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Abstract oy

The'conteptions of transformation and canonic&] form have been
much used to analyze the structure of linear systems. 1In this article
we extend the ideas to nonlinear systems. A coordinate system and a
corresponding canonical form are developed for general nonlinear control
systems. Their usefulness is demonstrated by shéwing that every feedback

Tinearizable system becomes a system with only feedback paths in the

canonical form.
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I. Introduction.

In a setting of great géneraikty,"ﬁe séy théf t@dﬂcontro] systems -’

x = f{x,u) (1)

and |
y = g(y,v) ' (2)

are feedback equivalent if there exist two mappings

T: R"» R" (invertible)
and

W: R" xR+ R (invertible with respect to the

! X
; second variable)

such that for any (x(t),u(t)) satisfying equation (1), the induced pair of

| . "
‘time functions (T(x(t)), W(x(t),u(t))) satisfies equation (2), with sub-
it

stitution of y(t) by T(t) and v(t) by W(t). Recently a fair amount of

attention has been paid to the study of a special equivalence class in

this sense called the linear equivalents. It is now knoﬁn [1] that a

nonlinear system

x = f(x) +g(x) u ' (3)

of n states and one input is (locally) feedback equivalent to a controllable

Tinear system of the same dimension
y = Ay + by - @)
if and only if both conditions
(i) the vector fields g, éd]f(g),...,adn']f(g) are linearly {ndepen-

dent, and

(i1) the vector fields g, ad]f(g),...,adn_zf(g) aré involutive,

~are satisfied. Such a system (3) is called a (feedback) linearizable



fields defined-by - . - -

system. The symbols adkf(g) denote the Lie brackets, namely, the vector

-3¢ adk(g) = [, ad* '5(g)].

wl
X | —h
OJLOO)

ad®f(g) = g, ad]f(g) = [f,q] = s

A set of vector fields Xl’XZ"" are said to be invo]dtive if there

exist'scalars o5k such that
[X55%5) = 2"13!\ K Jei,ien.
When a system satisfies conditions (i) and (ii), a set of partial
differential equations |
"‘.‘.5‘\ - <dT]’ adkf(g) >=0, k=o0,1,...,n-2,
| <dT], ad"¢(g) > # 0, 5)

y

'whwch def1nes the ]eadxng variable T] of ]1near1z1ng transformations,

is then solvable; with a particular solution T] the rest of a transformation

can be constructed by defining
T.., = <dT,,f > i=1,2,...,n-1
.l_}" .‘, » b 9y L] b .
(6)
W <dT , f+qu

1

In order to solve this overdetermined system of partial.differential
equations (5), in a recent paper [2] we constructed a state space coordinate

change through a set of ordinary differential equations, such that one of

~ the new states, as a function of the original states, can serve as the

leading vériab1e.of a transformation.

In this article we would like to put the foregoing coordinate change
in a broader pérspective. The same scheme for the coordinate change will
be followed, but in the context of general {not necessarily linearizable)

-

systems. As a result, we find:



(a) The resulting coordinate system brings a nonlinear system
— -~ into-a canonical form, which shows a separation of the
i linearizable dynamics ana the nonlinearizable.

(b) Every linearizable system in this canonical form becomes a

system with only feedback paths.

11. Canonical Form

The systems to be considered are of the form

o R T ()

.w1th the vector f1e1ds f‘and g being analytic on a ne1ghborhood UecR"

conta1n1ng the or1g1n It will always be assumed that the vector fields

g, ad]f(g),..., and ad” ]f(g) associated with the system are linearly
indébendent on U.

For any analytic vector field X on U, the one-parameter group

generated by X is an analytic mapping by I x U-»R", where I is an open

interval of R containing the origin, such that !

& 0, (t.0) = X(4,(t,p)) . :

and

¢y(o,p) =p, tel,pel.
Restricted to a single point p in U, the mapping ¢X(-,p) defines an integral
curve of X in U, with p being its initial condition. In general, if re-

stricted to a k-dimensional manifold &, which is assumed to be transversal

to the integral curves of X, then thenmpping¢y(-,p) , pe &, defines a

(k+1) - dimensional manifold, to every point g in which the vector X(q)

is tangent.



Let ¢y be the one-parameter group generated by adkf(g) for

é—vk—=-9,l,;.;,n-l."we assume;without loss of generality, that I x U be the

common domain for all e With the integral curves of adkf(g), Ve NOw
construct a sequence of manifolds:
S = {0},

S T lop{tep) [ tel, pesS. dnv | (8)

for k = 1,2,...,n. Thus, 3 is a one-dimensional manifold made of an
integral curve of adn_]f(g) with the origin being the initial condition.
And,forfeach k, Sk.is a k-dimensional manifold resulting from the union of

“f(g) with S,_, being the initial condition.

P

the integral curves of ad"~
Conséqbent]y, we have
{O}CS] C52 c... cSnCU.

These manifolds Sk are precisely what we would obtain when we fgllow
the integration procedure prescribed in [2] for finding the leading variable
(the'T] in (5)) of a linearizing transformation for a linearizable system.
Qe remark, however, that tﬁe invo]ﬁtiveness.condition, and hence lineariz-
ability is not assumed here. |

We are now in a position to define a particular coordinate system for
equation (7) in the neighborhood S, For any point p ¢ Sy there is a
unique integral curve of g connecting p and S__,, intersecting S, &t a
éing1e point, <3y, q. 1t 1s clear that g and p are related by the one-
parameter group generated by g, that is, ¢§(s],q) = p, for some uniéue]y

determined parameter Sy - In like manner, the point q is connected by an in-

tegral curve ofad]f(g) with S, at-a point r e S__,. Again, a unique

. parameter S, is determined such that ¢](52,r) = q. Continuing this pro-



- till we final]y_reach the origin by an integral curve of adn']f(g), we
e e should obtain a set-of'ﬁ”ﬁé?éhétérS'(Si}sz,.l.,Sn), which is unique]y"_
| - associated with the starting point p in Sn, with the result that
(s,:0)...) = p. (9)

J The mapping from (S]’SZ""’Sn) to p is clearly analytic. And from

¢

b 0 (S]s(¢](52, (...((b

n-1
‘the standing assumption of linearly independency on g, ad]f(g),...,adn']f(g),
the mapping is aiso nonsingular. Therefore, we have established an ana]ytié
coordinate change from an arbitrary coordinate system x to the paftiéu]ar
‘?d A coordinate system s; denoteéd by F : x s, Undef the coordinate change
z}wtéli {:F{:x +4%é a sys;em'équatﬁon (7) becomes |
!',‘;';‘.-1- o s E e gt ), (10)
| | ‘which, for notational convenience, will still be expressed as
| s = f(s) + g(s) u : (1)
The coordinate system s is defined on the intrinsic geometry of a
control System._Nétura]]y, it is ;1ose1y related to other geometric chafacters
of a system, such as feedback 1inearizabﬁ]ity. To see this, we shall examine
a canonical form of nonlinear systems resulting from the coordinates s.
Before doing so, we need to make two observations.
‘First, in the coordinate system s, the manifolds Sk,k-= 1,2,...,n-1,

are "flat" manifolds, or more precisely

S, = {s ¢ R | s, 201 ¢ i< nok)
This can easily be deduced from the integration procedure and the définition
of the coordinates Sy3Spse-esS.

Second}y, because the coordinate s],éf evéry point p e Sn is defined by
W the parameter of the one-parameter group of g, that is.

¢,(s7-0) = p,



'Hh ' © where q is in Sn_] which is transversal with the integral curves of g, the

A - L -

HV4’"— - vector field g becomes exactly

. “|

N = -3—~
1 “,]' g 35-' k]

Ef' .or

i\ !

g=10 (12)

;'1 :
! ! 0

l

This, is ?h elementary fact in differential geometry; it can be verified by

simple computatipni' For detai], the reader is referred to, for instance,

| é iSpivakiI 3]. By repeatedly using this argument, we conclude that the vector
i e .

U | fierd ad¥e(g) s
5! ' ’ ‘ , { ! k

A 3
[ ad®f(g) = &
lt[ ask+]
| o
or - : ,
ad®f(g) = | 1| «=(k+1)-th place, (13)
it 6}

when it is restricted to the manifold S k=0,1,..., n-1.

n-k’
In the following we analyze equation (11) and construct a cenonical
- form, using the foregoing observations. Equation (11) can now be written

as

u | k]4)

By Taylor series expansion the vectar field f(s) can be expanded with respect
to s, as

‘-! f(S) = f(oaszv'--,sn) + X - = Oasza---,s ) (]5)



akf

l;ﬁ? We aTready know that f(o,sz’;_.,sn) and —x (0,52,...,Sn) are the corres-
L. ! 353 o
_—_“‘““nf—‘—‘“—‘“pcﬁdfng‘vector‘fieidS“?éSf'ﬁtféd"fﬁ”fhé‘méﬁﬁféTd‘SH;{.‘“HOFEdVéE;"s?ﬁEé

ol g =2

i1 " l - EyYS 1

E‘{k as] in Sn’ we have

“ )‘1, | ‘ K

-+

' _ ; K k
z = (1T ade(f)
| ]

of . _
531(0,52,...Sn) = - ad g(f)

1]

e}
[« ¥

—

-+
-

(fe]
~—

i
‘O

0

0
1 Sk
f(s) = £(0,s s)+s |01+ 7 (1) adkg(e) (0, s ) (16)
Spperote) st L Rl 520 0%n
0

The same analysis can again be performed on the first term, f(O,sz,...,sn),

the vector field f is restricted to S,.1- Since the notation becomes too

i cumbersome, we denote the vector fields adkf(g) by XP to keep the expressions

compact.

, _Again, by Taylor- series expansion, this time with respect to'sz, we

ol have K
£(0,s. s ) = F(0,0,s s )+ E EZ Eﬁf- (0,0,s ) (17)
| ,52,..., n 2UsSqs.en S, L - K U, 3,...,Sn

o % Kk

oL e recognize that — (0,0;5,,...,5 ) = (-1)" ad, (f) ]

v k 3 n b4 S

v P s, 1 n-

adf k()



.J,I.'ig‘fCO,sz,;..,E
' l~‘||. ;

"1‘ E"‘llfg.“ ! : 0

t

So equation (16) becomes

i ' ;

OO

30-4-5p) * 5y

) 7 (00,3
il

L

: , | k

b . e k S2 k '
, : + Z (-1) o ? ad X, () (0,0,55,...,5)
| k=2 A

We continue the expansion and analysis in like manner. At the g£-th step

we have

f(O,...,O,sl,s£+],n..sn)

| < o fF K
D GO 5% ad"X, _(F) (0,...,0,5 1uenss,),

3
v

where, in the second term, 1 occurs at the (g+1)-th place, ¢=1,...,n-1.

At the n-th step we expand f(O,...,O,sn) as
, - k
- k *n K.
f(0,...,0,s ) = f(0) + )} (-1) ad kn ](f)(O).

k!

Here, however, no special form can be concluded for any term in the
summation. In summary, we have established a canonical form for the system

equation (11) as follows:



. is evaluated at (0,...0,s

1 0 y
: ] ‘f . >k
TTTESTEU O sy O (R e ad (f)-l— e
: ] : k:2 A o Sn_]
0 0
+
0 k
+s 8 + E (—])k *n-1 afx ()]
S = ko7 Tn-20 s,
1
. o _
PR v 4 ok n ik
Y b T adi L (R)(0) + £(0), - (19)
R f'l '

. SR )
' A ¢ ' )
P 4

; .'5|\’ ¢

_ Wherelthe'symboi,lS attached to a vector field means the vector field

! J

1

n-j+]""’5n)'

Equation (19) can be rearranged into the following expression

1) 0 0 0 * 3
: 0 10 0 * || s
s = f(0) + 0 u 4+ 0 1 ...0 * |} s3
0 J 0 0 1 o* S (20)
o K
1 k k ]
+ 7 = (ad X _(f)]. -1 A SEN € 3 P :
k=2 L. 0 Sn_] n'] O ék
n

*

where the last column | 7 |in the third term is ad]Xn_](f)lo, which has no

*

special form. Equatfon (20)is taken to be the canonical form for a nonlinear
system (11) in the s coordinates. It is a very convenient representetion
for geometric analysis of control systems. In the following we shall

discuss one of its applications in feedback linearizebility.



iJf  'f IV:  Linearizability and Pure Feedback Systems.

T R I L

o  This section is devoted to the question: How much mofé taﬁ'wé say
- about the canonical form when a syste& is feedback 1ineafizab1e? The
e answer turns out to be buite pleasing.

‘Tig ! i Let us consider a linear system

iy | - | X = Ax +bu | (21)
; . of n states and one input. With Ax identified with f(x) and b with g(x),
5} :fi A theavector fields adkf(g) are exactly the familiar vectors Akb. Being
'conﬁiqﬁt:yector fie]ds in]Rn, their integral curves are straighf lines,

' ‘ L i . )
andﬂthe!def{n1ng equation for them,
‘ 1 ,

1t |' }l' Db I ‘ ¢Xk (t,q) = p,

{:cﬂ ' becomes
X - tAKb+q =

Y
This observation brings equationé (9), which defines the coordinates s,
. into:

n-1

Sib # s,Ab 4 L4 s ATTD = X (22)

n
in the linear case, where x is some arbitraty coordinate system. Equation
(22) defines a linear transformation from x-space to s-space, which is

more apparent when it is rewritten as

[b,ab, ..., A" 6] s = x
or
x = [b,Ab, ... , A" Tp]7 %

This is a standard transformation in linear theory to change a linear

system into the canonical form



S o B i M ) N ¢ e —
b s=101 0 = s$3 + 0 u (24)
i 0 0 1 % SH 0

This result can easily be verified by direct computation within the linear
frame@ork. It can also be seen from specialization of the nonlinear
‘canonfcal form (20), using the fact that the origin js an equilibrium state
o ~and the second and higher order Lie brackets are vanishing.

Theilinear canonical form (24) fs of course already well-known.
xHoweVé#;’We want to emphasize a special featuré of its structure, which
fqis éfUC%@j to the following development. We first represent the form (24)

o Co

L byvblockldiagrah.

*{ From this b]ock'diagram we note that there are only feedback paths, and the
|
;“. main forward path, but no feedforward paths. Such a system is to be called

a pure feedback system. More fokma11y, a nonlinear system (7) is called a

pure feedback system if it is of the form

i %y = f](x],...xn) + g](x],...,xh) u



o We leave it to the reader to check that this system has no feedforward
" paths in its block-disgram. . - )
I . |
= Pure feedback systems are very desirable in many ways. First, the

involutiveness condition for linearizability is trivially satisfied. In

S (24)
i
."f gl(x‘l) ,xn) f](xl: axn)
L] 9= 0 > Fm ) Falxgseuxy)
b 0 :
"?;';‘,"‘u‘ i ‘ ) : fn(xn_],xn)
T | |
%.9.5' 1C0meu£ing,Vwe have _
W e ey f v
I ‘%‘{f!l%,l.‘ ’it ‘ ‘3\2!1‘5"1'.“ Ef_]_ S a_f_l 9 ag—]- ig_]_ f]
L U,
‘ﬁﬁﬂ" o afé. ot :
| [f’,g]= '5;]" 5(— a : 0O ... 0 2
n B
A
K X, ’ 3Xp
i
Y f f
0...0 == 0 0 0 £
| Y n-1 "n \ J J J
[af] n ag, )
= 9 - ) s F
. ax] 1 5T axj i
! 2
9, 1
0
| | 5 J ]
end
[ * )
(o, [f.q]] =] * \
0
| 0
J
?
by
<L



where asterisks denote possibly nonzero elements. From the form of

[g[f g]] it is c]ear]y-a linear éomb1ﬁat10n of g and [f 9], and hence,
v the vector fields g and [f,g] are involutive. In a similar manner one can

1 k

verify that the vector fields g, ad f(g),...,ad f(g) are indeed involutive

L for k = 0,1,...,n-2,
For pure feedback systems, the condition that the vector fields
g, ad]f(g),...,adn']f(g) are linearly independent is also easy to check.

One can show that this condition is exactly equivalent to that
of of af

il i ';‘  ‘:vll - n :
e b?ing non-vanishing.
T Tﬁe p}obf is straighfforward and is omitted here.
| Another nice feature of a pure feedback system (24) is the ease with
which a ]inearizfng transformation is constructed. We can simply choose

x ~to be the leading canonical variable; we denote it by v, Llet

f (x x ) be the second canonical variable Yoot then

nt"'n-1""n
Yo " 01
Next, define
of . afn
Yoo T Yoy ToarT  Xo 1 tou
; n-2 ﬁ 1 8,y N ] ax. 'n
o ' ‘ : of af
5 . - 5;2 faar # 5;_'f ’
' n-1

so we have }”_] = Ypoo- We continue this differentiation process until we
| reach ¥y, which is a function of the form F](x)'+ Fz(x)u,~and we define it

to be the new control variable v, implying }] = v. In summation, we have



.15“', . o
oo . y]—V

e N 5 _ . ~_

| Y2 =9 "‘*'**m—-—---—l (27)
Yo T Yn-

|  }’} When the cﬁndition (26) is satisfied, the transformation: x +> y, (x,u) — v,
| is indeed a legitimate feedback transformation, which brings a pure feedback
system (24) into "a series of integrators" (27).
”] i . The class of puré feedback systems was first recognized by Georée
W@“Y L Me&er Qho with his co]]eagues at NASA Ames Research Center 1ncorporated
 J7er§ | fke 1deas of transformat1on and canonical form in nonlinear control system
‘}ﬁ - designs. nFor their des1gn results, the reader is referred to the
S papers [4,5].

We now come to an application of our canonical form (20).

" Theorem 1. Every feedback linearizable system is a pure feedback system.
L Proof.  Recall the canonicé]-fonn of a nonlinear system in the coordinate
system s
!, 1) 0 0 0 *) (s
0 1 0 0o * 52
s = f(0) + |0 u + {0 1 0o = S
na : :
gt .
o 0 0 0 [ S
! J \ n J y N
. S\
PT o adx(n) 2d % ()] ) . (28)
,Z g L% S AR (B 0’ ’ e
k=2 . n-1
k
S
n

where Xi = ad]f(g). Suppose it is-linearizable, which implies that the

vector fields Xg,X;,....X _, are involutive.



N It has been shown in {1] that the 1nvo1ut1veness of XO’ ],...X -2

N ———— e ———— —

C 1mp11es that the sets {X X],.. X } are 1nvo1ut1ve for al] 0<i<n- -2.

It is also easy to varify that if two vector fields X and Y are involutive,
&U&J!i : Ehen-ai] t%e higher order Lie brackets of X and Y are expressible as
ok linear combinations of X and Y.

H S Consider now the first column of the matrix in the summation in (28),.

From the remarks just made and the fact that

(f K L ] 0
'Qéﬁii b 0 0 ' 1
,:H': N o 4 XO‘T , Q and X] =10
il ! N
| . 10 0
Iy, ]‘; "
‘v;u | ' . .
lﬁﬁ“Tf on S__y, there exist two scalar functions oy and ¢ K such that
ad“x () = o () Xols  + a, (8)X]s
n-1 i n-1 ’ n-1
1 ' 0
0 1
=4a]’y(0 2Spse .S, ) Q + o) P(O 52,.u.,sn). Q
' 0 0
_ Q],k(O’SZ""’Sn)
% K (0, 52,...,Sn)
0
. 0 J

for k = 2.

In a similar manner we can conclude that Tinearizability implies



*05.0450,5, 4950 455))
K - R )
ad Xg'(f) S (O» -303S£+'|3 '-"Sn) +—(2+2)-th p]ace
n-¢-1 0
| 0 )

for k > 2. In summation, equation (27) becomes

(1 (00 0 * [ sy)
. | o 110 0 * || sp
s=f(0)+ ] 0] u+]0 1 ...0 *|} s3
L 0 J 0 0 T * J Sh J
* ' b K
N (s55ss) *(s5500055.) *(s,) * 5y
1
$ LT [Mlspesg) M) e 5l 3
*(5g5---55,) *(s)) * | | sk, (29)
ol K
L *(Sn) ¥ Sn,

where *(s., L5 ) are some scalar unspecified functions and the laest column

1%
fid

vyt
[

FRRRRRL
*'s are constants.

series are summable. Thus we have

1 00 0 3
. 0 10 0 x| | sy
s = f{(0)+ {0 u 4 o 1...0 * S5

0 00 1 *) |s

»*

Because of the analyticity assumed, all

the infinite



.S )| «— 2th place.

I
(sn-l’sn)

\ J

This is clearly a pure feedback system, and the proof is completed. 0

1v. Conclusion.

The[concept1ons of transformation and canonical form have been

|
much used to analyze the structure of 11near systems.

In this article
we have extended the ideas to nonlinear systems.

The proposed coordinate system and canonical form are established
on the intrinsic geometric nature of the system. They are especially
useful in analyzing geometric properties of a system such as feedback
1inearizabi]ity.\ Although only discussed in the context of single-input
systems, a multi-input version of theetheory can be constructed in
essentially the same manner, which, as well as its computationa] aspects,
are being investigated by the authors.

| OQur practical motivetion of this study lies in robustness analysis
for the design_methodology developed by George Meyer and his colleagues
at NASA Ames Research Center [5], which depends crucially on feedback
linearizability of the nonlinear plant to be controlled. The canonical
form described in this article offers a model of the plant on which the
designer can make a best model reduction for feedback Tinearization

purposes. MWe also view the form as a starting point from where a theory

of robustness of the design can possibly be constructed.
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