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8 angle
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V2 Laplacian operator

§ position vector of point P, with components £&,n,Z
o source stfength
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2{ surface integral over area S

Subscripts

u,v  partial differentiation



CHAPTER 1: INTRODUCTION

Scope

Potential flow methods have been used successfully for
the last two decades in the preliminary design of partial or
complete aircraft configurationms. Predictibns by numerical
schemes based on potential flow analyses include such aero-
dynamic characteristics as wing load distributions, surface
pressure distributions, engine duct flows, and some stability
derivatives, ambng others.

Results of such computations concerning surfaces affect-
ed by trailing vortex sheets of lifting surfaces are correct
only for simple configurations where the effects of the loca-
tion and shape of»the vortex sheet are secondary. The shape
of the vortex sheet is usually assumed to be flat. Realisti-
cally, however, its configuration changes continuously in the
downstream direction at least until roll-up of the sheet into
concentrated vortex cores is complete. The process of roll-up
is rather complex. Mutual interaction among the elements of
the sheet depends on their relative positions, however, the
configuration of the sheet is unknown prior to the complete
solution including its effect.

Much of the change in the sheet shape occurs within a
downstream distance from the generating wing equal to half

the wingspan. The purpose of this study is to develop a



numerical technique of modeling the vortex sheet with a
deformable surface definition, along which a continuous vor-
tex strength distribution in the spanwise direction is ap-
plied, so that by repeatedly modifying its shape, its true
configuration is approached, in the proximity of its generat-
ing wing.

Design problems requiring the inclusion of a realistic
configuration of the vortex sheet are numerous. Some

examples are discussed in the following.

Control effectiveness and stability derivatives

In the early stages of aircraft design, horizontal and
vertical stabilizers must be sized fairly accurately to en-
sure aircraft controllability within the flight envelope.
Downwash and sidewash angles at zero angles of attack and
sideslip and their rates of change with these angles are pre-
dicted in practice using empirical relations (reference 11
and 31, for example) which are not based on general aircraft
configurations, but rather on crude parameters such as wing
sweep and dihedral angles, aspect ratio, etc. The real
governing factor is the wing loading distribution and changes
in it with Mach Number and attitude with respect to free
stream direction. This distribution results in a free vor-
tex sheet extending in theory from the trailing edge of the
generating wing to an infinite distance downstream of the

wing. The vorticity is constant streamwise, and varies with



chordwise distance. Roll-up of the sheet occurs about areas
of concentrated vorticity called the vortex cores (4, 23)
and if in the vicinity of the empennage, such cores will
affect surface pressure distributions. Two cases are
represented.

Longitudinal stability As illustrated in Figure 1,

the deflected flaps of the aircraft result in a redistribu-
tion of lift on the wing, and thus a concentrated vortex
core pair emaﬁates at the outboard edge of the flaps that
drastically chaﬁges the downwash at the horizontal stabilizer.
Shock induced separation of the outer wing panel in transonic
aircraft causes a similar effect, which aggravates the insta-
bility due to the forward displacement of the center of lift
of a sweptback wing;

Lateral stability Figure 2 depicts a yawed twin-

engine aircraft. The dip in the wing lift distribution due
to the nacelles, caused by inviscid as well as viscous
effects, leads to a pair of concentrated vortex cores which
are not symmetric due to yaw. The sidewash angle distribu-
tion along the stabilizer is altered. 1In addition, .the left
side of the rear fuselage is closer to center of the inboard
left vortex than the right side is to the center of the in-
board right vortex. A pressure differential and thus a

destabilizing yawing moment result.



Symmetric Vortex
Flow concentration

Figure 1. Longitudinal destabilization due to complex
wing loading resulting from flap deployment.
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Figure 2. Lateral destabilization due to nacelle side
forces and complex wing loading



Canards

An effect similar to the above should be investigated
for canard-configured aircraft. The vorticity from the
canard could affect the lift distribution of the main 1lift-
ing wing, and subsequently alter the aerodynamic performance

of the wing under certain conditions.

Propellers and helicopters rotors

Good aerodynamic design for propellér or rotor after-
bodies (nacelles and other solid boundary surfaces) requires
simultaneous consideration of all components. The effect of
these lifting surfaces is felt on other solid boundaries
through the vortex sheets they shed. Therefore, a more de-
tailed knowledge of the shape of the vortex sheet and hence
the induced flow field is necessary. For these cases, a
quasi-static analysis is required. Such studies are also
necessary for designs which must result in low aerodynamic

noise,.

Trailing vortex hazard

Although this area has been studied extensively recently
(7, 9, 23), the present method could be extended to its treat-
ment, insofar as determining the locations and intensities
of each of the trailing vortex cores. The interest in this
case is primarily in the far downstream region and to promote

early dissipation of vortex energy. Farther downstream,



viscous effects become more pronounced, and since the
current method is inviscid, vortex merging and dissipation
must be treated by some other means. Nevertheless, it is
necessary to establish the initial roll-up which is essen-
tially inviscid, to enable the treatment of merging and

dissipation.
Background
The present method is based upon earlier work in three
major areas of computational methods, all of which have

undergone considerable development in the last two decades.

A brief historical review is presented in this section.

Panel methods

In the early sixties, a computational method was devel-
oped to predict nonlifting potential flow about arbitrary
three-dimensional bodies by placing a source distribution on
the outer surface of the body. The source strength is approx-
imated by piecewise constant strength over flat ''panels"
which approximate the body surface (15). At about the same
time, vortex lattice methods were being developed (26) for
very thin lifting surfaces. The approach is similar except
that the camber surface of a lifting wing is represented and
a discrete horseshoe vortex lattice is used. Later, the two
techniques were combined to solve arbitrary three-dimensional

1ifting potential flow configuration problems. Examples of



work published in this area include those of Rubbert and
Saaris (28). The solution of the flow is obtained by solv-
ing for the singularity (source and doublet) strength dis-
tributions on the entire surface. The problem is reduced
to a set of simultaneous linear equations which can be solved
non-trivially by imposing Neumann boundary conditions at the
solid boundaries and the Kutta condition at the lifting sur-
face trailing edges. The induced effects on the surface or
elsewhere can then be calculated. More recent developments
were directed to higher order singularity (source and doublet)
distributions, in order to improVe the predictions and also to
facilitate surface paneling (20). Excessive care for the
panel arrangement is thus no longer required.

In the present study, the doublet (or vortex) strength
distributions are known (obtained by some panel technique)
for the test wing. The spanwise distribution remains the
same along the sheet at any streamwise station, downstream
of the trailing edge. The same type of doublet distribution
panels are used to determine induced effects to obtain the
rolled-up shape, except that these panels are constantly

reshaped and refitted.

Vortex sheet roll-up

A comprehensive survey of computational methods for
lift-generated wakes is given by Rossow (23). The vortex

sheet (or wake) trailing behind the generating wing is divid-



ed in three regions: roll-up, plateau, and decay. In this
study, the roll-up region is the one of interest. The prob-
lem of roll-up was addressed by Betz (4), then by Westwater
(32), where approximations were introduced to eliminate the
unnecessary complications of viscous effects. Many techniques
héve been developed since to overcome the shortcomings using
artificial means. The major problem was the use of discrete
vortices to approximate the vortex sheet, rather than a con-
tinuous distribution as the present method proposes.

The intereét in obtaining the rolled-up shape of the
wake was motivated by the advent of large aircraft. The
wake 1eft.by a Boeing 747 for example, during climb or
descent is extremely hazardous for following aircraft and
extends for several kilometers. Many of the methods develo-
ped have been intended for finding means of alleviating that
hazard, such as by modifying the wing loading of the generat-
ing aircraft to preﬁent or reduce vortex merging (part of the
roll-up mechanism for complex wing loading) and thus speed up

the decay process.

Parametric bicubic surface representation

Representation of general curved surfaces was deVeloped
for computer aided design of airéraft'(l3) and automobiles
(5). It is necessary in this study to use curved panels, and
it was found that the Ferguson patches are best suited for

modeling the vortex sheet surface.



10-11

General Description of the Proposed Technique

Since the purpose of this method is to establish the
shape of the trailing vortex sheet in the vicinity of the
wing, it is assumed that the strength of the vortex sheet
is known. Curved and deformable panels of known piecewise
linear vorticity strength distribution (equivalent to quad-
ratic doublet distribution) are patched together to simulate
the vortex sheet, (Figure 3). The geometry of these panels
is modeled by uéing parametric bicubic patches with second
derivative continuity (C2) across their boundaries.

Initially, the surface is flat. The induced velocity at
each node in the network is calculated, and some nodes can
be displaced accordingly, resulting in a new shape, with the
remaining nodes following. The procedure is repeated with
the new shape until the entire surface has been relaxed to
the final shape. (A complete description is in Chapter 4.)

These induced velocities can include the effects of the
bound and free doublet panels as well 'as any solid boundary
whose consideration is desirable, such as a fuselage, trail-
ing lifting surface, nacelle, etc. However, the solution for
the entire flow must be re-computed at each relaxation step.
In this study, only the doublet panels of the trailing and
bound vorticity are considered, since the inclusion of other

bodies is merely a programming and computing effort. 1In
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addition, the roll-up effect on the lift distribution on the

generating wing itself is assumed to be negligible (30).

Flow Idealizations Summary

The following assumptions are made in this study:

Potential flow The flow is everywhere irrota-

tional and incompressible except at the boundary surfaces
(specifically the vortex sheet).

Symmetry of the generating wing and vortex sheet

Sideslip could easily be included for yawed configurations.

Inviscid flow The viscous effects become pro-

nounced downstream of the area of concern.

Tip flow No tip flow for the wing is considered,
since the wing character itself is not of primary concern, .
although its loading near the tip will be somewhat affected.

Steady state Oscillatory and other time-depen-

dent flows must be treated quasi-statically if this technique
is to be used.

Wing 1ift distribution The wing lift distribu-

tion is based on the assumption of a flat trailing vortex
sheet. As indicated above, the roll-up effect is negligible
at least for the purpose of this study. In Rossow (23),
noticeable effects are shown which could be included with

considerably more computational effort.
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CHAPTER II: VORTEX SHEET GEOMETRY

The vortex sheet is mathematically considered to be a
surface of finite width extending from the lifting surface
to infinity, across which there is a jump in the potential
function ¢. This jump in ¢ is equal to the doublet strength.
The surface must be represented by a mathematical model which
provides for at least slope continuity and allows for the
curled or spiral shape of the rolled-up sheet including infi-
nite slope tangents, as well as slope constraints at the

edges of the sheet.
Parametric Bicubic Representation

The position vector §s(x,y,z) of a point P on the

surface within one patch is given by the interpolant

3 3
> - k 2
X = I z dp, WV (1)

k=0 =0
where u and v are the independent parameters, such that

O<u, v<l, and gk are the polynomial coefficients. Note

2

that the vector coefficient Ek consists of three elements,

2
one for each of the x, y, and z coordinates. The sixteen

vector coefficients can be determined by specifying §’§u’§v

-> . .
and X v at four corner points or nodes. (The subscripts u,v

refer to the partial derivatives %ﬁ and %V , respectively.)
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The entire surface is defined by a rectangular array of
patches. Every four adjacent patches share one common inter-
ior corner point or interior node. Around the periphery,
every two adjacent patches share one common boundary point.or

boundary node, except that the corner nodes belong only to

the corner patches. This array of patches will be referred
to as a network. An illustration is shown in Figure 5.

In Figure 5(a), the geometry for a network of m x n
patches is shown in the parametric space. A total of
(m + 1)(n + 1) nodes result. The interior nodes are those
with index i = 2,3,...,m and j = 2,3,...,n. The others are
boundary nodes. Each parameter changes from 0 to 1 within
a patch, and the coordinates of the parametric space shown,
u' and v', are the cumulative values of the u, v. The bound-
aries are lines of constant u or v parameters. Normal to the
u = constant boundaries, are the tangent vectors §u for each
node; and normal to the v = constant boundaries, are the
tangent vectors iv’ parallel to the v = constant and
u = constant lines respectively. These tangent vectors
required must be specified according to considerations to be
discussed in Chapter 4.

The transformation in equation (1) takes a point in the
parametric space to a corresponding point in the physical
space. It is necessary to determine the remaining 2m + 2n -4

tangent vectors at the boundary nodes, plus 2(m-1)(n-1)
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tangent vectors at the interior nodes. This tangent vector
information, together with node coordinates, is sufficient
to enable the computation of the sixteen vector coefficients,

[Ekzl (in matrix form) according to the matrix relations:

> _ T
[3,,] = QXQ (2)
where X =[ x x T
X000 *o1 *voo *vor
%10 *11 %*v10 *v11
X100 *u01l *uvoo *uvol
| *ul0 *ull *uvlo Fuvll
and Q= [1 0 0 0]
0 0 1 0
-3 3 -2 -1
|2 -2 1 1

The matrices for the y and z coordinates are similar (12).
The letter subscripts indicate partial differentiation,
and the numerical ones indicate the value of the parameter
at the patch nodes: the first for u and the second for v.
IX

For instance, X.,01 refers to o (u=0, v=1).

Advantages of parametric bicubic patch panels

The main advantage of a higher order patch geometry for
an aerodynamic singularity panel resides in its curvature.
A much larger number of flat panels is required to obtain the

same error in position. For instance, the cubic representa-
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tion of a 90° circular arc results in a radial error of +0.137
of the true circle using one curve segment (12). To obtain
the same accuracy with straight segments, eleven would be
required.

The cubic requirement is necessary to allow for second
derivative continuity and inflection points (12) which are
inherent characteristics of the nature of the vortex sheet.

In addition, the parametric bicubic is widely used in air-
craft design, (3, 18), and its technology is well-established.

The fact that the vortex sheet surface changes directions
on itself in the spanwise direction to result in the spiral-
like shape, renders explicit functions cumbersome to use.
Implicit functions are equally cumbersome since they would
require solutions of nonlinear equations at each point. The
parametric representation eliminates these difficulties, and

moreover handles vertical slopes without special provisions.

Computations of the interior tangent vectors

With reference to Figure 5(b), consider the set of nodes
(i,j) with a fixed value of i, i', that is, the nodes (i',1l),
(i',2), ..., (i',n+l). The patch edges passing through these
nodes constitute a space curve, which is a composite para-
metric cubic which must possess the C2 property, if the entire
surface is C2. In the case of any i' curve, we obtain a curve

whose parameter is v. Similarly, another set of curves, j',
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are obtained by varying the parameter u. . By differentiating

the equation for a curve with constant v:

3

£(w) = I au® (3)
k=0
> _ I k-1
X (w = gk(k-l) uk2 (5)
X . (u < ay

The requirement .is that at the junction of the ith and (i+l)th

segments:

3ty = xitko)

2w =& 2 o (6)

>1i _>i+l
Xﬁu(l) = Xau (0)

Equation (6) must be satisfied to achieve second order continu-

Now, as for the patches in Equation (2), the curve

polynomial coefficients can be written in terms of the

position and tangent vectors at the nodes:

gent vectors at the nodes:

20 T To

41 T Two

3y = 3(xy7rp) - 2y - Ty 7
a, ='2(r0-r1) + 0t T,

Substituting these values in equation (5), then in the third
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of Equation (6),
> i+l _ ritl i+l _ Hpitl

i > i
6x0 - 6x1 + 2x 120 + 4xul 6x X - 4% 10 X1

But, due to the first two of Equation (6).

-+1 +1+1 >i+l +1+1 +1
Now, gé refers to node i, §é+l = §% refers to node i + 1 and
§%+1 refers to node i + 2. Thus for nodes 2, 3, ..., m, the

system of equations results:

>1

Ly 4x1+1 *111’“2 =323y ia1,2,. . m-1 (8)

where i here denotes the ith node rather than patch as done
earlier.

>1

If x° and §m+l
u u

are known, then the remaining m-1 tangent
vectors at the interior nodes can be found efficiently by
solving the above tridiagonal system by the Thomas' algorithm,
(L.

The above is repeated for all n+l curves, then, in the
transverse direction, for all m+l curves in a similar fashion.
The remaining derivatives §uv’ also called the cross
derivatives, or twist vectors, have zero values along lines

of minimum or maximum surface curvature. For simplicity,
this assumption was made and, as indicated by (12), results

in a negligible amount of error.
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In the same reference, it is shown that the patches are
continuous in C2 across their common boundaries if the above

curve continuity is achieved.
Geometric Properties of Interest

The main purpose of a patch is to serve as a surface
position interpolant, i.e., given a parameter pair of values,
a corresponding set of physical coordinates of a point on the

surface of patch i is obtained:

3 3
X = (x;y,2) = L z gtgukvl 9

k=0 2=0
such that 0 < u, v < 1.
In addition, a tangent vector to the surface at the

point is a linear combination of a pair of tangent vectors,

> >
% =3xandx =§

X, = 3% v T which are obtained merely by differentiat-

ing with respect to the parameters u or v. If §u # a§6,

. > > .
where o is a scalar, then the vector product X, X X, is a

vector normal to the surface at the given point.

Elemental area As illustrated in Figure 6, the

elemental area dA is given by:

dA

|%. du|+|X_dv|sin 6 = |X_ x X_|dudv
u v u v

|i(yuzv - szu) + j(szu - x,z,) * k(xuyV - xvyu)ldudv

where i,j,k are the unit vectors in the x,y,z directioms.
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Integration of a function over the surface of a patch

It will be necessary to integrate the induced effects of
the vorticity which is distributed over the patch area, and
expressed as a function f of u and v. To evaluate the

integral

I =f/f(u,v)dA, (10)
S

where S is the boundary surface bound in one patch, and dA is
the elemental area, the relation above is used, thus
11

I = ééf(u,v)l;*cu x X, |dudv. (11)
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CHAPTER III: SINGULARITY SOLUTIONS FOR POTENTIAL FLOW

Governing Equations and Solutions

For steady, irrotational motion of an inviscid perfect
fluid, the velocity perturbation potential function satisfies

the Prandtl-Glauert equation:

(L-MD) Gy + by + 6, = O

which is valid for small perturbations, but not for transonic
’ -%
flow. For subsonic flow, by replacing x by x(l-Mz) 2, the

equation reduces to Laplace's equation:

This equation also holds for incompressible irrotational flow
in general.
Applying Green's theorem, it can be shown (2) that

Laplace's equation can be converted to the integral equation:

1,201 .2
tp —ﬁfsf[-g% T+ ¢-3=(2)1ds (12)

where: P is a point in the flow field domain D,
S is the boundary of D,
n is the unit vector normal to S at a point Q on the
surface, and
r is the distance from P to Q. (Refer to Figure 7.)

This equation is a singularity solution to Laplace's equation.
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Figure 7a. Boundary for a closed surface.
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The two terms in the integrand contain

e and gy
which are the potential functions of a point source and a
doublet, respectively. The terms ¢ and %% represent the

source and doublet strengths at point Q, thus equation (12)

can be rewritten as:

6 @) == 15 (22 4

1
|2-%| Mz

where: E is the position vector of field point P,
-
X

)1ds (13

is the position vector of boundary point Q,
0(§) source strength distribution on the boundary S,
and p(x) doublet strength distribution on the boundary S.
In panel methods, ¢ and u are approximated by piecewise
constant, linear or quadratic distributions over each surface

finite element, called a panel, so that for K panels:
—]dS} (14)

where S; is the area of the ith panel. By properly specify-
ing boundary conditions at a number of points (K), called
control points, selected in this case on the surface, a set
of simultaneous linear equations can be obtained and solved
for OyoHy-

Usually, source panels are used for closed surfaces and
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solid boundaries, while doublet panels are used for thin
lifting surfaces, or for lift generation on solid boundaries
as well as for barriers such as vortex sheets to render 7
simply connected.

In this study, only the doublet solution will be of
concern, even though source distributions may be included to
represent solid boundaries and their effect on the roll-up

process of the vortex sheet.
Higher Order Doublet Panels

Unlike the panel method techniques where the objective
is to solve for the singularity strengths, in the present
case, the wing lift distribution, a function.of the spanwise
location, is known a praliori. It could be determined for a
given configuration from some panel method computer code,
experimentally, or by some other means. The problem here is
to determine the induced effects of the vorticity at various
key points of the flow field, in order to determine displace-
ments and thus modif& the shape of the vortex sheet. Constant
doublet strength panels are equiValent to discrete ring vor-
tices, and a substantial approximation results. In the
interest of maintaining adequate accuracy without an excessive
number of panels of constant doublet strength, a bilinear or

biquadratic doublet distribution is used.
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Bilinear:
uI(u,v) =y + HoU + M3V + H4uv

(15)
Biquadratic:
uII(u,v) = uI(u,v) + u5u2 + u6y2 + u7u2v + usuv2 + u9u2V2

1

where u and v are the arc length in the streamwise and span-
wise directions, respectively, of the vortex sheet.
In the free portion of the vortex sheet, the doublet

strength does not vary streamwise, and u is a constant there.

Equivalence of doublet and vortex panels

The induced velocity at a point P due to an elemental

vortex panel of area dS is obtained from the Biot-Savart law:

av = t—"f'vds (16)

where: T is the relative position vector of P with respect
to the panel centroid.
E-is a unit vector in the direction of the vorticity.
Y is the local vorticity strength.
The velocity potential at a point P due to a doublet

panel of local strength u with normal vector n is:

5> A

_I'n

It can be shown that y-t is equivalent to n x Vu, (16),

thus producing the same potential function in 0. Both
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approaches are used. In reference (27), the doublet panel
is preferred because the doublet strength is a scalar.
However, a biquadratic approximation is used to reduce the
approximation error, since the first order error term is
nonexistent, resulting in a more complex panel model.
Reference (18) suggests the use of a bilinear vorticity
distribution, which is an equivalent approximation to the
biquadratié doublet panel..

To assess the approximation error, consider a two-
dimensional flaﬁ vortex sheet as in Figure 8. The induced
vertical velocity at point x on the sheet segment from x1=0

to x;=c is given by:

1 c y(xl)dx1

VZ(X,O) = 7 éﬁ (17)
Expanding Y (x1) in Taylors' series about x:

dy 1 d% 2

Y(x]) = y(X) + gE(x)(xy-%) + 5 ﬁ‘x”xr")
Substituting in Equation . (17):
2
Sl e L d 1 d%y 2

V00 =g STt T+ 5 20 (xp7x) ¥ 0% (xyx) 1dx,

7=y (%) f _x F e + g —}(x) f (xp-x)dxp ] + 3207 Gx) -
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§T=y6x

Figure 8. Vorticity distribution on a two-dimensional
flat surface along the x-axis




s

If point x is the midpoint of a panel, the first and third
terms in the square brackets vanish. Thus, in order not to
exceed second order error, the derivative %% must be nonzero.
This is achieved by using a bilinear y distribution. Biquadra-
tic distribution will not reduce the error. 1In addition, since
the bilinear distribution over each panel provides C0 (continu-
ity of value) for vy, there will be no concentrated vorticity
at the panel edges.

Analysis similar to the above can be used to demonstrate
that source panéls possess the same behavior, and bilinear

source distributions would result in a second order error in

the distance from the control point.

Derivation of the vortex panel induced velocity for the free

vorticity

Considering the geometry of one panel represented by a
parametric bicubic, the vorticity vectors are tangential to
lines of constant values of the parameter v, which are space
curves lying in the vortex sheet, oriented in the general
streamwise directions as shown in Figure 9. By virtue of
Helmholtz' first vortex theorem, the strength will not vary
along these curves. Therefore, each v-line is a vortex
filament of infinitesimal strength Y(yl)dyl’ where y1 is the
y-coordinate of the generating wing trailing edge. As indi-
cated earlier, vy = Y(yy) is known. For simplicity, it will

be approximated by a piecewise linear distribution in v
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General direction

of Ve,
: ' A u=0

0< vy<1

Figure 9. Vortex panel configuration for vorticity
along a v=v, curve
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between the nodes of the free vortex sheet's leading edge,
which coincides with the wing's trailing edge. For the

panels with index j,
Y(v) = Y(Yj_]_) + [Y(Yj) - Y(Yj_l)]V (18)

at any point on such panel whose position vector X is given by

Eq. (1). The unit tangent vector is given by

Lok g

t = I u (19)

o

ul

The vorticity induced velocity at a point whose position vector
is £ due to the vorticity in panel i,j is obtained by integrat-

ing Eq. (16) using Eq. (11):

3 Y(v) % x %_|dudv (20)

with m x 'n is the number of patches representing the sheet in

the stream- and spanwise directions, respectively.

Derivation of the vortex panel induced velocity for the bound

vorticity

The formulation is identical to that of the free vorticity

~

with the exception that the vector t does not coincide with

+ > g . . -

X but is a linear combination of Eu and §v' Equation (20)
>

is thus applicable to the component along X, inducing Vl'

The other component along iv induces a velocity vector Vy:



-> + >
1 11 Xv X (E"x) > . >
|3 Yz(uov) Ixu X XVIdUdV

00 1% 1123
v
also,
1,7 - 31,7 i,]
and for the entire sheet consisting of mxn panels:

m n . .
V=3 1 ¥
i-1 j=1

(21a)

(21b)

(22)
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CHAPTER IV: THE VORTEX SHEET

Review of Methods of Rollup Prediction

Beﬁi"TheérX

The earliest attempt to analyze the behavior of vortex
systems in a manner applicable to thé prediction of the then
known phenomenon of vortex sheet rollup was introduced by
Betz in 1932 (4). The theory is based on the Kutta-Joukowsky
theorem of vortex lift on a body L, about which a circulation
I' exists: |

L = pVT

‘where p is the fluid density, and V is-the linear.velocity of
the body relative to the fluid perpendicular to L. Thus, if

a system of such bodies interact, with the bodies becoming
infinitely small, and if there are no solid outer boundaries
to exert a force, the net 1ift forces and moments of these
interacting vortices must be zero. As a consequence, and as

a consequence of Helmholz' theorem, the following conservation
rules can be written to relate the vorticity in the sheet as
it leaves the wing trailing edge, with that of the rolled-up
sheet:

1. Vorticity:

b/2 dr (r)

H -

dF;X) dy =

7
y
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The left-hand side of the equation refers to the
initial flat sheet at the wing trailing edge, y
being any spanwise station and b the wing span.
The right-hand side refers to the rolled-up vor-
tex core, r being a radial position in the vortex
core from its center and R the core radius.

The first moment of vorticity:

b/2 r
—%ix— ydy = r QH%El rdr (24)

As a consequence, the centroid of the vorticity

located at :

- _ 1
Y--r-

w\ﬁ\\

—H_X_
where
F=§—a—L
y

remains at a constant spanwise station. The vertical
position, however, will change since there is an
external force, the wing lift, applied to the fluid
elements which results in a downward motion of the
centroid.

The second moment of vorticity about the centroid:



40

b/2 R
dr -2 d 2
s SR -2 ey - i-%ﬁ r2dr (25)
These relations can be used to determine the structure of the
rolled-up vortex core, that is, the position of the core

radius r in which a portion of the sheet from a station y to

the tip is contained. Rossow (25) shows that

r=y-y
Wings with nonsimple loading, such as for flaps extended
configurations éan also be treated using a method developed
in reference (8).
Unfortunately, these rules and methods are helpful only
for fully developed vortex cores, since the time history of

the rollup cannot be predicted.

Time History of Rollup

In 1935, Westwater (32) developed a technique for obtain-
ing the vortex sheet shape by representing it with discrete
vortices of finite strength and infinite length, and computing
their positions at successive time increments. These positions
are equivalent to flow streamlines and the time increments
correspond to streamwise stations. Computations are performed
in the Trefftz Plane, that is, the infinite filaments are
assumed straight and perpendicular to the plane. The bound
vorticity is ignored and thus the problem is reduced to two-

dimensions. The induced velocity at a point where any one
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vortex filament intersects the Trefftz Plane is the sum of
the induced velocity vectors of each vortex filament except
the one in question. The point is moved by an incremental
displacement equal to the time increment times the induced
velocity vector. This is done for each filament and the
process repeated for various streamwise stations to obtain
the time history of the configuration. Plots of Westwater's
results are given in his paper as well as in (30) and (9)
for an elliptic loading using 20 filaments for the entire
span. |

Discretization seems to lead to several problems. The
elimination of the filament at which the induced effects are
being computed is both valid and necessary for a finite or
discrete system, however, it is a poor representation of a
continuous system since it creates a ''gap" in the sheet.
Should the number of filaments be increased, the two vortices
adjacent to the point in question would become too close and
result in excessive induced velocities. Another problem is
the increased strength of the tip filaments, compared to the
remaining ones. Moore has found, as reported by El-Ramly (9),
that such tip filaments will circle around each other, imply-
ing that the sheet intersects itself.

Some of these idealizations were removed by Butter and
Hancock (6). Three-dimensional effects were considered. A

line vortex at the quarter chord was introduced to represent
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bound vorticity, and the trailing vorticity is only semi-
infinite. A similar effort was conducted by Hackett and
Evans (14). The discretization effects are the same as
above.

Reference (9) notes the work of Neilsen and Schwind,
where some treatment is done to alleviate the discretization
effects, namely, when two vortices come too close to each
other, they are combined into one at their centroid.

Other researchers whose works are surveyed by El-Ramly
(9, concentraté on fully rolled up vortex cores, the dis-
tances for full roll-up and other related parameters not
directly related to the present study, for both inviscid and
viscous solutions. The inclusion of viscous effects to pre-
dict decay of vorticity and the merging of co-rotating cores
has received considerable attention in the '70s decade when
the wake hazard of large aircraft became manifest. Again,
these works are surveyed in (9, 23). Experimental work was
conducted at Iowa State University (reference 19 ), to study
the merging of vortex cores which are fully developed. There,
two separate wings were used to generate a pair of rolled-up
vortex cores, in order to simulate multiple cores generated
by a single wing of a large aircraft during climb or approach
near airports, where the wake hazard is serious. The merging
of such cores may be desirable since it can lead to vortex

cores with diffused vorticity representing a reduced hazard
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to trailing aircraft. Much of the research (9, 24) deals
with the injection of auxiliary vortices which merge with
the primary tip vortex, as well as methods of assuring
speedy decay. For a specific aircraft configuration, it

is helpful to know where such cores will be situated upon
completion of rollup, and the relative magnitudes of their
strengths. Then, analytical or experimental predictions of
merging and decay can be simplified.

The present method in essence is similar to that of
Butter and Hancéck (6), but removes many restricitons which
lead to over-simplifications. Mainly, a continuous distribu-
tion of vorticity, truly three-dimensional effects of the
vortex sheet shape, and a lifting surface are used with the
help of the building blocks described in Chapters II and III.
Furthermore, the technique is compatible with the advanced
aerodynamic paneling techniques in use today, allowing ready
incorporation of rollup effects, if desired.

The remainder of this chapter describes the method used

from the physical and computational standpoint.
Sheet Vorticity Strength Distribution

Panel Vorticity

At any point P on the vortex sheet (see Figure 10), the

vorticity strength vector Yy can be resolved in two components
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Yy = ar and y, = ==— , which are tangential to the
1 le 2

u=constant and v=constant curves at point P, respectively.

' is the circulation in the sheet at point P, and Sq and S,
are arc lengths in the direction of Yo and Yi» respectively.
Note that Yy and Y, are not necessarily perpendicular to each
other. It is necessary to express these vectors in terms of
their values at the patch nodes, using a bilinear distribu-

tion as indicated earlier. For the magnitude,

YY) =y gyy gt Uprviga, s T Ui2Ye, 541t UnaYier, g4 (20
where,
Yy, 5 are the magnitudes of y; or vy, at nodes (i,]),

“11 =1 -u-v + uv,
u2l =u - uv,

U12 = u - uv, and
U22 = uv.

A ~

For the direction, the unit tangent vectors tl’ t2 are
merely the tangents to the v=constant and u=constant curves,

respectively, so that:

Eullxul’ and

>
et
||

(27)

>
/x|



Figure 10.

u=constant

v=constant

Panel vorticity
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Computation of nodal vorticity strengths

It is assumed here that: (1) the wing spanwise loading
and (2) the chordwise loading distributions at various span
locations are known. A number of wing stations (span loca-
tions) are selected, and the values of Y1 = g% at these sta-
tions obtained, where I' is the bound Vorticity strength at
the spanwise station y. The value of T' is obtained from

elementary vortex lift theory (Kutta-Joukowsky):

where C and C2 are the local chord length and 1ift coeffi-
cients, respectively.

Between a pair of consecutive wing stations, j and j+1,
Y1 is approximated by a linear distribution in y:
(Yl)j‘l‘l = (Yl) .

J - y.) + :
Y341 - 3 (y = y5) + (v1)y

Y=

The change in bound vorticity strength in this interval,
Fj+l - Fj must be equal to the strength of the shed or trail-
ing vorticity. As a direct result of Helmholtz' first

vorticity theorem:

y
-Fj+1 - T, =§ yldy

Vi
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I'. is distributed in the chordwise direction in a fashion

similar to that of the load distribution, C - C. , where C
Py Py P

is the pressure coefficient, and the subscripts refer to lower
or upper surfaces of the wing. Figure 11 depicts typical dis-
tributions for two categories of airfoils. 1In addition, the

following relation holds:
' C.
r. = _/‘JY dx
J 0 2
at any wing station j. v, denotes the component of vorticity
proceeding in the spanwise direction. It is again approxi-

mated by a piecewise linear distribution (Figure 12), i.e.,

linear over a chord segment from point i to point i+l.

(v5); = (vy);
YZ(X) _ 27141 ' 2°1i

(x - x5) + (vy)y
Between two consecutive stations j, j+1, a linear blending
function is used to interpolate, and thus the bilinear dis-

tribution is used. The same interpolation method is used

for v,.
1 c
Now, since Fj =J yzdx, the piecewise interpolant
0 B

results in a trapezoidal rule summation:

m X. - X.
r. = 5 i+l 1
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Conventional airfoil

Aft loaded airfoil

c X

Figure lla. Typical chordwise vortex strength
distributions

.x1=0 xé MX3»u X

.Figure 11b. Approximation of chordwise loading
’ distribution using a linear
interpolant
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Figure 12. Typical spanwise load distribution for a wing
. and piecewise linear approximation of corre-.
sponding  shed vorticity
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Since the distribution is known, the (YZ)i can be expressed

as multiples of yé, the maximum Yo value along the chord,

then
Pl ot LG r + (7). 10k, = ey (28)
3 T2 Y2 L Y20 T2 Y2
or,
—_—
vy = Ty/f (29)
where:
1 = .
£E=3 1G4 + (G)l1axy
i=1
Ay = Xy T %y (30)
and
72 = Yz/Yé

Therefore, the vorticity flow through the panel edge (1), on

Figure 13, has the circulation

Yol(p) 4 + () 150%; (31)
and through panel edge (2)

o = DO g4 + () 5498%; = vl(p) iy + )y ly8%;  (32)
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Similarly, through panel edge (3), the vorticity flow has the

circulation:

Py = [y + (3l 435 (33)

and through panel edge (4):

Ty = [ gap + () 51545055 (34)
The following conditions must be noted:
1. Fl + 1"3 = I"z + 1"4 (35)
2. Y1 = Yy = 0 (36)
along the leading edge, and
3. =0 (37)

"1
along the centerline or plane of symmetry.

If T is known at the centerline, and Y1 is known at all
wing stations, which are determined a priord along with the
chordwise loading, then by virtue of Equations 28-30, 36,

Yé at each station, and thus vy, at all nodes can be obtained.
By virtue of Equations 31-36, the values of Y, at all nodes
can be obtained too.

In the free portion of the vortex sheet, the wake Yo = 0
everywhere, and the values of Y1 remain unchanged from those
at the trailing edge.

In the parametric patch representation scheme, all

.variables are expressed in terms of the parameters u and v,
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which are used to represent the streamwise and spanwise
directions with proper transformations, respectively.

As a matter of general interest, in the panel methods
where the circulation is everywhere unknown, it is customary
to express the nodal circulation values in terms of a subset
of values, usually one per spanwise station. The induced
effects are then added to the source panels representing the
solid boundaries. An additional number of equations equal
to the number of unknowns (in this case the Yé values) 1is
required. These are obtained by specifying boundary con-
ditions at an equal number of points, for example, where the
Kutta condition may be enforced. The problem of the vector

nature of vorticity is thus eliminated.

Remark on spanwise positioning of nodes

Parametric bicubic patches of the Ferguson type used in
this study guarantee second derivative continuity. However,
the node spacing has an important effect on the quality of
fit. If two neighboring patches have widely varying lengths,
the tangent vectors at the common boundary will be too high
for the smaller one, causing loops, and resulting in excessive
surface areas as well as area related integrals over the
patch.

On the other hand, the piecewise linear distribution of
vorticity dictates another criterion in the selection of nodal

positions. A linear segment should be terminated before the
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error in the linear representation is excessive, in order to

maintain the higher order terms at a minimum.
Induced Velocities

It is necessary now to compute the induced velocity due
to the entire vortex sheet, bound and free portions, at a
number of points on the free portion, namely, the patch nodes.
Equation 22 is used. The induced velocities of each panel,
Equation 21 (a generalization of Equation 20), are summed for
all panels representing the vortex sheet. If other singulari-
ties are present, such as solid boundaries represented by
source panels or other lifting surfaces represented by vortex
panels, their induced velocities would be added, too. Source
panels induced velocities are given by an expression similar
to Equation 20, except that the vortex strength is replaced
by source strength, and the Ex term is dropped (18).

The surface integral in those equations is not suitable
for closed form evaluation, unfortunately, and a numerical

quadrature is employed (Chapter V).

Symmetry

Computations can be greatly reduced by taking advantage
of the symmetry of the configuration about the y=0 plane.
Letting the physical quantities be expressed for the '"left-

hand half" of the wing in terms of those on the ''right-hand
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half" (primes are used for the left side), then:

X = X
y' = -y
z' =z

for the vorticity unit vectors:

€ =x, i +y g+ zuk

u
(39)
1 — - . 3 -
t; = -x,1 + ¥, J zuk
ty, = xVi + yvj + zvk
(40)

t) = -xi + yid - oz k

for the distance from the elemental vortex to a point in space:

§x' = 6x =& - x

Sy' =mn+y; 8y =n -y (41)

§z' =8z = ¢ - 2

Again, £ is the position vector of the point at which the
induced velocity is to be computed, X is that of the vortex
element, and subscripts u and v denote partial derivatives
with respect to these parameters. In Figure 14, these various
quantities are depicted.

The displacements in the wake elements are mirror imaged
on the left side from those computed on the right side; thus,

the panel symmetry relations (38) hold.



Figure 14.

: Plane of
Symmetry

Symmetry of geometric parameters

LS
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Procedure to Compute Rollup

Initial conditions and sheet length

The proposed method is an iterative procedure where an
initial shape for the free portion of the vortex sheet must
be assumed. The most logical one would be to extend the trail-
ing edge in the direction of the free stream velocity, since
all sections of the sheet has gone through the trailing edge
as they were being shed from the wing. The sheet is extended
to a downstream. station far enough so that the induced effects
at the areas of interest (e.g., the empennage) become negli-
gible. An additional extension is required to promote adequate
influence for the rollup of original portion. In the latter
portion, accurate rollup is not of essence, rather, its simula-
tion of the fact that the vortex sheet is in reality semi-
infinite in length is the intended purpose (Figure 15).
The free portion of the sheet is divided in three regions:

- Region I in which accurate estimates of induced velocities
are needed.

- Region II is an extension to such distance beyond which the
rollup effects are negligible everywhere in region I.

- Region III is a further extension to such distance beyond
which vorticity effects are negligible in region I and II.
The various streamwise stations (or spanwise or u=constant
curves) are those along which the patch corners or nodes are

located, and are numbered from 1 at the trailing edge to Mypr-
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Region to simulate
IT semi-infinite sheet
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~ rollup affects
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Figure 15. Breakdown of trailing vortex sheet for computation purposes
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Computation scheme

The following steps are performed to obtain an approxima-

tion of the rolled-up shape of the vortex sheet.

1.

The induced effects of the entire initial sheet at
the nodes of stations 1 and 2 are computed.
The induced velocities at station 1 nodes are re-
quired for computing the downwash and sidewash angles
at the nodes, such that the resultant velocity

Vj.= (Vv + Avxj)i + AVyj i+ szjfc (42)
where the V's are the induced velocity components,
coincides with the tangent vector §u.. The magnitude
of §u should be approximately eqﬁal %o the arc length
of a v=constant curve through the particular node on
station 1 between this node and the corresponding
one on station 2. Thus:

2
oy TR
J

2 (43)

]
where % is approximated by the chord length I;zj-;lj[
for the node pair in question. The nodal displace-
ments are zero.

At the nodes of station 2, displacements at the nodes
are computed. The time elapsed from shedding to the

position along station 2 is:
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V(direction of
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Figure 16. Boundary condition at wing trailing edge



62

- x. .)/V

t2,j - (X29j i:J oo J = 1’2""’ ntl (4[‘)

During this time t, the induced velocities vary
from those induced at station 1 to those at station
2. The average velocity is used, so that the dis-

placement for each node at station 2 is:

> 1 - >
Ax i =7 t2,j(vi,j + V

2,3 ) § =1,2,..., n+tl  (45)

Thus, the position vectors are obtained for station
2 nodes:
1 0

x .=§2.+A§

2, ] ] 2, (46)

The superscript refers to the computation cycle, zero
being the initial condition. The treatment of the
tangent vectors at the three remaining boundaries is
presented later in this chapter.

For all the remaining stations, 3 to m;rps the incre-
mental nodal position vectors are set equal to those
at station 2. fhe reasoning is that the vortex sheet
past station 2 has passed through that curve at some
earlier time.

The second computation cycle is similar to the first,
except that now the third station (i=3) is modified
according to the following:

2 2 1
Avi’j = vi,j - vi;j j=1,2,..., n+l  (47)
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AV is an incremental velocity at station 3 to repre-
sent the acceleration of the particles between sta-

tions 2 and 3. Now, the time elapsed is

1,5 7 %37 R, 50 Ve (4

Then, the incremental displacement AX 1is:

> _ 1 > T2
B3 T2 B,V AT ) (49)

6. For stations 4 to L the incremental nodal posi-
tion vectors are equal to those of station 3 nodes,
~and so are the tangent vectors at the tip.
7. The cycle is repeated My times, (for i values up
to and including mq), to obtain the relaxed wake

shape, so that for the kth cycle:

kK  _ sk wk-1
AV 5 = Vi 0 Vi3
ti’j = (xi,j - Xi_l,j)/vw

:) (50

Particle motion due to a vortex is not linear. An
assumption of linearity is valid only for small time segments.
In order to relieve this restriction, circular motion about "
each elemental vorticity is approximated as follows.

In Figure 17, let point P be a field point under the



o4

Field
point

p(relative
position)

Figure 17. Correction for non-linearity of vortex motion
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influence of a vortex element at point Q. The distance
between them is p. The true updated position of P is P',
resulting from circular motion about Q. P1 is the new
position using linear motion approximation which can be
easily obtained, but is obviously inadequate unless p>>|6$-t|.
Point P2 is obtained by multiplying the vector ?1 - Q by the
ratio p/|§1 - §|. Then, P" is obtained by multiplying the
vector ?2 - P by the ratio |6V-t||?2 - P|, so that P" - P

has the same magnitude as the induced effect §V-t. For
moderate angleé (up to n/2), P" is a reasonable approximation

of P'.

Tangent vectors

The free portion of the vortex sheet is refitted after
each displacement. An evaluation of the tangent vectors in
transverse direction to the boundary is required. 1In step 2,

the tangents X were evaluated at the wing trailing edge.

u

The tangents §u at station m;;; (the last or pseudo infinity

station) are assumed parallel to the free stream velocity.
Due to symmetry, the tangents iv at the symmetry plane are
perpendicular to that plane. The tangent vectors of the

remaining boundary, the tip vortex, are discussed next.

Tangent vectors at the tip vortex

First, the direction of the vector is determined as

follows: By referring to Figure 18a, consider the current
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Figure 18a. Exact tangent vector computation
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/

. Actual Approximate
tangent vector / tangent vector

A(v)

Figure 18b. Approximate tangent vector computation
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section in the sheet represented by curve C. The tip point A
has the position vector x = (y, z). The y and z coordinates
are those of interest since changes in the x-direction are
assumed negligible. Point B is a point on curve C just in-
board of A whose position vector is (x - dx) = (y-dy, z-dz).
The parameter v assumes the value v and v - dv at points A
and B, respecti#ely. Curve C' represents the updated shape
of the vortex sheet after the next cycle, that is, after a
time t has elapsed since the particles have moved from the
upstream statidn, as in Equation 48. The induced velocity
vectors at points A and B are V and V - ¥, leading to new
positions A' and B', with position vectors X' and X' - dx'.
'

Thus, the tangent to the curve at A' has the components dy

and dz', where

dy' dy + dVyt and
dz'

dz + dVZt,

or the components y& and z&, the length components of the

tangent vector, where

Yy =V, + (V) t and

v(z, + (Vz)vt).

v v

N
i

v is a scale factor which can be obtained by equating the

124%

v to the arc length of the last segment

magnitude {y&z + z

of the curve, approximated here by its chord length

2

1 1 ' 1y 2%
[(yn+1 - yn) + (zn-f-l = Zn) 1=,

Therefore,
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' 2 2
2 (Yn41 - Yﬁ) + (Z$+1'- zy)

. ' 2 2
(v, + (Vy)vt Tz, V)%

Note that
oV AVZ
(Vy)v T v and (Vz)v T Thv

can be obtained by differentiating Equation 22 with respect
to v using Leibniz' rule. Since the limits of integration
are constant, such differentiation is merely performed on
the integrand.

The evaluation of Vv would be performed by numerical
quadrature in the same fashion as v itself, necessitating
the near doubling of computations to be performed. Thus, an
approximation is adopted as shown in Figure 18b. A point (B)
is selected inboard of the tip (A) at a parameter value §v
less than that at the tip. 6&v is chosen small so the chord
B'A' represents the tangent vector of the updated curve C'
at the tip A'. The position of B' is computed in the same

manner as the panel nodes.
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CHAPTER V:
DESCRIPTION OF COMPUTER PROGRAM

Iptrodqcpion.

In this chapter, the computer program to perform the
computations required for the algorithm described in Chapter 4
is presented. It is written in FORTRAN 77 in a structured,
modular form for easy expansion, upgrading, and adaptation to

an aerodynamic analysis system.

Major Module Flowchart

A flowchart showing the major functions is shown in
Figure 19. Each major function or module is detailed further.
Three sets of streamwise panel rows are used:

- The bound vortex panels which are not updated.

- The updatable panels at which the displacements are
calculated.

- The slaved panels which are updated to the last station
evaluated. (Correspond to those of Region III. See
Figure 16.)

The "updatable row' repetition constitutes the relaxa-
tion cycle iterations. The entire wake update is repeated
for the rows of Regions I and II which the induced velocities,

displacements and tangent vectors are re-evaluated. The
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'Figure 19. Major function flowchart
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results could be output on an external file in the same format
as the inputs and the program re-run using those for a better
approximation, although this was not done in the present study.
As will be shown in Chapter VI, the results obtained from the
first iteration were quite satisfactory. 1In the following,

the various details are discussed.

Surface fit

This module merely fits parametric cubic curves in the
u and v directions independently, resulting in the tangent
vectors at the nodes in both these directions. The twist
vectors are not obtained, for simplicity, and due to their
minimal effect on the quality of fit. However, if necessary,
they should be computed here. The Thomas' algorithm is used
to solve the set of tridiagonal equations as explained in

Chapter II.

Quadrature points

This module interpolates the wake surface within a
patch for a set of 25 points, (see Table below), used for
quadrature, to obtain the position and tangent vectors,

+ »
X, gu and X ., Then, the latter two are used to obtain the

v
normal vectors §u x ;v and their magnitudes, and store these
data for use by other portions of the program within the

patch loop. This module uses another one to obtain the poly-

nomial coefficients of the patch, given the nodal positions

and tangents. The latter are merely the partial derivatives
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of the position polynomials, with respect to the parameters
u and v. These data are used in obtaining the deformed or
stretched patch area in order to compensate for the stretch-

ing, as well as for evaluating the induced velocity integrals.

Numerical integration

The Gaussian quadrature is used. The integrand is
evaluated at twenty-five points in the interior of each panel
forming a grid of five points in u-direction along five con-
stant v curves. The values of u and v are shown in the table
below. The elemental area is approximated by a weighting
factor for the integrands aiaj, the values of a; corresponding
to the grid point is also shown in the Table. The integral

11
SI f(u,v) dudv
00
is approximated by the double summation
5 5

jil iilf(ui’ Vj) aiaj

Gaussian Quadrature Parameters

i u; or v, a;

1 0.046910077 0.11846344
2 0.230765345 0.23931434
3 0.5 0.28444444
4 0.769234655 0.23931434
5 0.953089923 - 0.11846344



74

Induced velocities

For each of the quadrature points, the values of the
vorticity are interpolated, and the relative position vector
(to the node at which the velocity is being calculated) evalu-
ated for one half of the symmetrical vortex sheet, as well as
the other opposite half. The induced velocity vector induced
by the current patch at the entire set of nodes is obtained
by use of the Gaussian quadrature. These are stored and incre-
mented for all patches of the network. This is done so that
the patch quadréture points are evaluated only once per relaxa-
tion cycle, to reduce the amount of computations. In this
fashion, the bulk of the computations is done in the induced

velocity quadrature.

Typical run statistics

One test case used 15 x 7 panels. The 15 streamwise
rows comprise 3 bound, 7 slaved, and 5 updatable sets. The
run required 105 CPU seconds on the Iowa State University
NAS-AS/6 computer, constituting most of the thirteen dollar
charge. Should this method be used in conjunction with a
potential flow paneling program, two iterations are to be

sufficient, add a small percentage to the total cost.
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CHAPTER VI:
RESULTS AND DISCUSSION

The results of the computational method of the present

study are presented in two parts:

1. A wing planform tested for vortex sheet shape
visualization is modeled numerically and compared
with the test results to demonstrate the validity
of the method.

2. The spén loading of the wing is altered arbitrarily
to simulate deployed flaps (or stalled outboard
panel) is modeled and the results presented to
demonstrate the ability of the system to handle
complex loadings.

The first part uses the results of a wind tunnel test con-
ducted in the Boeing Co. Research Wind Tunnel, which is

described next.
The Test Wing

Description of the test

The planform of the wing is shown in Figure 20, along
with the spanwise load distribution, measured experimentally
using pressure taps at various stations. The load distribu-

tion used in the numerical model must be a piecewise linear



76

distribution of bound vorticity. This modeling is described
in the following section.

The flow visualization technique used for this experi-
ment consisted of injecting steam and liquid nitrogen in the
airstream at a location upstream of the wing tip. The nitro-
gen flow rate is adjusted to bring the air and water Vapor
mixture close to the dew point, so that a small drop in tem-
perature will cause condensation of the vapor and result in a
mechanical mixture of air and water droplets. This effect
will take place-if an adiabatic pressure drop occurs, specif-
ically along the vortex sheet, where the induced velocities
are locally high. If the wind tunnel is of the open type
and the atmospheric relative humidity is high, and the air
temperature is very low, liquid nitrogen would be unnecessary.

Light is applied to a section of the stream past the wing
trailing edge through a narrow slit so that only the water
droplets at the particular section are illuminated and can
be photographed.

A complete description of this and other methods used
for this program can be found in references (21, 29). The
only available photograph from the test was taken at a
section 1.25 spans behind the wing's trailing edge, and is
shown in (29), along with computational results discussed
later. The flow visualization is illustrated in this report

as the dashed line in Figure 22f.
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Figure 20a. Test wing planform and twist

Figure 20b.

Test wing span loading (experimental)
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Numerical modeling of wing loading

The necessary inputs to the computer program are piece-
wise linear vorticities for each panel of the vortex sheet.
In this section, the bound (or fixed) portion thereof is
discussed.

Since no chordwise loading was published in (29), a
distribution similar to aft loaded airfoils was assumed.
Three chordwise panels are used. The leading edge is 207 of
the chord and a vorticity distribution varying linearly from
zero to a maximum value Yé depending on the local spanwise
load. The middle panel is 407 of the chord with constant
vorticity yé. The trailing edge panel is 407 of the chord
and returns the vorticity to zero linearly. For a given
value of local loading (c-CQ), the bound circulation I' can

be obtained from:

where: V is the free stream velocity = 26.81+ms"1 (as in the
test)
¢ is the local chord, meters
C, is the local lift coefficient.

L
I'is also equal to

L0 YD Grmxy) + () Geymg) + (rghyg) Gy

where: Yy is the value of Yo at the ith chordwise node

X is the x coordinate of the ith chordwise node.
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Now, y; = v, =0, v, = Y3 = v); x, = 0 since the trailing
edge is plaéed on the y-axis, and X1, Xg and X4 are respec-

tively 1, 0.8, and 0.4 multiples of the local chord. Thus:

' -1
Yy T U??c ms

Due to the linearization of c-C large variations were

PE
found in the values of the shéd.ﬁorticity when computed using
differences. A good approximation was obtained by graphi-
cally estimating the slope of the c-C2 curve at the various
spanwise nodes. These nédes were chosen at y = 0, 0.42,
0.67, 0.82, 0.91, 0.96,.0.996, and 1.016 m, according to the
considerations discussed in Chapter 4.

The values of the shed vorticity Y, are obtained at

these stations from:

_vd
1 =73 (c+Cy)

The amount of shed vorticity across panel i is

_ by
AT = (yqly *+ vilye)

which is equal in a reduction in bou