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TRANSONIC NAVIER-STOKES WING SOLUTION
USING A ZONAL APPROACH:
PART 1. SOLUTION METHODOLOGY AND CODE VALIDATION
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NASA Ames Research Center, Moffett Field, CA 94035

Unver Kaynak™
Sterling Software, Palo Alto, CA 94303

K. Gundy*
NASA Ames Research Center, Moffett Field, CA 94035
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SUMMARY

A fast diagonalized Beam-Warming algorithm is coupled with a zonal approach to solve the three-dimensjonal
Euler/Navier-Stokes equations. The computer code, called Transonic Navier-Stokes (TNS), uses a total of four zones for
wing configurations (or can be extended to complete aircraft configurations by adding zones). In the inner blocks near
the wing surface, the thin-layer Navier-Stokes equations are solved, while in the outer two blocks the Euler equations are
solved. The diagonal algorithm yields a speedup of as much as a factor of 40 over the original algorithm/zonal method
coded. The TNS code, in addition, has the capability to model wind tunnel walls. Transonic viscous solutions are obtained
on a 150,000-point mesh for a NACA 0012 wing. A three-order-of-magnitude drop in the L2-norm of the residual requires
approximately 500 iterations, which takes about 45 min of CPU time on a Cray-XMP processor.  Simulations are also
conducted for a different geometrical wing called WING C. All cases show good agreement with experimental data.

1. INTRODUCTION

Analytical methods and wind tunnel experiments are the two primary tools at the disposal of the design
aerodynamicists today. Although yielding quick, closed-form solutions, analytical methods are limited to simple
configurations. On the other hand, wind tunnel experiments can handle complicated configurations, but have flow
limitations and both model fabrication and test time are expensive (Ref. 1). An alternative for the aerodynamicist, and
one that eliminates some of the disadvantages associated with analytical methods and experimentation, is computational
fluid dynamics (CFD). :

Initial contributions to aircraft design made by CFD methods were due primarily to the use of linear panel methods
or to the solution of various forms of the potential equation. This restriction was a result of existing computer storage
and hardware limitations. Panel methods, however, were still useful in the design of aircraft, providing the flow was shock
free. Solution of the potential equation extended the design of aircraft into the transonic regime, provided negligible
amounts of entropy or vorticity were produced. Still, with these limitations, CFD tools coupled with optimizers have been
instrumental in the partial design or improvement of some simple aircraft. Some examples are the Rockwell forward-swept
wing (Ref. 1), the HIMAT wing (Ref. 2), the Airbus A-310 (Ref. 2),the Lockheed C-141B military transport (Ref. 2}, and
the Cessna Citation III business jet (Ref. 3).

To make full use of the three-dimensional Euler/Navier-Stokes formulations in aircraft design, many pertinent
parameters must be accurately predicted (Cy, Cp, etc.). To achieve these predictions, high resolution is required to resolve
the physics of shock/boundary-layer interaction, massive separation, and turbulent flow structures. However, even with
the development of supercomputers such as the Cray-XMP and Cyber 205, there are still limitations due to storage-space
and execution considerations. To overcome the computer storage problem, zonal approaches have become increasingly
popular. By zonal approach we mean the partitioning of the flow field into distinct “zones,” each of which is solved
independently. The zonal approach has a number of advantages. First, a difficulty in generating three-dimensional grids
for different types of complex configurations can be reduced with the use of zonal methods. Second, zonal methods would
allow different types of grid topologies to be implemented where appropriate in order for the grids to be mesh efficient;
(that is, more points on the configuration) where accuracy is desired, and fewer points in the flow field. The zonal concept
has been successfully applied to the full potential equations (Ref. 4,5) and to the Euler equations (Ref. 6,7). It is also
possible with the zonal approach to solve different types of equation sets in the different zones (Ref. 8).
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This paper discusses the computational approach in which the fast-convergent, Pulliam-Chaussee (Ref. 9) diagonal
algorithm is coupled with a zonal approach. The new approach permits relatively inexpensive fine grid solutions to be
made of the Euler/Navier-Stokes equations, which is especially important for flows with shock/boundary-layer interaction.
Validation of the code by comparing numerical solutions W\ith existing experimental data will also be presented.

2. GOVERNING EQUATIONS

The equations solved in this study are the Reynolds-averaged Navier-Stokes equations written in strong conservation
law form. These equations are simplified by using the standard thin-layer approximation for the viscous terms. The
thin-layer Navier-Stokes equations written in generalized curvilinear coordinates are
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Here my = ¢ + ¢Z + ¢Z, mg = Gu; + Gu¥; + Gaw,, and mg = [(u? + v% + w?)/2 + Prol(y — 1)~ Y(a?)),.
Pressure is related to the conservative flow variables @ by the equation of state
p=(v-1) [e - %p(u2 + 9% + wz)]
The Beam-Warming algorithm (Ref. 10) is used to solve the governing equations; it is given by
(1 + hb A" — hDilg) (I + 6, B" — hDil, )
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where A, B, C, and M are the Jacobian matrices 3E/6Q, dF [3Q, G /8Q, and 3S/dQ, respectively. Note that M, which
is derived from S, contains derivatives in 5. For h = 2 or 1, the integration is trapezoidal rule (second-order) or Euler
implicit (first-order) in time. These equations are central-space-differenced and implicitly advanced in time. To maintain
stability of the algorithm (because of the central-difference scheme used}, an explicit fourth-order artificial-dissipation term
is added to the flux calculations and an implicit second-order dissipation term is added to each of the block tridiagonals.
(The first working code (TNSCY3) used the above described algorithm incorporated in a zonal approach.)

For steady-state computations or first-order time integrations, a diagonal form of Eq. (2) is used. In this case, the
left and right eigenvector matrices of A B and € are used to diagonalize the one-dimensional operators. The diagonal
algorithm in three dimensions has the form

T, (I+h6¢A5)ﬁ (I+hé,A,) @)
P(I+héA)TAQ" = R™
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For a complete derivation of the diagonal algorithm (as well definitions for f\}, ﬁ, etc.) see Ref. 9.

The main advantage of this form is the simplification of the matrix inversions from block tridiagonal inversions to
scalar tridiagonal inversions. This simplification reduces the computational work by about 30% (Ref. 9). Also, the new
scalar form for the inversion process allows the use of scalar pentadiagonal solvers so that the added fourth-order explicit
artificial dissipation can be properly linearized and be made fully implicit. This form enhances stability and convergence
rates (Refs. 11,12). To further enchance the convergence rate, a space-varying At has been used. It is given by the formula
At = -I—A—'\“/—j— , At,, as used here, is simply a constant used to decrease or increase At. For most cases, the default value
of At, was 5. (The modification of TNSCY3 by Eq. 3 and the spatially varying time steps constituted the new code,
TNSCY4.) In viscous calculations the diagonal algorithm uses an explicit treatment of the viscous terms. The turbulence
model used for all cases is the Baldwin-Lomax algebraic model (Ref. 13).

3. ZONAL APPROACH

To initiate the zonal approach, a coarse block is first generated about the configuration. For this case (Fig. 1) the
geometry is a NACA 0012 wing with a sweep of 20°, aspect ratio of 3.0, taper ratio of 1.0, and dihedral and twist of zero.
A total of four zones are used, zone 1 being the coarse (or base) block. Note also that the terms “zone” and “block” are
used interchangeably. The coarse block can be generated either iteratively (Ref. 14), or through a marching scheme (Ref.
15). Both procedures have the capabilities of spacing and controlling orthogonality at the inner and outer boundaries, as
well as simulating wind tunnel walls. The topology of the grid is H-type in both the spanwise and chordwise directions.

To generate the finer zone near the wing, a small zone of points about the wing is removed from zone 1. The space
left open by the removal of points from zone 1 is then occupied by the finer grid (zone 2). Zone 2 is generated by putting
twice as many points in every spatial direction relative to zone 1. This task is accomplished by cubic-spline interpolation
of the coarse-grid points to the fine-grid points. To generate the viscous grids, a small zone of points is again removed
about the wing from zone 2. Zones 3 and 4 now occupy the area left vacant by the removal of points from zone 2. Zone
3 occupies the area (vacated by zone 2) above the wing and includes the upper surface. Similarly, zone 4, occupies the
area below the wing, including the lower surface of the wing. Zones 3 and zone 4 retain the same number of points in the
streamwise and spanwise direction as does zone 2; however, points are further clustered in the normal direction to capture
viscous effects. All zones overlap at the zonal boundaries, usually by one or two grid planes.

Figure 1 illustrates the wing grid and a chordwise slice of zones 1, 2 and 3 at the symmetry plane (y = 0). (The grid
dimensions in each zone are also illustrated in Fig. 1.) Note the doubling of points in zone 2 (in the chordwise and normal .
directions) relative to zone 1. The doubling is also done in the spanwise directions, although this is not shown here. There
can also be seen a one-to-one correspondence of points in the chordwise direction (also in the spanwise direction) between
zones 2 and 3, and the clustering of grid cells in zone 3. Also highlighted are the wing surface, trailing-edge mesh, and
wing tip region. Zone 4 is not shown, but it is essentially of the same structure as zone 3. For clarification, Fig. 2 shows a
generic form of the overlapping procedure between two inviscid zones (this generic overlap procedure is the same between
all zones, inviscid or viscous). Boundary conditions are established explicitly by means of this overlapping procedure.
That is, boundary conditions for the zone 2, £ == A plane are obtained by interpolating data from the interior points of
zone 1. And, conversely, boundary conditions for the zone 1, £ = B plane are obtained from the interior data from zone
2. The boundary conditions for a single surface are obtained with just a series of one-dimensional interpolations. The
interpolation process is automated to the extent that only the two planes involved in the interpolation need to be defined,
the base and target planes. Two interpolation schemes are coded; one is cubic spline and the other is linear. The cubic
spline is best in smooth regions of the flow and the linear is best in the nonsmooth regions. The linear interpolation
routine was used for the results presented herein. In Fig. 1, zones 1 and 2 are solved using the Euler equations (inviscid
zones), and the Navier-Stokes equations are used in the viscous zones (zones 3 and 4).

The total number of grid points used is 149,071. The individual grid-point breakdown for each grid zone is as follows:
grid 1, 65 x 20 x 19 = 24,700; grid 2, 69 x 29 x 21 = 42,021; grid 3 61 x 27 x 25 = 41,175; and grid 4, 61 x 27 x 25 =
41,175. This grid has been constructed to fit the geometry used in the experiment of Lockman and Seegmiller (Ref. 16).
Another grid with exactly the same characteristics for zones 2, 3, and 4, but with free-air boundaries specified for grid
zone 1 has also been generated. The free-air grid is constructed from the wind tunnel wall grid by simply adding several
grid surfaces to both the top and bottom of the wind tunnel wall grid. Therefore, the wind tunnel wall grid is an exact
subset of the free-air grid. The number of points in the free-air grid (166,621) is slightly larger than the number in the
wind tunnel wall grid. In a later section, flow fields computed on these two grids will be presented and compared with
experiment. For more details and illustrations concerning the zonal grids, see Holst et al. (Ref. 17) and Flores (Ref. 18).

4. DATA MANAGEMENT

Once the grid is generated and divided into the proper zones, the flow solver is initiated. The iteration procedure
starts in the outer Euler block (zone 1), proceeds to the inner Euler block (zone 2), and ends with the two Navier-Stokes
blocks, first the upper Navier-Stokes block (zone 3} and then the lower block (zone 4). Only one iteration using a spatially
varing time step is completed in each grid zone before passing to the next. However, many iteration and/or time-stepping
strategies could be used to improve convergence. .

Only the flow field solution (Q arrays), transformation Jacobian (J}, metric quantities, and the turbulence model
arrays (when appropriate) associated with a single block reside in the main memory of the Cray-XMP at one time. The
information associated with the other blocks reside in extended storage. On the Cray XMP this device is called the Solid
State Device (SSD). The SSD is used in the same way as rotating disk storage. However, the SSD storage is physically
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made up of semiconductor memory and therefore is much faster. Using the SSD instead of disks greatly reduces 1/0 wait
time, and for jobs which are normally I/O-bound this is a significant advantage.

In the present zonal approach, the use of the 8SD. allows a great deal of flexibility, since a larger number of grid
blocks can be supported without significant additions to main memory. The limiting factor with regard to this point is
the size of the SSD. The SSD installed with the NASA' Ames Research Center. Cray XMP has 16 million 64-bit words of
memory. (The memory has recently been upgraded to:128 million 64-bit words.) This memory can easily be extended to
32 million words if half of the precision (32 bits) is used. The current version of the TNS code with grid dimensions as
outlined earlier in the grid-generation section requires 5.8 million words of SSD storage. All arrays on the SSD are stored
in 64-bit precision with the exception of the metric arrays, which are stored in 32-bit precision. A test was performed with
64-bit metric storage and produced results close to those using 32-bit storage.

To allow more space in the main memory, the metrics are shuffled into main memory from the SSD in two-dimensional
planes as needed. This shuffling allows the maximum grid size of each grid zone to be about 50,000 points. Because the
flow-solver algorithm used in TNS is an ADI-type algorithm with implicit sweeps in all three directions, the metrics must
be shuffled into main memory with three different orientations, in x-y planes, x-z planes, and y-z planes. Thus, there are
three different copies of the metrics stored on the SSD corresponding to the three different metric orientations. Because
of the availability of so much storage on the SSD this duplication causes no problems and makes the overall memory
management more efficient.

In addition, each of the metric arrays is required in main memory several times for each grid zone during each
iteration. This constant demand of arrays places extreme demands on the TNS I/O requirements. Nevertheless, with the
efficiency level afforded by the SSD, these I/O requirements are handled with no problems. For example, a typical solution
computed with the TNS code involving about 150,000 grid points requires about 500 iterations to reduce the 1.2 norm of
the residuals in each'grid zone by about three orders of magnitude. During this typical run, 5.97 billion 64-bit-equivalent
words are transferred between the Cray XMP and the SSD. This transfer requires about. 2780. sec. of cpu time and only
about 40 sec of SSD I/O time. In contrast, it is estimated that the same calculation using disk instead of SSD would
require about 10 hr of I/O time. (See ref. 19, for tables of tabulated I/O times of disk versus SSD.)

5. DISCUSSION OF RESULTS

The first case tested consisted of the NACA 0012 wing, previously described, with the following flow. conditions;
Moo = 0.826, a = 2.0°, and a Reynolds number based on a chord of 8 million. This case is moderately- difficult, involving
a strong shock which extends from zone 3 (viscous upper-surface zone) into zones 2 and 1 (inviscid zones). With the zonal
approach, the test case was run on a 150,000-point mesh, which for three dimensions is-a relatively fine grid.

For this case the wind tunnel wall effects are very significant. This effect can be seen in Fig. 3 where the pressure
coefficient distributions from TNS, with and without the walls modeled, are compared with experiment (Ref. 16). The shift
in shock position caused by the tunnel walls is obvious. The shock position for the case with walls is in good agreement
with the experimental shock position whereas the free-air shock position is too far upstream by about 10-20% of chord.

General agreement between the wind tunnel wall case and experiment is better inboard of mid-semispan than it is
outboard. In particular, the computed upper surface shock strength at 2y/b = 0.79 is larger than that of the experiment,
This larger strength is caused by a large boundary-layer separation in the experimental results at this semispan location,
which is not accurately reproduced by the computed results. A good picture of this situation is given in Figs. 4 and 5
which show a set of computed particle paths (Fig. 4) and an oil-flow photograph taken from the experiment (Fig. 5).
The experimental separation is about twice as large as the computed separation. The spanwise extent of the experimental
separation is reasonably predicted by the computation, but the streamwise extent is underpredicted. Some reasons for
this discrepancy are coarse-grid and turbulent-model effects, as well as the sensitivity of the flow pattern to changes in
the free-stream Mach number. Despite the difference in the size of the separation zone, the overall comparison is quite
encouraging. )

The convergence rate of TNSCY4 versus TNSCY3 is illustrated in Fig. 6. The time step used in the nondiagonal
version was At = 0.004, which was the largest time step possible while still maintaining stability of the code. The diagonal
version {TNSCY4) used a variable time step (as described previously). (Even though we are comparing a fixed time
step solution and a variable time step solution, the main speedup. in the diagonal algorithm is not in the variable time
stepping procedure, but in the proper linearization of the dissipation terms (Ref. 11). The slow rate of convergence in
the nondiagonal version (TNSCY3) seems to occur in. the outer inviscid zones. The residual’in the viscous zones in the
first thousand iterations drops fairly fast, then begins to flatten out. In 5000 iterations, all zones have dropped about two
orders of magnitude in the L2 norm of the residual. In contrast, the convergence rate of the diagonal version drops rapidly
in all the zones. A three-order-of-magnitude drop in the L2 norm occurs in about 400-500 iterations. This convergence rate
(coupled with the decrease in arithmetic operation count caused by the diagonal algorithm}) increases by a factor of 40 the
speed with which solutions are obtained. The faster convergence rate, as stated before, is due to the proper linearization
of the fourth-order-explicit dissipation operator. This rate was possible in the nondiagonal version, but would involve
inverting block pentadiagonals, which would substantially increase the computational cost. More time was required for
the same case when wind tunnel walls were modeled, since a stronger shock occurs. o

We can also look at the development of lift and number of supersonic points (NSP) to study the convergence
characteristics. Figure 7 shows the development stages, the X-axis is the number of iterations, while the Y-axis is left
unlabeled (since the actual values were not of significance, but the overall trend in the approach to the steady state is
important). The NSP overshoots the final converged solutions at about 100 iterations, but then quickly approaches the
converged solution. At about 200 iterations, it is within 7% of the converged solution and at 300 iterations it is within
1%. The lift also overshoots the final converged value, but at 200 iterations it is within about 4% of ‘the final solution and
at 300 iterations it is within 1%. If, instead of a three-order-of-magnitude drop in residual, convergence is based on 95%
of the converged lift, then a solution can be generated in about 200 iterations, or 18 min of CPU time for this fine-grid
calculation.
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The next case presented consists of a massive, shock-induced, boundary-layer separation. This case was computed
to ascertain the degree of robustness of the present algorithm and, in particular, the ability of the present zonal interface
scheme to cope with large flow gradients. The geometry used is the same as that of the last case. The free-steam Mach
number and angle of attack have been arbitrarily chosen to be 0.9 and 5°, respectively. Utilization of the wind tunnel
wall boundaries produced a “choked” solution with a shock wave spanning the tunnel. After several hundred iterations
and a moderately converged calculation, the solution diverged as expected. This result was a consequence of the “fixed”
upstream boundary conditions forcing more mass flow through the tunnel than the choked condition would allow.

The solution was repeated with free-air boundary conditions, and then convergence was easily achieved. Computed
particle paths on the upper wing surface are displayed in fig. 8. Note that approximately half of the upper wing surface is
separated, The solution contains several interesting features, including a separation saddle point, a focus, a reattachment
saddle point, and a node. Note also that this computed solution has a stable sequence of critical points on the separation
line; that is, a node followed by a saddle point and then a focus. This case required about 2.8 hr of CPU time.

Two different perspective views of the three-dimensional particle paths are shown in fig. 9. Figure 9a shows
a view from outboard of the wingtip and fig. 9b shows a view from behind and above the wing. The height and
three-dimensionality of the separation zone are apparent in these figures. The dashed particle paths move along the wing
surface until the separation line is encountered and then are deflected up over the separation bubble, with a few of the
dashed paths captured by the primary swirling flow at the center of the wing. The solid particle paths are more intimately
involved with the two swirling pockets of flow and essentially define these regions.

The position of the separation region relative to the zonal interface boundary is best displayed by plotting particle
paths constrained to lie in spanwise cross-sectional planes. Two such plots are displayed in fig. 10. Figure 10a shows
cross-sectional particle paths for a semispan station of 2y/b == 0.66 (k=13). At k=13 the separation region is large and
easily extends above the zonal boundary from the Navier-Stokes region into the Euler region. Nevertheless, the solution
looks qualitatively reasonable. An enlargement of the separated portion of the solution is shown in fig. 10b. From
this figure it can be seen that the particle paths pass smoothly across the interface boundary with no function or slope
discontinuities. Thus, the primary objective of doing this calculation was achieved. Despite the existence of a strong shear
gradient across the explicitly updated interface boundary, the present approach is capable of predicting a stable solution
that is reasonably free from interface boundary influence.

The next computation involves the WING C configuration. WING C is a generic advanced-technology wing
designed by Ames Research Center and the Lockheed Georgia Company. Two sets of experiments are availabile for this
configuration, one by Hinson and Burdges (Ref. 20) and one by Keener (Ref. 21). WING C, is illustrated in figure 11, it
has an aspect ratio of 2.6, a twist angle of 8.17°, a taper ratio of 0.3, and a leading-edge sweep of 45°.

The separated-flow case consists of the WING C design conditions: My, = 0.85, @ = 5°, and Re = 6.8 x 10%, These
conditions were intended to result in attached flow with a mild shock wave and a mild pressure recovery. But, for reasons
discussed in Ref. 21, these conditions produced a “local” (so defined by its author) flow separation.

The calculated pressure coefficient distributions are compared with experimental data in Fig. 12. Note that, in this
figure, the angle of attack for the Keener data (Ref. 21) is 5°, whereas for the Hinson and Burdges data (Ref. 20), it
is 5.9° in accordance with their accounting for wall effects. Consequently, computations were done for these two angles
of attack (@ = 5° and 5.9°) at M, = 0.85, and Re = 6.8 x 10°. The computation with a = 5° agrees with the two
experiments better in terms of matching leading-edge pressures. On the other hand, the results with oo = 5.9° seem to
agree well with experiments in terms of shock position and lower-surface pressures. Note that the differences between
the two computations and the two experiments are generally the same order of magnitude. The experimental differences
again may be explained by considering the uncertainities in the measurements of Mach number and angle of attack, and
the assessment of the wall-interference effects associated with the experiments. Possible distortions in the wing geometries
caused by aerodynamic forces and moments during the experiments could also have affected the measurements. On the
other hand, the numerical simulation has its own difficulties associated with the coarse grid near the tip, an inadequate
turbulence model, free-air boundary conditions, etc. However, the overall comparison is good considering the uncertainities
just mentioned,

The experimental oil-flow. picture for the same case is presented in Fig. 13. The computed skin-friction lines for this
case are presented in Fig. 14. Note that the larger angle of attack (a = 5.9°) was used in the computation to get closer
computational/experimental agreement. The calculation with o = 5° did not display a separated flow. In this computation,
the global features of the experiment are predicted well. The location and size of the separation line, the streamlines
being trapped by the vortex-like formation inboard of the separation line, the curvature of the tip streamlines, and almost
two-dimensional flow outside the separation zone are all accurately predicted. The critical points of the skin-friction map
were not well reproduced, but a nodal point (N,) along the line of separation and near the tip is predicted. Overall, the
simulation is globally good and is encouraging.

6. CONCLUSIONS

A fast diagonal algorithm has been successfully implemented within the framework of a zonal approach. Results
indicate that the modified code (in obtaining a solution for a moderately difficult case) still maintains its fast convergence
characteristics. This improvement is demonstrated by producing a three-dimensional fine-grid Euler/Navier-Stokes solution
in 45 min on the Cray-XMP, which is a speedup by a factor of 40 over the original code. The effects of the overlapping
procedure as well as the explicit boundary conditions used in the zonal approach do not appear to degrade the convergence
characteristics of the diagonal scheme. Numerical results were compared to experimental results for moderate to difficult
flow conditions for two different low-aspect wings. Good agreement existed between the associated pressure fields. Good
correlation between the computed separated surface flow and the experimental oil flow patterns was also obtained.
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Fig. 3 Pressure coefficient comparisons: NACA 0012 airfoil section, Azp = 20° ,AR = 3.0, TR = 1.0, M, = 0.826,
o =2.0°, Re=8X10° a)2y/b = 0.25; b) 2y/b = 0.78.
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Fig. 8 Computed particle paths on the upper wing surface: NACA 0012 airfoil section, Apg = 20°, AR == 3.0,
TR = 1.0, Mo, = 0.9, o = 5.0°, Re = 8X10°,
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Fig. 9 Computed three-dimensional particle paths on the upper wing surface: NACA 0012 airfoil section, ALg = 20°,
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above wing.
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Fig. 10 Computed cross-sectional particle paths: NACA 0012 airfoil section, Azg = 20°, AR = 3.0, TR = 1.0,
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Fig. 12 Comparison of experimental and computed pressure coefficients for WING C: Mo, = 0.85, Rep.q.c. = 6.8X10°.
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Fig. 13 Experimental oil-flow picture (from Ref. 21) and an expanded view of the counter-rotating vortices for
WING C: My, = 0.85, a = 5°, Rep, q.c. = 6.8X10°.
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