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LIST OF SYMBOLS

a coefficients of patch polynomials

b wing span

c local wing chord

C,, local section lift coefficient

C curve

V domain of irrotational flow

i,j node or patch indices

k,£ powers of u,v in polynomials

m,n rectangular patch network size

M Mach number
s\

n unit normal vector

P field point

Q singularity point or coefficient matrix

r relative position vector

s arc length of a curve

t time lapsed

->•
t unit tangent vector

u,v parameters used in interpolants

V induced velocity vector at a point - Components of

are: V,. Vy. V,.

V^ free stream velocity

X matrix of patch node positions and tangent vectors

x position vector of point Q, with coordinates x,y,z



V

a angle of attack

3 sideslip angle

Y vorticity strength

F circulation = / ydS

6,A increment

9 angle

<J> potential function
2

V Laplacian operator

f position vector of point P, with components

a source strength

V doublet strength

P magnitude of relative position vector

// surface integral over area S
S

Subscript^

u,v partial differentiation



CHAPTER 1: INTRODUCTION

Scope

Potential flow methods have been used successfully for

the last two decades in the preliminary design of partial or

complete aircraft configurations. Predictions by numerical

schemes based on potential flow analyses include such aero-

dynamic characteristics as wing load distributions, surface

pressure distributions, engine duct flows, and some stability

derivatives, among others.

Results of such computations concerning surfaces affect-

ed by trailing vortex sheets of lifting surfaces are correct

only for simple configurations where the effects of the loca-

tion and shape of the vortex sheet are secondary. The shape

of the vortex sheet is usually assumed to be flat. Realisti-

cally, however, its configuration changes continuously in the

downstream direction at least until roll-up of the sheet into

concentrated vortex cores is complete. The process of roll-up

is rather complex. Mutual interaction among the elements of

the sheet depends on their relative positions, however, the

configuration of the sheet is unknown prior to the complete

solution including its effect.

Much of the change in the sheet shape occurs within a

downstream distance from the generating wing equal to half

the wingspan. The purpose of this study is to develop a



numerical technique of modeling the vortex sheet with a

deformable surface definition, along which a continuous vor-

tex strength distribution in the spanwise direction is ap-

plied, so that by repeatedly modifying its shape, its true

configuration is approached, in the proximity of its generat-

ing wing.

Design problems requiring the inclusion of a realistic

configuration of the vortex sheet are numerous. Some

examples are discussed in the following.

Control effectiveness and stability derivatives

In the early stages of aircraft design, horizontal and

vertical stabilizers must be sized fairly accurately to en-

sure aircraft controllability within the flight envelope.

Downwash and sidewash angles at zero angles of attack and

sideslip and their rates of change with these angles are pre-

dicted in practice using empirical relations (reference 11

and 31, for example) which are not based on general aircraft

configurations, but rather on crude parameters such as wing

sweep and dihedral angles, aspect ratio, etc. The real

governing factor is the wing loading distribution and changes

in it with Mach Number and attitude with respect to free

stream direction. This distribution results in a free vor-

tex sheet extending in theory from the trailing edge of the

generating wing to an infinite distance downstream of the

wing. The vorticity is constant streamwise, and varies with



chordwise distance. Roll-up of the sheet occurs about areas

of concentrated vorticity called the vortex cores (4, 23)

and if in the vicinity of the empennage, such cores will

affect surface pressure distributions. Two cases are

represented.

Longitudinal stability As illustrated in Figure 1,

the deflected flaps of the aircraft result in a redistribu-

tion of lift on the wing, and thus a concentrated vortex

core pair emanates at the outboard edge of the flaps that

drastically changes the downwash at the horizontal stabilizer,

Shock induced separation of the outer wing panel in transonic

aircraft causes a similar effect, which aggravates the insta-

bility due to the forward displacement of the center of lift

of a sweptback wing.

Lateral stability Figure 2 depicts a yawed twin-

engine aircraft. The dip in the wing lift distribution due

to the nacelles, caused by inviscid as well as viscous

effects, leads to a pair of concentrated vortex cores which

are not symmetric due to yaw. The sidewash angle distribu-

tion along the stabilizer is altered. In addition, the left

side of the rear fuselage is closer to center of the inboard

left vortex than the right side is to the center of the in-

board right vortex. A pressure differential and thus a

destabilizing yawing moment result.
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Figure 2. Lateral destabilization due to nacelle side
forces and complex wing loading



Canards

An effect similar to the above should be investigated

for canard-configured aircraft. The vorticity from the

canard could affect the lift distribution of the main lift-

ing wing, and subsequently alter the aerodynamic performance

of the wing under certain conditions.

Propellers and helicopters rotors

Good aerodynamic design for propeller or rotor after-

bodies (nacelles and other solid boundary surfaces) requires

simultaneous consideration of all components. The effect of

these lifting surfaces is felt on other solid boundaries

through the vortex sheets they shed. Therefore, a more de-

tailed knowledge of the shape of the vortex sheet and hence

the induced flow field is necessary. For these cases, a

quasi-static analysis is required. Such studies are also

necessary for designs which must result in low aerodynamic

noise.

Trailing vortex hazard

Although this area has been studied extensively recently

(7, 9, 23), the present method could be extended to its treat-

ment, insofar as determining the locations and intensities

of each of the trailing vortex cores. The interest in this

case is primarily in the far downstream region and to promote

early dissipation of vortex energy. Farther downstream,



viscous effects become more pronounced, and since the

current method is inviscid, vortex merging and dissipation

must be treated by some other means. Nevertheless, it is

necessary to establish the initial roll-up which is essen-

tially inviscid, to enable the treatment of merging and

dissipation.

Background

The present method is based upon earlier work in three

major areas of computational methods, all of which have

undergone considerable development in the last two decades.

A brief historical review is presented in this section.

Panel methods

In the early sixties, a computational method was devel-

oped to predict nonlifting potential flow about arbitrary

three-dimensional bodies by placing a source distribution on

the outer surface of the body. The source strength is approx-

imated by piecewise constant strength over flat "panels"

which approximate the body surface (15). At about the same

time, vortex lattice methods were being developed (26) for

very thin lifting surfaces. The approach is similar except

that the camber surface of a lifting wing is represented and

a discrete horseshoe vortex lattice is used. Later, the two

techniques were combined to solve arbitrary three-dimensional

lifting potential flow configuration problems. Examples of
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work published in this area include those of Rubbert and

Saaris (28). The solution of the flow is obtained by solv-

ing for the singularity (source and doublet) strength dis-

tributions on the entire surface. The problem is reduced

to a set of simultaneous linear equations which can be solved

non-trivially by imposing Neumann boundary conditions at the

solid boundaries and the Kutta condition at the lifting sur-

face trailing edges. The induced effects on the surface or

elsewhere can then be calculated. More recent developments

were directed to higher order singularity (source and doublet)

distributions, in order to improve the predictions and also to

facilitate surface paneling (20). Excessive care for the

panel arrangement is thus no longer required.

In the present study, the doublet (or vortex) strength

distributions are known (obtained by some panel technique)

for the test wing. The spanwise distribution remains the

same along the sheet at any streamwise station, downstream

of the trailing edge. The same type of doublet distribution

panels are used to determine induced effects to obtain the

rolled-up shape, except that these panels are constantly

reshaped and refitted.

Vortex sheet roll-up

A comprehensive survey of computational methods for

lift-generated wakes is given by Rossow (23). The vortex

sheet (or wake) trailing behind the generating wing is divid-



ed in three regions: roll-up, plateau, and decay. In this

study, the roll-up region is the one of interest. The prob-

lem of roll-up was addressed by Betz (4), then by Westwater

(32), where approximations were introduced to eliminate the

unnecessary complications of viscous effects. Many techniques

have been developed since to overcome the shortcomings using

artificial means. The major problem was the use of discrete

vortices to approximate the vortex sheet, rather than a con-

tinuous distribution as the present method proposes.

The interest in obtaining the rolled-up shape of the

wake was motivated by the advent of large aircraft. The

wake left by a Boeing 747 for example, during climb or

descent is extremely hazardous for following aircraft and

extends for several kilometers. Many of the methods develo-

ped have been intended for finding means of alleviating that

hazard, such as by modifying the wing loading of the generat-

ing aircraft to prevent or reduce vortex merging (part of the

roll-up mechanism for complex wing loading) and thus speed up

the decay process.

Parametric bicubic surface representation

Representation of general curved surfaces was developed

for computer aided design of aircraft (13) and automobiles

(5). It is necessary in this study to use curved panels, and

it was found that the Ferguson patches are best suited for

modeling the vortex sheet surface.
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General Description of the Proposed Technique

Since the purpose of this method is to establish the

shape of the trailing vortex sheet in the vicinity of the

wing, it is assumed that the strength of the vortex sheet

is known. Curved and deformable panels of known piecewise

linear vorticity strength distribution (equivalent to quad-

ratic doublet distribution) are patched together to simulate

the vortex sheet, (Figure 3). The geometry of these panels

is modeled by using parametric bicubic patches with second
2

derivative continuity (C ) across their boundaries.

Initially, the surface is flat. The induced velocity at

each node in the network is calculated, and some nodes can

be displaced accordingly, resulting in a new shape, with the

remaining nodes following. The procedure is repeated with

the new shape until the entire surface has been relaxed to

the final shape. (A complete description is in Chapter 4.)

These induced velocities can include the effects of the

bound and free doublet panels as well:as any solid boundary

whose consideration is desirable, such as a fuselage, trail-

ing lifting surface, nacelle, etc. However, the solution for

the entire flow must be re-computed at each relaxation step.

In this study, only the doublet panels of the trailing and

bound vorticity are considered, since the inclusion of other

bodies is merely a programming and computing effort. In
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Boundary
v=0 / 'u

Node 2,1

Node 1,1

Boundary u=0
Node 1,2

Boundary
v=l

Boundary
u=l

Node 2,2

u and v are the parameters
in the bicubic expression
for physical coordinates.

Figure 4. Panel nomenclature
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addition, the roll-up effect on the lift distribution on the

generating wing itself is assumed to be negligible (30).

Flow Idealizations Summary

The following assumptions are made in this study:

Potential flow The flow is everywhere irrota-

tional and incompressible except at the boundary surfaces

(specifically the vortex sheet).

Symmetry of the generating wing and vortex sheet

Sideslip could easily be included for yawed configurations.

Inviscid flow The viscous effects become pro-

nounced downstream of the area of concern.

Tip flow No tip flow for the wing is considered,

since the wing character itself is not of primary concern,.

although its loading near the tip will be somewhat affected.

Steady state Oscillatory and other time-depen-

dent flows must be treated quasi-statically if this technique

is to be used.

Wing lift distribution The wing lift distribu-

tion is based on the assumption of a flat trailing vortex

sheet. As indicated above, the roll-up effect is negligible

at least for the purpose of this study. In Rossow (23),

noticeable effects are shown which could be included with

considerably more computational effort.
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CHAPTER II: VORTEX SHEET GEOMETRY

The vortex sheet is mathematically considered to be a

surface of finite width extending from the lifting surface

to infinity, across which there is a jump in the potential

function <j>. This jump in <j> is equal to the doublet strength.

The surface must be represented by a mathematical model which

provides for at least slope continuity and allows for the

curled or spiral shape of the rolled-up sheet including infi-

nite slope tangents, as well as slope constraints at the

edges of the sheet.

Parametric Bicubic Representation

The position vector x=(x,y,z) of a point P on the

surface within one patch is given by the interpolant

3 3
x = I. Z a, . uk v£ (1)

k=0 £=0 ̂

where u and v are the independent parameters, such that

0<u, v<l, and a, , are the polynomial coefficients. Note

that the vector coefficient a, ,. consists of three elements,

one for each of the x, y, and z coordinates. The sixteen

vector coefficients can be determined by specifying x,x ,x

and xuv at four corner points or nodes. (The subscripts u,v

f\ ^
refer to the partial derivatives •*— and -r— , respectively.)
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The entire surface is defined by a rectangular array of

patches. Every four adjacent patches share one common inter-

ior corner point or interior node. Around the periphery,

every two adjacent patches share one common boundary point or

boundary node, except that the corner nodes belong only to

the corner patches. This array of patches will be referred

to as a network. An illustration is shown in Figure 5.

In Figure 5(a), the geometry for a network of m x n

patches is shown in the parametric space. A total of

(m + 1)(n + 1) nodes result. The interior nodes are those

with index i = 2,3 m and j = 2,3 n. The others are

boundary nodes. Each parameter changes from 0 to 1 within

a patch, and the coordinates of the parametric space shown,

u1 and v1, are the cumulative values of the u, v. The bound-

aries are lines of constant u or v parameters. Normal to the

u = constant boundaries, are the tangent vectors x for each

node; and normal to the v = constant boundaries, are the

tangent vectors x , parallel to the v = constant and

u = constant lines respectively. These tangent vectors

required must be specified according to considerations to be

discussed in Chapter 4.

The transformation in equation (1) takes a point in the

parametric space to a corresponding point in the physical

space. It is necessary to determine the remaining 2m + 2n -4

tangent vectors at the boundary nodes, plus 2(m-l)(n-l)
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Figure 5 b .  patch network geometry in physical Space 
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tangent vectors at the interior nodes. This tangent vector

information, together with node coordinates, is sufficient

to enable the computation of the sixteen vector coefficients,

[a, ] (in matrix form) according to the matrix relations:

[ak£] = QXQT (2)

where X =

and Q =

X00: X01 Xv00 Xv01

X10 xll Xvl0 xvll

Xu00 Xu01 Xuv00 Xuv01

_ Xul0 xull Xuvl0 xuvll

1

0

-3

2

0

0

3

-2

0

1

-2

1

0 "

0

-1

1 .

The matrices for the y and z coordinates are similar (12).

The letter subscripts indicate partial differentiation,

and the numerical ones indicate the value of the parameter

at the patch nodes: the first for u and the second for v.

3xFor instance, x Q, refers to -r— (u=0, v=l) .

Advantages of parametric bicubic patch panels

The main advantage of a higher order patch geometry for

an aerodynamic singularity panel resides in its curvature.

A much larger number of flat panels is required to obtain the

same error in position. For instance, the cubic representa-
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tion of a 90° circular arc results in a radial error of +0.13%

of the true circle using one curve segment (12). To obtain

the same accuracy with straight segments, eleven would be

required.

The cubic requirement is necessary to allow for second

derivative continuity and inflection points (12) which are

inherent characteristics of the nature of the vortex sheet.

In addition, the parametric bicubic is widely used in air-

craft design, (3, 18), and its technology is well-established.

The fact that the vortex sheet surface changes directions

on itself in the spanwise direction to result in the spiral-

like shape, renders explicit functions cumbersome to use.

Implicit functions are equally cumbersome since they would

require solutions of nonlinear equations at each point. The

parametric representation eliminates these difficulties, and

moreover handles vertical slopes without special provisions.

Computations of the interior tangent vectors

With reference to Figure 5(b), consider the set of nodes

(i,j) with a fixed value of i, i1, that is, the nodes (i',1),

(i',2), ..., (i',n+l). The patch edges passing through these

nodes constitute a space curve, which is a composite para-
2

metric cubic which must possess the C property, if the entire
2

surface is C . In the case of any i1 curve, we obtain a curve

whose parameter is v. Similarly, another set of curves, j1,
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are obtained by varying the parameter u. By differentiating

the equation for a curve with constant v:

E
k=0

x(u) = E a,uk (3)

xu(u) =k£1kaku
k' (4)

x, (u) = Z k(k-l)a,uk~2 (5)uu k=2 k

The requirement is that at the junction of the ith and (i+l)th

segments:

(0) (6)

x1 (1) = xi+1 (0)uu uu

Equation (6) must be satisfied to achieve second order continu-

Now, as for the patches in Equation (2), the curve

polynomial coefficients can be written in terms of the

position and tangent vectors at the nodes:

gent vectors at the nodes:

aO = rO
al = ruO
a2 = 3(rrr0) - 2ruQ - rul (7)

a0 ='2(rrt-r,) + r n + r3 01 uO u

Substituting these values in equation (5), then in the third
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of Equation (6),

But, due to the first two of Equation (6),

xXu0 u0 ul

Now, xi refers to node i, XQ = x-, refers to node i + 1 and

* i 1

x^" refers to node i + 2. Thus for nodes 2, 3 ..... m, the

system of equations results:

u u = 3&i+2-&) i=l,2,...,m-l (8)

where i here denotes the ith node rather than patch as done

earlier.

If x and xm are known, then the remaining m-1 tangent

vectors at the interior nodes can be found efficiently by

solving the above tridiagonal system by the Thomas' algorithm,

(1).

The above is repeated for all n+1 curves, then, in the

transverse direction, for all m+1 curves in a similar fashion.

The remaining derivatives x , also called the cross

derivatives, or twist vectors, have zero values along lines

of minimum or maximum surface curvature. For simplicity,

this assumption was made and, as indicated by (12) , results

in a negligible amount of error.
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In the same reference, it is shown that the patches are
2

continuous in C across their common boundaries if the above

curve continuity is achieved.

Geometric Properties of Interest

The main purpose of a patch is to serve as a surface

position interpolant, i.e., given a parameter pair of values,

a corresponding set of physical coordinates of a point on the

surface of patch i is obtained:

3 3
x-= (x,-y,z) = I Z aj.uV (9)

k=0 i=0 ̂

such that 0 <_ u, v _< 1.

In addition, a tangent vector to the surface at the

point is a linear combination of a pair of tangent vectors,
jV £\ -ff fN «

x = -r— and x = ̂ — which are obtained merely by differentiat-
U oU V dV

ing with respect to the parameters u or v. If x ^ ax-^>

where a is a scalar, then the vector product x x x is a

vector normal to the surface at the given point.

Elemental area As illustrated in Figure 6, the

elemental area dA is given by:

dA = |x du|*|x dv|sin 9 = |x x xv|dudv

= Ii<yu
zv - VV + ̂ (xvzu * XuV + ̂ (xuyv - *vyu)|dudv

/\ /\ ^

where i,j,k are the unit vectors in the x,y,z directions.
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v+dv

3v dvl

Figure 6. Elemental area on a patch
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Integration of a function over the surface of a patch

It will be necessary to integrate the induced effects of

the vorticity which is distributed over the patch area, and

expressed as a function f of u and v. To evaluate the

integral

I =//f(u,v)dA, (10)
S

where S is the boundary surface bound in one patch, and dA is

the elemental area, the relation above is used, thus

11
I = //f(u,v)|x x xldudv. (11)

00 u v
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CHAPTER III: SINGULARITY SOLUTIONS FOR POTENTIAL FLOW

Governing Equations and Solutions

For steady, irrotational motion of an inviscid perfect

fluid, the velocity perturbation potential function satisfies

the Prandtl-Glauert equation:

+ <f> =0
VPZZ

which is valid for small perturbations, but not for transonic

2 -3-flow. For subsonic flow, by replacing x by x(l-M ) 2, the

equation reduces to Laplace's equation:

V <b = <j> + <{> + 4> =0* * Y Y

This equation also holds for incompressible irrotational flow

in general.

Applying Green's theorem, it can be shown (2) that

Laplace's equation can be converted to the integral equation:

where: P is a point in the flow field domain V,

S is the boundary of P,

n is the unit vector normal to S at a point Q on the

surface, and

r is the distance from P to Q. (Refer to Figure 7.)

This equation is a singularity solution to Laplace's equation.
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n

Figure 7a. Boundary for a closed surface.

n (upper
surface)

-n(lower surface)

Figure 7b-. Boundary for an open surface
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The two terms in the integrand contain

and -z—(

which are the potential functions of a point source and a

doublet, respectively. The terms <f> and -£ represent thedn

source and doublet strengths at point Q, thus equation (12)

can be rewritten as:

(13)

where: f is the position vector of field point P,

x is the position vector of boundary point Q,

a(x) source strength distribution on the boundary S,

and y(x) doublet strength distribution on the boundary S.

In panel methods, a and y are approximated by piecewise

constant, linear or quadratic distributions over each surface

finite element, called a panel, so that for K panels:

where S. is the area of the ith panel. By properly specify-

ing boundary conditions at a number of points (K) , called

control points, selected in this case on the surface, a set

of simultaneous linear equations can be obtained and solved

for cr^.y^.

Usually, source panels are used for closed surfaces and
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solid boundaries, while doublet panels are used for thin

lifting surfaces, or for lift generation on solid boundaries

as well as for barriers such as vortex sheets to render V

simply connected.

In this study, only the doublet solution will be of

concern, even though source distributions may be included to

represent solid boundaries and their effect on the roll-up

process of the vortex sheet.

Higher Order Doublet Panels

Unlike the panel method techniques where the objective

is to solve for the singularity strengths, in the present

case, the wing lift distribution, a function of the spanwise

location, is known a pn<ion.<i. It could be determined for a

given configuration from some panel method computer code,

experimentally, or by some other means. The problem here is

to determine the induced effects of the vorticity at various

key points of the flow field, in order to determine displace-

ments and thus modify the shape of the vortex sheet. Constant

doublet strength panels are equivalent to discrete ring vor-

tices, and a substantial approximation results. In the

interest of maintaining adequate accuracy without an excessive

number of panels of constant doublet strength, a bilinear or

biquadratic doublet distribution is used.
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Bilinear:

yT(u,v) = y, + y9u + y,.v + y,uvl 1 L J 4 (15)

Biquadratic:

2 2 2 2 22yI];(u,v) = y-j-Cu.v) + y5u + ygv + UyU v + yguv + ygu v

i

where u and v are the arc length in the streamwise and span-

wise directions, respectively, of the vortex sheet.

In the free portion of the vortex sheet, the doublet

strength does not vary streamwise, and u is a constant there.

Equivalence of doublet and vortex panels

The induced velocity at a point P due to an elemental

vortex panel of area dS is obtained from the Biot-Savart law:

where: r is the relative position vector of P with respect

to the panel centroid.
r\

t is a unit vector in the direction of the vorticity

Y is the local vorticity strength.

The velocity potential at a point P due to a doublet
/\

panel of local strength y with normal vector n is:

-+ *
,, r*n j0d<t>p = -̂ jydS

XV >\

It can be shown that yt is equivalent to n x Vy , (16),

thus producing the same potential function in P. Both



32

approaches are used. In reference (27), the doublet panel

is preferred because the doublet strength is a scalar.

However, a biquadratic approximation is used to reduce the

approximation error, since the first order error term is

nonexistent, resulting in a more complex panel model.

Reference (18) suggests the use of a bilinear vorticity

distribution, which is an equivalent approximation to the

biquadratic doublet panel.

To assess the approximation error, consider a two-

dimensional flat vortex sheet as in Figure 8. The induced

vertical velocity at point x on the sheet segment from x,=0

to x,=c is given by:

V(x'0) - 0 xl " x

Expanding y(xn) in Taylors' series about x:

j £

Y(XT) =
1 ^ " " dx

Substituting in Equation.(17):

« o
V^(x,0) = 1z

-, c dxn ., , ,2 c
tY(x) / —% + !£<x)-c + i 5_l(x) / <x1-x)dx1]

0 x-L-x dx L dxz o
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Y
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Figure 8. Vorticity distribution on a two-dimensional

flat surface along the x-axis
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If point x is the midpoint of a panel, the first and third

terms in the square brackets vanish. Thus, in order not to

dyexceed second order error, the derivative -r- must be nonzero.dx

This is achieved by using a bilinear y distribution. Biquadra-

tic distribution will not reduce the error. In addition, since

the bilinear distribution over each panel provides C (continu-

ity of value) for y, there will be no concentrated vorticity

at the panel edges.

Analysis similar to the above can be used to demonstrate

that source panels possess the same behavior, and bilinear

source distributions would result in a second order error in

the distance from the control point.

Derivation of the vortex panel induced velocity for the free

vorticity

Considering the geometry of one panel represented by a

parametric bicubic, the vorticity vectors are tangential to

lines of constant values of the parameter v, which are space

curves lying in the vortex sheet, oriented in the general

streamwise directions as shown in Figure 9. By virtue of

Helmholtz1 first vortex theorem, the strength will not vary

along these curves. Therefore, each v-line is a vortex

filament of infinitesimal strength Y(y-i )dy, , where y, is the

y-coordinate of the generating wing trailing edge. As indi-

cated earlier, y = y(y-i) is known. For simplicity, it will

be approximated by a piecewise linear distribution in v
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v=0

v

General direction
of V

v=l

u=l

Figure 9. Vortex panel configuration for vorticity
along a v=v, curve
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between the nodes of the free vortex sheet's leading edge,

which coincides with the wing's trailing edge. For the

panels with index j ,

Y(V) = Y ( y _ ) + [Y(V) - y(y.)]v (is)

at any point on such panel whose position vector x is given by

Eq. (1). The unit tangent vector is given by
->•
Xu

t = — — (19)
I*J

The vorticity induced velocity at a point whose position vector

is £ due to the vorticity in panel i,j is obtained by integrat-

ing Eq. (16) using Eq. (11):

(20)

with m x n is the number of patches representing the sheet in

the stream- and spanwise directions, respectively.

Derivation of the vortex panel induced velocity for the bound

vorticity

The formulation is identical to that of the free vorticity
/\

with the exception that the vector t does not coincide with

x , but is a linear combination of x and x . Equation (20)

is thus applicable to the component along x inducing V,.

The other component along x induces a velocity vector V~:
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u1

i 1]- * X

2 00 1 ||t-3x

also,

and for the entire sheet consisting of mxn panels

m n . .
Z Z $1>J (22)
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CHAPTER IV: THE VORTEX SHEET

Review of Methods of Rollup Prediction

Betz1 Theory

The earliest attempt to analyze the behavior of vortex

systems in a manner applicable to the prediction of the then

known phenomenon of vortex sheet rollup was introduced by

Betz in 1932 (4). The theory is based on the Kutta-Joukowsky

theorem of vortex lift on a body L, about which a circulation

T exists:

L = pVF

where p is the fluid density, and V is the linear velocity of

the body relative to the fluid perpendicular to L. Thus, if

a system of such bodies interact, with the bodies becoming

infinitely small, and if there are no solid outer boundaries

to exert a force, the net lift forces and moments of these

interacting vortices must be zero. As a consequence, and as

a consequence of Helmholz1 theorem, the following conservation

rules can be written to relate the vorticity in the sheet as

it leaves the wing trailing edge, with that of the rolled-up

sheet:

1. Vorticity:

dy= /^dr (23)
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The left-hand side of the equation refers to the

initial flat sheet at the wing trailing edge, y

being any spanwise station and b the wing span.

The right-hand side refers to the rolled-up vor-

tex core, r being a radial position in the vortex

core from its center and R the core radius.

2. The first moment of vorticity:

ydy . rdr (24)

As a consequence, the centroid of the vorticity

located at :

where

'o

remains at a constant spanwise station. The vertical

position, however, will change since there is an

external force, the wing lift, applied to the fluid

elements which results in a downward motion of the

centroid.

3. The second moment of vorticity about the centroid:
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z
_

y y r

These relations can be used to determine the structure of the

rolled-up vortex core, that is, the position of the core

radius r in which a portion of the sheet from a station y to

the tip is contained. Rossow (25) shows that

r = y . y

Wings with nonsimple loading, such as for flaps extended

configurations can also be treated using a method developed

in reference (8) .

Unfortunately, these rules and methods are helpful only

for fully developed vortex cores, since the time history of

the rollup cannot be predicted.

Time History of Rollup

In 1935, Westwater (32) developed a technique for obtain-

ing the vortex sheet shape by representing it with discrete

vortices of finite strength and infinite length, and computing

their positions at successive time increments. These positions

are equivalent to flow streamlines and the time increments

correspond to streamwise stations. Computations are performed

in the Trefftz Plane, that is, the infinite filaments are

assumed straight and perpendicular to the plane. The bound

vorticity is ignored and thus the problem is reduced to two-

dimensions.. The induced velocity at a point where any one
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vortex filament intersects the Trefftz Plane is the sum of

the induced velocity vectors of each vortex filament except

the one in question. The point is moved by an incremental

displacement equal to the time increment times the induced

velocity vector. This is done for each filament and the

process repeated for various streamwise stations to obtain

the time history of the configuration. Plots of Westwater's

results are given in his paper as well as in (30) and (9)

for an elliptic loading using 20 filaments for the entire

span.

Discretization seems to lead to several problems. The

elimination of the filament at which the induced effects are

being computed is both valid and necessary for a finite or

discrete system, however, it is a poor representation of a

continuous system since it creates a "gap" in the sheet.

Should the number of filaments be increased, the two vortices

adjacent to the point in question would become too close and

result in excessive induced velocities. Another problem is

the increased strength of the tip filaments, compared to the

remaining ones. Moore has found, as reported by El-Ramly (9),

that such tip filaments will circle around each other, imply-

ing that the sheet intersects itself.

Some of these idealizations were removed by Butter and

Hancock (6). Three-dimensional effects were considered. A

line vortex at the quarter chord was introduced to represent
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bound vorticity, and the trailing vorticity is only semi-

infinite. A similar effort was conducted by Hackett and

Evans (14). The discretization effects are the same as

above.

Reference (9) notes the work of Neilsen and Schwind,

where some treatment is done to alleviate the discretization

effects, namely, when two vortices come too close to each

other, they are combined into one at their centroid.

Other researchers whose works are surveyed by El-Ramly

(9), concentrate on fully rolled up vortex cores, the dis-

tances for full roll-up and other related parameters not

directly related to the present study, for both inviscid and

viscous solutions. The inclusion of viscous effects to pre-

dict decay of vorticity and the merging of co-rotating cores

has received considerable attention in the '70s decade when

the wake hazard of large aircraft became manifest. Again,

these works are surveyed in (9, 23). Experimental work was

conducted at Iowa State University (reference 19 ), to study

the merging of vortex cores which are fully developed. There,

two separate wings were used to generate a pair of rolled-up

vortex cores, in order to simulate multiple cores generated

by a single wing of a large aircraft during climb or approach

near airports, where the wake hazard is serious. The merging

of such cores may be desirable since it can lead to vortex

cores with diffused vorticity representing a reduced hazard
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to trailing aircraft. Much of the research (9, 24) deals

with the injection of auxiliary vortices which merge with

the primary tip vortex, as well as methods of assuring

speedy decay. For a specific aircraft configuration, it

is helpful to know where such cores will be situated upon

completion of rollup, and the relative magnitudes of their

strengths. Then, analytical or experimental predictions of

merging and decay can be simplified.

The present method in essence is similar to that of

Butter and Hancock (6), but removes many restricitons which

lead to over-simplifications. Mainly, a continuous distribu-

tion of vorticity, truly three-dimensional effects of the

vortex sheet shape, and a lifting surface are used with the

help of the building blocks described in Chapters II and III.

Furthermore, the technique is compatible with the advanced

aerodynamic paneling techniques in use today, allowing ready

incorporation of rollup effects, if desired.

The remainder of this chapter describes the method used

from the physical and computational standpoint.

Sheet Vorticity Strength Distribution

Panel Vorticity

At any point P on the vortex sheet (see Figure 10), the

vorticity strength vector y can De resolved in two components
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3 r s rYT = -5— and YO = "5— > which are tangential to the
L a S-i £. o S r*

u=constant and v=constant curves at point P, respectively.

T is the circulation in the sheet at point P, and s, and 82

are arc lengths in the direction of YO a^d YI» respectively.

Note that Y^ and YO are not necessarily perpendicular to each

other. It is necessary to express these vectors in terms of

their values at the patch nodes, using a bilinear distribu-

tion as indicated earlier. For the magnitude,

Y(u,v) = U^v

where,

Y- i are the magnitudes of YI °r Yo at nodes (i,j),i > J -1- ^

U^ = l - u - v + uv,

U21 = u - uv,

U-,2 = u ~ uv» anc^

U22 = uv'

For the direction, the unit tangent vectors t,, t2 are

merely the tangents to the v=constant and u=constant curves,

respectively, so that:

^ y

t ^ V" / I TT I flT"l H^ A. / I A. I | CLL1U.

(27)
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Computation of nodal vorticity strengths

It is assumed here that: (1) the wing spanwise loading

and (2) the chordwise loading distributions at various span

locations are known. A number of wing stations (span loca-
j-p

tions) are selected, and the values of y^ = -r- at these sta-

tions obtained, where T is the bound vorticity strength at

the spanwise station y. The value of r is obtained from

elementary vortex lift theory (Kutta-Joukowsky) :

r - \ v-c c*
where C and C. are the local chord length and lift coeffi-

cients, respectively.

Between a pair of consecutive wing stations, j and j+1,

Y-i is approximated by a linear distribution in y:

The change in bound vorticity strength in this interval,

T.+-, - r. must be equal to the strength of the shed or trail-

ing vorticity. As a direct result of Helmholtz ' first

vorticity theorem:

- r
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T. is distributed in the chordwise direction in a fashion

similar to that of the load distribution, C - C , where C
p£ pu p

is the pressure coefficient, and the subscripts refer to lower

or upper surfaces of the wing. Figure 11 depicts typical dis-

tributions for two categories of airfoils. In addition, the

following relation holds:

at any wing station j . YO denotes the component of vorticity

proceeding in the spanwise direction. It is again approxi-

mated by a piecewise linear distribution (Figure 12), i.e.,

linear over a chord segment from point i to point i+1.

Y ^2^±+l " (Y2}i
(x) = x (x -xi

Between two consecutive stations j , j+1, a linear blending

function is used to interpolate, and thus the bilinear dis

tribution is used. The same interpolation method is used

for YI •
L C
Now, since r. = / YO^X, the piecewise interpolant

J 0 Z

results in a trapezoidal rule summation:

m x. ,1 - x.
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Conventional airfoil

Aft loaded airfoil

x

Figure Ha Typical chordwise vortex strength
distributions

(=Y

x_ X-1 m m+1

Figure lib. Approximation of chordwise loading
distribution using a linear
interpolant
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b/2 y

Figure 12. Typical spanwise load distribution for a wing
and piecewise linear approximation of corre-
sponding shed vorticity
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Since the distribution is known, the (YO)• can be expressed

as multiples of YO» t^ie maximum YO value along the chord,

then

m
v« 7 r (Z ) 4. (Y ) lAx = f-vi (28)Yo 2 i+1 2 i i '2 v*.oy

= T/f (29)

or,

Y2

where:
i m

f = 4 Z I

Axi = xi+l " xi' (30)

and

Y2 = T2/Y2

Therefore, the vorticity flow through the panel edge (1), on

Figure 13, has the circulation

+ Y 2 i jAx i (31)

and through panel edge (2)

i = Y2[(Y2)i+1 + (Y2)ilAxi (32)
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Similarly, through panel edge (3), the vorticity flow has the

circulation:

T3 = [(Ŷ j+i + (Yî i AYj (33)

and through panel edge (A):

j (34)

The following conditions must be noted:

1. TI + r3 = r2 + r4 (35)

2. YI = Y2 = 0 (36)

along the leading edge, and

3. YI = 0 (37)

along the centerline or plane of symmetry.

If T is known at the centerline, and YI is known at all

wing stations, which are determined a. p/i/to/i/i. along with the

chordwise loading, then by virtue of Equations 28-30, 36,

7*2 at each station, and thus y? at a^-^ n°des can be obtained.

By virtue of Equations 31-36, the values of y^ at all nodes

can be obtained too.

In the free portion of the vortex sheet, the wake ^^ = ®

everywhere, and the values of y-i remain unchanged from those

at the trailing edge.

In the parametric patch representation scheme, all

variables are expressed in terms of the parameters u and v,



53

which are used to represent the streamwise and spanwise

directions with proper transformations, respectively.

As a matter of general interest, in the panel methods

where the circulation is everywhere unknown, it is customary

to express the nodal circulation values in terms of a subset

of values, usually one per spanwise station. The induced

effects are then added to the source panels representing the

solid boundaries. An additional number of equations equal

to the number of unknowns (in this case the yi values) is

required. These are obtained by specifying boundary con-

ditions at an equal number of points, for example, where the

Kutta condition may be enforced. The problem of the vector

nature of vorticity is thus eliminated.

Remark on spanwise positioning of nodes

Parametric bicubic patches of the Ferguson type used in

this study guarantee second derivative continuity. However,

the node spacing has an important effect on the quality of

fit. If two neighboring patches have widely varying lengths,

the tangent vectors at the common boundary will be too high

for the smaller one, causing loops, and resulting in excessive

surface areas as well as area related integrals over the

patch.

On the other hand, the piecewise linear distribution of

vorticity dictates another criterion in the selection of nodal

positions. A linear segment should be terminated before the
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error in the linear representation is excessive, in order to

maintain the higher order terms at a minimum.

Induced Velocities

It is necessary now to compute the induced velocity due

to the entire vortex sheet, bound and free portions, at a

number of points on the free portion, namely, the patch nodes,

Equation 22 is used. The induced velocities of each panel,

Equation 21 (a generalization of Equation 20), are summed for

all panels representing the vortex sheet. If other singulari-

ties are present, such as solid boundaries represented by

source panels or other lifting surfaces represented by vortex

panels, their induced velocities would be added, too. Source

panels induced velocities are given by an expression similar

to Equation 20, except that the vortex strength is replaced
/\

by source strength, and the tx term is dropped (18).

The surface integral in those equations is not suitable

for closed form evaluation, unfortunately, and a numerical

quadrature is employed (Chapter V).

Symmetry

Computations can be greatly reduced by taking advantage

of the symmetry of the configuration about the y=0 plane.

Letting the physical quantities be expressed for the "left-

hand half" of the wing in terms of those on the "right-hand
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half" (primes are used for the left side), then:

x' = x

y' = -y

Z' = Z

for the vorticity unit vectors:

1- = -y -i 4- AT i 4- <7 Ifcl xux + yuj zu
(39)

tl • ̂u1 + yuj * zuk

= xvi + yvj + zvk

(40)

t'2 = ̂ v1 + yvj ' zvk

for the distance from the elemental vortex to a point in space:

6x' = 6x = £ - x

6y' = n + y; 5y = n - y (41)

6z' = 6z = ^ - z

Again, is the position vector of the point at which the

induced velocity is to be computed, x is that of the vortex

element, and subscripts u and v denote partial derivatives

with respect to these parameters. In Figure 14, these various

quantities are depicted.

The displacements in the wake elements are mirror imaged

on the left side from those computed on the right side; thus,

the panel symmetry relations (38) hold.
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Procedure to Compute Rollup

Initial conditions and sheet length

The proposed method is an iterative procedure where an

initial shape for the free portion of the vortex sheet must

be assumed. The most logical one would be to extend the trail-

ing edge in the direction of the free stream velocity, since

all sections of the sheet has gone through the trailing edge

as they were being shed from the wing. The sheet is extended

to a downstream station far enough so that the induced effects

at the areas of interest (e.g., the empennage) become negli-

gible. An additional extension is required to promote adequate

influence for the rollup of original portion. In the latter

portion, accurate rollup is not of essence, rather, its simula-

tion of the fact that the vortex sheet is in reality semi-

infinite in length is the intended purpose (Figure 15).

The free portion of the sheet is divided in three regions:

- Region I in which accurate estimates of induced velocities

are needed.

- Region II is an extension to such distance beyond which the

rollup effects are negligible everywhere in region I.

- Region III is a further extension to such distance beyond

which vorticity effects are negligible in region I and II.

The various streamwise stations (or spanwise or u=constant

curves) are those along which the patch corners or nodes are

located, and are numbered from 1 at the trailing edge to



Region where? 
rollup affects 

gion of Region I 

concern 

Figure 15. Breakdown of trailing vortex sheet for computation purposes 
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Computation scheme

The following steps are performed to obtain an approxima-

tion of the rolled-up shape of the vortex sheet.

1. The induced effects of the entire initial sheet at

the nodes of stations 1 and 2 are computed.

2. The induced velocities at station 1 nodes are re-

quired for computing the downwash and sidewash angles

at the nodes, such that the resultant velocity

V". .= (V + AV )i + AVTT j + AV^ k (42)J - xj 7j z.

where the V s are the induced velocity components,

coincides with the tangent vector x . The magnitude

of x should be approximately equal to the arc length

of a v=constant curve through the particular node on

station 1 between this node and the corresponding

one on station 2. Thus:

x = —1- l. (43)
J |*j|

-»• -*•
where £ is approximated by the chord length Ix2-i~xiil

for the node pair in question. The nodal displace-

ments are zero.

3. At the nodes of station 2, displacements at the nodes

are computed. The time elapsed from shedding to the

position along station 2 is:
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Wing trailing

V

^(direction of

Figure 16. Boundary condition at wing trailing edge
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t9 . = (x~ . - x. *)/V j =1,2,..., n+1 (44)
*- i J L > J 1 > J

During this time t, the induced velocities vary

from those induced at station 1 to those at station

2. The average velocity is used, so that the dis-

placement for each node at station 2 is:

Ax9 . = i t, , (V. . + V? .) j = 1,2,..., n+1 (45)
*• > J *• ^ > J -1- > J '••J

Thus, the position vectors are obtained for station

2 nodes:

x? , = x9 . + Ax9 . (46)
*• > J *• > J ^ > J

The superscript refers to the computation cycle, zero

being the initial condition. The treatment of the

tangent vectors at the three remaining boundaries is

presented later in this chapter.

4. For all the remaining stations, 3 to m-...,.,, the incre-

mental nodal position vectors are set equal to those
i

at station 2. The reasoning is that the vortex sheet

past station 2 has passed through that curve at some

earlier time.

5. The second computation cycle is similar to the first,

except that now the third station (i=3) is modified

according to the following:

= $ . - v. -. j = 1,2 n+1 (47)
-1-»j •*-1 j J-1 j
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is an incremental velocity at station 3 to repre

sent the acceleration of the particles between sta-

tions 2 and 3. Now, the time elapsed, is

Then, the incremental displacement Ax is:

6. ' For stations 4 to w-r-r-rt the incremental nodal posi-

tion vectors are equal to those of station 3 nodes,

and so are the tangent vectors at the tip.

7. The cycle is repeated m-,.., times, (for i values up

to and including m,.,) , to obtain the relaxed wake

shape, so that for the kth cycle:

i = 2,3,4,..., k+1

Particle motion due to a vortex is not linear. An

assumption of linearity is valid only for small time segments

In order to relieve this restriction, circular motion about '

each elemental vorticity is approximated as follows.

In Figure 17, let point P be a field point under the



P'

Field
point

p(relative
position)

Figure .17. Correction for non-linearity of vortex motion
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influence of a vortex element at point Q. The distance

between them is p. The true updated position of P is P1 ,

resulting from circular motion about Q. P, is the new

position using linear motion approximation which can be

easily obtained, but is obviously inadequate unless p»|6V*t|.

Point ?2 is obtained by multiplying the vector ?, - $ by the

ratio p/|P*-i - §| • Then, P" is obtained by multiplying the

vector ?2 - ? by the ratio |6^«t| |P~2 - ?| , so that ?" - ?

has the same magnitude as the induced effect <S^«t. For

moderate angles (up to ir/2), P" is a reasonable approximation

of P'.

Tangent vectors

The free portion of the vortex sheet is refitted after

each displacement. An evaluation of the tangent vectors in

transverse direction to the boundary is required. In step 2,

the tangents x were evaluated at the wing trailing edge.

The tangents x at station m,,, (the last or pseudo infinity

station) are assumed parallel to the free stream .velocity.

Due to symmetry, the tangents x at the symmetry plane are

perpendicular to that plane. The tangent vectors of the

remaining boundary, the tip vortex, are discussed next.

Tangent vectors at the tip vortex

First, the direction of the vector is determined as

follows: By referring to (Figure 18a, consider the current
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A(last spanwise node'

dy

V

Figure 18a. Exact tangent vector computation
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Actual / / Approximate
tangent vector / , tangent vector

A(v)

(v-6v)

Figure 18b. Approximate tangent vector computation
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section in the sheet represented by curve C. The tip point A

has the position vector x = (y, z). The y and z coordinates

are those of interest since changes in the x-direction are

assumed negligible. Point B is a point on curve C just in-

board of A whose position vector is (x - dx) = (y-dy, z-dz).

The parameter v assumes the value v and v - dv at points A

and B, respectively. Curve C1 represents the updated shape

of the vortex sheet after the next cycle, that is, after a

time t has elapsed since the particles have moved from the

upstream station, as in Equation 48. The induced velocity

vectors at points A and B are ̂  and ̂  - d^, leading to new

positions A' and B', with position vectors x' and x1 - dx1.

Thus, the tangent to the curve at A' has the components dy1

and dz', where

dy' = dy + dV t and

dzf = dz + dV t,
Z

or the components y' and z', the length components of the

tangent vector, where

y; = v(yv + (Vy)vt and

z; = v(zv + (vz>vt).

v is a scale factor which can be obtained by equating the

2 2 ̂magnitude [ŷ . + z^. ]** to the arc length of the last segment

of the curve, approximated here by its chord length

[(?n+l - ?n
)2 + (zn+l - zn)2]%' Therefore,
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,X2 , , , ,2
2 ^yn+l " yir ^n+1 ~ zn^

(yv + (Vy)vt
2 + (zv + (Vz)vt)

2

Note that
.3V .3V

<Vy>v - 3v and <Vv - "i

can be obtained by differentiating Equation 22 with respect

to v using Leibniz* rule. Since the limits of integration

are constant, such differentiation is merely performed on

the integrand.

The evaluation of V" would be performed by numerical

quadrature in the same fashion as V" itself, necessitating

the near doubling of computations to be performed. Thus, an

approximation is adopted as shown in Figure 18b. A point (B)

is selected inboard of the tip (A) at a parameter value 6v

less than that at the tip. 6v is chosen small so the chord

B'A' represents the tangent vector of the updated curve C1

at the tip A' . The position of B' is computed in the same

manner as the panel nodes.
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CHAPTER V:

DESCRIPTION OF COMPUTER PROGRAM

Introduction

In this chapter, the computer program to perform the

computations required for the algorithm described in Chapter 4

is presented. It is written in FORTRAN 77 in a structured,

modular form for easy expansion, upgrading, and adaptation to

an aerodynamic analysis system.

Major Module Flowchart

A flowchart showing the major functions is shown in

Figure 19. Each major function or module is detailed further.

Three sets of streamwise panel rows are used:

- The bound vortex panels which are not updated.

- The updatable panels at which the displacements are

calculated.

- The slaved panels which are updated to the last station

evaluated. (Correspond to those of Region III. See

Figure 16.)

The "updatable row" repetition constitutes the relaxa-

tion cycle iterations. The entire wake update is repeated

for the rows of Regions I and II which the induced velocities,

displacements and tangent vectors are re-evaluated. The
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results could be output on an external file in the same format

as the inputs and the program re-run using those for a better

approximation, although this was not done in the present study.

As will be shown in Chapter VI, the results obtained from the

first iteration were quite satisfactory. In the following,

the various details are discussed.

Surface fit

This module merely fits parametric cubic curves in the

u and v directions independently, resulting in the tangent

vectors at the nodes in both these directions. The twist

vectors are not obtained, for simplicity, and due to £heir

minimal effect on the quality of fit. However, if necessary,

they should be computed here. The Thomas' algorithm is used

to solve the set of tridiagonal equations as explained in

Chapter II.

Quadrature points

This module interpolates the wake surface within a

patch for a set of 25 points, (see Table below), used for

quadrature, to obtain the position and tangent vectors,

x, x and x , Then,. the latter two are used to obtain the

normal vectors x x x and their magnitudes, and store these

data for use by other portions of the program within the

patch loop. This module uses another one to obtain the poly-

nomial coefficients of the patch, given the nodal positions

and tangents. The latter are merely the partial derivatives
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of the position polynomials, with respect to the parameters

u and v, These data are used in obtaining the deformed or

stretched patch area in order to compensate for the stretch-

ing, as well as for evaluating the induced velocity integrals.

Numerical integration

The Gaussian quadrature is used. The integrand is

evaluated at twenty- five points in the interior of each panel

forming a grid of five points in u-direction along five con-

stant v curves. The values of u and v are shown in the table

below. The elemental area is approximated by a weighting

factor for the integrands a. a., the values of a^ corresponding

to the grid point is also shown in the Table. The integral

11
// f(u,v) dudv
00

is approximated by the double summation

5 5
£' E f (u. , v.) a.a.

Gaussian Quadrature Parameters

ui or vi

1 0.046910077
2 0.230765345
3 0.5
4 0.769234655
5 0.953089923

0.11846344
0.23931434
0.28444444
0.23931434
0.11846344



74

Induced velocities

For each of the quadrature points, the values of the

vorticity are interpolated, and the relative position vector

(to the node at which the velocity is being calculated) evalu-

ated for one half of the symmetrical vortex sheet, as well as

the other opposite half. The induced velocity vector induced

by the current patch at the entire set of nodes is obtained

by use of the Gaussian quadrature. These are stored and incre-

mented for all patches of the network. This is done so that

the patch quadrature points are evaluated only once per relaxa-

tion cycle, to reduce the amount of computations. In this

fashion, the bulk of the computations is done in the induced

velocity quadrature.

Typical run statistics

One test case used 15 * 7 panels. The 15 streamwise

rows comprise 3 bound, 7 slaved, and 5 updatable sets. The

run required 105 CPU seconds on the Iowa State University

NAS-AS/6 computer, constituting most of the thirteen dollar

charge. Should this method be used in conjunction with a

potential flow paneling program, two iterations are to be

sufficient, add a small percentage to the total cost.
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CHAPTER VI:

RESULTS AND DISCUSSION

The results of the computational method of the present

study are presented in two parts:

1. A wing planform tested for vortex sheet shape

visualization is modeled numerically and compared

with the test results to demonstrate the validity

of the method.

2. The span loading of the wing is altered arbitrarily

to simulate deployed flaps (or stalled outboard

panel) is modeled and the results presented to

demonstrate the ability of the system to handle

complex loadings.

The first part uses the results of a wind tunnel test con-

ducted in the Boeing Co. Research Wind Tunnel, which is

described next.

The Test Wing

Description of the test

The planform of the wing is shown in Figure 20, along

with the spanwise load distribution, measured experimentally

using pressure taps at various stations. The load distribu-

tion used in the numerical model must be a piecewise linear
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distribution of bound vorticity. This modeling is described

in the following section.

The flow visualization technique used for this experi-

ment consisted of injecting steam and liquid nitrogen in the

airstream at a location upstream of the wing tip. The nitro-

gen flow rate is adjusted to bring the air and water vapor

mixture close to the dew point, so that a small drop in tem-

perature will cause condensation of the vapor and result in a

mechanical mixture of air and water droplets. This effect

will take place if an adiabatic pressure drop occurs, specif-

ically along the vortex sheet, where the induced velocities

are locally high. If the wind tunnel is of the open type

and the atmospheric relative humidity is high, and the air

temperature is very low, liquid nitrogen would be unnecessary.

Light is applied to a section of the stream past the wing

trailing edge through a narrow slit so that only the water

droplets at the particular section are illuminated and can

be photographed.

A complete description of this and other methods used

for this program can be found in references (21, 29). The

only available photograph from the test was taken at a

section 1.25 spans behind the wing's trailing edge, and is

shown in (29), along with computational results discussed

later. The flow visualization is illustrated in this report

as the dashed line in Figure 22f.
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Numerical modeling of wing loading

The necessary inputs to the computer program are piece-

wise linear vorticities for each panel of the vortex sheet.

In this section, the bound (or fixed) portion thereof is

discussed.

Since no chordwise loading was published in (29), a

distribution similar to aft loaded airfoils was assumed.

Three chordwise panels are used. The leading edge is 20% of

the chord and a vorticity distribution varying linearly from

zero to a maximum value YO depending on the local spanwise

load. The middle panel is 40% of the chord with constant

vorticity YO- The trailing edge panel is 40% of the chord

and returns the vorticity to zero linearly. For a given

value of local loading (c-C0), the bound circulation r can
JG

be obtained from:

F = i V C'Cp

where: V is the free stream velocity = 26.84ms~ (as in the

test)

c is the local chord, meters

Cp is the local lift coefficient,

r is also equal to

where: YJ is the value of YO at the ̂ tn chordwise node

x. is the x coordinate of the ith chordwise node.
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Now, Yi = YA = 0, Y£ = Y3 = Y£' X4 = 0 since the trailing

edge is placed on the y-axis , and x, , x~ and Xo are respec-

tively 1, 0.8, and 0.4 multiples of the local chord. Thus:

^2 = -OT7C- ms~1

Due to the linearization of c-C^, large variations were

found in the values of the shed vorticity when computed using

differences. A good approximation was obtained by graphi-

cally estimating the slope of the c«C., curve at the various

spanwise nodes. These nodes were chosen at y = 0, 0.42,

0.67, 0.82, 0.91, 0.96, .-0.996, and 1.016 m, according to the

considerations discussed in Chapter 4.

The values of the shed vorticity YT are obtained at

these stations from:

The amount of shed vorticity across panel i is

Ay.

which is equal in a reduction in bound vorticity T. Thus,

y-i and YO at each node are computed and shown in Figure 21.

The bound vorticity is represented by the y« values. The

shed vorticity near the tip was initially calculated to

satisfy Helmholtz' law (see Figure 13), and is shown by

point A and the dashed portion of the curve. The value was
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32.2. Point B and the solid curve reflect a value of 45.

The difference will be discussed later.

Results and discussion of the validated case

The results of the numerical modeling of the test wing

described above are presented here. Figures 22a through 22f

show sections of vortex sheet at various streamwise stations:

0.35, 0.65, 0.95, 1.25, 1.55, and 2.50. The stations calcu-

lated are 0.35, 0.65, 0.95, 1.25, 1.55, 1.88, 2.25, 2.66,

3.1, 3.7, 4.5 and 5.5. The last three stations are in

Region III, that is, their shape is identical to the one at

3.1m. The plot at station 2.50 (in Figure 22f) is inter-

polated between 2.25 and 2.66, and is used to compare with

the available experimental results.

First station in the sheet The trailing edge of the

wing is at x=0, and this is where the first station should

be. However, the linear distribution of the bound vorticity

led to unrealistically large localized vorticity at the trail-

ing edge, especially near the tip, and it was necessary to

displace the first station of sheet an arbitrary 0.05 m

downstream. The downwash angles thus calculated are more

consistent with experience (Figure 23).

Tip vorticity The computed value of tip vorticity

(point A in Figure 21) is inaccurate due to the linear

approximations at the tip. The vorticity there is theoreti-
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cally infinite. The results using the calculated value (A)

are plotted using the dashed lines. The computed slope at

the tip results in a reversal of curvature there, due to the

reduced vorticity value and other effects discussed below.

The tip vorticity was subsequently increased to 45 (point B)

arbitrarily, and improved results were obtained at some of

the stations. However, the shapes thus obtained show a

fuller curvature and a better "spiral" shape, consistent with

intuitive expectations of the true shape.

Two alternatives were considered. The first one was to

reduce the spanwise size of a few panels near the tip to im-

prove the vorticity modeling. The result was an excessive

proximity of the quadrature points (lumped singularities)

and the panel nodes, resulting in numerical problems. Usage

of double precision to reduce round off error would have

helped only slightly, but would result in doubling the compu-

tational resource requirements. Ideally, a closed form

integral, albeit approximate, would probably solve this

problem. The second was to increase this arbitrary tip

vorticity to larger values, e.g., 100, violating Helmholtz'

first law, and still resulting in numerical problems similar

to those above, now due to the large value of vorticity.

Slope at the tip The quality of the solution was

found to be extremely sensitive to this, variable. Originally,

it was planned to use the chord of the tip panel to approxi-
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mate the tangent at the last node, and in fact, this was used

in the preliminary testing of the method. However, flatten-

ing and inflections in the curve near the tip resulted, as

expected. The second attempt was to use the bisector of the

angle between the chords of the two adjacent panels at the

tip, and estimate the magnitude using a heuristic formula.

While this was successful in some cases, it failed in most,

simply because it is difficult to program logic to account

for all possibilities of angle combinations, orientations and

relative node positions. In addition, this method is unrelat-

ed to the physical aspects of the problem. The method

described in Chapter 4 was finally resorted to. The approxi-

mation used is essentially an improvement of the tip chord

approach. A point is chosen within the tip panel to produce,

along with the tip node in a short chord to approximate the

required tangent. While some numerical problems are overcome

(namely, eliminating the need for a very small tip panel),

others resulted. The computed induced velocity at that point

is dependent on its position relative to the quadrature

points. Thus, its location was varied until the least amount

of inflections in the curves were obtained. It seems that

the induced velocity there is still somewhat excessive. It

also seems that the exact value of the slope (also described

in Chapter 4) should be used for better results, that is, to

reduce the inflections or eliminate them.



91

Comparison with test This is done in Figure 22f.

The dashed line labelled "Vapor condensation" is at the

center of the bands of illuminated water particles as they

appear in the photograph in reference (29), Figure 5.4. The

circular area labelled "Vortex core" appears as a dark circle

in the photograph. This is the innermost part of the rolled-

up sheet, where viscous effects are most prominent. The

computed contour is shown with the solid line. The computa-

tion was done starting with a flat sheet, and while itera-

tions could have been performed to "relax" the shape to one

where the pressure differential across the sheet vanishes,

the closeness of the computed and experimental results sug-

gested this was unnecessary for the purpose of this study,

which is to test the ability of this modeling to produce

realistic predictions of the vortex sheet. In their paper,

Butter and Hancock (6) show the results of their relaxation

scheme. There, the second cycle's results are close to

those of the initial cycle, except in the two stations immedi-

ately behind the wing, where the rolled up sheet effects are

not included for the first, and only slightly included for

the second. It must be noted that the only available photo-

graph of the flow visualization is for a station far enough

downstream, that viscous effects have had a considerable

effect on the shaping of the sheet. Furthermore, it appears

that, if the tip condition were modeled more accurately, a
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better approximation would have resulted.

Another consideration is that the test wing. has. a

trapezoidal planform with considerable tip flow, not account-

ed for in the mathematical model.

Comparison with other computational methods Reference

(29) shows predictions of the sheet shape at the same station,

using a very large number of discrete vortex filaments, both

inviscid and. viscous, the results show the spiral shape is

contained between 96% and 101% of the half span. In other

words, the roll-up form is too tight, compared with experi-

ment. The calculations of these methods are based on the

Trefftz plane scheme (two-dimensional). The results of the

current methods are much more realistic.

The Wing with Deployed Flaps

In order to assess the behavior of the present method in

predicting vortex sheet rollup resulting from complex wing

loading, such as for deployed partial span flaps and partially

stalled wings, the loading of the test wing was altered by .

increasing the lift in the inboard half, as shown in Figure

24, by the bound vorticity curve. A slight dip in lift was

included just outboard of the flaps to render the loading

more realistic. The remainder is unchanged.
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Numerical modeling

The procedure is identical to the one just explained,

with the exception of the selection of the number of spanwise

nodes. They must be increased where the rates of change in

vorticity is high, not only to model it accurately, but to

improve the surface fit, as will become evident in the dis-

cussion. Twelve spanwise patches were used here, as shown

in Figure 24.

Results and discussion

The results are shown in Figures 25a through 25e, for

sections of the sheet at stations 0.35, 0.65, 0.95, 1.25, and

1.88. All but the last are very realistic, even though no

experimental results are available for comparison. The solu-

tion is consistent up to 1.25 half spans downstream. At

1.88 m, the vortex sheet crosses itself. This is interpreted

as follows: The nodal displacements are calculated properly

for that station, however, the surface fit is done according

to a criterion which is not necessarily consistent with the

physics of the problem. Second derivative continuity is

required in the fit, and this poses constraints on the pcbly-

nomial degrees of freedom. Thus, the resulting solid curve
2

in Figure 25e is merely a C interpolant of the node points

shown. From a physical standpoint, however, a more realistic

constraint to impose is the slope of the tangents at the

nodes, with values computed from the induced velocity gradient
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along the curve, discussed in Chapter 4 for the tip slope.

If such a criterion were used at all nodes, instead of the

tip only, the result may be similar to the dashed line in

Figure 25e. Another way to achieve this is to increase the

number of nodes to improve the fit, but at an increased

computational cost.



101

CHAPTER VII:

CONCLUSIONS AND RECOMMENDATIONS

The objective of this study was to test the concept of

using parametric bicubic patch surface definitions with bi-

linear vorticity or biquadratic doublet distributions, to

model the vortex sheet and predict its shape numerically in

the vicinity of the wing.

This choice stems from the need for continuity in these

physical quantities, which is the way they occur in nature.

To a full extent, this is true of the geometric representa-

tion, and to a lesser extent, it is true of the singularity

distribution. For the purpose of computing induced veloci-

ties, it was shown that higher order of vorticity would not

improve the truncation error. For the purpose of modeling

the tip vorticity, the bilinear distribution, although satis-

factory, gave rise to some difficulty. The bicubic geometric

surface representation proved very suitable for curved sur-

faces such as the rolled-up vortex sheet, with the surface

fit scheme failing only for complex wings, far downstream

beyond the region of concern.

The author's opinion is that these difficulties can be

surmounted by using the exact value of the velocity gradient

at all the nodes of the sheet to obtain the tangent vectors

in the spanwise direction. Therefore, it is suggested that
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this effort be undertaken in a follow-up study. The. versa-

tility of the model may also be improved by using a more

appropriate integration scheme for handling singularities.

Despite these approximations, the results shown in Chapter. VI

amply demonstrate the quality of the approach compared to

some of the schemes currently used, based on discrete, piece-

wise linear vortex filaments. For example, the Trefftz plane

method (32) results in very tight spiral (29), and the method

used by Hackett and Evans (14), which uses finite upstream

filament lengths, displays excessive sensitivity to the posi-

tioning of the filaments. The present method is sensitive to

node positioning only near the tip and trailng edge, and the

author's opinion is that it can be alleviated by the above

suggested refinements.

This method should be incorporated in a potential flow

computational system for a. variety of reasons.

1. It is certain to improve the acca^acy o£ pie.d<ic.tj.ng

tke. u)j.ng toa.dj.ng, following one iteration, despite

the fact that tip flow is not included. In most

available programs, the Kutta condition is imposed

on the assumption that the streamlines at the trail-

ing edge coincide with some arbitrary direction, for

example, the bisector of the trailing edge angle.

This may be acceptable as a first estimate, giving

downwash angles at the trailing edge to be used for
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streamline directions for the next and probably last

relaxation cycle.

2. Farther from the wing, that is, near aft fuselage

and empennage surfaces, the effect of rollup is

necessary in many cases in attempts to pied-tc^t

4ta.b<i£J,ty d<z.ti4.vat<Lv<L& , both longitudinal and

lateral. Lateral conditions will necessitate

modeling of both halves of the aircraft, which is

done in potential flow solutions involving side-

slip, yaw or roll rates. A &y&t<imat^c., /ii.go/iou.A

and siati.ona.1 evalaat^Lon. of the configuration,

especially if unique and original, will be obtained,

instead of attempts of intuitively adapting existing

data which are not necessarily valid, potentially

leading to inadequate design to be discovered only

after expensive wind tunnel testing.

3. A.ddU.ti.0nat c.ompu.£a.t<ionai ufa^otit A.& fKita.t'Lv<Lty -6ma££,

except in the cases requiring re-evaluation of the

entire potential flow solution, as described in 1

above. The solutions in 2 will not require reevalua-

tion of the entire flow, once the wing, loading has

been determined, in general.

4. The usage of the parametric bicubic patch in the

manner of the present study suggests it can be used

to represent solid boundaries as well, for the
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purpose of solving for the singularity (source)

strength distributions, and hence, pressure dis-

tributions. Fewer panels will, be needed than with

flat panels, and the nodal spacing is not very

critical due to bilinear singularities. This fea-

ture is extremely valuable for preliminary designers,

and its usage is being introduced (18). The com-

pa.t'Lb'Lt'Lty of such a system with the techniques of

the present study is evident, and incorporation of

this wake relaxation scheme can be readily imple-

mented.

Additional experimental verification is desirable,

especially for the flaps deployed case, as well as a yawed

configuration. These seem to be natural extensions of the

work presented here, along with the suggested refinements

discussed earlier in this chapter and in Chapter VI.
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