulty sofrware will all be in error
at the same tme when provided with ideatical input data.
A wray to avoid these related efrors s to have different
versions of the software (and of the eatire chanmnels)
instead of using simple copics. Thus a2 key atmribute for
high dependability systems sppears o be diversiry: diver-
sity i the tming, technology, and design (bardware and
software) of the different channels.

Let us define a eross-check poirg (ce-potnt): to be the vot-
ing poiot at which the diffcrent versions exchange their
results (ce-vector) {or voting. The basic’assumption, that
auly 2 mipority is o ervor, can then also be expressed as:
berweeg two successive ¢c-powots only & minority of the
redundaant chaanels sre likcly o fail, either by procuding
erToneous curput or by failing to deliver their result in
dme. Errory in the computagon will have an cffect on

et bbby Proceedings of SAFECOMP'S8S, Como. ltaly, Octoberl-3, 1985

this cc-vector and arc tacrefore datectable. The dexision
algorithm will compare the cc-vectors and will output its
result in form of a decision vector.

At UCLA an ongoing rcsearch effort was staried o
investigate design diversity, the problems that can arise,
and tw estimate the cfficiency in dependatality improve-
ment by the use of design diversity. The main target o
the software, aad [irst resuln included the definitico of
the concept of N-Version Programming{Chenl978], and
some first gencration experiments [Kely1982].

In order to make mcasuremenss in a muld versico
software erperiment, a testbed was oecded. A basic
requirement was to simulate the environments in which
design diversity should be used. The Design Diversity
E:pumumbad(DEDD()hathmmaspec&a
fault-tolerage computing system, 2ad an experimmentation
tool. We will develop these two aspecs tn this paper.
The main layout of the DEDIX system will be given and
the dedsion algorithm implemented in DEDIX will be
cxplained more closely. Finally, the use of DEDIX in
current experiments will be described. A more complete
description of DEDIX an be found in [Avitienis1985].

DEDIX AS A FAULT-TOLERANT COM-
PUTING SYSTEM

As stared carlier, design diversity will often be used in an
covircnmeot with high redundancy. Therefore, the
testbed bhas to be a modular, redundant system to allow
different experiments. the basic requirements for DEDIX
are the following:

1. The differedc versicas of the saftware shall be
able to run on different hardware in order to test
the influence of errors in the hardware assodated
with asy one versicn. Version support software,
therefore, has to be distributed.

2. DEDIX must run on the distributed Locus
egvircument at UCLA [Walker1983], consisting of a
oetwork of about 20 VAX 1U750s, and sbould be
portable t other Unix syst=ms.

3. A decision algorithm bas to be part of the system,
which provides different kinds of decision functions
for the user like bit-by-bit comparison for identity.
and comparison within a specified tolerance.

4. The iaterface for the version programmer has to
be simple, and the interface must be independent of
the sumber of actual versions used.

In order to fulfil these reguiremenrs, DEDIX was
developed as a modular redundant system. Depeading oa
the aumber of versions and the oumber of available
machines, DEDIX selects sppropriatc hardware.

DEDIX itsc)f i3 written in C and makes use of several
Locus features, e. g. for setting up the different processes
apd (or linking the processes via pipes. Nevertheless, it
should be possible to port DEDIX 0 a pure Ugix system
which provides mechanisms for communication beiweco
several CPUs.

We use the faclities offeved by the UCLA Center for
Experimental Computer Science. To. machines are linked
by an Ethernet local aetwork. We use the Unix software
development caviroament and its inter-process communi-
aton fcatures (pipss). Locus allows processes to

2

communicate wilh each ather in the same way whether
they are running oo the same machine or on different
machines. It is thus easy to allocate cach computation
channed 0 a different machine.

The deasion algorithm implemented will be described in
more detail later, as well as the user ? e Both parns
arc designed to fulfil the above mentonc . cquiremenn.

A global view of the DEDIX system supporting N ver-
sions i3 given in Fig. 1. The versions communicate with
the different parts of DEDIX, which in turn makes use of
the Locus opcrating system, and the differeat sites are
interconnected with each other via Etherner.

,—- USER INTERFACE

VERSON L VERSION VERSION N
i
| Loas I s oS
——
EirEANTY

Fig. 1. The N sites of DEDIX

DEDIX: A LAYERED AXPROACH

DEDIX is designed es a set of hicrarchically soucrured
layers. Each of the sites which are selected for running
DEDIX bas ae identical set of layers and eatites, provid-
ing scrviecs to its version and thc cxtermal user. These
layers, from top to bottom, are:

=« the Version Layer,

- the Decision and Exexutive Layer,

- the Synchronization Layer,

- the Transport Layer.
These layers are implemented 23 funcions, and inside a
site, they share some dara structures (see Fig. 2).

The VYecosion Layer

This layer coatains the application program version. The
purpose of this layer is to toterface the version with the
DEDIX system. The interface funcion i1 called the
cross-check, Of cr-funcrion sinee it is called by the version
at cach cc-point. Pointers 1o the results to be corrected
arc sent &z parametery 1o this funcion. The co-function
traasfers the version representation of results into a oc-
vector so that the DEDIX internal representadon of a -
vector is hidder for the version program. If the decisicn
algorithm detecty an crror in the results of the version,
the cc-funcrion writes back the corrected resulny into the
version, thcrefore masking errors.

To run on DEDIX a version must be instrumented. That
is, the version must il DEDIX at each ocnurrence of a

— ULR NTTRFACL
'

\TRSION LAYTR
TOCAL
VERSIONG
DECTSION AND EXECLIIVE LAVER
LOCAL CECQON CGLOBAL
— leeame| | ryvmey| |eeamE] | B
[SYNCHRONIZATION LAYIR
SCH SH SYcH
SEVDER RECTVER | | RECONF
TRANSPORT LAYER
TRANSPORT] TRANSPORT TRAN'
SENDER RECEIVER RECONF

Fig. 2. Tha layers on one site of DEDIX.

oe-point, and pass ity results to generate the correspond-
ing ce-vectors, We will show bow this is done in a subse-
quent section. Currently, the available zpplicztion
languages are C aod Pascal. Cther languages could be
used for the versions, if the interface berwesn this
language and C is provided.

The Decisi \ Precmive 1

This layer receives cc-vectors from the versions, decides
on the correct rssult, determines whether a version is
faulty or not, and makes recovery decisioms. A corrected
ec-vedicr is forwarded to the version. All excrptions that
cannot be handled at lower levels are directed to this
layer.

The layer has four entitics, 8 sender, a local executive, a
decision function, and a global execusive. The locl execu-
tive catity rececives requests from the version aod
responds to the version when 3 decisicn bas bees tken.
There are four different types of normal requests: inter-
mediate ce-vectcr (0a a subset of the internal scate of the
chaneels), output cc-vector, ioput, and version termina-
ton. All of them are broadexst to the other sites, and run
through the decision function to ensure coasistency and
syochronization. When the version has raised an excep-
ton from which it caanor recover, this erception is for-
warded to the loeal executive.

Toe global executive is activated when the dedsion funce
don indicares that the resulr is not unanimowus, or when
some unrecoverable exccpticn i3 signaled from the version
or same other layer. Such an excepton could be disrup-
don of 3 communication connection. This global execy-
dve provides fault diagnosis, reconfiguration, and fault
reportng for maintenance purposes. Basically, it has the
same functions as thc global cxecutdve found in SIFT
[Melliar-Smith1982].

To ensure that a2 consistent reconfiguration detision is
taken, the global executive at each site must first g=t a

consistent error repoxt. All global executives propose a
pcw configuration that is brosdeast to cvery site and
decided upon. The proposed configurations are voted on
bit-by-bit which will ensure a consistent view on a sew
configurarion at every correctly working site.

The_Synchromization 1

For cach physically distinct site, this layer broadcasts the
result from the above cxocutive layer and collects mes-
sages with the rsuis (Tec-vector™) frem all other sites.
This layer only accepts messages that are both broadcast
within & certain time ioterval and that will arrive within
the same time ipterval. The collected messages are
delivered o the decision function, A oew set of resuln is
accepted when every tite has confirmed that the micssages
have been delivered. This layer can establish eommunica-
tion connections between sites.

A protocol was designed to provide the above serviee.
Synchronizaticn of the system i3 based on the follawing
assumptions:

- coxrectly workipg versions prodoee exractly the
same aumber of cc-vexrtors,

- correctly working versions bive similar execution
dmes, ie. they wil produce resuin within a spedi-
fied time-out interval,

- a majority of “missing”® messages does not exist at
a maprity of sitcs,

- a2 majority of messages arc not delayed more than
the speaified time-out interval.

Each site has both a sender and a recsiver entity in this
layer, which communicate with corresponding entities of
other sites acoording to the protocol. The receiver eatity
collects messages from the senders and it delivers them to
the decision function. After the delivery, it scods ack-
oowicdgmenS back to the seadeas to confirm the
delivery. When a sender entity has collected ack-
nsowledgemens from all the other sites or whea it has at
least a mapority of acknowledgments, it will indicate this
to its decision and executve layer. This indication is used
by the layer above to restart the version. By using this
indicadon, it i3 possible to casure that all sites will start
the oew sct of computations within the specified time
interval.

Th= scoders and receivers are designed as communicating
extended finite state machines. They respond to cvenns
such 23 commands from the local exccutive, messages o
ackngwledgments, aad internal time-outs. State variables,
i.c. frame sequence numbers, forming predicates on the
statc transitions are used to discriminate tessages and
ecknowledgments delayed too long in the commuaicaticn
system. The specificaton and verification of the protocol
is described in {Guaningberz1985].

Ihe Transporr Layer

This layer controls the commuaication of messages (con-
taining the rcsuls) betwesn the sites. Messages are
broadcast to all active sites. The layer makes sure that no
message is lost, duplicated, damaged, or misaddressed,
and it preserves the ordering of scot messages. A discon-
nection is reported to the layer abave.

Cusrently, this layer is implemented as & simple loop of

pont to paint lings by UNIX intermrroccssor pipes. Since
this inplementation docs aot allow a site crash, a redun-
daot interconnestion structure is under implementation.
We are also investipating the use of nerwork-orieated
inter-process communication, protocol to achieve more
transportation cffidency [Cooper1984].

THE DECISION FUNCTION OF DEDIX

‘sp The decision {unction-has to recognize whether the
versions are in agrezmeot with cach other or not. The
decision funchion is used for cach ce-point, and cach of
these dedisions i3 independent of the preceding ones, and
bascd only on the set of cc-veciors that is wransmitred by
the synchroniration layer. Ag agreemeat is achicved if at
lezst 2 majority of versions is considered to be equivalent
by the decision algorithm, and this value is used as an
output. This valuc is also communicated to the versions
in error. so they o use it for their subsequent computa-
tion_

An agreemest among cS-veciors means basically that
these eo-vectors ¢contain the same information, at the level
of abstraction of the user of the versions. This meaas that
tbe versicns (that have beea designed by differeat pro-
prammer teams, in different languages, that may rud oo
differeat machines, ...) may have diffaenr ways of
represeating information. The dedision function bas thus
to ectract the meaning of the coc-vectors. A “bit-by-bit”®
vote can be used for much of the ce-vector sines taere is
only one possible representation of the data. Neverthe-
less previous experiments have shawn that bit-by-bit vot-
izg can be too selective aad reject semantically equivalent
resulss [Kelly1982).

Therefore, the cc-vetors is subdivided into parts, and a
separate decision is possible for each part. The global
decisicn vector is composed of the unica of the values of
cach part The purts can be dassified in the following
way:
- “matching class™, where a bit-by-bit vote s used
(primarily for integers),
- “cosmetic dass”, where cosmetic errors are allowed
(mainly used for characzer strings),
- “real pumber class®, containing real numbens
which are allowed o be slighdy different.
Each dass is considered scparately below.

\farching Decisi

This decision is applied oo data that must be stricly
equal, like binary values or integers. The comparison oa
equality is done betweea all ec-vectors.

C e Decisi

Cosmetic errors are defined as evrors in character strings
like minor misspelling in 3 word which is to be displayed
to the operator. The human would recognise the error
and still correctly understand the word or message If
diverse versicas arc used with a bit-by-bit vote, a
“cosmetically faulty” version will be declared faulty, and,
according to the reconfiguration policy, could be dis-
carded. If, on the other band, the decision funcrion can
tolerate cosmetie exrors, a system using design diversity
will oot be penalized in comparison to a “dassical” fault-
tolerant system. A version with cosmetic arors aced got
be discarded. However a cosmetic crror must be dis-
tdnguished from a fatal error.

As an example consider the integer 9°, it c2n be wrirten
as character string 09", ', or °_9°, which would result in
dissgrecment in a bit-by-bit comparison. s contrast, if
the word size and the number represeatation are defined,
the companson of "9° as an integer would result in only
cne possible reprosentation. Thercdore numbers should
oot be represented as characer strings.

For character strings, we have to decide which misspel-
lings o allow. [n a study [Polock1983] misspellings
found in several journals have been atcgorised. As the
text of these journals bas been procssed by computer,
the kind of misspellings in them can be expocted to be
represcatative of faults eotered through a keyboard, aad
so representatve of software. The Study showed that coe
misspelling occured for every 250 words. More thaa 0%
of these misspellings can be characterize~! as being

- an omission of one characte™,

- an insertion of one characer,

« a substitudon of one charac=r by anciber one,

~ & ranspositon. of two adjactn’ charac.cs.
Cosmetic errors are tolerated by L -_sm:ce dedsion if
they arc part of the abave four cases.

N ic Decsi

For decisions oa real sumbers, two solutions are pro-
posed: sclect one represeatative value or tolerate all
values within 2 given wlcrance. In the first case, the
represcatadve value has 1o be defined and its selection
algorithm has 1o be implemented. which will always result
in an acceptable solution. Ia the second ase, the resuls
of the dulcrent versions are aompared with each other to
determine whether a mapority of them is close eoough
together within the tolerance. Currently, the fimst
approach is implemeated in CEDIX, since we have been
able to derive 2 very simple decision algorithm. This algo-
rithm is summarized ie the falowing.

We assume that 2n ideal value exisss (ICEAL_VALUE),
from which an allowed imprecision is defised (5_,3,).
such that a version V; is assumed 10 be aon faulty, if aad
only if in response (R) is such that

IDEAL_VALUE - 3_ =< R = [DEAL_VALUE + 3.

The key of the algorithm is that it caa be proved that, so
long as a majority of versions are got {aulty, the median
of all respouses is such thar

[DEAL_VALUE = 8_ =< MEDIAN = [DEAL_VALUE + 3 _.

Since taking the median of pumbers is very caty to do,
we have thus a very simple way to computc a decision
valuc. The most diverging versions can also be detected,
a3, under the same condition as the preceding propexty, it
can be proved that a version V, i3 fauley if
MEDIAN + 8_ + 8 _< R,
or
R, < MEDIAN - 3_ - 38,.

The agreement iz reached in the following steps:

- computadon of the median of the skews (U the

versions use different skcws),

- computation of the median of the responses,

- filtration of the versions using the above medians.
An agreement cxists if 8 majpority of versions has not
been discarded by the filter; the decision value is the
median.

DEDIX AS AN EXPERIMENTATION TOOL

Program Ioterfaee

In maltiple versica software the versions of an application
program are all writtea according to the same fuoctional
specification. The specification must dictate not oaly the
overall input-output transformation the program has to
perform, but also which intermediate results must be
compared, and at which poins in the execution. The
difference between a noan-redundant program and the
corresponding multiple version software rumning oa
DEDIX is minimized for programmen. Figure 3 shows a
Frogram written in C and its correspooding isstrumented
versica. The program cogriones to read the system dock
and cutput the current time until the user stops it.

sain O €
char sctime():
loag cloek;
dowdle f_clock:
char *ctise_ret;
char ereply = °y\a
statlic char egl = °*\tOnte le: “:
static char *e2 = ° Do ve costinwe? (y/m) °:
vbile (reply(o] == °Y* || reply(0] == °y°) (
£_clock = time(0);
clock = ¢ clock:
crine_| ret = ctise(&clock):
pristl (°Te%e%e®, ol, ctime_ret. o2);
scanf (*%e®, reply):

}
exte (0):

(a) blﬁbm

versiocs O (

char ectine():

long clock:

dosble (_clock;

floaw f_drift = 2.9

char ectime_ret;

char ereply v °y\1 ®:

etatic char esl = °\tData is: °:

static char *eZ = ° Do ve mv.hu’ (y/e) *:

wbile (replyio] == "¥* || reply(0] == S &) (
f_clock ® &1--(0).
cepelnr.(! *IkXe”,
clock = {_clock:
ctime_ ret = ctime(gclock):
ccoutpue(2, *ISTeSS®. w1, ctime_rec, 2);
ccinput(3. *%s*. reply)d:

drite, &f_clock):

retars (0);

(b} instrumented version

Fig. 3. A program (or displaying current time.

Toe diffcrenocs between the program and the version are
as follows:

(1) The came of the main function of the program is
changed from main () to version Q-
@) TheCroa—che:kf'unc:iouisanedwdeddeonmg

dock is
point «l. The sccond s the format which spedifies
that the dock value is voted oo as a real oumber

- with a specified skew.

(3) lostead of using prind function for standard output,
the cooutpuat function is used which first votes on the
output valucs and thea outputs them. %S specifies

(€) Similarly for the input, ccinput is used to input data
from the standard input and broadcast it to all the
versions.

(S) At the end of the program, retien is used instead of
exit,

Uscr Intexface

The wser interface of DEDIX allows users to debug the
system as well as the versions, monitor the operations of
the system, apply stimuli to the system, and to collect
empisial data during experimentation. A oumber of
commands are availabie to the user for cootrolling the
execution and defining additional cutput.

Breskpoint. The dvesk command enables the user w set
breakpoings. Ar 2 breakpoiat, DEDIX stops ezecuting
and goes into the user nterface where the user can eater
commaads to examine the current system states, cxamine
past execution history, or inject stimuli to the syszem.

Moaltoring. The wser can examine the current contents
of the message passing through the transport layer by
using the display command. Simce cvery message is
logged, the user may also specify conditions ia the display
mmmand to examine any message logged in the past
Tbemannakommnetbcmmzlsysmsutuby
ming the show command, ez, to examine the
breakpoints which have been set, the cesults of voting,
e,

Stimull Injection. The user is allowed to inject faults to

the systcm by changing the system states, ¢.g., the oo
vector, by using the modify command.

Statistics Collection. The user interface gathers empirical
data aod collects stadistics of the cxperimeats. Every
message passing the transport layer s logged iato a file
with a time-stamp. This cnables the user to do post-
execution analysis or cven replay the experiment. Statis-
tics like clapsed time, system time, gumber of cc-points
executed, and their resnlts of dedision are also cofleced.

Experiments

Several systems arc already using diverse software, e.g.
{Andersonl98S, Gmeiner1979, Martinl982, Tayler1981].
Nevertheless, it appears (in addition to the fact that some
people are noc yet convineed of the usefulness of design
diversity) that we peed w know more about related
errors. A primary goal of DEDIX is thus to cvaluate
those related crrors. By using & coatrolled eaviconment, it
will be possible to examine the errors in order to
- trace the related errors,
- know whether the proportion of related errors is
important or not,
- know the impact they bave oa the dependability of
tbe system. .

The data 50 obtained will be used to evaluate the meaning
of design diversity and the architecrure of future fault-
tolerant computers.

Another important goal of DEDIX s the evaluation of
spedificqtion methods, Indeed, specifications are likely to
be the “hard-core” and the choice of a specification
method bas thus 10 be carcfully cvaluated. The oumber
and proporticn of related errors s & measure of the cffi-
cency of a spedfication method. By efficiency, we mean
the inherent ability of the method to reduce crrors and
other ambiguities in the resulting specifications.

What sbout the cost? It has beca diimed that design
diversity was 100 costly to be used. This is obviously oot
the case when the cost of = failure of the system is impor-
rant (money o iies). Witbout claiming as [GiIb1974] that
N-vemsion programming will always reduce programming
cost, we coasider the advantage of testing the versions in
paraliel, with DEDIX for exampie. Indeed, the test data
are applicd to all versions together, and no reference s
oecded: the reference is given by the agrecing majority of
the versions.

To avoid effecting the cxecution time of DEDIX, the
experimentation analyxis is performed off-line. During the
execution, files are created with for each cocurrenee of a
cc-point, the oc-vectors of all the versions, the dedsion
vector, and the diverse diagnosis and reconfiguration
decision available in DEDDX

CONCLUSION

Curreatly, DEDIX is completely implemented and run-
ning. The tnirial pumber of versions caa be 2 or more,
and a graceful degradadon occurs when a version is
rtjected as being too often faulty. An cxperiment is
under design, under the management of NASA, with the
collaboration of four universides (Uaiversity of Virginia,
Ugiversity of Mlinois, North Carclina State University,
and UCLA). After these experiments, some other faglt-
tolerance techaiques will be tried oo DEDIX (particularly
ia the domain of reconfiguration and recovery).

ACKNOWLEDGMENT

The rescarch described in this paper has beea supported
by the Advanced Computer Scicncs program of the FAA,
by NASA contract NAG1-512, and by NSF grast MCS
81-21696.

We thank Jean-Claude Laprie for discussing this paper
with us and giving as some valuable remarks.

REFERENCES

Anderson, T., Barrerr, P. A, Halliwell, D. N., aad
Moulding, M. R., "An Evaluation of Sofrware
Fault Tolcrance in a Practical System,” in Proceed-
ings ISch Interngs. Symp. on Fault-Tolerarnt Compur-
ing. Ann Arbor, ML: 19-21 Junc 198S.

Avilicnis, A. and Kelly, J., “Fault-Tolerance by Design

Diversity: Conceprs and Experiments,” Computer,
Vol. 17, No. 8, August 1984, pp. 67-80.

AY

Avilicnis, A., Gonningberg, P., Kelly, I.P.J., Strigini,
L. Tr:m:mc P.J., Tso, KS, :deogg U..
The UCLA DEDIX Syncm: A Dismibuted
Testbed for Multiple-Version Software.,” in /5t
IEEE International Symposium on Fault-Tolerant
Compuring, Ann Arbor, Michigan: Junc 1985.

Chen, L. and Avilienis, A., “N-Version Prognm.ming'
A Fau't-Tolerance Approach to Rcliability of
Sofrerare Operation,” 8 Proceedings 8th [EEE
Internarional Symposium on Foult-Tolerars Comput-
ing Systems, Toulouse, France: June 1978, pp. 3-9.

Cooper. E.C.. “A replicted Procedure Call Fadlity,” in
Pr dings 4th Sy 7 on thc.bchrymDu-
mriduted Software and Dazabase Systems, Silver
Spriag, MD: October 1984,

Gilb, T.. “Parallel
1974, pp. 160-161.

Gmeiner, L. and Voges, U., “Sofrware Diversity in
Reactor Protection Systems: An Experiment,” in
Proceedings Scfery of Computer Conrol Sysems,
IFAC Workthop, Smttgart, Federal Republic of
Germany: May 1979, pp. 73-79.

Guaningberg, P. and Pchrson, B., “Frotocol and Verifi-
cadoa of a2 S ton Protooml for Com-
parison of Results.,” in [Sch [EEE [neernariorcl
Sympasium on Fault-Toleranw Computing, Ann Ar-
bor, Michigan: Junc 1985.

Kelly, I.P.J.., “Specficatiocn of Fault-Toleranr Multi-
Version Software: Erperimental Studies of 2
D=ign Diversity Approach,” UCLA, Computes
Science Departmest, Los Angeles, California,
Tech. Rep. CSD-820927, September 1982,

Martin, DJ., "Dissimilar Software in High Integrity
Appiicaticn in Flight Controls,” in Prvceedmg:
AGARD-CPP-330, September 1982, pp. 36.1-36.13.

ing,” Datamarion, October

Melliar-Smith, P.M. and Schwarzz, R.L., “Formal
Specification and Mechanical Verifiation of
SIFT: A Fault-Tolerant Flight Control System,”
IEEE Transactions on Computers, Vol. C.31, No.
7, July 1982, pp. 616-630.

Pollock, J.J. and Zamara, A_, "Collection and Characrer-
ization of Spelling Errors in Sdeatific and Scholarly
Text,” Jounal of the American Socicty for Informa-
;'ansaScimce. Vol. 34, Neo. 1, Jaguary, 1583, pp.

1-58.

Taylor, R., “Redundant Programming in Europe,® ACM
Sigsoft Sen., Vol. 6, No. 1, January 1981.

Walker, B.J.. Popck, G.J., English, R., Kline, C., and
Thiel, G., "The LOCUS Distributed Operatng
System,” ia Proceedings 9th ACM Symposium on
Operaning System Principles, Beetton Woods, NH:
October 1983, pp. 49-70.

