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A fast diagonalized Beam-Warming algorithm is coupled with a zonal approach to solve the three-dimensional 
Euler/Navier-Stokes equations. The computer code, called Transonic Navier-Stokes (TNS), uses a total of four zones for 
wing configurations (or can be extended to complete aircraft configurations by adding zones). In the inner blocks near 
the wing surface, the thin-layer Navier-Stokes equations are solved, while in the outer two blocks the Euler equations are 
solved. The diagonal algorithm yields a speedup of as much as a factor of 40 over the original algorithm/zonal method 
coded. The TNS code, in addition, has the capability to model wind tunnel walls. Transonic viscous solutions are obtained 
on a 150,000-point mesh for a NACA 0012 wing. A three-order-of-magnitude drop in the L2-norm of the residual requires 
approximately 500 iterations, which takes about 45 min of CPU time on a Cray-XMP processor. Simulations are also 
conducted for a different geometrical wing called WING C. All cases show good agreement with experimental data. 

1. INTRODUCTION 

Analytical methods and wind tunnel experiments are the two primary tools at the disposal of the design 
aerodynamicists today. Although yielding quick, closed-form solutions, analytical methods are limited to simple 
configurations. On the other hand, wind tunnel experiments can handle complicated configurations, but have flow 
limitations and both model fabrication and test time are expensive (Ref. 1). An alternative for the aerodynamicist, and 
one that eliminates some of the disadvantages associated with analytical methods and experimentation, is computational 
fluid dynamics (CFD). 

Initial contributions to aircraft design made by CFD methods were due primarily to the use of linear panel methods 
01' to the solution of various forms of the potential equation. This restriction was a result of existing computer storage 
and hardware limitations. Panel methods, however, were still useful in the design of aircraft, providing the flow was shock 
free. Solution of the potential equation extended the design of aircraft into the transonic regime, provided negligible 
amounts of entropy or vorticity were produced. Still, with these limitations, CFD tools coupled with optimizers have been 
instrumental in the partial design or improvement of some simple aircraft. Some examples are the Rockwell forward-swept 
wing (Ref. 1), the HiMAT wing (Ref. 2), the Airbus A-31O (Ref. 2),the Lockheed C-141B military transport (Ref. 2), and 
the Cessna Citation III business jet (Ref. 3). 

To makll full use of the three-dimensional Euler/Navier-Stokes formulations in aircraft design, many pertinent 
parameters must be accurately predicted (C L , CD, etc.). To achieve these predictions, high resolution is required to resolve 
the physics of shock/boundary-layer interaction, massive separation, and turbulent flow structures. However, even with 
the development of supercomputers such as the Cray-XMP and Cyber 205, there are still limitations due to storage-space 
and execution considerations. To overcome the computer storage problem, zonal approaches have become increasingly 
popular. By zonal approach we mean the partitioning of the flow field into distinct "zones," each of which is solved 
independently. The zonal approach has a number of advantages. First, a difficulty in generating three-dimensional grids 
for different types of complex configurations can be reduced with the use of zonal methods. Second, zonal methods would 
allow different types of grid topologies to be implemented where appropriate in order for the grids to be mesh efficient; 
(that is, more points on the configuration) where accuracy is desired, and fewer points in the flow field. The zonal concept 
has been successfully applied to the full potential equations (Ref. 4,5) and to the Euler equations (Ref. 6,7). It is also 
possible with the zonal approach to solve different types of equation sets in the different zones (Ref. 8). 
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This paper discusses the computational approach in which the fast-convergent, Pulliam-Chaussee (Ref. 9) diagonal 
algorithm is coupled with a zonal approach. The new approach permits relatively inexpensive fine grid solutions [0 be 
made of the Euler/Navier-Stokes equations, which is especially important for flows with shock/boundary-layer intera('tioll. 
Validation of the code by comparing numerical solutions with existing experimental data will also be presented. 

2. GOVERNING EQUATIONS 

The equations solved in this study are the Reynolds-averaged Navier-Stokes equations written in strong conservation 
law form. These equations are simplified by using the standard thin-layer approximation for the viscous terms. The 
thin-layer Navier-Stokes equations written in generalized curvilinear coordinates are 

where 

with 

and 

Q=r' 

F=r' 

p pU 
pU puU + Exp 
pv , E = J-' pvU + Eyp 
pw pwU + Ezp 
e Ute + p) - Etp 

pV pW 
puV + flxP puW + ~xP 
pvV + flyP ,G = J-' pvW + ~yP 
pwV + fI.P pwW + ~.P 

V(e + p) - fltP W(e + pl· - ~tP 

U = Et + Exu + Eyv + E.w 

V = fit + flxU + flyV + fI.W 

W = It + IxU + lyV + I.W 

o 

s=r' 
iJ.m, u, + (iJ./3)m2Ix 
iJ.m,V, + (iJ./3)m2Iy 
iJ.m,W, + (iJ./ 3)m2Iz 

iJ.m,m3 + (iJ./3)m2(lxu + lyV + IZW) 

Here m, =~; +~; + ~;, m2 = ~xu, + ~yV, + IZw" and m3 = l(u2 + v2 + w2)/2 + Pr-'h -1)-'(a2)],. 

Pressure is related to the conservative flow variables Q by the equation of state 

P = h - 1) [e - ~p(u2 + v2 + w2)] 

The Beam-Warming algorithm (Ref. 10) is used to solve the governing equations; it is given by 

(I + MeAn - hDde) (I + MnBn - hDiln) 

(1 + M,Cn - hRe-'6;r'MnJ - hDil,) 6.Qn = 

-h (oeEn + 0nFn + 6,Gn - Re-'6;sn + DeQn ) 

= Rn 

(1) 

(2) 

where A, B, C, and M are the Jacobian matrices aE/aQ, aF/aQ, aG/aQ, and as/aQ, respectively. Note that M, which 
is derived from S, contains derivatives in fl. For h = t or 1, the integration is trapezoidal rule (second-order) or Euler 
implicit (first-order) in time. These equations are central-space-differenced and implicitly advanced in time. To maintain 
stability of the algorithm (because of the central-difference scheme used), an explicit fourth-order artificial-dissipation term 
is added to the flux calculations and an implicit second-order dissipation term is added to each of the block tridiagonals. 
(The first working code (TNSCY3) used the above described algorithm incorporated in a zonal approach.) 

For steady-state computations or ·first-order time integrations, a diagonal form of Eq. (2) is used. In this case, the 
left and right eigenvector matrices of A, B, and C are used to diagonalize the one-dimensional operators. The diagonal 
algorithm in three dimensions has the form 

Te (I + hOe Ae) N (1 + h on An) 

P (I + ho, A,) T,-I6.Qn = Rn (3) 
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For a complete derivation of the diagonal algorithm (as well definitions for iV, P, etc.) see Ref. 9. 

The main advantage of this form is the simplification of the matrix inversions from block tridiagonal inversions to 
scalar tridiagonal inversions. This simplification reduces the computational work by about 30% (Ref. 9). Also, the new 
scalar form for the inversion process allows the use of scalar pentadiagonal solvers so that the a'dded fourth-order explicit 
artificial dissipation can be properly linearized and be made fully implicit. This form enhances stability and convergence 
rates (Refs. 11,12). To further enchance the convergence rate, a space-varying ~t has been used. It is given by the formula 
/.\.t 0= - L>t':r; , ~to, as used here, is simply a constant used to decrease or increase ~t. For most cases, the default value 

l.+vJ 
of ~to was 5. (The modification of TNSCY3 by Eq. 3 and the spatially varying time steps constituted the new code, 
TNSCY4.) In viscous calculations the diagonal algorithm uses an explicit treatment of the viscous terms. The turbulence 
model used for all cases is the Baldwin-Lomax algebraic model (Ref. 13). 

:l. ZONAL APPROACH 

To initiate the zonal approach, a coarse block is first generated about the configuration. For this case (Fig. 1) the 
tleometry is a NACA 0012 wing with a sweep of 200

, aspect ratio of 3.0, taper ratio of 1.0, and dihedral and twist of zero. 
A total of four zones are used, zone 1 being the coarse (or base) block. Note also that the terms "zone" and "block" are 
used interchangeably. The coarse block can be generated either iteratively (Ref. 14), or through a marching scheme (Ref. 
15). Both procedures have the capabilities of spacing and controlling orthogonality at the inner and outer boundaries, as 
well as simulating wind tunnel walls. The topology of the grid is H-type in both the spanwise and chordwise directions. 

To generate the finer zone near the wing, a small zone of points about the wing is removed from zone 1. The space 
left open by the removal of points from zone 1 is then occupied by the finer grid (zone 2). Zone 2 is generated by putting 
twice as many points in every spatial direction relative to zone 1. This task is accomplished by cubic-spline interpolation 
of the coarse-grid points to the fine-grid points. To generate the viscous grids, a small zone of points is again removed 
about the wing from zone 2. Zones 3 and 4 now occupy the area left vacant by the removal of points from zone 2. Zone 
3 occupies the area (vacated by zone 2) above the wing and includes the upper surface. Similarly, zone 4, occupies the 
area below the wing, including the lower surface of the wing. Zones 3 and zone 4 retain the same number of points in the 
streamwise a.nd spanwise direction as does zone 2; however, points are further clustered in the normal direction to capture 
viscous effects. All zones overlap at the zonal boundaries, usually by one or two grid planes. 

Figure 1 illustrates the wing grid and a chordwise slice of zones 1,2 and 3 at the symmetry plane (y = 0). (The grid 
dimensions in each zone are also illustrated in Fig. 1.) Note the doubling of points in zone 2 (in the chordwise and normal. 
directions) r·elative to zone 1. The doubling is also done in the spanwise directions, although this is not shown here. There 
can also be seen a one-to-one correspondence of points in the chordwise direction (also in the spanwise direction) between 
zones 2 and 3, and the clustering of grid cells in zone 3. Also highlighted are the wing surface, trailing-edge mesh, and 
wing tip region. Zone 4 is not shown, but it is essentially of the same structure as zone 3. For clarification, Fig. 2 shows a 
generic form of the overlapping procedure between two inviscid zones (this generic overlap procedure is the same between 
all zones, inviscid or viscous). Boundary conditions are established explicitly by means of this overlapping procedure. 
That is, boundary conditions for the zone 2, e = A plane are obtained by interpolating data from the interior points of 
zone 1. And, conversely, boundary conditions for the zone 1, e = B plane are obtained from the interior data from zone 
2. The boundary conditions for a single surface are obtained with just a series of one-dimensional interpolations. The 
interpolation process is automated to the extent that only the two planes involved in the interpolation need to be defined, 
the base and target planes. Two interpolation schemes are coded; one is cubic spline and the other is linear. The cubic 
spline is best in smooth regions of the flow and the linear is best in the nonsmooth regions. The linear interpolation 
routine was used for the results presented herein. In Fig. 1, zones 1 and 2 are solved using the Euler equations (inviscid 
zones), and the Navier-Stokes equations are used in the viscous zones (zones 3 and 4). 

The total number of grid points used is 149,071. The individual grid-point breakdown for each grid zone is as follows: 
grid 1,65 x 20 x 19 = 24,700; grid 2, 69 x 29 x 21 = 42,021; grid 3 61 x 27 x 25 = 41,175; and grid 4, 61 x 27 x 25 = 
41,175. Thill grid has been constructed to fit the geometry used in the experiment of Lockman and Seegmiller (Ref. 16). 
Another grid with exactly the same characteristics for zones 2, 3, and 4, but with free-air boundaries specified for grid 
zone 1 has also been generated. The free-air grid is constructed from the wind tunnel wall grid by simply adding several 
grid surfaces to both the top and bottom of the wind tunnel wall grid. Therefore, the wind tunnel wall grid is an exact 
subset of the free-air grid. The number of points in the free-air grid (166,621) is slightly larger than the number in the 
wind tunnel wall grid. In a later section, flow fields computed on these two grids will be presented and compared with 
experiment. For more details and illustrations concerning the zonal grids, see Holst et al. (Ref. 17) and Flores (Ref. 18). 

4. DATA MANAGEMENT 

Once the grid is generated and divided into the proper zones, the flow solver is initiated. The iteration procedure 
starts in thl! outer Euler block (zone 1), proceeds to the inner Euler block (zone 2), and ends with the two Navier-Stokes 
blocks, first the upper Navier-Stokes block (zone 3) and then the lower block (zone 4). Only one iteration using a spatially 
varing time step is completed in each grid zone before passing to the next. However, many iteration and/or time-stepping 
strategies could be used to improve convergence. 

Only the flow field solution (Q arrays), transformation Jacobian (J), metric quantities, and the turbulence model 
arrays (when appropriate) associated with a single block reside in the main memory of the Cray-XMP at one time. The 
information associated with the other blocks reside in extended storage. On the Cray XMP this device is called the Solid 
State Device (SSD). The SSD is used in the same way as rotating disk storage. However, the SSD storage is physically 
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made up of semiconductor memory and therefore is much faster. Using the SSD instead of disks greatly reduces I/O wait 
time, and for jobs which are normally I/O-bound this is a significant advantage. 

In the present zonal approach, the use of the SSD allows a great deal of flexibility, since a larger number of grid 
blocks can be supported without significant additions to main memory. The limiting factor with regard to this point is 
the size of the SSD. The SSD installed with the NASA Ames Research Center Cray XMP has 16 million 64-bit words of 
memory. (The memory has recently been upgraded to 128 million 64-bit words.) This memory can easily be extended to 
32 million words if half of the precision (32 bits) is used. The current version of the TNS code with grid dimensions as 
outlined earlier in the grid-generation section requires 5.8 million words of SSD storage. All arrays on the SS]) are stored 
in 64-bit precision with the exception of the metric arrays, which are stored in 32-bit precision. A test was performed with 
64-bit metric storage and produced· results close to those using 32-bit storage. 

To allow more space in the main memory, the metrics are shuffled into main memory from the SSD in two-dimensional 
planes as needed. This shuffling allows the maximum grid size of each grid zone to be about 50.,0.0.0. points. Because the 
flow-solver algorithm used in TNS is an ADI-type algorithm with implicit sweeps in all three directions, the metrics must 
be shuffled into main memory with three different orientations, in x-y planes, x-z planes, and y-z planes. Thus, there are 
three different copies of the metrics stored on the SSD corresponding to the three different metric orientations. Because 
of the availability of so much storage on the SSD this duplication causes no problems and makes the overall memory 
management mqre efficient. 

In addition, each of the metric arrays is required in main memory several times for each grid zone during each 
iteration. This constant demand of arrays places extreme demands on the TNS I/O requirements. Nevertheless, with the 
efficiency level afforded by the SSD, these I/O requirements are handled with no problems. For example, a typical solution 
computed with the TNS code involving about 150.,0.0.0. grid points requires about 50.0. iterations to reduce the L2 norm of 
the residuals in each grid zone by about three orders of magnitude. During this typical run, 5.97 billion 64-bit-equivalent 
words are transferred between the Cray XMP and the SSD. This transfer requires about 2780. sec of cpu time and only 
about 40. sec of SSD I/O time. In contrast, it is estimated that the same calculation using disk instead of SSD would 
require about 10 hr of I/O time. (See ref. 19, for tables of tabulated I/O times of disk versus SSD.) 

5. DISCUSSION OF RESULTS 

The first case tested consisted of the NACA 0.0.12 wing, previously described, with the following flow conditions; 
Moo = 0..826, a = 2.0.0

, and a Reynolds number based on a chord of 8 million. This case is moderately difficult, involving 
a strong shock which extends from zone 3 (viscous upper-surface zone) into zones 2 and 1 (inviscid zones). With the zonal 
approach, the test case was run on a 15D,DDD-point mesh, which for three dimensions is a relatively fine grid. 

For this case the wind tunnel wall effects are very significant. This effect can be seen in Fig. 3 where the pressure 
coefficient distributions from TNS, with and without the walls modeled, are compared with experiment (Ref. 16). The shift 
in shock position caused by the tunnel walls is obvious. The shock position for the case with walls is in good agreement 
with the experimental shock position whereas the free-air shock position is too far upstream by about 10-20.% of chord. 

General agreement between the wind tunnel wall case and experiment is better inboard of mid-semispan than it is 
outboard. In particular, the computed upper surface shock strength at 2y/b = 0..79 is larger than that of the experiment. 
This larger strength is caused by a large boundary-layer separation in the experimental results at this semispan location, 
which is not accurately reproduced by the computed results. A good picture of this situation is given in Figs. 4 and 5 
which show a set of computed particle paths (Fig. 4) and an oil-flow photograph taken from the experiment (Fig. 5). 
The experimental separation is about twice as large as the computed separation. The spanwise extent of the experimental 
separation is reasonably predicted by the computation, but the streamwise extent is underpredicted. Some reasons for 
this discrepancy are coarse-grid and turbulent-model effects, as well as the sensitivity of the flow pattern to changes in 
the free-stream Mach number. Despite the difference in the size of the separation zone, the overall comparison is quite 
encouraging. 

The convergence rate of TNSCY 4 versus TNSCY3 is illustrated in Fig. 6. The time step used in the non diagonal 
version was L:l.t = 0..0.0.4, which was the largest time step possible while still maintaining stability of the code. The diagonal 
version (TNSCY4) used a variable time step (as described previously). (Even though we are comparing a fixed time 
step solution and a variable time step solution, the main speedup in the diagonal algorithm is not in tpe variable time 
stepping procedure, but in the proper linearization of the dissipation terms (Ref. 11). The slow rate of convergence in 
the nondiagonal version (TNSCY3) seems to occur in the outer inviscid zones. The residual in the viscous zones in the 
first thousand iterations drops fairly fast, then begins to flatten out. In 50.0.0. iterations, all zones have dropped about two 
orders of magnitude in the L2 norm of the residual. In contrast, the convergence rate of the diagonal version drops rapidly 
in all the zones. A three-order-of-magnitude drop in the L2 norm occurs in about 40.0-50.0. iterations. This convergence rate 
(coupled with the decrease in arithmetic operation count caused by the diagonal algorithm) increases by a factor of 40. the 
speed with which solutions are obtained. The faster convergence rate, as stated before, is due to the proper linearization 
of the fourth-order-explicit dissipation operator. This rate was possible in the nondiagonal version, but would involve 
inverting block pentadiagonals, which would substantially increase the computational cost. More time was required for 
the same case when wind tunnel walls were modeled, since a stronger shock occurs. 

We can also look at the development of lift and number of supersonic points (NSP) to study the convergence 
characteristics. Figure 7 shows the development stages, the X-axis is the number of iterations, while the Y-axis is left 
unlabeled (since the actual values were not of significance, but the overall trend in the approach to the steady state is 
important). The NSP overshoots the final converged solutions at about 100. iterations, but then quickly approaches the 
converged solution. At about 20.0. iterations, it is within 7% of the converged solution and at 30.0. iterations it is within 
1%. The lift also overshoots the final converged value, but at 20.0. iterations it is within about 4% ofthe final solution and 
at 30.0. iterations it is within 1%. If, instead of a three-order-of-magnitude drop in residual, convergence is based on 95% 
of the converged lift, then a solution can be generated in about 20.0. iterations, or 18 min of CPU time for this fine-grid 
calculation. 
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The next case presented consists of a massive, shock-induced, boundary-layer separation. This case was computed 
to ascertain the degree of robustness of the present algorithm and, in particular, the ability of the present zonal interfac:e 
scheme t() cope with large flow gradients. The geometry used is the same as that of the last case. The free-steam Mach 
number and angle of attack have been arbitrarily chosen to be 0.9 and 5°, respectively. Utilization of the wind tunnel 
wall boundaries produced a "choked" solution with a shock wave spanning the tunnel. After several hundred iterations 
and a moderately converged calculation, the solution diverged as expected. This result was a consequence of the "fixed" 
upstream boundary conditions forcing more mass flow through the tunnel than the choked condition would allow. 

The solution was repeated with free-air boundary conditions, and then convergence was easily achieved. Computed 
particle paths on the upper wing surface are displayed in fig. 8. Note that approximately half of the upper wing surface is 
separated. The solution contains several interesting features, including a separation saddle point, a focus, a reattachment 
saddle point, and a node. Note also that this computed solution has a stable sequence of critical points on the separation 
line; that is, a node followed by a saddle point and then a focus. This case required about 2.8 hI' of CPU time. 

Two different perspective views of the three-dimensional particle paths are shown in fig. 9. Figure 9a shows 
a view from outboard of the wingtip and fig. 9b shows a view from behind and above the wing. The height and 
three-dimensionality of the separation zone are apparent in these figures. The dashed particle paths move along the wing 
surface until the separation line is encountered and then are deflected up over the separation bubble, with a few of the 
dashed paths captured by the primary swirling flow at the center of the wing. The solid particle paths are more intimately 
involved with the two swirling pockets of flow and essentially define these regions. 

The position of the separation region relative to the zonal interface boundary is best displayed by plotting particle 
paths constrained to lie in spanwise cross-sectional planes. Two such plots are displayed in fig. 10. Figure lOa shows 
cross-sectional particle paths for a semispan station of 2y /b '" 0.66 (k"'13). At k",13 the separation region is large and 
easily extends above the zonal boundary from the Navier-Stokes region into the Euler region. Nevertheless, the solution 
looks qualitatively reasonable. An enlargement of the separated portion of the solution is shown in fig. lOb. From 
this figure it can be seen that the particle paths pass smoothly across the interface boundary with no function or slope 
discontinuities. Thus, the primary objective of doing this calculation was achieved. Despite the existence of a strong shear 
gradient across the explicitly updated interface boundary, the present approach is capable of predicting a stable solution 
that is reasonably free from interface boundary influence. 

The next computation involves the WING C configuration. WING C is a generic advanced-technology wing 
designed by Ames Research Center and the Lockheed Georgia Company. Two sets of experiments are availabile fol' this 
configuration, one by Hinson and Burdges (Ref. 20) and one by Keener (Ref. 21). WING C, is illustrated in figure 11, it 
has an aspect ratio of 2.6, a twist angle of 8.17°, a taper ratio of 0.3, and a leading-edge sweep of 45°. 

The separated-flow case consists of the WING C design conditions: Moo '" 0.85, a '" 5°, and Re '" 6.8 x 106 . These 
conditions were intended to result in attached flow with a mild shock wave and a mild pressure recovery. But, for reasons 
discussed in Ref. 21, these conditions produced a "local" (so defined by its author) flow separation. 

The ·calculated pressure coefficient distributions are compared with experimental data in Fig. 12. Note that, in this 
figure, the angle of attack for the Keener data (Ref. 21) is 5°, whereas for the Hinson and Burdges data (Ref. 20), it 
is 5.9° in accordance with their accounting for wall effects. Consequently, computations were done for these two angles 
of attack (a '" 5° and 5.9°) at Moo '" 0.85, and Re '" 6.8 x 106 • The computation with a '" 5° agrees with the two 
experiments better in terms of matching leading-edge pressures. On the other hand, the results with a '" 5.9° seem to 
agree well with experiments in terms of shock position and lower-surface pressures. Note that the differences between 
the two computations and the two experiments are generally the same order of magnitude. The experimental differences 
again may be explained by considering the uncertainities in the measurements of Mach number and angle of attack, and 
the assessment of the wall-interference effects associated with the experiments. Possible distortions in the wing geometries 
caused by aerodynamic forces and moments during the experiments could also have affected the measurements. On the 
other hand, the numerical simulation has its own difficulties associated with the coarse grid near the tip, an inadequate 
turbulence model, free-air boundary conditions, etc. However, the overall comparison is good considering the uncertainities 
just mentioned. 

The experimental oil-flow picture for the same case is presented in Fig. 13. The computed skin-friction lines for this 
case are presented in Fig. 14. Note that the larger angle of attack (a '" 5.9°) was used in the computation to get closer 
computational/experimental agreement. The calculation with a '" 5° did not display a separated flow. In this computation, 
the global features of the experiment are predicted well. The location and size of the separation line, the streamlines 
being trapped by the vortex-like formation inboard of the separation line, the curvature of the tip streamlines, and almost 
two-dimensional flow outside the separation zone are all accurately predicted. The critical points of the skin-friction map 
were not well reproduced, but a nodal point (N.) along the line of separation and near the tip is predicted. Overall, the 
simulation is globally good and is encouraging. 

6. CONCLUSIONS 

A fast diagonal algorithm has been successfully implemented within the framework of a zonal approach. Results 
indicate that the modified code (in obtaining a solution for a moderately difficult case) still maintains its fast convergence 
characteristics. This improvement is demonstrated by producing a three-dimensional fine-grid Euler /N avier-Stokes sol ution 
in 45 min on the Cray-XMP, which is a speedup by a factor of 40 over the original code. The effects of the overlapping 
procedure as well as the explicit boundary conditions used in the zonal approach do not appear to degrade the convergence 
characteristics of the diagonal scheme. Numerical results were compared to experimental results for moderate to difficult 
flow conditions for two different low-aspect wings. Good agreement existed between the associated pressure fields. Good 
correlation between the computed separated surface flow and the experimental oil flow patterns was also obtained. 
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NACA 0012 AIRFOIL SECTIONS 
ALE = 20°, AR = 3.0, TR = 1.0 
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Fig. 1 Pe:rspective view of embedded grids. 
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Fig. 3 Pressure coefficient comparisons: NACA 0012 airfoil section, ALE = 20° ,AR = 3.0, TR = 1.0, Moo = 0.826, 
Q = 2.0°, Re = 8X1Q6. a) 2y/b = 0.25; b) 2y/b = 0.78. 
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Fig. 5 Oil-flow pattern on upper wing surface: NACA 
0012 airfoil section, ALE = 20°, AR = 3.0, T R = 1.0, 
Moo = 0.826, ex = 2.0°, Re = 8X1Q6. (From Ref. 16) 
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