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SYMBOLS

cC adjustable constant

D computational domain

H integration domain size used for averaging (eq. (29b))

{,f unit vectors in x~ and y-directions, respectively

L reference height of background shear flow (reference length scale)
Lq,L, size of computational domain in streamwise and vertical directions,

respectively (fig. 2)

o{ ) of the order of

Ry, Reynolds number of background flow, U L/v

Ty distance from kth vortical center

t time

ty initial age of vortical spot, 6;(0)/4v

Ug(y) upstream (spanwise) flow

Uy, reference velocity scale, UO(N)

u,v velocity components in %~ and y-directions, respectively
3 velocity vector

(-w-re)k circumferential velocity around kth vortical spot

Xy,Yk kth vortical center
ik(t),fk(t) velocity of kth vortical spot

Xz - X;, horizontal spread of right and left vortex of pair

X,Y,2 spanwise, vertical, and flight directions, respectively
YR vertical position of right vortex of pair

T strength of vortical spot

8 effective core size of vortical gpot (small length scale)
€ small parameter, &/L << 1

t{x,y,t) vorticity distribution

v kinematic viscosity

iii PRECEDING PAGE BLANK WOT FiLMED



o) distance from origin of coordinates, (x2 + y2)1/2
Y(x,y,t) stream function
w{x,y,t) background vorticity distribution

At time step

Ax, Ay, AL grid sizes

V2 Laplacian operator

Subscripts:

k kth vortical spot

L left

min minimam

R right

x = 3/9x

y = 3/dy

0 reference initial quantity at t = 0
Notation:

(™) bar quantity denotés terms of small parameter
(™ tilde quantity denotes variation of background flow guantity
() derivative of quantity

< > average of flow quantity (eq. (2%9b))
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SUMMARY

The drift of trailing vortices in a crosswind near the ground is simulated by an
unsteady, two-dimensional, rotational flow field with a concentration of large
vorticity in "vortical spots" (having a finite but small effective size and finite
total strength). The problem is analyzed by a ¢ombination of the method of matched
asymptotic analyses for the decay of the vortical spots and the Euler solution for
the unsteady rotational flow. Using the method of averaging, a special numerical
method is developed in which the grid size and time step depend only on the length
and velocity scales of the background flow and are independent of the effective core
size of a vortical spot. The core size can be much smaller than the grid size,
whereas the peak velocity in the core is inversely proportional to the spot size.
Numerical results are presented to demonstrate the strong interaction between the
trajectories of the vortical spots and the change of the vorticity distribution in
the background flow field.

1  INTRODUCTION

It has been well-recognized that there is a potential hazard whenever a small
aircraft encounters the vortex wake of a larger aircraft, particularly during the
takeoff and landing phase of the aircraft. An understanding of the motion and struc-
ture of the vortex wake, including the ground effect and its minimization, is impor-
tant for flight safety and also for efficient use of the airport (refs. 1 and 2).

The variation of the vortex wake strength along the trailing edge of the lifting
wing depends on the characteristics of the wing. Complete prediction of the flow
field inecluding the near wake is very difficult because of the disparate length
scales associated with the generation, interaction, and eventual decay of the
vortices. The problem of a steady far-wake vortex can be simplified by reducing the
problem to an equivalent unsteady two-dimensional problem in a plane normal to the
flight direction (ref. 3). This assumption ignores the streamwise curvature of the
trailing vortex filaments, their initiation at the trailing edge, and the variation
of the velocity parallel to the downstream direction (z). Mathematically, it is
assumed that 9/9z << 9/9x and 9/9z << 9/9y, where x and y are the spanwise and
vertical directions, respectively. 1In the xy-plane at a station =z, the trailing
vortices are represented by "vortical spots" (having a small effective size inside
which there is a strong vorticity distribution with finite total strength).

This simulation is employed to study the drift and decay of far-field trailing
vortices (vortical spots) in a crosswind (a spanwise shear flow) near the ground.
Note that the Reynolds number Ry, of the background flow can be much larger than 1,
i.ec' )

RL=—\T—>>1 (1)



where U,, L, and v are the reference velocity, the height of the background shear
flow, and the kinematic viscosity, respectively. Since the size of a vortical spot
is much smaller than L and its total strength I is finite, i.e., of the order

of UL, the vorticity and the velocity gradients in a spot can be very large. Thus,
the diffusion in the core of a vortical spot is important; but away from it, the
viscous term is of the order of 1/RL and, hence, is negligible,

It is very inefficient to study the flow field of vortical spots submerged in a
rotational flow by numerical solution of the Navier-Stokes equations for the entire
flow field since the viscous terms are important only in small spots of high vor-
ticity concentration and the grid size would have to be smaller than the size of the
spots. A multiple-scale analysis is introduced in order to isolate the viscous decay
of vorticity in the spots as a solution of the "small" scale variables, whereas the
flow field in the "normal" scale obeys the Fuler equations. The decay of the
vortical core in each spot can then be described by a matched asymptotic solution
(ref. 4), and the motion of the vortical spots is coupled with the variation of the
vorticity distribution in the background nonuniform shear flow, requiring a numerical
solution of the unsteady Euler equations.

It is noted here that if the background flow is a constant shear flow (constant
vorticity) or a potential flow (zero vorticity), the movements of a vortical spot
cannot induce any variation in the background vorticity distribution and will not
change the background flow. Therefore, the flow field can be represented as the
superposition of the steady background flow and that induced by the moving vortical
spots defined by the asymptotic analysis.

Section 2 presents a description of the governing equations and the scaling laws
for the mathematical simulation of the interaction of the vortex wake with a cross-
wind. The asymptotic solutions for the decaying vortical spots are described. 1In
this simulation, the background flow (without the vortical spots) fulfills the non-
slip condition along the ground. The unsteady boundary layer along the wall (or
ground) induced by a vortical spot has not been accounted for in the Euler solution.
Therefore, the distance from a vortical spot to the wall should remain much larger
than the thickness of the boundary layer induced by the vortical spots.

In section 3, a special numerical method that implements the concept of a two-
length scale analysis is described for the solution of the Euler equation. Conse-
quently, the step size and the time step will be independent of the effective size of
the vortical spots (which can be much smaller). Note that the peak velocity in the
core, being inversely proportional to the core size, can be much larger than U_.

In section 4, numerical results are presented to demonstrate the interactions
between the wortical spot and the background nonuniform shear flow. The distinct
features of the trajectories of vortical spots with wvarying strengths and different
initial positions are illustrated.

2 MATHEMATICAL FORMULATION
2.1 The Physical Problem (Upstream and Initial Conditions)
The physical simulation for the motion and decay of strong two-dimensional

vortical spots interacting with a background rotational flow is illustrated in
figure 1. An upstream (spanwise) flow Uo(y) is specified, i.e.,



F(x,y,0) = Up(y) 1 = o(1) (2a)

as x +-» for y » 0 with UO(O) = 0, The ground is represented by y = 0. - The
background rotational flow has the reference length scale 1L, which is equal to the
effective height of the shear flow, and the reference velocity scale u_, which is
Uo(w). Both scales, L and U_, have been set equal to 1. It is assumed that
Uo(y) + 1 exponentially in y as y » », e.qg.,

- P 4
Uo(y) = 1 e (2b)

The corresponding initial background vorticity distribution is then

m(X,Y,O) = -U(')(Y) = 0(1) (2¢)

To simulate the trailing vortices, a highly concentrated vortical spot, say the kth
spot centered at (xk(O), Y, (0)), is defined by the following characteristics: an
initially small effective core size (6§ (0) << 1). and a strong vorticity distribution
(g, = 0(6; ) >> 1) so that the total strength is finite (r, = o(1) =o(u r)).

Because of these characteristics of vortical spots, it is assumed that the
initial vorticity distribution r{x,y,0) can be split into two parts and that

£(x,v,0) = w(x,y,0) + €2 %%,¥,0) (3)
where
€= §/L <K 1 (4)

and §_ is the typical core size. The second term g2 (x,¥,0) in equation (3)
with ¢ = 0(1) represents concentrated vorticity distributions near the vortical
spot. This vorticity distribution is of compact support or decays exponentially in
Ek' where§ fk is the distance from the kth center in terms of the smell 1eng§h scale
§. One can then write ¢ as a function of the stretched variables X and Yy with

k € _yk = € 5)

‘or each k. For simplicity, the case considered here is that of vortical spots
laving similar core structures (such as a Lamb vortex (ref. 5)), i.e.,



N N - 2
o - T -{r. le/6 (0)1}
szc=Zezck(x,y,o)=Z———-’§-—e kK (6)
=1 k=1 1 Gk(O)

where
- 2 231/2
£, = {tx - x 017 + 1y - v, (1%}'?/e

From the initial vorticity distribution, it is noted that (1) the initial vortex
positions (Xk(O), Y, (0)) are assigned, (2) decays exponentially in r . and
(3) the strength Pk is assumed to be of the order u L, i.e., .

-2 - e -
I'k = Lf e T, dx dy = !;f (4 c'ixk dyk = o(u_r) (7)

This analysis can take care of nonsimilar initial profiles, i.e., not of the
type specified by equation (6), as long as [, decays exponentially in r,_ and

. . k k
fulfills equation (7).

-

2.2 Governing Equations

For an unsteady viscous flow field, the vorticity distribution r(x,y,t) and
the stream function YP(x,y,t) are governed by the two equations

9t 3 K -

5t + ax(u;) + ay(vt;) = wW g (8)
and

V2¢=—; : (9)

where V2 is the Laplacian operator. The vorticity is defined by

- ‘ (10)
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and the velocity components are related to the stream function by’

=9y L)
u By v = . | {(11)

The boundary conditions along the ground plane are

u(x,0,t) =

§
o

(12)

and

v(x,0,t)

]
[=]

(13)

In general, to construct the Navier-Stokes solution of equations (8) and (9), one has
to use grid sizes Ax and Ay << § and, hence, a very small At, This process is
very inefficient since the viscous term vV r is important only in the neighborhood

of a vortical spot (of the order §); and away from it, the viscous term is not
important. .

In section 3, a special method is described that takes into account the special
features of the vorticity distribution., It should be recognized that the flow field
also has a small length scale §, i.e., €L. The small parameter € is of the order

of 1 RL ; l.e.,

§ 1 _ v
e=y =037 =0 ;775 (14)

R K

so that the viscous terms remain important in the small scale, i.e., in the neighbor-
hood of a vortical spot. On the other hand, in the normal scale, the flow field
obeys the Euler equations,

3 METHOD OF SOLUTION

In subsection 3.1, the problem is set up in two length scales, the normal scale
L and the small scale § = €L. Analytical solutions describing the "small" scale
flow field (i.e., the viscous decay of the strong vorticity in each vortical spot)
will be identified as that of the similarity solution from the asymptotic analysis
(refs. 6 and 7). The velocity (X (t), Y, (t)) of the kth vortical spot is coupled
with the inviscid solutions describing the “normal" scale flow field (i.e., the back-
ground flow). 1In subsection 3.2, the details will be described about the method for
constructing the numerical solution of the variation of vorticity in the background
shear flow. A particular feature of the numerical method is that the grid size
&x = Ay = ML can be selected independent of the core size Gk. The time step



depends only on the grid size and on the length and velocity scales of the background
flow, i.e.,

At = £(AL,U ) (15)

3.1 The Two-Length-Scale Problem

The special form of the initial data suggests the following decomposition of
vorticity:

tlx,y,t) = ugly) + T(x,y,t,€) + e 2 %,¥,t,€) (16)

Here, x and y denote the regular spatial variables and X = x/e and § = y/e
denote the stretched variables. The first term w.(y) in equation (16) is the
initial background vorticity. The second term Z(x,y,t,a) is the variation of back-
ground vorticity induced by the vortical spots. The last term is composed of the
large vorticity O(e °) near the vortical spot, i.e.,

-2

R D VAR (17)
k

Here, decays exponentially in

Ek
r, = {lx - Xk(t)]2 + Iy - Yk(t)]2}1/2/e

Similarly, the stream function can be written as

Vix,yt) = Y ly) + Bxy,te) + WK YL E) (18)

The velocity components can also be decomposed into

> ~ i, ~ -l N
v = [Uo(y) +u+ ¢ 1u]i + (v + ¢ 1v)j (19)



and can be related to i and ¢ by

~ % v W
u oy V=" %% (20)
and
L S— ] (21)
Ay Ix

The velocity fields are then described by the stream functions, which in turn are
related to the vorticity functions by

y
wo(y) =J Uo(y') dy' (22)
0
V) = -7 (23)
and
v2$ - _'z (24)

The boundary condition on the ground (y = 0) for the velocity field is v(x,0,t) = O.
The nonslip condition shall be taken care of by the addition of a thin boundary layer
induced by the vortical spots. By following the method of multiple scales, the de-
composition equations (egs. (16) to_(19)) are substituted into equations (8) and (9)
and the variables ¥, vy, X, and y are treated as independent. By collecting
terms of equal powers of €, one obtains the leading solution involving (x, ¥), i.e.,
the analytical solution near each wvortical spot. For the kth spot centered at

(X% (t), Y (t)), the solution is (refs. 4 and 6)

2= 2, .2
o o T -e7r. /87 (t)
e2%‘:‘32‘;(0)______1;___e K/ % (25)
i Gk(t)

where

_ 1/2
Sk(t) = Gk(O) [(t + tk)/tk]



is the effective core size and = 62(0)/ﬁv is the initial age of the vortical
spot. Here the superscript (0) denotes "the leading term of." The use of the
similarity solution is explained in reference 4. Note that the solution given by
equation (25) has only a "short range" effect because of exponential decay. On the
other hand, the corresponding velocity is given by

TG+ 75) = [FTE, G - 50 /5 (26a)

with
-1, - Ty _82;]{2/6]2{
e (v,) 1 - e (26b)
o'k 27er
k
and
X, =X - (Xk/s) Y =Y - (Yk/e)

Here, 8_1(59)k denotes the circumferential velocity around the kth vortical spot
and does not decay exponentially but has a "long range” effect, i.e.,

(27)

This effect provides the coupling with the background flow. From an a§ymp§otic
analysis (refs. 4 and 6), the velocity of the center of the kth spot (X , Y. ) is
established to be equal to the local velocity without the kth vortical sSpot, i.e., at
(X, V),

s & e R s~ 72—1—7—?
Xkl + Yk] = UO(Yk) i+ u(Xk,Yk) i+ V(Xk,Yk) J + el £ (u.l + ij) (28)

This result is in agreement with classical inviscid theory. The motion of the
vortical spots is, in turn, coupled with the variation of the background vorticity
distribution Z that is O(1) and is a function of the normal spatial variables. In
subsection 3.2, the method for the solution of g(x,vy,t) will be described.



3.2 Background Flow Field

To derive the governing equations for the background flow field in the normal
length scale, the details of the flow structure need to be filtered out in the small
length scale eL. This procedure is accomplished by averaging the basic equations
(egs. (8) and (9)) over an area of, say, a sguare of side 2H where H is much
larger than the core size €L but much smaller than 1, i.e.,

L > H > €L , (29a)

In the following equation, <f> is used to denote the average of f(x,v,X,y), i.e.,

€
<f> = )

4H (y-H) /e

2 (y+H) /€ pA(x+H) /e
f £(x,y,%,y) dx dy (29b)
( .

~H) /€
With f Dbounded for all (x, y), the result is

@ ©

For a function g(x,y) having no microstructure, i.e., independent of x and v,
the result is

[l
(&)

{30a)

<g> = g(%,y) (30b)

Using equations (29b) and (30), the average of equations (8) and (9) yvields the
leading equations for the variation of background vorticity g(x,y,t) and the
corresponding stream function ¢(x,y,t); i.e.,

3—% + -g;{[uo(y) + Bx,y,0) + <€ '@ E) + -g—};{ [S(x,y,t) + <e” 9517}
+ [V + <€‘1;>]ESE,= 0 (31)
<.1Y
and
72$ = -3 (32)



The initial and boundary conditions are, respectively,

Z=0 (t = 0) (33)
and

W _ 4 (y = 0) (34a)

ox

vy > 0 (|x] + o v+ ®) (34b)

The averagdes <e-1ﬁ> and <e_1§> in equation (31) represent the bulk contributions
of the velocity field induced by the moving vortical spots. It can be shown that
these averages remain O(1) with respect to €. (See the appendix.) It then follows

that the grid size AL .and the time step At can be selected independent of ¢ or
the core sizes Gk.

The vorticity deviation E is updated by the finite-difference equation
(eg. (31)) using the two-step Lax-Wendroff procedure (ref. 8). The fast Poisson
solver (ref. 9) is then used to determine the corresponding stream function ¢ from
equation (32) for a finite computational domain. The computational domain and the
approximate boundary conditions will be described in subsection 3.3. The trajec-

tories of the vortical spots are then defined simultaneously by the integration of
equation (28).

Since the average has to be used only when the core size is much smaller than
the grid size, the numerical method shall be discussed for the case of << AL.
The integration domain size H is chosen to be of the order of the grid size (e.g.,
H = AL/4), Therefore, H is much less than the normal length scale but is indepen-
dent of the small core size. Whenever a grid point (xi, y:) is far from a vortical

spot centered at (Xk, Yk) {(e.g., if r, >> H, then 1y > CH), the result is

T {y, - ¥,.) 4
e o> = X3 k1, oL (35a'
k 21rr2 r4
k k
T (x. - X)) a4
POl - S . S PRSARPY ). (35b°
k 21rr2 r4'
k k

where

10



The difference between the average and the classical theory is actually less than
0.6 percent for C = 2.5. Therefore, by adjusting C, the transition from the
classical solution to the average can be made smaller than the error of the finite-
difference method. Only in the region where r £ CH do the averages <e_1ﬁ> and

<e v> need to be evaluated (which are defined by two elementary line integrals, as
noted in the appendix).

3.3 Boundary Conditions on a Finite Computational Domain

For the numerical solution of equations (31) to (34) for variations in the back-
ground shear flow, one has to work with a finite computational domain D, i.e.,
|xl < L, and 0 <y < L,e (See fig. 2.) Note that Uo(y) is a solution of the
Navier-Stokes equation with a no-slip boundary condition. The boundary layer induced
by the disturbed flow shall be ignored; hence, the vortical spot should be "far away"
from the ground relative to the core size., Also, the use of the asymptotic solutions
(egs. (25) and (26)) for each core structure requires that the vortical spots be "far
apart" from each other. Therefore, the present solution will be applicable only when
each vortical spot is several core sizes above the ground and away from the other
spots. 1In order to average over only one vortical spot, the requirement is that the

distances from one gpot to the ground and to another spot remain greater than twice
the grid size, i.e., 2 AL.

Note that the boundary condition P=0 at y =0 is fulfilled when the image

Z(x,-y) = -T(x,y) is introduced. The far-field boundary condition (eq. (34b)) has
to be replaced by appropriate conditions on the outer boundary of the domain D,
i.e., |x}| = 1 and y = 1L,. With p = (x2 + y2)1/2 denoting the distance from the

origin, it is seen that when the dlsturbance veloc1ty behaves as p-?, the behaviors
of the perturbed stream function w and vorticity ; are w ® p * and

; = p + respectively. Since the flow field induced by Ebe vortical spots is sym-
metric with respect to the ground (y = 0), the variation [ of the background
vorticity w. has to be antisymmetric with respect to y =0 (with =0 at

y = 0) and approaches 0 near the outer boundary. Note that n = 2 and 3 for a
single spot and for an equal and opposite pair of spots, respectively. Consequently,
the boundary condition Z =0 can be lmposed on the outer boundary (|x| = L;) and
on y = L,, with an error smaller than O(L ) for a single spot and smaller than

O(L ) for a vortical pair of spots. On the boundary of D, the condition to be
1mposed is

T=0 (36)

Since the solution ~$ can be expressed in terms of a Poisson integral of Z, the

boundary data for ¢ can then be evaluated by the far-field expansion of the Poisson
integral (ref. 5). :

~

The leading two terms involve only the y- and xy-moments of [; i.e., at the
boundary where vy = L, or %] = Lqs the expansion is

11



L L ’
~ 11y -] 2 ~ 2xy
L s y's dx' dy' + —= x'y'Z dx' ay' (37)
r -L1 0 —L

where r = p = (x + vy )1/2. The error of this approximation (eq. (37)) is O(LT3).

Since the error introduced by the finite-difference approximations for equationsl(31)
and (32) are O((AL)”), AL can be related to L; so that the errors are of the
same order in the approximate boundary conditions and in the finite-difference ap-
proximations. Using the boundary data from equation (37) and the condition in equa-
tion (34a), equation (31) is solved by a fast Poisson solver (ref. 9) to obtain ¥
in D, and then the derivatives of E yield 4 and V.

4 RESULTS AND DISCUSSION

A computer code based on the previous analysis was developed. Numerical results
of the trajectories of vortical spots in a nonuniform shear flow are obtained. For
the results reported here, the conditions L, = 8L, L, = 8L, and Ax = Ay = L/5
have been chosen. The time step fulfills the condition that the Courant-Friedrichs-
Lewy (CFL) number is less than 0.5. The velocity in the CFL number is the maximum of
the resultant velocity in equation (31) for all grid points. Test cases were per-
formed for larger Ly and Lo and for smaller Ax and CFL number. In all these
test cases, the changes in the results are insignificant. To gain a qualitative
understanding of the interaction of vortical spots with a background shear flow, the
case of a single vortical spot is studied initially. Then, the cases of a vortical
pair simulating the trailing vortices are studied.

Figure 3 shows the trajectories of a single concentrated decaying vortical spot
of various strengths submerged in a background shear flow. The initial vertical
position of the spot is at y = 1, and the initial background shear flow is chosen as
Uply) =1 - e”Y, The results show that the vortical spots with positive circulation
drift spanwise (x-direction) and upward (y-direction), and the vortical spots with
negative circulation drift spanwise and downward but eventually turn backward. This
phenomenon is more pronounced as the strength of the vortical spot increases.

To explain this phenomenon, the case of a single vortical spot with T > 0 is
considered. The disturbed flow moves downward behind the spot (x < X) and upward
ahead of the spot (x > X). For an initial background vorticity Wy with w!(y) > O
(see eqs. (2) and (3)), the disturbed flow increases the vorticity behind the spot
and decreases the vorticity ahead of it; i.e., & >0 for x < X and [ < 0 for
x > X. The background vorticity variation Z in turn induces an upward motion of
the vortical spot for T > O. From similar arguments, it can be expected that the
background vorticity variation & will induce a downward motion of the vortical spot
with T < 0. The reason that a vortical spot of negative strength turns around and
drifts upstream as it gets closer to the ground can be attributed to the decrease of
the contribution of the background shear flow to the forward velocity of the spot and
to the increase of the induced velocity by the image of the vortical spot with
respect to the ground (y = 0). It should be pointed out here once more that the
vortical spot will drift horizontally when the background shear flow is either a

uniform flow (wo = 0) or a constant shear flow (wo = Constant), and there will be no
change in the background flow (C 0).

12



The trailing-vortex wakes far downstream of an aircraft shall be simulated by
a simple vortex pair whose vorticity distributions are concentrated and are centered
at (+X,(0), Yk(O)) with strength I and effective vortical size §&(0). The goal
of the following numerical examples is to simulate the interaction of the decaying
trailing vortical pairs subjected to a crosswind (spanwise) ground shear. The back-

ground shear flow used in the examples is again an exponential profile (eqg. (2b))
unless otherwise specified.

Figure 4 shows the relative trajectories, i.e., the variation of the vertical
positions versus the horizontal spread of a vortex pair whose strengths are I = #1.
Solid curves show the relative trajectories of a vortex pair descending without a
background shear flow. Dashed-line curves show the corresponding trajectories of
vortex pairs with an initial location at (+0.5, 3) and (£0.5, 4) under the influence
of ground shear wind. The vertical position of the left vortex shows that it drifts
to the left and continuously descends in time, whereas the right vortex descends
initially until it reaches a minimum height and then drifts upward. Because x = 0
has been set at the mean position of the vortical pair, this curve does not show the
real spanwise position and does not see the eventual backward drift of the left
vortical spot. This backward drift occurs when the background vorticity variation
finally overcomes the downward'velocity induced on the right vortex center by the
left vortex. This effect is in contrast to the case when the background flow is
uniform or of constant shear flow, for which the vortex spots will keep on drifting
apart and downward.

In order to find out when the shear-layer solution has to be used, the trajec-
tories of a pair of vortices in a shear layer for different initial vortex heights
are studied. The minimum height reached by the right vortical spot YR,min is
plotted against the initial height of the vortical pair in figure 5. The height
YR,min approaches an asymptotic value of 2.6 when Yk(o) is greater than 7.0. This
event means that when the vortical spots are above y = 7, they are far above the
shear layer and the interaction with the shear layer is negligible., The correspond-
ing trajectories (in real spanwise positions) of the vortical pair, starting at
different heights ¥, (0) =1, 2, 3, 4, and 5 in the shear layer, are displayed in
figure 6 to show that the trajectories of the vortical spots are sensitive to the
starting height (i.e., the altitude of the airplane relative to the thickness of the
shear layer).

The initial strength of the vortical spots also has a significant effect on the
trajectories of decaying trailing vortices in a ground shear, as illustrated in fig-
ure 7. The initial positions of the vortical spots are (Xk(O), Yk(O)) = (£0.5, 3.0).
The vortical pairs of stronger strength (I = #4) descend faster and drift less in
horizontal (spanwise) distance as compared with the vortical pair of strength
I' = +1, since the initial downward drift is dominated by their strength T. The
vortical spot on the right side, with vorticity in an opposite sense to that of the
shear flow, descends to a lower minimum elevation for larger T.

Finally, the interaction effects of different background flows are studied. A
comparison is made for a background exponential profile with a Blasius profile of the
same thickness; i.e., the length of the profile is equal to L Uw/v. The initial
positions of the vortex pair are (Xk(O), Yk(O)) = (+£0.5, 4.0) and their strengths
are T = $1. Fiqgure 8 demonstrates that the effect of the crosswind shear profile on
the behavior of trajectories for the left vortex is small but the right vortex
descends much less; i.e., it descends to a larger YR,min for the Blasius profile as
compared with the exponential profile.
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5 CONCLUDING REMARKS

A computer code has been developed for the study of rotational flow fields
having concentrations of large-magnitude vorticity in spots (small areas). The
analysis takes into account the small scale of the flow field near a spot and the
normal scale for the background flow. Using this two-length-scale analysis, the
decay of the vortical spots {(in small scale) is obtained analytically and the motion
of the spot is coupled with transport of the background vorticity, which is analyzed
by numerical solution of the EBuler equation. The particular feature of the numerical
method is that the grid size for the numerical analysis can be chosen independent of
the size of the vortical core, and hence the time step is also independent of the
core size.

Numerical examples for a single vortical spot submerged in a background shear
flow shows that the variation of the background shear flow induces an upward motion
for the vortical spot with positive circulation and induces a downward motion for the
vortical spot with negative circulation. The latter eventually reverses its direc~
tion of horizontal drift when it gets close to the ground where the ground effect
overcomes the smaller forward shear flow velocity. This interaction between the
vortical spots and the background flow is absent if the background flow is of con-
stant vorticity or is a uniform flow, for which the vortical spot will only drift
horizontally.

For a pair of vortical spots simulating trailing vortices in a crosswind, the
result shows that both vortices will initially drift forward together, spread apart,
and move downward. Gradually, under the effects of interaction, the redistribution
of the background vorticity changes the trajectories. The vortex that is in the
opposite sense to that of the background flow will reach a minimum height, reverse
its downward drift, and turn upward, whereas the other vortex will eventually reverse
its forward motion and turn backward. When the vortical pair is submerged in dif-
ferent background flows, namely the Blasius and exponential profiles, the numerical
examples show that the trajectories of the vortical pair are similar in nature but
quantitatively different.

NASA Langley Research Center
Hampton, Virginia 23665-5225
May 22, 1986
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APPENDIX

AVERAGE OF THE VELOCITY INDUCED BY kth VORTICAL SPOT <& | (ﬁki + x'zkj)>

It is necessary to derive the formula for the average velocity at a grid point
(xi, yj) that is close to the kth spot centered at (Xk, Yk), with [%; = Xkl < H
and 'yj - Ykl < H. (See fig. a1l.)

Because of the symmetry of the velocity field with respect to the vortical
center (X, Y), the formula for <& u> shall be derived. The formula for <e v>

is equal to that for <e—1ﬁ> with x; and X interchanged with Y5 and Y,
regspectively. The restriction to be imposed is that

H>X—-xi>0 H>Y—yj>0 (a1)

Since u is asymmetric with respect to y = Y, the result is

H 2(Y¥-y.)=H

- -T Y vty ~(z'/8)2

g w> = > dx! dy' g 1 - e
8xH < -H -H (r')

where

e Ly + %t - 0% vy + ¥ - v)2;1/2

The integration can be carried out with respect to y' and then a definite integral
is obtained, i.e.,

H R+
« o = - L f dx f_ Ba-e™ (a2)
16mH -H R
-1- T " r"
<E > = - — > dx'[ln R + E1(R{] _ (a3)
167H ~-H R
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where.

R = [ - 0% (v -y :l:‘H)z]/ﬁz

and E,(R) is the exponential integral of R (ref. 10).

From equation (A2) it can be shown that the integral with respect to R is

finite; hence, <e  u> is O(1) with respect to €. This result is also true for
<€ v)l

Note that when R is greater than 2, E,(R) is negligible and the integral in
equation (A3) can be evaluated explicitly. Therefore, numerical evaluation of the
integral in equation (A3) is needed only for r' < 26.

Figure A1.- "Average" square domain.
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