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Abstract " ^

The conceptions of transformation and canonical form have been

much used to analyze the structure of linear systems. In this article

we extend the ideas to nonlinear systems. A coordinate system and a

corresponding canonical form are developed for general nonlinear control

systems. Their usefulness is demonstrated by showing that every feedback

linearizable system becomes a system with only feedback paths in the

canonical form. \ ________ _____________
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I. Introduction.

7 In a setting of great generality, we say that two control systems

x = f(x,u) (1).

and

y = g(y>v) (2)

are feedback equivalent if there exist two mappings

and

T: Rn+ Rn (invertible)

W: F x F ->- F (invertible with respect to the
second variable)

such that for any (x(t),u(t)) satisfying equation (1), the induced pair of

.time functions (T(x(t)), W(x(t),u(t))) satisfies equation (2), with sub-
p i

stitution of y(t) by T(t) and v(t) by W(t). Recently a fair amount of

attention has been paid to the study of a special equivalence class in

this sense called the linear equivalents. It is now known [1] that a

nonlinear system

x =-f(x) + g(x) u (3)

of n states and one input is (locally) feedback equivalent to a controllable

linear system of the same dimension

y = Ay + bv ' ' (4)

if and only if both conditions

(i) the vector fields g, ad f(g),.. . ,adn~ f(g) are linearly indepen-

dent, and

(ii) the vector fields g, ad f(g),... ,adn~ f(g) are involutive,

are satisfied. Such a system (3) is called a (feedback) linearizable



,
system. The symbols ad f(g) denote the Lie brackets, namely, the vector

jfields .def-ined-by ---

ad°f(g) = g, adVfg) = [f ,g] = !g - 9f , ad
kf(g) = [f , ad^f (g)].

A set of vector fields X,,Xp,...X are said to be involutive if there

exist 'scalars a-- such that

When a system satisfies conditions (i) and (ii), a set of partial

differential equations

j - t l • '. <dT, , adkf(g) > = 0 , k = o,l,..., n-2,
• ' : " ]

 n l (5)
. <dTr adn- ' f(g) > } 0,

which defines the leading variable T, of l inearizing transformations,
a I

is then solvable; with a particular solution T, the rest of a transformation

can be constructed by defining

T. , = < dT. ,f > , i = 1 ,2,. . . ,n-l ,
11 ' (6)
W = < dTn, f + gu> .

In order to solve this overdetermined system of partial - differential

equations (5), in a recent paper [2] we constructed a state space coordinate

change through a set of ordinary differential equations, such that one of

the new states, as a function of the original states, can serve as the

leading variable of a transformation.

In this article we would like to put the foregoing coordinate change

in a broader perspective. The same scheme for the coordinate change will

be followed, but in the context of general (not necessarily 1 inearizable)
• i

systems. As a result, we find:



(a) The resulting coordinate system brings a nonlinear system

into~a canonical form, which shows" a separation of the

, linearizable dynamics and the nonlinearizable.

(b) Every linearizable system in this canonical form becomes a

system with only feedback paths.

II. Canonical Form

The systems to be considered are of the form

,, ,..' . :; | ' x = f(x) + g(x) u • (7)
' ' ' ' i , ' r ' ! 1 • • • ' nj with the yector< fiel'ds f' and g being analytic on a neighborhood U c R

i' '

containing the origin. It will always be assumed that the vector fields

g, ad f(g),..., and ad f(g) associated with the system are linearly
I

independent on V.

For any analytic vector field X on V•. the one-parameter group

generated by X is an analytic mapping 4,., : I x i/-*JRn, where I is an open

interval of 1R containing the origin, such that '

.. ^r 4>)/(t,p) = X(<j>x(t,p)) . ;

and

4>x(o,p) = p, t c I, p <L U.

Restricted to a single point p in u, the mapping $,,(•,p) defines an integral

curve of X in U, with p being its initial condition. In general , if re-

stricted to a k-dimensional manifold s, which is assumed to be transversal

to the integral curves of X, then the mapping <jJy( • ,p) , p a F, defines a

(k+1) - dimensional manifold, to every point q in which the vector X(q)

is tangent/



L.
Let <J>. be the one-parameter group generated by ad"f(g) for

— k-= -0,1,...,n-l. We assume,-without loss of generality;"that I x V be the
y

common domain for all $.. With the integral curves of ad"f(g), we now

construct a sequence of manifolds:

S0 = {0} .

Sk = {Vk ( t»p) I t e I, p e S . _ ^ ) n 'U (8)

for k = l ,2,.. . ,n. Thus, S-, is a one-dimensional manifold made of an

, integral curve of ad f (g) with the origin being the initial condition.

And, .for, each k, S, is a k-dimensional manifold resulting from the union of
' , ! ' ' . ' n k

the integral curves of ad f (g) with S , _ , being the initial condition.

Consequently, we have

{0} c S1 c S2 c . . . c $n c u.

These manifolds S, are precisely what v/e would obtain when we follow

the integration procedure prescribed in [2] for finding the leading variable

(the T, in (5)) of a linearizing transformation for a linearizable system.

We remark, however, that the involutiveness condition, and hence lineariz-

ability is not assumed here.

We are now in a position to define a particular coordinate system for

equation (7) in the neighborhood S . For any point p e S , there is a

unique integral curve of g connecting p and S -, , intersecting S , at a

single point, say, q. It is clear that q and p fire related by the one-

parameter group generated by g, that is, <f. (s,,q) = p, for some uniquely

determined parameter s-,. In like manner, the point q is connected by an in-

tegral curve of ad f(g) with S ? at 'a point r c S ?. Again, a unique

parameter s^ is determined such that <h(s?,r) = q. Continuing this pro-



till we finally reach the origin by an integral curve of ad ~ f(g), we

should obtain a set of n parameters (s^.Sp,... ,s ), which is uniquely

associated with the starting point p in S , with the result that

4>o (Sj.U^Sg, (...(*n.-,(sn,0)...) = p. (9)

The mapping from (s, ,$„,...,s ) to p is clearly analytic. And from

the standing assumption of linearly independency on g, ad f(g),...,adn~ f(g),

the mapping is also nonsingular. Therefore, we have established an analytic

coordinate change from an arbitrary coordinate system x to the particular

coordinate system s, denoted by F : x h->s. Under the coordinate change
1 ' ; '

F, : x M*'s a system-equation (7) becomes

' ' " ' I.' * B f^(F~1(s)) +!£9(F-1(s)).u, (10)

which, for notational convenience, will still be expressed as

s = f(s) + g(s) u (11)

The coordinate system s is defined on the intrinsic geometry of a

control system. Naturally, it is closely related to other geometric characters

of a system, such as feedback 1inearizability. To see this, we shall examine

a canonical form of nonlinear systems resulting from the coordinates s.

Before doing so, we need to make two observations .

First, in the coordinate system s, the manifolds S, ,k - l,2,...,n-l,
i 'c

are "flat" manifolds, or more precisely

S, = {s e Kn | s. = 0; 1 ^ i < n-k) .
K I

This can easily be deduced from the integration procedure- and the definition

of the coordinates S-, ,s,->,. .. ,s .

Secondly, because the coordinate s, of every point p e S is defined by

the parameter of the one-parameter group of g, that is .

<J>0(srq) = p,



where q is in S , which is transversal with the integral curves of g, the

vector~~fieTd g becomes"exactly

9=fe 'O J "I

or

9 =

1
0
0

0

(12)

This, is ah elementary fact in differential geometry; it can be verified by

simple computation. For detail, the reader is referred to, for instance,

Spivak [ 3]. By repeatedly using this argument, we conclude that the vector

! field adKf(g) is1

adf(g) -
'k-t-1

or

adKf(g) =

0

•<-(k+l)-th place, (13)

when it is restricted1 to the manifold S , , k = 0,1,..., n-1 .n ~ K

In the following we analyze equation (11) and construct a canonical

form, using the foregoing observations. Equation (11) can now be written'

as

s = f(s) +
0
0

0

(.14)

By Taylor series expansion the vector field f(s) can be expanded with respect

kto s, as

f(s) = f(0,s f..., (15)
=l k! '3



We already know that f(0,s2>'. . . ,sn) and (0,s, .
d S ̂~

. ,sn) are the corres

~p'o'n"drng~vector^fteVds"~restr~ict"ecJ"to~ the~ma~rn fold S ~"_7 .' ^Moreover , sTnce

8s, in S , we have

4=H)k

and when' k = - 1 ,

J • • V <
:i:i:.^!j';!.,!
/ l / i ' l : • ' • •
! Hil ,!..,.

0
1
0

6

Therefore the vector field f(s) can actually be expressed as

f 0 )
k

f(s) = f(0,s9,...,sn) + s1
0

6

k

k=2 k!
adg(f) (0,s (16)

The same analysis can again be performed on the first term, f(0,s?,. .. ,s ),

the vector field f is restricted to S •, . Since the notation becomes toon- I

cumbersome, we denote the vector fields ad'f(g) by X, to keep the expressions

compact.

Again, by Taylor- series expansion, this time with respect to ŝ ,, we

.k

y (0,0,s3,...,sn) (17)

have

) = F(0,0,sv...,s
n J n

S2 k

k=l k! -

We recognize that ̂ -£ (0,0,s ,...,s J = (-l)k adj (f) | <.
3S J n Xl Sn-2



and when k=l,

-a.d1_X.1..(.g.)_.= _a.d
1.f.(.)(1.).

= ad?

0
1

So equation (16) becomes

I;. f(:Q,S2,:..,Sn) = f(0,0,S3,.J.Sn)

0
0
1

We continue the expansion and analysis in like manner. At the £-th step

we have

where, in the second tenn, 1 occurs at the (£+l)-th place, £=!,..., n-1,

At the n-th step we expand f(0,...,0,s ) as

f(0,...,0,sn) - f(0)
k=l .

,

Here, however, no special form can be concluded for any term in the

summation. In summary, we hav.e established a canonical form for the system

equation (11) as follows:



s = u

' 1 '
0

?
6

+ si

4 ...

j. c

n-1

L (

D '
1

3 t

C
C
fV.

) '
)

C Sf k

k=2 k! ° S
n-l

k
ro i S , ,

+ v / nk n"]
 3dkx ffM

Z t ' ' I/ ' aa A
n ?* ' K

k=2 K- n"^ 51

k=1 n- f(0), (19)

Where the1 symbol L attached to a vector field means the vector field
• i; ' ' J
is evaluated at (0,...0,s .+,,...,s ).

Equation (19) can be rearranged into the following expression

.

s = f(0) +

f 1 '
0
0
•

6
t ,

u +

OCi

+ I 4- (adkX (f)
k o N • U
= 2

where the last column
*
*

.

'00 0 *
1 0 0 *
0 1 ... 0 *
•

66 i *

si
S2
Sn
. 0

sn , (20)

f k 1

) -1

Vl ' >n"] u 'k . •sn

in the third term is ad X ,(f)L, which has no

special form. Equation (20) is taken to be the canonical fora for a nonlinear

system (11) in the s coordinates. It is a very convenient representation

for geometric analysis of control systems. In the following we shall

discuss one of its applications in feedback linearizability.



IV:, Linearizability and Pure Feedback Systems.

, This section is devoted to the question: How much more can we say

about the canonical form when a system is feedback 1 inearizable? The
*

answer turns out to be quite pleasing.

1 Let us consider a linear system

x =' Ax + bu ' (21)

of n states and one input. With Ax identified with f(x) and b with g(x),

k kthe 'vector fields ad f(g) are exactly the familiar vectors A b. Being
' t

| constant' vector fields inFn, their integral curves are straight lines,
1 ' ' i , ' i • I I1 and .the! defining equation for them,

u •becomes

(t,q) - p,
k

t Ak b + q = p.

This observation brings equations (9), which defines the coordinates s,

into

s.,b + s2Ab + ... + SpA^b = x (22)

in the' linear case, where x is some arbitraty coordinate system. Equation

(22} defines a linear transformation from x-space to s-space, which is

more apparent when it is rewritten as

[b,Ab, ... , Arv1b] s = x

or

x = [b,Ab, ... , A^bj'V

This is a standard transformation in linear theory to change a linear

system into the canonical form



s =

00 0 * '
-1—0 0._*_

0 1 ... 0 *

0 6 i *

—
si '

-— S-?— -
S3

s n

+

1
-0-

0

6

(24)

This result can easily be verified by direct computation within the linear

framework. It can also be seen from specialization of the nonlinear

canonical form (20), using the fact that the origin is an equilibrium state

and the second and higher order Lie brackets are vanishing.

The linear canonical form (24) is of course already well-known.

'However,''we want to emphasize a special feature of its structure, which
', i '

.; !.is crucial to the following development. We first represent the form (24)
. i ; i •

' i
by block diagram.

From this block diagram we note that there are only feedback paths, and the

main forward path, but no feedforward paths. Such a system is to be called

a pure feedback system. More formally, a nonlinear system (7) is called a

pure feedback'system if it is of the form

,... ,xn) u

2 = f2(xr...,xn)

xk =

x = f (x , , x ) .n nv n-1 n'

(25)



:,

i i'
!.| '

!r
j

;i

'j--
i ji

ii

i

We leave it

paths in its

to the reader to check that this system has no feedforward

block- di

1 ' ' Pure feedback

agram.

systems are very desirable in many ways. First, the

involutiveness condition for linearizabil ity is trivially satisfied. In

1 1
i,

j j
i ; **1 1

! - i
: i ;

1; "

'•!l:
V •

'|l
f; _

i <

l
j i

i

1

•i •

i!

i j

'l

.
•

i<;!s i

i

i

i

f
'•1;
'I

I

(24)

i •

I

' t; : M!,

,
!

i i : 'Computing,'' we
' •• j . ,. , |iii,,.
|r 1 '!'! ,!;"j;
• t " ' . , ' i• ( , i i' .

'I ' ' .

!•'. • ! :
i' 1' 1'' '
[f,g] =

i

i

i

i

end

« =

c

g =

•

9i(x ,.. . ,x )] f f (x ,.. . ,x )'

0 , f = f2(xr...,xn)

.

'fn(xn-l'xn) - '

have , ,
3f
3X

3f

3x

0

0

f.

1

1i
•

1
3f

3X

•

3
2

0

d X -i t1

[g,[f,g]3 =

• •

af
3X

*
*

0

0

ĵ
l
0

0

•

, : 'af, |
'" :

3Xn
3f

c.
3xn
3f3

' ' ' 8xn

f fn n
X T Xn-1 n- J

n 3g.
V f

- L-, 3x. i1=1 i

„
-1

1

(9,1 f 3gl ... 39l] [f, 1
9X1 9xn

0 0 ... 0 f
2

...

0 0 ... 0 f •I J 1 J I n J
*

•

-
s



where asterisks denote possibly nonzero elements. From the form of

[g[f>g]]» it is clearly a linear combination of g and [f,g], and hence,

the vector fields g and [f,g] are involutive. In a similar manner one can
1 kverify that the vector fields g, ad f(g),...,acTf(g) are indeed involutive

for k = 0,1,...,n-2.

For pure feedback systems, the condition that the vector fields

g, ad f(g),...,ad f(g) are linearly independent is also easy to check.

One can show that this condition is exactly equivalent to that

i i '•,,.'' ; 3fo 3fif ^f
' i n i i q i — — — (26)

being non-vanishing.
I

1 i

The proof is straightforward and is omitted here.

Another nice feature of a pure feedback system (24) is the ease with

which a linearizing transformation is constructed. We can simply choose

x to be the leading canonical variable; we denote it by y . Let

f (x -, ,x ) be the second canonical variable y _, , then

yn = yn-T

Next, define
af 3f .

v = v = _JL x + _J1 yyn-2 yn-l 3x , xn-l 3x nn-1 n

8x ,. n-1 axn-1 n

so we have y , = y _?. We continue this differentiation process until we

reach y,, which is a function of the form F,(x)'+ F?(x)u,- and we define it

to be the new control variable v, implying y, = v. In summation, we have



y2 (27)

i'i ' •:!

*n = Vl .

When the condition (26) is satisfied, the transformation: x >—>• y, (x,u) i—»• v,

is indeed a legitimate feedback transformation, which brings a pure feedback

system (24) into "a series of integrators" (27).

i The class of pure feedback systems was first recognized by George
• i <

Meyer'who with his .colleagues at NASA Ames Research Center incorporated
• i :;'. •*' • 'j.
the Ideas of transformation and canonical form in nonlinear control system

i i
designs. 'For their design results, the reader is referred to the

papers [4,5].

We' now come to an application of our canonical form (20).

Theorem 1. Every feedback linearizable system is a pure feedback system.

Proof.. Recall the canonical -form of a nonlinear system in the coordinate

system s

s = f(.O) +

1
0
0

6

u +

0 0 0 * '
1 0 0 *
0 1 0 *

0 0 1 *

' sl

4
n

+ I -p- ( ad k X (f) ... a d k X (f) | )
k=2 , k' ° Sn-l "-' °

sl

n

(28)

where X. = a d 1 f ( g ) . Suppose it i s •1 i nea r i zab le , which implies that the

vector f ields X Q , X I ,... ,X n _ 2 are invo lu t ive.



It has been shown in [1] that the involutiveness of X0,X, ,...X

implies that the sets {X^.X,,.. .X-} are involutive for all 0 <_ i < n-2.

It is also easy to varify that if two vector fields X and Y are involutive,
i

then all the higher order Lie brackets of X and Y are expressible as
i '
linear combinations of X and Y.

Consider now the first column of the matrix in the summation in (28).

From the remarks just made and the fact that

1
0
0

6 ,

and X-, =

0
1
0

6 f

on S -, , there exist two scalar functions a, . and a9 , such thatn-i I,K <-•>'-

adX (f)
0

= a ,(s) X
Vl ''k U S + Q 2 ,k ( s ) X l

• sn )

! ^
0
0

6

. . . .sn )

S -I

+ a2 ,k(0,s2 , . . . , ,sn).

0 '
1
0

0\ J

0

for k > 2.

In a similar manner we can conclude that 1inearizabi1ity implies



I! I?

ad*X.(f)
W-l

0

-U+2)-th place

for k > 2. In summation, equation (27) becomes

!"il
''['*w

'•''' i
,' l;

'

•

.! ' s = f(0) +

l <
i

'1 '
0
0

.

0

I

u +

' 0 0 0 * '
1 0 0 *
0 1 ... 0 *

. .

0 0 1 *

sl "
S2
?3
.

sn
; L.

4 Y — r

* (s 2 , . . . ,s n ) * (s3 , . . . ,sn ) *(sn) -

* (s 2 , . . . ,s n ) * (s3 , . . . ,sn ) ... *(sn) *

*(s3 , . . . ,sn ) *(s ) *

' * (s j *n

Sl

S2

S3

sk

n

, (29)

where *(s.,...-,s ) are some scalar unspecified functions and the last column

*'s are constants. Because of the analyticity assumed, all the infinite

series are summable. Thus we have

s = f(0) +

1
0

u +

00 0 *
10 0 *
0 1 ... 0 *

60 i *

I l i "



*(s2,...,sn)

*<V,'sn>

«— nth place.

This is clearly a pure feedback system, and the proof is completed. Q

IV. Conclusion.

The conceptions of transformation and canonical form have been

much used to analyze the structure of linear systems. In this article

we have extended the ideas to nonlinear systems.

1 The proposed coordinate system and canonical form are established

on the intrinsic geometric nature of the system. They are especially

useful in analyzing geometric properties of a system such as feedback
i

1inearizability. Although only discussed in the context of single-input

systems, a multi-input version of the- theory can be constructed in

essentially the same manner, which, as well as its computational aspects,

are being investigated by the authors.

Our practical motivation of this study lies in robustness analysis

for the design methodology developed by George Meyer and his colleagues

at NASA Ames Research Center [5J, which depends crucially on feedback

1inearizabi1ity of the nonlinear plant to be controlled. The canonical

form described in this article offers a- model of the plant on which the

designer can make a best model reduction for feedback linearization

purposes. We.also view the form as a starting point from where a theory

of robustness of the design can possibly be constructed.
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