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SYMBOLS 

C ad jus tab le  cons tan t  

D computational domain 

H i n t eg ra t ion  domain s i z e  used f o r  averaging (eq. (29b))  

A ?  i,i u n i t  vectors i n  x- and y-directions, r e spec t ive ly  

L re ference  he ight  of background shear flow ( re ference  length scale) 

L, ,L2  s i z e  of computational domain i n  streamwise and v e r t i c a l  d i r ec t ions ,  
r e spec t ive ly  ( f ig .  2) 

Ol 1 of the  order of  

RL 

'k 

t 

Reynolds number of background flow, 

d is tance  from k th  v o r t i c a l  cen te r  

t i m e  

i n i t i a l  age of v o r t i c a l  spot, 

upstream (spanwise 1 flow 

reference ve loc i ty  scale, t~,(,) 

ve loc i ty  components i n  x- and y-directions,  respec t ive ly  

ve loc i ty  vector 

U,L/v 

2 
6k(0)/4v 

' G e l k  

'ypyk 

<(t) ,< (t) 

XR - XL 

X l Y I Z  spanwise, v e r t i c a l ,  and f l i g h t  d i r ec t ions ,  r e spec t ive ly  

c i rcumferent ia l  ve loc i ty  around k th  v o r t i c a l  spo t  

k th  v o r t i c a l  cen te r  

ve loc i ty  of k t h  v o r t i c a l  spo t  k 

ho r i zon ta l  spread of r i g h t  and l e f t  vortex o f  pair 

v e r t i c a l  pos i t ion  of r i g h t  vortex of pair YR 

r s t r eng th  of v o r t i c a l  spot 

6 

E small parameter, 6/L << 1 

e f f e c t i v e  core s i z e  of v o r t i c a l  spo t  (small length scale) 

S(x ,y , t )  v o r t i c i t y  d i s t r i b u t i o n  

V kinematic v i scos i ty  



2 1/2 P dis tance  from o r ig in  of coordinates,  (x2 + y ) 

$(x,y, t) stream function 

w(x,y,t) background v o r t i c i t y  d i s t r i b u t i o n  

A t  t i m e  step 

Ax,Ay,AL g r i d  s i z e s  

V2 Laplacian operator  

Subscr ipts  : 

k k t h  v o r t i c a l  spot 

L l e f t  

min minimum 

R r i g h t  
- 
X = a /ax  
Y = a i a i ;  - 

0 reference i n i t i a l  quant i ty  a t  t = 0 

Notation: 

( -1  bar quant i ty  denotes terms of small parameter 

(-1 t i l d e  quant i ty  denotes var ia t ion  of background flow quant i ty  

( 1 '  der iva t ive  of quant i ty  

< >  average of flow quant i ty  (eq. (29b))  

i v  



SUMMARY 

The d r i f t  of t r a i l i n g  v o r t i c e s  i n  a crosswind near  the  ground is  simulated by an  
unsteady, two-dimensional, r o t a t i o n a l  flow f i e l d  with a concentration of la rge  
v o r t i c i t y  i n  " v o r t i c a l  spots" (having a f i n i t e  bu t  s m a l l  e f f e c t i v e  s i z e  and f i n i t e  
total  s t r e n g t h ) .  
asymptotic analyses €or t h e  decay of the  v o r t i c a l  spo t s  and the Euler so lu t ion  f o r  
t h e  unsteady r o t a t i o n a l  flow. 
method is developed i n  which the  g r i d  s i z e  and t i m e  s t e p  depend only on the length 
and ve loc i ty  scales of the  background flow and are independent of the  e f f e c t i v e  core 
s i z e  of a v o r t i c a l  spot .  
whereas the peak ve loc i ty  i n  the  core is inverse ly  propor t iona l  t o  the  s p o t  s i ze .  
Numerical r e s u l t s  are presented t o  demonstrate t he  s t rong  i n t e r a c t i o n  between t h e  
t r a j e c t o r i e s  of t he  v o r t i c a l  spots  and the  change of t h e  v o r t i c i t y  d i s t r i b u t i o n  i n  
the  background flow f i e l d .  

The problem is analyzed by a combination of t he  method of matched 

Using t h e  method of averaging, a s p e c i a l  numerical 

The core s i z e  can be much smaller than the  g r i d  s i z e ,  

1 INTRODUCTION 

I t  has been well-recognized t h a t  t he re  is  a p o t e n t i a l  hazard whenever a small 
a i r c r a f t  encounters the  vortex wake of a l a rge r  a i r c r a f t ,  p a r t i c u l a r l y  during t h e  
takeoff and landing phase of the  a i r c r a f t .  An understanding of the  motion and s t ruc -  
t u r e  of  the  vortex wake, including the ground e f f e c t  and i t s  minimization, is impor- 
t a n t  f o r  f l i g h t  s a f e t y  and a l s o  €or  e f f i c i e n t  use of t he  a i r p o r t  ( r e f s .  1 and 2). 

The va r i a t ion  of t he  vortex wake s t r eng th  along the  t r a i l i n g  edge of the l i f t i n g  
wing depends on the  c h a r a c t e r i s t i c s  of t he  wing. Complete pred ic t ion  of the flow 
f i e l d  including the near w a k e  is very d i f f i c u l t  because of t h e  d i spa ra t e  length 
scales associated with the  generation, i n t e rac t ion ,  and eventual decay of the  
vor t ices .  
problem t o  an equiva len t  unsteady two-dimensional problem i n  a plane normal t o  t h e  
f l i g h t  d i r e c t i o n  ( r e f .  3 ) .  This assumption ignores the  s t r e a m w i s e  curvature of t h e  
t r a i l i n g  vortex fi laments,  t h e i r  i n i t i a t i o n  a t  the  t r a i l i n g  edge, and the  va r i a t ion  
of the  ve loc i ty  p a r a l l e l  t o  the  downstream d i r e c t i o n  ( z ) .  Mathematically, it is 
assumed t h a t  3/82 << a/ax and 3/82 << a/ay, where x and y are the  spanwise and 
v e r t i c a l  d i r ec t ions ,  respec t ive ly .  In the  xy-plane a t  a s t a t i o n  z,  the t r a i l i n g  
v o r t i c e s  are represented by " v o r t i c a l  spots" (having a s m a l l  e f f e c t i v e  s i z e  in s ide  
which there  is a s t rong  v o r t i c i t y  d i s t r i b u t i o n  with f i n i t e  t o t a l  s t r e n g t h ) .  

The problem of a s teady  far-wake vortex can be s impl i f ied  by reducing the  

This simulation is employed to study the  d r i f t  and decay of f a r - f i e l d  t r a i l i n g  
vo r t i ce s  ( v o r t i c a l  s p o t s )  i n  a crosswind (a spanwise shear flow) near  the ground. 
N o t e  t h a t  the  Reynolds number 
i.e., 

RL of t h e  background flow can be much l a r g e r  than 1,  



where U,, L, and v are the  reference veloci ty ,  the he ight  of the background shear  
flow, and the kinematic v i scos i ty ;  respect ively.  Since the s i z e  of a v o r t i c a l  spot 
is  much smaller than L and i ts  total  s t rength  I' is f i n i t e ,  i.e., of the  order 
of U&, the  v o r t i c i t y  and the  ve loc i ty  grad ien ts  i n  a spot can be very large. Thus, 
t he  d i f fus ion  i n  the  core of a v o r t i c a l  spot is important; b u t  away from it, the 
viscous term is of the  order of l/RL and, hence, is negl ig ib le .  

It  i s  very i n e f f i c i e n t  t o  study the flow f i e l d  of v o r t i c a l  spots submerged i n  a 
r o t a t i o n a l  flow by numerical so lu t ion  of the Navier-Stokes equations f o r  the e n t i r e  
flow f i e l d  s ince  the  viscous terms are important only i n  s m a l l  spo ts  of high vor- 
t i c i t y  concentration and the  g r id  s i z e  would have to be smaller than the s i z e  of t he  
spots. A multiple-scale ana lys i s  is introduced i n  order t o  isolate the viscous decay 
of v o r t i c i t y  i n  the spots  as a so lu t ion  of the " s m a l l "  scale var iab les ,  whereas t h e  
flow f i e l d  i n  the  "normal" scale obeys the  Euler equations. The decay of the  
v o r t i c a l  core i n  each spot can then be described by a matched asymptotic so lu t ion  
( r e f .  41, and the motion of the  v o r t i c a l  spots  is coupled with the va r i a t ion  of the  
v o r t i c i t y  d i s t r i b u t i o n  i n  the  background nonuniform shear  flow, requir ing a numerical 
so lu t ion  of the unsteady mler equations. 

I t  is noted here  t h a t  i f  the  background flow is  a constant  shear  f l o w  (constant  
v o r t i c i t y )  o r  a potentia.1 flow (zero v o r t i c i t y ) ,  the  movements of a v o r t i c a l  spo t  
cannot induce any va r i a t ion  i n  the background v o r t i c i t y  d i s t r i b u t i o n  and w i l l  no t  
change the background flow. Therefore, the flow f i e l d  can be represented as the  
superposi t ion of the  s teady background flow and t h a t  induced by the moving v o r t i c a l  
spots defined by the asymptotic analysis .  

Sect ion 2 presents  a descr ip t ion  of the governing equations and the sca l ing  l a w s  
f o r  the mathematical simulation of the in t e rac t ion  of the vortex wake with a cross- 
wind. The asymptotic so lu t ions  f o r  the decaying v o r t i c a l  spots  are described. In  
t h i s  simulation, the background flow (without the v o r t i c a l  spots) f u l f i l l s  the non- 
s l i p  condi t ion along the  ground. 
ground) induced by a v o r t i c a l  spot has not  been accounted f o r  i n  the  Euler so lu t ion .  
Therefore, the d is tance  from a v o r t i c a l  spo t  t o  the w a l l  should remain much l a rge r  
than the thickness of the boundary layer  induced by the  v o r t i c a l  spots.  

The unsteady boundary layer  along the  w a l l  (or 

In  sec t ion  3, a special numerical method t h a t  implements the concept of a two- 
length scale ana lys i s  is described f o r  the  so lu t ion  of the Euler equation. Conse- 
quently,  the step s i z e  and the t i m e  step w i l l  be independent of the e f f e c t i v e  s i z e  of 
the v o r t i c a l  spots  (which can be much smaller). N o t e  t h a t  the  peak ve loc i ty  i n  the  
core, being inverse ly  proport ional  t o  the  core s i z e ,  can be much l a rge r  than U,. 

In  s ec t ion  4, numerical r e s u l t s  are presented t o  demonstrate the in t e rac t ions  
between the  v o r t i c a l  spot  and the background nonuniform shear  f l o w .  The d i s t i n c t  
fea tures  of the  trajectories of v o r t i c a l  spots  with varying s t rengths  and d i f f e r e n t  
i n i t i a l  pos i t ions  are i l l u s t r a t e d .  

2 MATHEMATICAL FOFWULATION 

2.1 The Physical Problem ( U p s t r e a m  and I n i t i a l  Conditions) 

The physical  simulation f o r  the motion and decay of s t rong  two-dimensional 
v o r t i c a l  spots  i n t e rac t ing  with a background r o t a t i o n a l  flow i s  i l l u s t r a t e d  i n  
f igure  1 .  An upstream (spanwise) flow Uo(y) i s  spec i f ied ,  i.e., 

2 



as x + -= for  y > 0 with Uo(0) = 0. The ground is represented by y = 0. The 
background r o t a t i o n a l  flow has the  reference length scale L, which is equal to the  
e f f e c t i v e  he ight  of the shear  flow, and the reference ve loc i ty  scale 
U 0 ( m ) .  Both scales, L and Urn, have been set equal t o  1, It is assumed that  
Uo(y) + 1 exponentially i n  y as y + -, e.g., 

Urn, which is 

Uo(y) = 1 - e -Y (2b) 

The corresponding i n i t i a l  background v o r t i c i t y  d i s t r i b u t i o n  is then 

To simulate the t r a i l i n g  vor t ices ,  a highly concentrated v o r t i c a l  spot ,  say the k th  
spot  centered a t  
i n i t i a l l y  small e f f ec t ive  core s i z e  ( 6  (0) << 1) and a s t rong  v o r t i c i t y  d i s t r i b u t i o n  
( $  = O( 6k 

( X , ( O ) ,  Y k ( 0 ) ) ,  is  defined by the  following cha rac t e r i s t i c s :  an  

-2 k 
>> 1 )  so t h a t  the t o t a l  s t rength  is f i n i t e  ( r  = o(1) = o(urnL) 1. k 

Because of  these c h a r a c t e r i s t i c s  of v o r t i c a l  spots ,  it is assumed t h a t  the 
i n i t i a l  v o r t i c i t y  d i s t r ibu t ion  <(x,y,O) can be sp l i t  i n t o  two p a r t s  and t h a t  

where 

E = 6/L << 1 ( 4 )  

-2 - - - 
nnd 6 i s  the typ ica l  core size .  The second t e r m  E <(x,y,O) i n  equation ( 3 )  
+i th  < = O ( 1 )  represents  concentrated v o r t i c i t y  d i s t r i b u t i o n s  near the v o r t i c a l  
spot. This v o r t i c i t y  d i s t r i b u t i o n  is of compact support  or decays exponentially i n  
?kr where) rk 
6. One can then wri te  5 as a function of the s t re tched  var iables  x and with 

.a. 

- 
is the d is tance  from the k th  center i n  terms of the small length scale - 

:or each k. For s impl ic i ty ,  the case considered here  is that of v o r t i c a l  spots  
laving similar core s t ruc tu res  (such as a Lamb vortex ( r e f .  511, i.e., 
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where 

- 2 2 1/2 r k = ([x - xk(0)l + [y - Y~(O)I 1 /c 

From the  i n i t i a l  v o r t i c i t y  d i s t r ibu t ion ,  it is noted t h a t  ( 1 )  the  i n i t i a l  vortex 
pos i t ions  ( X k ( 0 ) ,  Y k ( 0 ) )  are assigned, ( 2 )  5, decays exponent ia l ly  i n  r and 
( 3 1 the  s t r eng th  rk i s  assumed t o  be of the order  U-L, i.e., 

- 
k' 

This  ana lys i s  can take care of nonsimilar - i n i t i a l  p ro f i l e s ,  i r e . ,  no t  of the  
<, decays exponent ia l ly  i n  r and k 

type spec i f i ed  by equation (61, as long as 
f u l f i l l s  equation (7). 

2.2 Governing Equations 

For an unsteady viscous flow f i e l d ,  the  v o r t i c i t y  d i s t r i b u t i o n  < (x ,y , t )  and 
the  stream funct ion $(x ,y , t )  are governed by the  t w o  equations 

and 

2 v J I = - <  

where ? is the  Laplacian operator.  The v o r t i c i t y  i s  defined by 

4 



and the  ve loc i ty  components are related t o  the  stream funct ion by 

The boundary conditions along the ground plane are 

u(x,O,t)  = 0 ( 1  2 )  

and 

v(x,O,t)  = 0 ( 1  3 )  

In  general ,  t o  cons t ruc t  the Navier-Stokes so lu t ion  of equations ( 8 )  and (91, one has 
t o  use g r id  s i z e s  Ax and Ay << 6 and, hence, a very s m a l l  At. This process is 
very i n e f f i c i e n t  s ince  the  viscous t e r m  
of a v o r t i c a l  spo t  (of the order 6); and away from it, the viscous term is not  
important. 

v ? ~  i s  important only i n  the neighborhood 

I n  sec t ion  3, a s p e c i a l  method is described t h a t  takes i n t o  account the s p e c i a l  
f ea tu re s  of the v o r t i c i t y  d i s t r i b u t i o n .  It  should be recognized t h a t  the flow f i e l d  
also has a small  length scale 6, i.e., dt. The s m a l l  parameter E is of the order 
of I/R;'~; i.e., 

so t h a t  the viscous terms remain important i n  the small s ca l e ,  i.e., i n  the  neighbor- 
hood of a v o r t i c a l  spot .  On the o ther  hand, i n  the normal scale, the flow f i e l d  
obeys the  mler equations.  

3 METHOD OF SOLUTION 

I n  subsection 3.1, the problem i s  set up i n  t w o  length scales, the normal scale 
L and the  small s ca l e  6 = EL. Analyt ical  so lu t ions  descr ibing the  "small" scale 
flow f i e l d  (i.e. I the  viscous decay of the s t rong  v o r t i c i t y  i n  each v o r t i c a l  spo t )  
w i l l  be i d e n t i f i e d  as t h a t  of the  s i m i l a r i t y  so lu t ion  from the asymptotic ana lys i s  
( r e f s .  6 and 7). 
with the  inv i sc id  so lu t ions  descr ibing the  "normal" scale flow f i e l d  (i.e., the back- 
ground flow). In  subsection 3.2,  the  details w i l l  be described about the method for 
cons t ruc t ing  the  numerical so lu t ion  of the va r i a t ion  of v o r t i c i t y  i n  the background 
shear  flow. A p a r t i c u l a r  f ea tu re  of the numerical method is t h a t  the g r i d  s i z e  
Ax = Ay = 

The ve loc i ty  ($(t), f k ( t ) )  of the k th  v o r t i c a l  spo t  is coupled 

can be se l ec t ed  independent of the  core s i z e  4. The t i m e  step 

5 



depends only on the  g r i d  s i z e  and .on the  length and ve loc i ty  scales of the  background 
flow, i.e., 

3.1 The Two-Length-Scale Problem 

The s p e c i a l  form of the  i n i t i a l  da t a  suggests the  following decomposition of 
v o r t i c i t y :  

- - 
H e r e ,  x and y denote t h e  regular  s p a t i a l  va r i ab le s  and x = x/& and y = y / &  
denote the  s t r e t ched  var iab les .  
i n i t i a l  background v o r t i c i t y .  The second t e r m  c ( x , y f t , e )  is  the  va r i a t ion  of back- 
ground v o r t i c i t y  induced by the  v o r t i c a l  spots.  The last  t e r m  is  composed of the  
la rge  v o r t i c i t y  O ( E  1 near the  v o r t i c a l  spot,  i.e., 

The f i r s t  term N w o ( y )  i n  equation (16) is  the  

-2 

- 
H e r e ,  ck decays exponentially i n  

S imi la r ly ,  t he  stream funct ion  can be w r i t t e n  as 

The ve loc i ty  components can a l s o  be decomposed i n t o  

-+ -1 -  * -1- A v = [u0(y) + u" + E u ] i  -I- (v" + E v ) j  

6 



- 
and can be related t o  ‘5; and J, by 

and 

The ve loc i ty  f i e l d s  are then described by the stream functions,  which i n  turn are 
related to the  v o r t i c i t y  functions by 

f Y  

- 2- v J I = - q  

(22) 

(23) 

and 

N 

(24) 
2- v J , = - r ;  

The boundary condition on the  ground (y = 0) for the  ve loc i ty  f i e l d  is v(x,O,t)  = 0. 
The nons l ip  condition s h a l l  be taken care of by the addi t ion  of a th in  boundary layer  
induced by t h e  v o r t i c a l  spots.  By following the method of multiple scales, the  de- 
composition equations (eqs. - (16) to  (19) )  a r e  s u b s t i t u t e d  i n t o  equations ( 8 )  and (9)  
and the  va r i ab le s  xI y ,  x, and are t r ea t ed  as independent. By c o l l e c t i n g  
terms of equal powers of 
t h e  a n a l y t i c a l  so lu t ion  near each v o r t i c a l  spot. 
(Xk( t ) ,  Yk(t))r the  so lu t ion  is (refs. 4 and 6) 

6, one obta ins  t h e  leading so lu t ion  involving (E, TI, i.e., 
For t he  k t h  spot centered a t  

where 

7 



i s  the e f f e c t i v e  core s i z e  and 5 = d i ( 0 ) / 4 v  is  the i n i t i a l  age of the v o r t i c a l  
spot .  H e r e  the  supe r sc r ip t  (0) denotes " the leading term of." The use of the 
s i m i l a r i t y  so lu t ion  is explained i n  reference 4. Note t h a t  the  sol-ution given by 
equation (25 )  has only a "shor t  range" e f f e c t  because of exponential  decay. On the  
other  hand, the corresponding ve loc i ty  is given by 

with 

-1 - (26b) 

and 

-1 - H e r e ,  E (ve lk  denotes the  circumferent ia l  ve loc i ty  around the  k th  v o r t i c a l  spot  
and does not  decay exponent ia l ly  but  has a "long range" e f f e c t ,  i.e., 

This e f f e c t  provides the coupling with the  background flow. 
ana lys i s  ( r e f s .  4 and 61, the  ve loc i ty  of the center  of the k th  spo t  (Xk,  Yk) is 
es t ab l i shed  to be equal t o  the  l o c a l  ve loc i ty  without the k th  v o r t i c a l  spot ,  i .e.,  a t  

From an a7ymp:otic 

(xk, Yk), 

A n A A ki + i j = U ( Y  ) 2 + u"(X ,Y ) f + G(Xk,Yk) + c- '(<.i  + G . j )  (28) 
k O k  k k  7 3 j fk 

This r e s u l t  is i n  agreement with classical inv i sc id  theory. The motion of the 
v o r t i c a l  spotsNis ,  i n  turn,  coupled with the va r i a t ion  of the background v o r t i c i t y  
d i s t r i b u t i o n  < t h a t  is O(1) and is a funct ion Ef the  normal s p a t i a l  var iables .  I n  
subsection 3.2, t h e  method f o r  the  so lu t ion  of < ( x , y , t )  w i l l  be described. 

8 



3.2 Background Flow Field 

To der ive the  governing equations f o r  the background flow f i e l d  i n  the  normal 
length scale, the  d e t a i l s  of the  f l o w  s t r u c t u r e  need t o  be f i l t e r e d  o u t  i n  the s m a l l  
length scale a. This procedure is accomplished by averaging the basic equations 
(eqs. (8) and ( 9 ) )  over an area of,  say, a square of s i d e  2H where H is much 
l a rge r  than the core s i z e  EL bu t  much smaller than L, i.e., 

L >> H >> &L (2%)  

I n  the  following equation, < f >  is  used to  denote the  average of f ( x , y , ~ , Y ) ,  i.e., 

W i t h  f bounded f o r  a l l  (x, ? I ,  the r e s u l t  is 

(:)= 0 (-)= 0 

- 
For a funct ion g(x ,y)  having no microstructure,  i.e., independent o f  x and 3, 
t h e  r e s u l t  is 

Using equations (29b) and (301, the average of equations (8) %nd (9) y ie lds  the  
leading equations f o r  the variaLion of background v o r t i c i t y  
corresponding stream funct ion $ (x ,y , t ) ;  i.e., 

c (x ,y , t )  and the  

-1 - + 1; + <& v>l- = 0 
d Y  

(31 1 

and 

9 



The i n i t i a l  and boundary conditions are, respec t ive ly ,  

N c = o  

and 

N 

* =  0 
ax 

(t = 0) (33) 

-1- The averages <E-':> and <E v> i n  equation ( 3 1 )  represent  t he  bulk cont r ibu t ions  
of the  ve loc i ty  f i e l d  induced by the  moving v o r t i c a l  spots.  
these averages remain O ( 1 )  with respec t  t o  E. (See the  appendix.) It  then follows 
t h a t  the  g r i d  s i z e  AL .and the t i m e  s t e p  A t  can be se l ec t ed  independent of E or 
t h e  core s i z e s  

It can be shown t h a t  

6k 
N 

The v o r t i c i t y  devia t ion  5 is  updated by the  f in i t e -d i f f e rence  equation 
(eq. (31 1 )  using the  two-step Lax-Wendroff procedure ( r e f .  8 ) .  The f a s t  Poiszon 
so lver  (ref. 9) is then used to determine the corresponding stream function J, from 
equation (32) f o r  a f i n i t e  computational domain. The computational domain and the  
approximate boundary conditions w i l l  be described i n  subsection 3.3. The trajec- 
t o r i e s  of the  v o r t i c a l  spo t s  are then defined simultaneously by the  in t eg ra t ion  of 
equation (28) . 

Since the  average has t o  be used only when the core s i z e  is much smaller than 
the g r i d  s i z e ,  the numerical method s h a l l  be discussed f o r  the case of L& << AL. 
The in t eg ra t ion  domain s i z e  H is  chosen t o  be of t he  order of t he  g r i d  s i z e  (e.g., 
H = AL/4). Therefore, H i s  much less than the  normal length scale but  is indepen- 
dent  of the  s m a l l  core s i ze .  
spo t  centered a t  (xk, Yk) (e.g., i f  r >> H, then rk > CHI, the r e s u l t  is  

Whenever a g r id  po in t  (xi, y . )  is f a r  from a v o r t i c a l  
3 

k 

-r (Y - yk) 
-1  - k j  

2 
k 

<E u > =  
2 mr k 1 + .(~)] 

rk(xi - xk) -1 - 
2 
k 

<& v > =  
2 x r  k 

(35a: 

(35b 

where 

IO 



The d i f fe rence  between the  average and the c l a s s i c a l  theory is ac tua l ly  less than 
0.6 percent  for C = 2.5. Therefore, by ad jus t ing  C, the  t r a n s i t i o n  from the  
classical so lu t ion  to  the  average can be made smaller than the  e r r o r  of the f i n i t e -  
d i f fe rence  method. Only i n  the  region where r 6 CH do the averages <e-lu> and 
<e v> need t o  be evaluated (which are defined by two elementary l i n e  i n t e g r a l s ,  as 
noted i n  the  appendix). 

-1 - k 

3.3 Boundary Conditions on a F i n i t e  Computational Domain 

For the numerical so lu t ion  of equations (31) t o  (34) f o r  va r i a t ions  i n  the back- 
ground shear  f l o w ,  one has t o  work with a f i n i t e  computational domain D, i re . ,  
1x1 < L1 and 0 6 y 6 L2. (See f i g .  2.) Note t h a t  Uo(y) i s  a so lu t ion  of t h e  
Navier-Stokes equation w i t h  a no-slip boundary condition. The boundary layer  induced 
by the disturbed flow s h a l l  be ignored; hence, the v o r t i c a l  spo t  should be " f a r  away" 
from the ground r e l a t i v e  t o  the  core s i ze .  Also, t he  use of the asymptotic so lu t ions  
(eqs. (25) and (26)) f o r  each core s t r u c t u r e  requi res  t h a t  the v o r t i c a l  spots  be " f a r  
apa r t "  from each other. Therefore, the  present  so lu t ion  w i l l  be appl icable  only when 
each v o r t i c a l  spo t  is seve ra l  core s i z e s  above the ground and away from the o ther  
spots .  In  order t o  average over only one v o r t i c a l  spot ,  the requirement is t h a t  the  
d is tances  from one spo t  t o  the ground and to  another spot  remain g rea t e r  than twice 
the  grid s i z e ,  i.e., 2 AL. 

N 

N Note tkat the  boundary condi t ion JI = 0 a t  y = 0 is  f u l f i l l e d  when the  image 
S(X,-Y) = -5(x,y) i s  introduced. The f a r - f i e ld  boundary condi t ion (eq. (34b))  has 
t o  be replaced by appropriate  condi t ions on the  outer  boundary of the domain 
i.e., 
o r i g i n ,  it is seen t h a t  when the  disturbance ve loc i ty  behaves as g , t h e  behaviors 
of the  perturbed stream funct ion $ and v o r t i c i t y  5 a r e  JI = p-n+l and 
8.4 -n-I 
5 * p Since the flow f i e l d  induced by :he v o r t i c a l  spots  is sym- 
metric with respec t  to  the  ground ( y  = 01, t he  va r i a t ion  < of the bacJkgrQund 
v o r t i c i t y  w has t o  be antisymmetric with respec t  to y = 0 (with 5 = 0 a t  
y = 0 )  and approaches 0 near the  outer  boundary. N o t e  t h a t  n = 2 and 3 f o r  a 
s i n g l e  spot  and f o r  an equal and opposite p a i r  of spots ,  respect ively.  
the  boundary condition can be imposed on the  outer  boundary (1x1 = L1) and 
on y = L2, with a n  error smaller  than O(L. 1 f o r  a s i n g l e  spo t  and smaller than 
O(L. f o r  a v o r t i c a l  p a i r  of spots.  On t h e  boundary of D,  t he  condi t ion to  be 
imposed is  

D, 
1x1 = L, and y = L2. With p = (x2 + y2)1/2 denoting the distance from the  

-n 
N N 

, respect ively.  

0 

Consequently, 
N 

5 = 0 -3 
-4 1 

1 

N 

5 = 0  (36) 

N 

Since the  so lu t ion  
boundary data f o r  
i n t e g r a l  ( r e f .  5 ) .  

3 can be expressed i n  terms of a Poisson i n t e g r a l  of 5, the  
$ can then be evaluated by the far-field expansion of the Poisson 

N 
The leading two terms involve only the  y- and xy-moments of 5;  i.e., a t  the 

boundary where y = L2 o r  1x1 = L1, t he  expansion is  

1 1  



-3 where r = p = (x  + ~ ~ 1 " ~ .  
Since the error introduced by the  f in i te -d i f€erence  approximations f o r  equations (31) 
and (32) are O ( ( A L )  1, AL can be r e l a t ed  t o  Li so t h a t  the errors are of the 
same order i n  the  approximate boundary conditions and i n  the f in i te -d i f fe rence  ap- 
proximations. Using the boundary da ta  from equation (37) and the condition i n  equa- 
t i on  (34a) , equation (31 l is solved Gy a f a s t  zoisson zolver ( r e f .  9) t o  obtain 5 
i n  D, and then the de r iva t ives  of JI y ie ld  u and v. 

The error of t h i s  approximation (eq. (37 ) )  i s  O(Li 1. 

2 

4 RESULTS AND DISCUSSION 

A computer code based on the previous ana lys i s  w a s  developed. Numerical r e s u l t s  
of the trajectories of v o r t i c a l  spots  i n  a nonuniform shear flow are obtained. For 
the  r e s u l t s  reported here ,  the conditions L1 = 8L, L2 = 8L, and Ax = Ay = L/5 
have been chosen. The t i m e  step f u l f i l l s  the condition t h a t  the  Courant-Friedrichs- 
Lewy (CFL) number is  less than 0.5. The ve loc i ty  i n  the CFL number is the maximum of 
the  r e s u l t a n t  ve loc i ty  i n  equation (31) f o r  a l l  g r i d  points.  T e s t  cases w e r e  per- 
formed f o r  l a rge r  L, and L2 and f o r  smaller Ax and CFL number. In a l l  these 
t es t  cases, the changes i n  the r e s u l t s  are ins igni f icant .  To gain a q u a l i t a t i v e  
understanding of the in t e rac t ion  of v o r t i c a l  spots with a background shear f l o w ,  t he  
case of a s ing le  v o r t i c a l  spot is s tudied i n i t i a l l y .  Then, the  cases of a v o r t i c a l  
pair simulating the t r a i l i n g  vor t ices  are studied. 

Figure 3 shows the trajectories of a s ing le  concentrated decaying v o r t i c a l  spo t  
of various s t rengths  submerged i n  a background shear  flow. The i n i t i a l  v e r t i c a l  
pos i t ion  of the spot is  a t  y = 1,  and the i n i t i a l  background shear flow is chosen as 
Uo(y) = 1 - e'Y. The r e s u l t s  show t h a t  the v o r t i c a l  spots with pos i t i ve  c i r cu la t ion  
d r i f t  spanwise (x-direct ion)  and upward (y-direct ion) ,  and the  v o r t i c a l  spots  with 
negative c i r cu la t ion  d r i f t  spanwise and downward but  eventual ly  turn backward. This 
phenomenon is more pronounced as the s t rength  of the v o r t i c a l  spot increases.  

To explain t h i s  phenomenon, the case of a s ing le  v o r t i c a l  spot with I' > 0 is  
considered. The dis turbed flow moves downward behind the  spo t  (x  < X) and upward 
ahead of the spo t  (x  > XI. For an i n i t i a l  background v o r t i c i t y  wo with wb(y) > 0 
(see eqs. ( 2 )  and (311, the dis turbed flow increases  the v o r t i c i t y  behing the  spot  
and decreases the v o r t i c i t y  ahead of it; i.e., 5 > 0 f o r  x < X and 5 < 0 €or 
x > X. The background v o r t i c i t y  var ia t ion  5 i n  turn induces an upward motion of 
the  v o r t i c a l  spo t  f o r  I' > 0. Fzom similar arguments, it can be expected t h a t  the 
background v o r t i c i t y  va r i a t ion  5 w i l l  induce a downward motion of the v o r t i c a l  spot 
with I' < 0. The reason t h a t  a v o r t i c a l  spot of negative s t rength  turns  around and 
d r i f t s  upstream as it gets closer to  the ground can be a t t r i b u t e d  to the decrease of 
the  contr ibut ion of the  background shear flow t o  the forward ve loc i ty  of the spot  and 
t o  the increase of the induced ve loc i ty  by the image of the v o r t i c a l  spot  with 
respect t o  the ground (y = 0). It should be pointed ou t  here once more t h a t  the 
v o r t i c a l  spot  w i l l  d r i f t  hor izonta l ly  when the background shear flow is  e i t h e r  a 
uniform f l o w  (wo = 0) or a conszant shear flow (wo = Constant) ,  and there  w i l l  be no 
change i n  the background flow ( 5  = 0).  

N 

N 
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The t ra i l ing-vor tex  wakes f a r  downstream of an aircraft  s h a l l  be simulated by 
a simple vortex pair whose v o r t i c i t y  d i s t r i b u t i o n s  are concentrated and are cantered 
a t  (fXk(O), Yk(0)) with s t r eng th  &I' and e f f e c t i v e  v o r t i c a l  s i z e  rS(0). The goal 
of the  following numerical examples is t o  simulate t h e  in t e rac t ion  of t h e  decaying 
t r a i l i n g  v o r t i c a l  pairs subjected t o  a crosswind (spanwise) ground shear. The hack- 
ground shear flow used i n  the  examples is again an exponential  p r o f i l e  (eq. ( 2 b ) )  
un less  otherwise spec i f ied .  

Figure 4 shows the r e l a t i v e  trajectories, i.e., t he  var ia t ion  of t he  v e r t i c a l  
pos i t i ons  versus the  ho r i zon ta l  spread of a vortex pair whose s t r eng ths  are 
So l id  curves show the  relative t r a j e c t o r i e s  of a vortex p a i r  descending without a 
background shear flow. Dashed-line curves show the corresponding trajectories of 
vortex p a i r s  with an i n i t i a l  location a t  (f0.5, 3)  and (k0.5, 4 )  under the  influence 
of ground shear wind. The vertical pos i t ion  of the l e f t  vortex shows t h a t  it d r i f t s  
t o  the  l e f t  and continuously descends i n  t i m e ,  whereas the  r i g h t  vortex descends 
i n i t i a l l y  u n t i l  it reaches a minimum height  and then h r i f t s  upward. 
has been set  a t  the  mean pos i t ion  of t he  v o r t i c a l  p a i r ,  t h i s  curve does not  show the 
real spanwise pos i t ion  and does n o t  see the  eventual backward d r i f t  of the l e f t  
v o r t i c a l  spot. This backward d r i f t  occurs when the  background v o r t i c i t y  var ia t ion  
f i n a l l y  overcomes the  downward ve loc i ty  induced on the  r i g h t  vortex center by the  
l e f t  vortex. This e f f e c t  i s  i n  c o n t r a s t  to  the case when the  background flow is 
uniform o r  of constant shear flow, f o r  which the  vortex spo t s  w i l l  keep on d r i f t i n g  
a p a r t  and downward. 

I' = & I .  

Because x = 0 

In  order t o  f ind  o u t  when the shear-layer so lu t ion  has t o  be used, the  trajec- 
t o r i e s  of a p a i r  of vo r t i ce s  i n  a shear layer  f o r  d i f f e r e n t  i n i t i a l  vortex he ights  
are studied. The minimum height  reached by the r i g h t  v o r t i c a l  spo t  YR,min is 
p lo t t ed  aga ins t  the  i n i t i a l  he ight  of the  v o r t i c a l  p a i r  i n  f i gu re  5. The he ight  
YR,min approaches an asymptotic value of 2.6 when Yk(0) i s  g rea t e r  than 7.0. This 
event means t h a t  when the v o r t i c a l  spots  are above y = 7, they are far above the  
shear layer and t h e  in t e rac t ion  with the shear layer  is negl ig ib le ,  The correspond- 
ing  t r a j e c t o r i e s  ( i n  real spanwise pos i t i ons )  of the vortical p a i r ,  s t a r t i n g  a t  
d i f f e r e n t  he ights  Yk(0) = I ,  2, 3, 4, and 5 i n  t he  shear layer,  are displayed i n  
f igu re  6 t o  show t h a t  the  trajectories of the v o r t i c a l  spots  are s e n s i t i v e  t o  the  
s t a r t i n g  he ight  (i.e.r the  a l t i t u d e  of the  a i rp l ane  r e l a t i v e  t o  the  thickness of the 
shear l aye r  1. 

The i n i t i a l  s t r eng th  of the v o r t i c a l  spots  also has a s i g n i f i c a n t  e f f e c t  on the 
t r a j e c t o r i e s  of decaying t r a i l i n g  vo r t i ce s  i n  a ground shear,  as i l l u s t r a t e d  i n  f i g -  
ure  7. 
The v o r t i c a l  pairs of s t ronger  s t r eng th  (I' = k4) descend f a s t e r  and d r i f t  less i n  
hor izonta l  (spanwise) d i s tance  as compared with the  v o r t i c a l  p a i r  OC s t r eng th  
I' = fl, s ince  the i n i t i a l  downward d r i f t  is dominated by t h e i r  s t r e n g t h  l'. The 
v o r t i c a l  spo t  on the  r i g h t  s ide ,  with v o r t i c i t y  i n  an opposite sense to Chat of the  
shear f l o w ,  descends t o  a lower minimum e leva t ion  f o r  l a r g e r  r. 

The i n i t i a l  pos i t i ons  of the  v o r t i c a l  spots  are (xk (o ) ,  Yk(0)) = (fO.5, 3.0). 

F ina l ly ,  t he  i n t e r a c t i o n  e f f e c t s  o f  d i f f e r e n t  background flows are studied. A 
comparison is made f o r  a background exponential p r o f i l e  with a Blasius  p r o f i l e  of the  
same thickness: i.e., the  length of the p r o f i l e  is equal t o  L2UJv. 
pos i t i ons  of the vortex p a i r  are 
are I' = f l .  Figure 8 demonstrates t h a t  the  e f f e c t  of the crosswind shear p r o f i l e  on 
the  behavior of trajectories f o r  the  l e f t  vortex is  small bu t  the r i g h t  vor tex  
descends much less: i re . ,  it descends to a l a rge r  f o r  the  Blasius p r o f i l e  as 
compared with the  exponential  p ro f i l e .  

The i n i t i a l  
(xk(o) ,  Yk(0)) = (f0.5, 4.0) and t h e i r  s t r eng ths  

YR,min 
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5 CONCLUDING REMARKS 

A computer code has been developed f o r  the  study of r o t a t i o n a l  flow f i e l d s  
having concentrations of large-magnitude v o r t i c i t y  i n  spots  (small areas). The 
ana lys i s  takes i n t o  account the  s m a l l  scale of t he  flow f i e l d  near a spo t  and the  
normal scale f o r  the  background flow. Using t h i s  two-length-scale ana lys i s ,  t h e  
decay of t he  v o r t i c a l  spo t s  ( i n  s m a l l  scale) is  obtained a n a l y t i c a l l y  and the  motion 
of the spo t  is coupled with t r anspor t  of t he  background v o r t i c i t y ,  which is analyzed 
by numerical so lu t ion  of the  Euler equation. The p a r t i c u l a r  f ea tu re  of t he  numerical 
method is t h a t  the g r i d  s i z e  f o r  the  numerical ana lys i s  can be chosen independent of 
t he  s i z e  of the v o r t i c a l  core,  and hence the t i m e  step i s  also independent of the 
core s i z e .  

Numerical examples f o r  a s i n g l e  v o r t i c a l  spo t  submerged i n  a background shear 
flow shows t h a t  the  v a r i a t i o n  of the  background shear flow induces an upward motion 
f o r  the  v o r t i c a l  spo t  with p o s i t i v e  c i r c u l a t i o n  and induces a downward motion f o r  t he  
v o r t i c a l  spo t  with negative c i r cu la t ion .  The latter eventua l ly  reverses i t s  d i rec-  
t i o n  of hor izonta l  d r i f t  when it ge t s  c lose  t o  the  ground where the  ground e f f e c t  
overcomes the  smaller forward shear flow ve loc i ty .  This i n t e r a c t i o n  between the  
v o r t i c a l  spo t s  and the  background flow is absent i f  the  background flow is of con- 
s t a n t  v o r t i c i t y  o r  is a uniform flow, f o r  which the  v o r t i c a l  spo t  w i l l  only d r i f t  
hor izonta l ly .  

For a p a i r  of v o r t i c a l  spo t s  simulating t r a i l i n g  v o r t i c e s  i n  a crosswind, t he  
r e s u l t  shows t h a t  both vo r t i ce s  w i l l  i n i t i a l l y  d r i f t  forward together,  spread a p a r t ,  
and move downward. Gradually, under the  e f f e c t s  of i n t e rac t ion ,  the  r e d i s t r i b u t i o n  
of the  background v o r t i c i t y  changes the  t r a j e c t o r i e s .  The vortex t h a t  is i n  the  
opposite sense  t o  t h a t  of the  background flow w i l l  reach a minimum height ,  reverse 
i t s  downward d r i f t ,  and tu rn  upward, whereas the  o ther  vortex w i l l  eventually reverse  
i t s  forward motion and turn  backward. When the  v o r t i c a l  p a i r  is  submerged i n  d i f -  
f e r e n t  background flows, namely the  Blasius and exponential p r o f i l e s ,  the  numerical 
examples show t h a t  t he  t r a j e c t o r i e s  of the  v o r t i c a l  p a i r  are s i m i l a r  i n  nature bu t  
q u a n t i t a t i v e l y  d i f f e r e n t .  

NASA Langley Research Center 
Hampton, Virginia 23665-5225 
May 22, 1986 
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APPENDIX 

A - 1  - A 

AVERAGE OF THE VELOCITY INDUCED BY k t h  VORTICAL SPOT <E (uki  + j ) >  k 

It  is necessary to  der ive  the formula €or the average ve loc i ty  a t  a g r id  point  
(xi, y j )  t h a t  is  c lose  t o  the  k t h  spot centered a t  (X,, Yk)r with 
and lyj  - 

center (X, Y ) ,  the  formula f o r  <E-';> s h a l l  be derived. The formula f o r  <E-';> 

i s  equal to t h a t  €or <E-~;> with xi and X interchanged with y and Y, 
respec t ive ly .  The r e s t r i c t i o n  to be imposed is t h a t  

Ixi - xk( < H 
< H. (See f ig .  AI .  1 'k f 

Because of the  symmetry of the  ve loc i ty  f i e l d  with respec t  to  the v o r t i c a l  

j 

H > X - x  3 0  H > Y -  a 0  (AI  
'j i 

Since u is asymmetric with respec t  t o  y = Y, the  r e s u l t  is 

H 2(Y-yj )-H 

2 dy ' <E -1- 1.0 =-r lH dx'  1, 
( r ' )  2 8aH 

where 

2 2 1/2 + ( y .  + y'  - P) 1 r '= [(xi + x' - X) 
3 

The in tegra t ion  can be c a r r i e d  out  with respec t  to  y' and then a d e f i n i t e  i n t e g r a l  
is obtained, i.e., 

+ P H  P R  

%(I - e-R) -1- 
<E u > = - -  2 JmH dx' jR- R 

16aH 

-1 - 
<E u> = - 

16nH 

(A2 
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where 

R* = [(xi  - X) 2 + (Y - y .  f H ) 2 ] / 6 2  
7 

and E1(R) is  the  exponential  i n t e g r a l  of R (ref. 10). 

f i n i t e ;  hence, <&-'u> is  O ( 1 )  with respec t  t o  E. "his r e s u l t  is also t r u e  for 
From equation ( A 2 )  it can be shown t h a t  t he  i n t e g r a l  with respec t  t o  R i s  

<d%. 
Note t h a t  when R is g rea t e r  than 2, E 1 ( R )  is  neg l ig ib l e  and the  i n t e g r a l  i n  

equation (A3) can be evaluated e x p l i c i t l y .  Therefore, numerical evaluation of t he  
i n t e g r a l  i n  equation ( A 3 )  i s  needed only f o r  r' < 26. 

Y' 

T H 

1 
-H- 

(x. + x', y. + y') 
I I 

- x' 

Figure A1 .- "Average" square domain. 
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Figure 1.- Phys ica l  model f o r  motion and decay of v o r t i c a l  spots 
submerged i n  ground wind shear .  
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Figure 2.- F i n i t e  computational domain and boundary condi t ions.  
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Figure 3.- Effec t  of s t rength  on t r a j e c t o r y  o f  s i n g l e  
v o r t i c a l  spot  i n  shear f l o w .  
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Figure 4.- Comparison of t r a j e c t o r y  of v o r t i c a l  pair  i n  shear  
f l o w  with uniform f l o w .  Le f t  and r i g h t  are denoted by L 
and R, respect ively.  
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Figure 5.- Minimum v e r t i c a l  pos i t ion  as function of 
i n i t i a l  he ight  f o r  v o r t i c a l  spot  on r i g h t  s ide .  
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Figure 6.- Comparison of trajectories of v o r t i c a l  pair  c u t t i n g  
shear  flow with d i f f e r e n t  i n i t i a l  pos i t ions .  
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Figure 7.- Effect of vortical-pair strength on trajectories. 
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Figure 8.- Trajectories of vortical pair €or different background shear flows. 
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