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TRANSMISSION LINE DESIGN FOR A POWER DISTRIBUTION SYSTEM 
AT 20 kHz FOR AIRCRAFT 

Leon W. Zelby, John B. Mathes, and John W. Shawver 
University of Oklahoma 
Norman, Oklahoma 73019 

1.0 INTRODUCTION 

The purpose of this work is to design a transmission line for a power 
distribution system in aircraft. The line is to operate at 20 kHz, have very 
low inductance and, consequently, a low characteristic impedance; it must with
stand 440 V at an altitude of 15 km (50 000 ft) and 1 kV at 300 km (about 
100 000 ft), and must be capable of carrying 100 A. The connectors and sup
ports must have a minimum creepage path of 0.635 cm (1/4 in.). 

Additional considerations of the line design include connectors for par
allel loads, number of such connectors, mechanical strength and heat dissipa
tion, dc resistance, and weight. 

The fundamental problem in determining the inductance per unit length, and 
the characteristic impedance of the line is the calculation of inductance or 
capacitance because LCv2 = 1, with Land C representing the inductance and 
capacitance per unit length, respectively; and v representing the velocity of 
wave propagation along the line (in the case of the fundamental mode, the TEM 
mode, the velocity is governed by the properties of the material between the 
wires). At a frequency of 20 kHz, the skin depth for copper (resistivity 
1.7x10-8 Q-m conductivity = 5.88xl07 mho/m) is 0.46 mm n 0.5 mm, and the wave
length in free space, is 15.0 km and about 9.0 km in many commercially used 
insulating materials (relative dielectric constant on the order of 3). Thus, 
the total length of the line is on the order of 0.02 to 0.033 wavelength which 
justifies the quasi-static approximations (refs. 1 to 5). The close spacing 
among the individual conductors strengthen the validity of the relation 
LCv2 = 1 and of the IIquasi-TEMIl mode dominance. [Strictly speaking, the TEM 
mode in this case is not absolutely pure because of two factors: there are two 
dielectrics between the wires, the insulation and air; and the wires are lossy. 
As a consequence, there will be an axial component of the electric field, but 
it is so small that the assumption about TEM is more than satisfactory for 
practical purposes. Furthermore, with reasonable insulation the shunt conduct
ance (between the wires~ will be on order of 10-17 mho/m (ref. 6). As a con
sequence, the term RG/c..> LC wi 11 be on the order of 10-14 « 1, so that 
the propagation constant will very nearly be equal to c..>~, so that the 
relation LCv 2 = 1 will be satisfied in any practical system.] 

The SI system of units will be used throughout this report. 

2.0 DETERMINATION OF PARAMETERS 

2.1 Introduction 

In order to design a suitable transmission line, several parameters need 
to be determined for different configurations. The parameters are L, the 
inductance per unit length; C, the capacitance per unit length; Zo, the 



characteristic impedance; and R, the resistance per unit length. (G, the 
shunt conductance per unit length is too small to be included.) land Care 
related as indicated above through the relation lCv2 = 1; also, for a lossless 
line, Zo = (l/C)1/2 Q. At a frequency of 20 kHz, the skin depth in copper 
is 0.467 mm, with the current distributed in a circular cylindrical conductor 
as shown in figure 1. The distribution is governed by the relation (ref. 7) 

~_ Ber (rp) +jBei (rp) (1) 

10 - Ber (ro~) + jBei (ro;t) 
where Ber(x) + jBei(x) = Jo(j-1/2x), with Jo(x) the Bessel function of the 
first kind and zeroth order, and j = (-1)112. The other symbols are: r, 
radial distance; ro, the radius of the wire; and 6, the skin depth. In view 
of this distribution, calculations will be concerned mainly with wires whose 
diameter does not exceed 1 mm (number 18 AWG wire). 

The main parameter is the inductance which should be as low as possible in 
order to minimize the effects of switching. Consequently, emphasis will be 
placed on the determination of l which will be calculated two different ways: 
one method will utilize the definition of inductance (flux linkage per unit 
current); the other method will utilize the calculation of capacitance from 
which the inductance will be evaluated from the relation l = (Cv2)-1 = ~€/C 
= Zo..flJE· 

2.2 Inductance Calculations 

In the following calculations, the permeability of all materials will be 
assumed to be that of free space (~o = 4~xlO-7 Him). The inductance per unit 
length of a bifilar lead of radius ra (current in each direction is assumed 
uniformly distributed over the cross section of the wire, see fig. 1) separated 
from the return lead of radius ral by a distance Daa l is (ref. 8) 

Laa , ~ ;~ [t + 1n(D~a,lrara.)] = :~ [1 + 4 1n~a/ra)] Him (2) 

when the return wire radius is the same as in the first wire (the case here 
under consideration). For an n wire system (n pairs) one can form an n x n 
matrix 
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where Lij = Lji' and calculate the equivalent inductance of the system 
(refs. 9 and 10) 

( 
n n ~ 1 

Leq = L L f-L: .~ Him 
., . 1 \1 1 J 

\1=1 J= \ 

which can be determined to any given degree of accuracy (ref. 10). 

(3) 

(4) 

The FORTRAN program for this calculation, CRIMPD.F, which is listed in 
appendix A, uses a series of menus to facilitate the entry of different two
dimensional conductor geometries. The entries are the coordinates of the 
centers of the conductors and their respective radii, and they may be entered 
either in rectangular or polar coordinates, (see figs. 2 and 3 for the polar 
coordinates). 

2.3 Check on Calculations 

To check the results obtained from calculations performed according to 
the above discussion, two additional calculations were performed for several 
geometries. One check used the extension of equation (2) to multiple parallel 
conductors 

L == ~ - + 2 ln aa a an Him 
p (, D I . D b' •... • D I) 

a 2~ 2 ra • Dab· Dac Dan 

with the parameters defined in figure 4. The equivalent inductance per unit 
length was calculated using 

Leq =(t ~.)-l +(t ~~-l 
. 1 1 • 1 1 1= 1= 

Him 
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Calculations for 4-, 8-, and 16-conductor arrangements agreed exactly with the 
other calculations. 

The other check utilized the expression for capacitance between two 
infinitely long conductors of circular cross section (ref. 11) (radius r, 
distance between centers D) 

c = «, (~rf 1n (~r +~ 2 -1) F/m 
cosh -1 

so that the external self-inductance of one conductor is 

L = L ln (~+ FD)2 + ,) 2~ 2r ~ \2r) + Him 

(7) 

(8 ) 

because LC = ~€. Calculations were performed using the above argument of the 
logarithmic function instead of using the Dij's. The results, for the ratio 
of the distance between conductor centers to conductor radius equal to four, 
are about 7 percent lower than the other calculations. This was to be expected 
because the internal inductance, ~/8~, does not appear in equation (8), but its 
contribution is negligible for the distance-to-radius ratio of four or more, 
and the 7 percent discrepancy is well within bounds (ref. 10). Note that the 
dimensional relations of this report meet this criterion: the ratio of the 
distance between centers to conductor radius never is less than four. Con
sequently, the error-if any-should not exceed 7 percent, a value usually 
acceptable in practice. 

3.0 CONFIGURATION DATA 

3.1 Circular Cylindrical Arrangements 

Calculations were performed for wire arrangements of the type shown in 
figures 2 and 3. For the single "ring" of wires, as in figure 2, it was found 
that the best arrangements (i.e., the lowest values of inductance and charac
teristic impedance) were for alternating current directions in adjacent wires . 

. The values of inductance decrease with increasing number of wires. This cir
cular configuration was not suitable, however, because of the large number of 
wires needed to reduce the characteristic impedance to acceptable values (on 
the order of an ohm). Furthermore, with an increasing number of wires, the 
radius of the "ring" R is increasing, and this leads to inefficient use of 
space. 

A better configuration was of the multiring variety. Tables I and II list 
values of L per unit length, and of Zo for different number of wires (N 
represents the total number of wires in the line, with N/2 in the inner and N/2 
in the outer ring). The angle e is defined in figure 3 and represents the 
shift of the first wire in the outer ring relative to the first wire in the 
inner ring. As in the case of the single ring, the lowest values were obtained 
for alternating polarities. 
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One of the problems with the coaxial arrangement is that the inductances 
of the wires in the inner ring are lower so that more current is concentrated 
there relative to the outer ring. This can be compensated by reducing the 
radii of the wires in the inner loop. 

For comparison of the different wire radii, calculations for the arrange
ment shown in figure 5 were made. The values for the five ring arrangement for 
the same wire radii (Line 1), and for different radia (Line 2), are listed in 
Table III. These show that in the latter case, the overall inductance is 
increased which means that an increase in the number of wires would be required. 
Clearly, this again suggests not only an inefficient use of space, but also 
higher Land Zo values than comparable rectangular arrangement (see items 
1 and 2 of Table IV). 

3.2 Rectangular Arrangement 

To carry 100 A, #4 AWG wire is recommended (ref. 12) whose cross section 
is 21 .15x10-6 m2. Inasmuch as the skin depth at 20 kHz is approximately 
0.5 mm, the largest reasonable wire would be #18 AWG (radius, 0.512 mm; cross
sectional area, 0.8231 mm2). The minimum number of #18 AWG wires would there
fore be 26. In subsequent calculations, a larger number of wires will be used. 
(Note: the 26 wires do not include the return path which calls for additional 
26 wires. The minimum for the line would then be 52 wires #18 AWG.) 

Figures 6 to 8 show the results of 80-wire 4 by 20 rectangular arrangement 
which appears to have the best parameters: L = 10.4 nH/m; C = 2.5 nF/m; 
Zo = 2.1 Q (the computer printed values were, respectively, 10.4196, 2.5264, 
2.0611). As the method to compute these values was the "inductance" method, 
the numbers represent the upper bound. The wires in calculation were #18 AWG, 
total cross-sectional area in one direction is 32.68 mm2. 

A calculation for 256 wires #24 AWG in an 8 by 32 arrangement, as shown 
in figure 9, was also made. As expected, the inductance and characteristic 
impedance values are lower than for the 80-wire configuration: L = 3.2 nH/m, 
C = 7.9 nF/m, Zo = 0.6 Q (printout values, respectively, 3.2193, 7.9382, 
0.6368); cross-sectional area, 25.1 mm2. Note that the variations of the 
self-inductance of the individual wires are greater than for the 80-wire 
arrangement. 

Given the same size wires and the same distances among them, inductances 
of different size bundles are proportional to the inverse ratio of the number 
of conductors in the bundle. This was used to arrive at the values listed in 
Table V for the minimum number of wires required to pass 100-A currents. (if 
the self-inductances of each of the wires were the same, this relation would 
hold for any number of wires. Inasmuch as this is not the case (see figs. 7 
to 9), the number of wires should be greater than about 20 for the approxima
tion to be acceptable.) 

Table V lists several parameters for lines composed of a mlnlmum number 
of conductors that can carry the rated (lOO-A) current. The line lengths are 
150 m each, so that the dc resistances were calculated for 300-m length to take 
into account the return path. The total number of wires in each line is twice 
that listed in the table. The corrections for the ac values were taken from 
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standard tables (ref. 13), and those for proximity effects from Smith 
(ref. 14). The proximity effects account for about additional 40 percent of 
resistance (see Table I and fig. 5 of ref. 14) for a distance-to-radius ratio 
of four (two in ref. 14 because the distance between the centers in this refer
ence is "2c"). 

To adjust the value of inductance per unit length and characteristic 
impedance of the 52-wire #18 AWG line listed in Table V, it is only necessary 
to multiply by 80/52 = 1.5, which would make 9.7 < L < 16 nH/m, and 1.9 < Zo 
< 3.2 Q. Similar adjustments can be made for the other lines. 

3.3 Miscellaneous Considerations 

At the rated current, about 6.5 W will be dissipated per meter of line, 
which would mean an increase (ref. 15) between 0.08 to 0.13 K, depending upon 
the type of insulation. Such temperature rise is not sufficiency large to 
cause concern. 

The coefficient of expansion for copper is on the order of 10-6 m/K from 
25 to 1200 K (ref. 16). At 300 K, the expansion is 16.8x10-6 m, which would 
mean a total of 2.5 mm for the entire 150-m line. This, too, is not considered 
significant. 

For the recommended types of aircraft wire (ref. 17), Mil-W-16878, the 
dielectric strengths substantially exceed the specification of standing off 
1 kV, which - for the recommended configuration - would be on the order 
1 kV/mm = 1 MV/m = 25 V/mil. The breakdown strength of polyethylene exceeds 
20 kV/mm at 20 kHz, as does that of polystyrene, Teflon, and polypropylene 
(ref. 18). 

The conductance per unit length between the individual conductors can be 
calculated from the relation 

C/G = do (9) 

which, for the materials under consideration, will be on the order of 
10-15 mho/m (R of the order of 1015 Q/m) , using 1017 Q-m for resistivity 
(ref. 6). Clearly the losses due to transverse currents can be neglected. 

3.4 Connectors and Junction Boxes 

A conventional, circular, multipin connector is shown in figure 10 as an 
example. Junction boxes with connecting wires, with conventional connectors of 
circular or rectangular shape will fulfill the specifications. The junction 
box shown in figures ll(a) and (b) would be more suitable, however, because the 
interconnecting plates substituted for wires would reduce the inductance 
locally. Connectors could be of the conventional, multipin variety, with 
soldered or brazed connections internally. Alternatively, internally the pins 
could be connected to blades for contact with the conductors. The specific 
configuration is not very critical, but it would be recommended that the con
necting surfaces be gold-plated. The reason for this is to prevent increases 
of contact resistances as a result of fretting (ref. 19). 
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3.5 Miscellaneous 

In addition to the configurations described above, parallel-plate arrange
ments of the type shown in figures 12 and 13 were analyzed. That of figure 12, 
in spite of the very low characteristic impedance (0.14 Q), is thought to be 
less suitable than the configurations recommended in the next section of the 
report because the thin plates will very likely buckle. Should the plates be 
made thicker, the line would be too heavy and too unwieldy. Also, connectors 
with suitable characteristics would be difficult to design. 

The program for the determination of line parameters for the configuration 
shown in figure 13, for different values of s, thickness, and spacing, is 
listed in appendix B. The values of inductances per unit length, and charac
teristic impedances are at least four times larger than those of the configura
tion shown in figure 6. 

4.0 RECOMMENDATIONS 

The line recommendations are made on the basis of the assumption that off
the-shelf availability, or ease for assembly-line production, are secondary to 
the other attributes such as low impedance, reliability, and the like. As a 
result, the best choices for the line are listed in Table IV. The total number 
of wires per 150-m line is listed, with one-half representing the return path. 
The direction of current alternates between neighboring lines. (The difference 
between Table IV and Table V is that in the latter one-half of the wires was 
used in a 300-m long loop for the determination of the total resistance, 
whereas the number of wires in the former represent two parallel sets each 
150 m long.) The alternating current directions have at least two advantages: 
lowering the inductance of the comparable wire arrangement with adjacent cur
rents in the same direction by at least a factor of four, and by reducing the 
external magnetic fields which reduces electromagnetic interference. Numbers 
1 and 6 in Table IV represent the configurations of figures 6 and 9; the 
remainder represents the minimum number of wires required for 100-A currents. 

Multipin connectors of the type generally available from manufacturers 
such as Litton, Amphenol, or others, would be satisfactory for the junction 
boxes shown in figure 11, with gold-plated contacts to prevent increases of 
resistance due to fretting (platinum plating would also be acceptable). 

A general recommendation for any type of line used in an aircraft power 
distribution system is that instead of one line 150 m long there should be 
several 5-, 10-, or 15-m sections connected in series via junction boxes. The 
advantage of this would be that in case of failure of a section, it could be 
easily replaced-even in flight. Also, the several junction boxes at given 
intervals would facilitate connections to the respective loads. 
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100 

140 

200 

250 

1000 

* 1100 

PROGRAM CRIMPD.f 

DOU9LEPREC1SION A,E,C _ 
OOUSLEPRECISION S(1:1024),0(1 1024),X(1:1024),Y(1:1024) 
DOU3LEPREtISION L(0:1024),LO( :1024),L1(0:1024),LN 
DOUaLEPRECISION D(0:1024),T(1 1024),R(1:1024),B(0:1024) 
DOU6LEPRECISION SA,SD,PI,SLOP ANG 
INTEGER M,K,UUU,JE,ALTPOL 
INTEGER U,J,I,N,RP(1:1024} 
CHARACTER 01,POL(1:1024)*3 
PARAMETER (PI=3.141592654) 

01='SELECTION IS OUT OF BOUNDS. TRY AGAIN ••• ' 
CONTINUE 
DO 140 1=1,64 

PRINT* 
S(1)=O. 
O( 1) =0. 
X(I)=O. 
Y(1)=O. 
UI> =0. 
LOCI)=O. 
L1(I)=0. 
.00)=0. 
T(J)=O. 
RCI)=O. 
B(I)=n. 

POLU)=iN' 
CONTINUE 
N=1 
PRINT'({"""I)' 
PRINT", Main Menu' 
PRINT* 
PRINT"" 1. 
PRINT*,' 2. 
PRINT*,' 3. 
PRINT*,' 4. 
PRINT*,' 5. 
PRINT",' 6. 
PRINT*,' 7. 
PRINT*,' 8. 
PRINT'Cln' 

Polar coordinate input' 
Rectangular coordinate input' 
Data file input' 
Run inductance calculation (Skilling method)' 
Run capacitance calculation (Cheng method)' 
Ch~ck individual conductors' 
EKit to shell' 
Enter new configuration (reset indeK counter)' 

PRINT*,'Choose from 
REAO*,U 
IFW .EQ. 
H(U .EQ. 
IF(U .EQ. 
IFCU .EQ. 
IFW .EO. 
IF CU • CQ. 
!FCU .EO. 
1FCU .EO. 
PRINT*,Q1 

7) GOTO 
6)GOTO 
5)60TO 
4) 60TO 
3)GOTO 
2)GOTO 
1) GOTO 
8) GOTO 

7000 
6000 
250 
4000 
250 
2000 
1000 
100 

thru 8 ••• • 

GOTO 200 
PRINT*,'ROUTINE NOT 
GOTO 200 

OPERATIVE, CHOOSE ANOTHER MODE ••• • 

Polar coordinate input 
PRINT",' Polar coordinate input' 
PRINT*,' 1. Automatic ring program' 
PRINT*,' 2. Individual input' 
PRINT*,' 3. Exit to main menu' 

PRINT*,'C~oose one ••• • 
REAO*,U 
IFCU .EO. 3)GOTO 200 
IF(U .EO. 2)GOTO 1500 
IF(U .EO. l)GOTO 1100 
PRINT*,Q1 
Goro 1000 

Auto polar ring 
PRINT*,'AUTO POLAR RING' 
PRINT*,'Input number of conductors in this ring ••• • 
REAO*,H 
SA=2.0*PI/REAL(M) 
SD=SA*180.0/PI 

l> 
"'0 
"'0 
,." 
:z 
o ...... 
>< 
l> . 

"T1 
o 
;;0 

...... 
:z 
o 
c::: 
n 
-i 
l> 
:z 
n 
rT1 

n 
l> 
r 
n 
c::: 
r 
l> 
-i ...... 
o 
:z 
Vl 



~ 

* 

* 

* 
* 

* • 
" * 

1110 

1120 

1160 

1180 

1200 

1220 
1260 

1230 

1300 

1320 
1340 

1500 

PRINT*,'Input coordinates, radius and polarity of 1st conductor' 
PRINT*,'in this ring (r(mm),theta(degrees),radius(mm),+ or -}' 
READ(S,1110) S(N),HN),R(N),POL<N) 
FORMAT(F8.4,F8.4,F8.4,A1) 
0(N)=T(N).PI/180.0 
S(N)=S(N)/1000.0 
R(N)=R(N)/1000.0 
X(N)=S(N)·COS(O(N» 
Y(N)=S(N)*SIN(O(N» 
RP(N)=O 
PRINT'CIIIA)','Choose polarity of wires ••• • 
PRINT*,' 1. Alternating' 
PRINT*,' 2. All the same as 1st' 
PRINT.,' 3. Individu~lly selected' 
PRINT*,' 4. Exit to last menu' 
REAO*,U 
IFCU .EQ. 1>GOTO 1200 
IF(U .EO. 2)GOTO 1220 
IF(U .EQ. 3)GOTO 1180 
IF(U .EQ. 4)GOTO 1000 
PRINT*,Q1 
GOTO 1120 
UUU=1 
GOTO 1260 
UU=O 
GOTO 1260 
UU=1 
00 1340 I=N+1,N+M-1 

RPU)=O 
SCI)=S(N) 
0(1)=0(1-1) + SA 
T(I)=T(I-1) • SO 
X(I)=S(I)*COS(O(I» 
Y(I)=S(I)*SIN(O(I» 
R(I)=R(N) 
IF(UUU .NE. 1)GOTO 1300 
PRINT'(/,T2,A,13,A,F8.5,2X,FB.4)·,·Conductor',1 ,'with coords.',S(I)*1000.0,T(I) 
PRINT*,'Tnput polarity (+ or -) •••• 
REAO'(A)i,POL(I) 
IF(U .EO. 2)GOTO 1320 
IF(POL(I-1) .EQ. +')POL(I)="_" 
tF(POL(I-1) .EO. ·-")POL(I)=·.' 
GOTO 1340 
POL<I)=POL<I-1) 

CONTINUE 

N=N+f'1 
GOTO 200 

Individual polar input 
PRINT*,' Individual Polar Inputs' 
PRINT*,'How many conductors in this series?' 
READ*,K 
00 1560 I=N,N.K-1 

PRINT*,"Input r(mm),theta(degrees),radius of conductor(mm),polarity(+ or -) •••• 
REAOCS,1110) SCI),T(I),R(I),POL(I) 
RP(I)=O 
R(I)=R(I)/1000.0 
S(I>=S(I>/1000.0 
0(I)=T(I)*PI/180.0 
X(I)=S(I)*COS(O(I» 
Y(I)=S(I)*SIN(O(I» 

1560 CONTINUE 

2000 

2100 

N=N+K 
GOTO 200 

rectangular coordinate input 
CONTINUE 
PRINT*,"RECTANGULAR C~ORDINATE INPUT' 
PRINT*,'Choose one ••• 
PRINT* 
PRINT*,' 1. Individual input' 
PRINT*,' 2. Line input (equally spaced wires)' 
PRINT*,' 3. Return to main menu' 
READ*,U 
IF(U .EQ. 1)GOTO 2120 
IF(U .EQ. 2)GOTO 2200 
IF(U .EQ. 3)GOTO 200 



-' 
o 

2120 

2140 
2150 

" *AUTO 
2200 

2210 
2230 

2300 
2320 

2340 

PRINT",'lndividual Rectangular In~uts' 
PRINT*,'How many conductors in this series ••• • 
REAO*,K 
DO 2150 I=N,N+K-1 

PRINT* 
PRINT*,'Input coordinates,radius & polarity of cond.·,I,'.· 
PRINT*,'CX(mm),YCmm),rCmm),+ or -)' 
REAO(S,1110) XCI),YC!},RCI),POL(I) 

RP(l)=1 
XCU=X(I)/l000.0 
Y(I)=YCI)/1000.0 
RCI)=R(1)/1000.0 
SCI)=SQRTCX(I)**2.0+Y(I)**2.0) 
IFCSCt) .EQ. O.O)GOTO 2140 
TCI}=180.0/PI*ACOS(XCI)/SCI» 
GOTO 2150 
T(1)=O.O 

CONTINUE 
N=N+K 
GOTO 200 

LINE 
CONTINUE 
PRINT*,'AUTO LINE INPUT' 
PRINT",'Input coordinates, radius & polarity of 1st conductor ••• • 
PRINT*,'CX(mm),Y(mm),rCmm),+ or -) •••• 
READ(5,1110) X(N),YCN),RCN),POL(N) 

XCN)=X(N)/1000.0 
Y<N)=Y CN)/1 000. 0 
RCN)=RCN)/1000.0 
S(N)=SQRTCXCN)**2.0 + Y(N)**2.0) 
IF(SCN) .EQ. O.O)GOTO 2210 
T(N)=180.0IPI*ACOS(XCN)/S(N» 
GOTO 2230 
TCN)=O.O 
CONTINUE 
RP(N)=1 

PRINT* 
PRINT*,'lnput number of conductors on this line ••• • 
READ*,M 
PRINT*,'Input distance between cent.ers of conds on thh line (SpAC1NG) .... • 
REAO*,SPACING 

SPACING=SPAtING/1000.0 
PRINT*,'lnput slope angle of the line (positive K-axis=O degrees)' 
REAO*,SLOPEANG 

SLOPEANG=SLOPEANG*PI/180.0 
00 2300 I=N+1,N+M-l 

X(I)=XCI-1) + SPACING*COS(SLOPEANG) 
Y(I}=YCI-1) + SPACING*SIN(SLOPEANG) 
R(I)=R(1-1) 
S(I}=SQRT(X(I)**2+Y(t)**2) 
T(I)=ACOS(XCI)/S(I»*180.0/PI 
RPCI)=1 . 

CONTINUE 
CONTINUE 
PRINT'CIIIA)','Choose polarity of wires ••• • 
PRINT*,' 1. Alternating' 
PRINT*,' 2. All the same as the 1st' 
PRINT.,' 3. Individually select~d' 
PRINT*,' 4. Return to last menu' 
REAO*,U 

IF(U .EQ. 1)GOTO 2340 
IFCU .EQ. 2)GOTO 2380 
IFCU .EQ. 3)GOTO 2420 
IF(U .EQ. 4)GOTO 2000 
PRINT*,Q1 
GOTO 2320 

CONTINUE 
IF(POL(N) .EQ. '+')THEN 

ALTPOL=1 
ELSEIF(POL(N) .EG. '-')THEN 

ALTPOL=-1 
END IF 
00 2360 I=N+1,N+H-1 

IFCALTPOL .EQ. 1)THEN 
POL (Il ='-' 

ELSElf(ALTPOL .EQ. -1)THEN 
POL (1) =' +. 

ENDIF 
ALTPOL=-ALTPOL 
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3000 

4000 

4050 
4140 

4160 
4180 
4200 

4220 

4240 
4260 
4280 
4300 
4320 

4400 

4420 
4440 

4460 

CONTINUE 
N=N+'" 

Goro 200 

CONTINUE 
00 2400 I=N+1,N+M-1 

POUI)=POL(N) 
CONTINUE 
N=N+'" 

Goro 200 

CONTINUE 
00 2440 I=N+1,N+"-1 

PRINT'(/,l2,A,I3,A,F8.5,2X,F8.4)·,·conductor·,I,·with coords. x(mm)=',X(I),'y(mm)=',Y(Il 
PRINT*,'Input polarity (+ or -) •••• 
REAO*,POUI> 

CONTINUE 
N=N+M 

GOrO 200 

continue 

1>(0)=1.0 
PRINT*,'Input value of dielectric constant ••• • 
REAO.,E 
print* 
1>0 4320 1=1,N-1 

IF(POLCI) .EQ. '-')GOTO 4220 
00 4200 J'=1,N-1 

IF(J .EO. I)GOlO 4160 
0(J)=SQRT«X(J)-X(I»**2+(Y(J)-Y(I»**2) 
IF(POUJ) .EO. '-")GOlO 4180 
0(J)=1.0/0(J) 
GOlO 4180 
0(J)"'1.0 

0(J)=0(J)*0(J-1) 
CONTINUE 
GO TO 4300 

0(0)=1.0 
00 4280 J=1,N-1 

IF(J .EO. I)GOTO 4240 
0(J)=SORT«X(I)-X(J»**2+(Y(I)-Y(J»**2) 
IF(POL(J) .EQ. '+')GOTO 4260 
0(J)=1.0/0(J) 
GOlO 4260 
1>(J)=1.0 
I> (J ) =0 (J) *0 (J -1) 

CONTINUE 
L(I)=(0.5+2.0*LOG(0(N-1)/R(I»}*100.0 

CONTINUE 

LO(O)=O.O 
L 1(0)=0.0 
DO 4440 I=1,N-1 

IF (POUl> • EO. "_" )GOTO 4400 
L1CI)=1.01L(1) 
LOCO=O.O 
GOTO 4420 
L1(I)=0.0 
LO(I)=1.01L(I) 
L1(I)=L1(I)+L1(1-1) 
LO(I)=LO(I)+LO(I-1) 

CONTINUE 

B(O)=O.O 
DO 4460 I=1,N-1 

B ( 1) = R (I) * 1 000. 0 
A=(BC!»**2+(BCI-1»**2 
9(I)=SQRTCA) 

CONTINUE 
A=A*PI/2.0 
IFCABS(LOCN-1» .LE. 0.0000001)GOlO 4480 
LN=1.0/L1(N-1)+1.0/LO(N-1) 
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5000 
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7500 

goto 4490 
IN=1.0IlHN-1) 
CONTINUE 
C=E.100.0/9.0/LN 
PRINT'(T2,A,F10.4,A)','INDUCTANCE OF CIRCUIT IS L=',LN,'nH/m' 
PRINT'(T2,A,F10.4,A)','CAPACITANCE IS C=',C,'nF/m' 
PRINT'(t2,a,F10.4,a)','CHAR. IMPED. IS Z=',SQRT(lN/C),'ohms' 
PRINT'CT2,A,T51,F10.4,T62,AII)','TOTAL CROSS-SECT. AREA IN ONE DIRECTION IS A=',A,'sq. mm' 
PRINT'CII)' 

PRINT'C'2X,A,T10,A,T'20,A,T30,A,T37,A,T50,A,T60,A,T72,A)','cond','xCmm)','y(mm)','rCmm)','theta(deg)','polarity','radius','l' 
DO 4640 I=1,N-1 
IF(RPCI) .EQ. 1)GOTO 4600 

PRINT'(lX,I3,Tl5,Fl0.4,T36,F10.4,T53,A,T56,F10.4,T67,F10.4)',I,S(I)*1000.0,f(I),POL(I),R{I)*1000.0,L(I) 
GOTD 4640 

continue 
PRINT'(lX,I3,T7,F10.4,T18,F10.4,T53,A,T56,f10.4,T67,F10.4)',I,XCI).1000.0,Y(I>.1000.0,POL(I),RCI>*1000.0,LCI) 

CONTINUE 
PRINT* 
goto 200 

continue 

PRINT*,'Are you sure you want to exit program?' 
PRINT.,' 1=YES' 
PRINT*,' 2=NO' 
READ*,U 
IFCU .EQ. 2)GOTO 200 
IF(U .EQ. 1)GOTO 7500 
PRINT·,Q1 
GOTO 7000 
PRINT* 
END 
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*==:=============================================~====================== 
PROyRAM LAPLAC 

*specificatlons-----------------------------------------------------
INTEGER NMIN,NMAX,MHIN,MMAX 
INTEGER P(O:64,0:64),L· 
INTEGER N,M~N1,N2,N3,N4,M1,M2,NS,MS 
INTEGER LMAX,LS,OUT,IN,ID,JD,lT 
INTEGER I,J,K,KD,KQ,KT,KMAX,JSL,MM2,MM3,M2SL,RPN1,RPM1 
REAL SL,ERLIM,ACAP,DCAP,RPA,RP8,RPC 
REAL ERMAX,LAMBOA 
REAL FCO:64,O:64},C(O:18,1:5),H,RP1,RP2 
CHARACTER P5(0:18)*1 
COMMON F,P,C,L,H,RP1,RP2 
COMMON/RElAX/lAMBDA,ERMAX,I,J 
COHMON/CONTOR/NMIN,NMAX,MMIN,MMAX 

*initializations------------------------------------------------------
DATA N,M,NMIN,NHAX,MMIN,MMAX/32,64,O,20,O,43/ 
DATA ERLIM,KMAX/1E-4,1001 
DATA N1,N2,N3,N4,M1,M2,NS,MS/4,12,16,4,16,32,6,181 
DATA (P5(1),1=0,18)1 

: '.', •• 1,' •• ,'1 1,1_1,' I,'~', 
: 'a','bl,'cl,'ol,'e',lfl,lgI,lhl,li','j',lk',lt'J 

DATA LAMBDA,LHAX,H/1.4,4,o.125/ 
DATA RP1,RP2,RPN1,RPM1,KO,KTf1,1,16,32,O,O, 

*function statements-------------------------------------------------
IRNOCF1)=NINT(F1*1E3) 

*data in~~I~~;~ii;:;~~~;~~-~i;~-i~:i~~:-~:;i~;~;-i:;i~i-;i~iii;------
READ*,OUT 
PRINT'(A)I,'INPUT TYPE (0=INTERNAL,1=EXTERNAL,2=DATA FILE)' 
REAO*,IN 
IF(IN .EQ. 2)THEN 

REAO·(313,2F6.J)',N,M,L,H,SL 
00 2 JD=O,M 

uo 1 ID=O,N 
REAO'(2I3,E15.7,IJ)',I,J,F(ID,JD),PCID,JO) 

1 CONTINUE 
2 CONTINUE 

CALL CNTOUR 
GOTO 999 

ENDlf 
IF(IN .LT. 1)THEN 

PRINT'CA)','INPUT SlOPEC 0,O.5,1,2,3=NO FLAP ):' 
READ*,Sl 

ENDIF 
3 PRINT'(/T2,A,F6.3,AII,10A5,2A8)', 

: 'BOUNDARY DIMENSIONS(1=',H,' mm ):', 
: 'N','M','N1',IN2 i ,'N3','N4','M1','M2','NS','MS','SLOPE-,'LAMBDA' 

IF(IN .LT. 1)6010 4 
READ*,N,M,N1,N2,N3,N4,M1,M2,NS,MS,SL,lAMBDA 

4 PRINT'C1015,2F8.311)',N,M,N1,N2,N3,N4,M1,M2,NS,MS,SL,LAMBDA 
PRINT'(T3,AII,4A6)', 

: 'INPUT CONTOUR LIMITS','NMIN','NMAX','MMIN','MMAX' 
IF(IN .IT. 1)GOTO 5 
READ*,NMIN,NMAX,MMIN,MMAX 

5 PRINT'(4I6/)',NMIN,NMAX,MMIN,MMAX 

» 
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*boundar~R¥~9~1lj~~~HOMOGENEOUS-DiELcTRic-coNSTANT(YES:GE(1);NO:LE(=1»' 
REAO*,RP1 
IF(RP1 .GT. O)THEN 

1<0=0 
RP2=RP'1 
RP1=1.0 

ELSE 
RP2=ABS(RP1) 
RP1=1.0 
1<0=0 
PRINT' (A)· .. • O.IE.LfCtRI_C CON.FIGURAIIQN (1=IN.SIDE, 2=Ot'TSI_DEl;l 
READ*,KD 

IF(KD .EQ. 1)THEN 
KT=O 
PRINT'tA)','DISTANCE FROM CENTER:?' 
READ*,KT 
RPM1=M1+KT 
RPN1=N3 

ELSE 
PRINT'CA)','OUTSIDE LAYER THICKNESS:?' 
REAO*,KT 
RPN1=N3+KT 
RPM1=M2+KT 

ENDIF 
ENDlf 
RPA::;:2*RP1 RPB:2*RP2 
RPC=RP1+RP2 *point type, array setup----------------------------------------------

*homogeneous interior point----------------------
DO 7 J=1,5 

C(S,J)=RPA 
7 CONTINUE 

DO 8 J=1,5 
C(6,J)=RPB 

8 CONTINUE 
*dielctric in two adjacent quadrants ----------

C(7,1)=RPC 
C(7,2)=RPC 
C(7,3)=RPA 
C(7,4)=RPB 
C(7,5)=RPC*2 
C(8,1)=RPA 
C (8, 2)=RPB 
C(8,3)=RPC 
C(S,4)=RPC 
C(8,5)=RPC*2 
C(9,1)=RPC 
C(9,2)=RPC 
C(9,3)~RPa 
C(9,4)=RPA 
C(9,S)=2*RPC 
C<10,1)::;:RPA C(10,Z)=RPB 
C(10,3)=RPC 
C(10,4)=RPC 



U'1 

C(10,S)=2*RPC 
*dielctric in one quadrant------------------

C<11,1)=RPA 
CC11,Z)=RPC 
C(11,3)=RPA 
C{11,4)=RPC 
C(11,S)=RPC+RPA 
C(12,1)=RPA 
C(12,2);:::RPC 
C(12,3)=RPC 
C(12,4)=RPA 
C(12,S)=RPC+RPA 
CC13,'D=RPA 
C(13,2)=RPC 
C(13,:3)=RPA 
C(13,4)=RPC 
C(13,S)=RPC+RPA 
C(14,1)=RPC 
C(14,2)=RPA 
C(14,3)=RPA 
C(14,4)=RPC 
C(14,S)=RPC+RPA 

*dielectric in three quradrants-----------------
C(15,1)=RPC . 
C(15,2)=RPB 
C<15,3)=RPC 
C (15,4) =RPB 
C <15, 5) =RPC+RPB 
C(16,1)=RPC 
C(16,2)=RPB 
C(16,3)=RPB 
C(16,4)=RPC 
C(16,S)=RPC·+RPB 
C(17,1)=RPC 
C(17,Z)=RPB 
C(17,3)=RPC 
CC17,4)=RP8 
C(17,S)=RPC+RP8 
C(18,1 )=RP8 
C <18, 2) =RPC 
C(18,3)=RPC 
CC18,4)=RPB 
C (18,5) =RPC+RPB 

*initialD8°18tl!~~~---------------------------------
DO 9 J=O,fII 

F(I,J)=O.O 
DCCI,J)=RPl 

9 PCI,J)=S 
10 CONTINUE 

*defined boundari~s--------------------------
00 600 lS=2,Q,-1 

L=(2**LS) 
KQ=KMAX/REAL(L) 

*upper boundary (x'y=m)*------------
DO 15 I=Q,N,L 

PCI,PO=2 



15 CONTINUE 
*right boundary (x=n'y>*------------

DO 20 J=O,M,L 
P(N,J)=2 

20 CONTINUE 
*lo~er dielectric boundary (x,y=O)*-

DO 30 I=(N1+L),(N2-L),L 

30 
P(I,0)=3 

CONTINUE 
DO 35 I=(N3+L),N,L 

P(I,0)=3 
35 CONTINVE 

*left dielectrlc boundary (x=O,y>*--
DO 40 J=(M1+L),M,L 

P(0,J)=4 
40 CONTINUE 

*defined conductors-------------------------------
*center conductor (X'r>*-------------DO 55 I=0,N1, 

DO SO J=0,M1,L 
F(I,J)=1.0 

50 P(I,J)=1 
55 CONTINUE 

*outer conductor (X'l)*--------------
00 65 I=N2,N3,L 

DO 60 J=OiMZ;L 
60 P(I,J)=2 
65 CONTINUE 

*outer conductor edge(x~y)*---------
IF(SL .GT. 2)GOTO 80 
MM2=M2-LMAX 

70 

.. .. 

75 
*second 

80 

120 

140 

MM3=M2+5*lMAX 
DO 75 J=MM2,MM3,L 

00 70 I=N3, N4J -L 
JSL=NINTlSL*(N2-ll/L'*L 
M2SL=M2+JSL 
If«(M2Sl-(N3-N2+l» .LT. J .AND. J .LE. M2SL) .OR. 
(HZ .lE. I .AND. J .LT. M2Sl» THEN 

FCI,J)=O.O 
P(I,J)=2 

ELSE 
PCI,J)=5 

ENDIF 
CONTINUE 

CONTINUE 
dielectric filt--------------------------------------
IF(KD .GT. O)THEN 

DO 140 J=1,(RPM1-L) 
DO 120 I=1,(RPN1-L) 

If(P(I,J) .GT. 4)THEN 
P(I,J)=6 

ENDIf 
CONTINUE 
If(KD .EQ. 2)THEN 

P(RPN1,J)=8 
ENDlF 

CONTINUE 



DO 160 I=1,(RPN1-1) 
IF(PCI,RPM1) .GT. 4)THEN 

P(I,RPM1)=7 
ENDIF 

160 CONTINUE 
IF(KD .EQ. 2)THEN 

P(RPN1,RPM1)=11 
ENDIF 

ENDIF 
*air pocket location-------------------------------

IF(L .GT. 1)GOTO 180 
170 PRINT'(A)·,'lNPUT AIR POCKET LOCATION(I,J),(-1,X)=NONEJ' 

READ*,l,J 
LT=1 
IF(l .GT. O)THEN 

P(I,J)=5 
PCI-lT,J)=5 
P(1+lT,J)=5 
P(I,J-LT)=5 
PCI,J+LT)=5 
P(I-2*l T,J) =7 
P(I,J,:",,2*lT)=8 
P(I+2*lT,J)=9 
P(I,J+2*lT)=10 
P(I-lT,J-L)=11 
P(I+lT,J-L)=12 
P(I+lT,J+L)=13 
P(I-lT,J+L)=14 

~ P(I-2*LT,J-L)=15 
PCI-LT,J-2*l)=15 
P(1+LT,J-2*l)=16 
P(I+2*lT,J-l)=16 
P (I+2*LT,J +L) =17 
P(I+lT,J+2*l)=17 
P(I-lT,J+2*l)=18 
P(I-2*lT,J+l)=18 
GOTO 170 

ENDIF 
*~gbnt t~~toBti~~8~t1-:AND:-l-:GT:-1)GOTO-200--------------------------,-

IF<OUT .GT. 1)GOTO 200 
PRINT',/T2,AII,T5,A,I2,/)', 

: 'BOUNDARY CONDITION~','MESH SIZE :',l 
PRINT'CT5,A/,T5,A/) ~. +:V=1000, *:V=O','J:dV/dy=O, -:dV/dx~O' 
1>0 190 J=M,Q,-L 

PRINT'CT6,33A)',(PSCP(I,J»,I=O,N,L) 
190 CONTINUE 

PRINT'(IIII)' 
200 CONTINUE 

*lambda loop-------~--------~-------------------------------------------~ 
*iterate solutiun---------------------------------------------DO 230 K=1,J(Q 

1F(1< .EQ. 1) THEN 
ERMAX=1 

ELSE 
ERMAX=O 

ENDlf 



co 

210 
220 
230 
240 
250 

00 220 J=O,M,L 
00 210 I=O,N,L 

CALL PTCALC 
CONTINUE 

CONTINUE 
IF(ERMAX .lE. ERLIM)GOTO 240 

CONTINUE 
K=O 
CONTINUE 
If(L .LE. 1 .OR. OUT .LT. 1)THEN 

CALL CAPCT(NS,MS,ACAP,DCAP) 
ENDIF 

*~M~put ~~~~~l;!EQ:-2)GOTO-;OO----------~----------------------------------
IfCL .GT. 1 .AND. OUT .GT. O)GOTO 600 
IF(K .EQ. O)THEN 

320 

· · 
· · 

PRINT'(T2,A,IA,A,/)', 
'SOLUTION HAS NOT CONVERGED IN ',KQ,' ITERATIONS' 

ELSE 
PRINT ' (T2,A,I4,A,/)', 
'SOLUTION CONVERGED AfTER ',K,' ITERATIONS' 

ENDIF 
PRINT'CT2,A,F9.6,/)', 

: 'WITH A MAXIMUM ABSOLUTE ERROR OF',ERMAX 
PRINT·(T2,A,I3,A,I,T2,A,f6.3,/I)', 

: 'MESH SIZE=',L,' * STEP SIZE','LAMBDA =',LAMBDA 
PRINT'(T2,A,f10.6,A/)·,'CORNER CAPACITANCE (AIR) ;;:',AC,Ap,'pf/m' 
PRINT'elllllllllllll)' 

*solution array printout---------------------------------------------------
IF(LS .~T. 1) THEN 

400 

PRINT (T2,A/)','SOLUTION AT n*m POINTS, (x=horiz, y=vert):' 
DO 400 J=M,O,-L 

PRINT'(T2,33(I4»',(IRND(f(I,J»,I=0,N,L) 

PR¥~~lf~~"T2'A'I'T2'A")" 
: 'CONSTANT VOLTAGE CONTOUR PLOT ' ,'+:V=10nO 

CALL CNTOUR 
ENDl F 
GOTO 600 

*:V=Q • : V<1 O' 

*data file output-------------------------------------------------------500 IF(L .EQ. 1) THEN 

510 
520 

PRINT'(3I3,2F6.3)',N,M,L,H,SL 
DO 520 J:O,M 

DO 510 I=O,N 
PRINT'(2I3,E15.7,I3)',I,J,f(I,J),P(I,J) 

CONTINUE 
CONTINUE 
PRINT' ·(13)' ,-1 
GOTO 999 

· E~DIF 
*termlnat'on------------------------------------------------------~--600 CONTINUE 

PRINT'(IIA/,A,IIII)','CHANGE PARAMETERS? (-1 TO END, 1=FLAP SLOPE,', 
: '2=LAMBDA, 3=aOUNDARY CONDITIONS)l 

READ'(ll)',I 
IF(l .LT. OJGOrO 999 
GOTO{620,630,640),1 



620 READ*,SL 
GOTO 3 

630 READ*,LAMBDA 
GOTO 3 

640 IN=1 
GOTO 3 

999 END 
************************************************************************* SUBROUTINE PTtALt 
*specifications------------------------------------------------------

INTEGER I,J,PK 
INTEGER P(O:64,0:64),l 
REAL f1,f2,f3,F4,F5,F6,F7,F8 
REAL C1,C2,C3,C4,C5 
REAL PAST,TEMP,ER,FINT,fNORM,fDIEL 
REAL ERMAX,LAMBDA 
REAL FCO:64,O:64),C(O:18,1:5),H,RP1,RP2 
COMMON F,P,C,L,H,RP1,RP2 
COMMON/RELAX/LAMBDA,ERMAX,I,J 

*function statements------------------------------------------------
FINTCF1,F2,f3,F4,F5,f6,F7,F8)=(4*(F1+F2+F3+F4)+(F5+F6+F7+fS»*O.05 
FNORM(F1,FZ)=C4*F2-F1)/3 
FDIEL(F1,F2,F3,F4,C1,C2,C3,C4,CS)=(C1*F1+C2*f2+C3*F3+C4*F4)/(2*CS) 

*retaxation---~----------~----------~-----~-------------------~---~-PK=P(I,J) 
GOTO C195,195,120,140,180,180,160,160,160,160),PK 

120 TE"P=FNORM(f(I,(2*L»,F(I,L» 
~ GOTO 190 
~ 140 TEMP=FNORM(f«2*L),J),F(L,J» 

GOTO 190 
160 TEMP=FDIELCFl(I+L),J),f«I-L),J),FeI,eJ+L»,FCI,(J-L», 

: CCPK,1),CCPK,Z),C(PK,3),C(PK,4),CCPK,S» 
GOTO 190 

180 TEMP=FINT(F(I~L,J),F(I-L,J),f(l,J+L),F(I,J-l), 
: FCI+L,J+L),fCI+L,J-L),F(I-l,J+L),F(I-L,J-L» 

190 PAST=F{I,J) 
FCI,J)=PAST+lAMBDA*(TEMP-PASTJ 
ER=ABS(PAST-fCI,J» 
ERMAX=MAX(ERMAX,ER) 

195 RETURN 
END 

************************************************************************ 
SUBROUTINE CAPCTCNS,MS,ACAP,DCAP) 

*specifications-----------~--------------------------------------------
INTEGER NS,MS 
INTEGER PCO:64,0:64),L 
REAL ENORM,PERMFS,ACAP,DCAP 
REAL f(O:64,O:64),C(O:18,1:5),H,RP1,RP2 
COMMON F,P,C,L,H,RP1,RP2 
PARAMETER (PERMfS=8.85419) 

*surface integration---------------------------------------------------
ENORM=O.O 
ENORM=(FCNS+L,O)-F(N2-L,0)+F(NS+L,MS)-FCNS-l,MS»*O.5 
ENORM=ENORM+(F(O,MS+L)-F(O,MS-L)+FCNS,MS+l)-f(NS,MS-L))*0.5 
DO 10 J~L,(MS-L),L 

ENORM=ENORM+f(NS+l,J)-F(NS-L,J) 
10 CONTINUE 



N 
o 

DO 20 l=l,(NS-l),l 
ENORM=ENORM+FCI,MS+l)-F(I,MS-L) 

20 CONTINUE 
ACAP=ABS«SE-4*PERMfS*(NS+MS)*ENORM)/H) 
DCA?=RP2*ACAP 
RETURN 
END 

************************************************************************ 
•. SU9~OUTINE CNTOUR 

*speclfltatl0ns-----------------------------------------------
INTEGER lR,IC,NCnl,MROW,MARKX,MARKY 
INTEGER I,J,NO,MO,DN,DM,PD 
INTEGER NMIN,NMAX,MMIN,MMAX 
INTEGER P(0:64,O:64),L 
REAL F(0:64,0:64),C(O:18,1:S),H,RP1,RP2 
CHARACTER DARY(0:132,O:260).1,CS(0:16)*1 
COMMON F,P,C~l,H,RP1,RP2 
COMMON/CONTOR/NMIN,NMAX,MMIN,MMAX 
COMMON/CHRSET/DARY,CS 
COMMON/INTSET/I,J,NO,MO,DN,DM,PD 

*initial1zations-------~------~------------------------------~ 
DATA NCOL,MROW,MARKX,MARKY/128,2S6,5,41 
DATA DN,OMIS,41 
DATA (C$(I),1=0,16)1 

: 'O·,·1·,'2',13','4','S','6','7 1 ,'8','9 ' ,·O', 
: '+','.','J','-',' 'r l

•
I

, 

*character array clear----------------------------------------
00 20 IR:::O,MROW 

00 10 IC=O,NCOL 
DARY(IC,IR)=CS(15) 

10 CONTINUE 
20 CONTINUE 

*character array flll-----------------------------------------DO 40 J=MMIN,MMAX 
MO=(J-MMIN)*DM 
DO 30 l=NMIN~NMAX 
NO=(l~NMIN)*DN 
IF(P(I,J) .LT. 3)THEN 

PD=(-P(I,J» 
CALL CHRF'Il 

ELSE 
IF(! .GT. NMIN)THEN 
If(P(I-L,J) .LT. 3JTHEN 

PO=l 
CALL CHRfll 

ENDIF 
ENDlf 
IF(J .GT. MMIN)THEN 
IF(P(I,J-l) .LT. 3)THEN 

PD=2 
CALL CHRfIL 

ENOIF 
ENDIF 

PO=O 
CAll CHRfIL 

ENOIF 
30 CONTINUE 



N 
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40 CONTINUE 
*printinBOc~8r'~!t~M~~~!~~i~i;;~i;~;:~------------------------

PRINT'(132A1)1,<OARYCIC,IR),IC=0,«NMAX-NMIN)*DN» 
50 CONTINUE 

RETURN 
END 

***.******************************************************************** 
SUBROUTINE CHRfIL 

*specifications-----------------------------------------------
INTEGER Cf,tI,LJ 
INTEGER N,M 
INTEGER I,J,NO,MO,DN,DM,PD 
INTE~ER PCO:64,O:64),L 
REAL FS,RRMIN,RMIN,RMAX,NX,MV,MPN 
REAL F(O~64,O:64),C(O:18,1:5),H,RP1,RP2 
CHARACTER DARY(O:132,0:260)*1,CS(O:16>*1 
COMMON F,P,C,L,H,RP1,RP2 
COMMON/CHRSET/DARY,CS 

• .. ~OMMgN/INTSET/I,J,NO,MO,DN,DM,PD 
*1"ltlallzatJOns---- -~---------------------------------------DATA RRMIN,RMIN,RMAX/O.01,0.05,0.951 
*character array DN*OM segment fitl--------------------------

LI=L 

. . 

LJ=L 
IFCPD .LT. O)THEN 

CF= (1 O-PO) 
OARY(NO,HOJ=CS(Cf) 
GOlO 99 

ELSE 
IF(PD .EQ. 1)lHEN 

LI=-L 
ELSE 

IFCPO .EQ. 2)THEN 
LJ=-L 

ENDIF 
ENOIF 

ENOlf 
DO 30 M=0,(1)11-1) 

DO 20 N=0,(ON-1) 
IF(PO .GE. O)THEN 

IF({N+H) .LT. 1)THEN 
FS=F(I,J) 

ELSE 
NX=N/REAL(ON) 
MY=M/REAL(OM) 
MPN=NX·*MY 
fS=f(I,J)*(1.0+MPN-NX-MY)+f(I+lI,J)*(NX-MPN)+ 
F(I~J+LJ)*(MY·MPNl+F(I+LI,J+LJ)*MPN 

ENDIF 
IF(fS .LT. RRMIN)THEN 

CF=16 
ELSE 

IF(FS .LT. RMIN .OR. FS .GT. RMAX)THEN 
Cf=10 

ELSE 



N 
N 

IF(FS .GE. 0.999)THEN 
Cf=INT (FS*1 0) 

ELSE 
C F=NINT( FS*1 0) 

ENDIF 
ENDIF 

ENDIF 
ENDIF 

10 DARY(NO+N*LI,MO+M*lJ)=CS(Cf) 
20 CONTINUE 
30 CONTINUE 
99 RETURN 

END 
*=========================================================================== 
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TABLE I. - CHARACTERISTIC IMPEDANCE AND INDUCTANCE OF 

DOUBLE LAYER MULTI CONDUCTOR LINES ("INDUCTANCE" METHOD) 

Number Rl , R2, Rl , R2, e, Z, L, 
of wires mm mm mm mm deg Q nH/m 

8 25 50 0.5 0.5 0 78.5 396.8 
8 25 50 .5 .5 45 88.7 448.2 

16 25 50 0.5 0.5 0 36.2 182.9 
16 25 50 .5 .5 25.5 37.4 189.2 

32 25 50 0.5 0.5 0 15.2 76.9 
64 25 50 .5 .5 0 5.9 29.7 

8 10 25 0.5 0.5 0 65.6 331.9 
16 10 25 .5 .5 0 28.6 144.4 

16 25 50 0.5 1.0 0 33.1 167.2 
32 25 50 .5 2.0 0 11.7 59.3 

I 

32 25 50 1.0 2.0 0 10.3 51 .9 I 

64 25 50 .5 2.0 0 4.1 20.8 I 

16 10 25 0.5 4.0 0 17 .2 87.2 i 

32 10 25 1.0 4.0 0 4.3 21 .8_ 

TABLE II. - Zo AND L OF DOUBLE RING MULTICONDUCTOR 
LINES ("CAPACITANCE" METHOD) 

R1 ' R2, e, r, Total number Zo, L, I 
mm mm deg mm of wires Q nH/m 

in line, 
N 

J 
I 

25 50 0 0.5 8 73.5 371 .5 
I 25 

1 
45 ! 8 83.7 423.0 I 

25 0 16 33.7 170.0 
25 22.5 16 34.9 176.5 

25 50 0 0.5 32 13.9 70.5 
25 

1 1 
1 32 10.4 52.6 

25 2 32 6.6 33.3 
25 4 32 0.22 1.09 

25 50 0 1 64 3.3 16.8 
25 50 

1 
2 64 .17 .88 

10 25 1 16 18.7 94.4 
10 25 .5 32 9.6 48.6 

10 25 0 1 32 5.4 27.6 
10 25 0 .5 64 3.0 15.1 
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TABLE III. - 64-WIRE, 5-RING TRANSMISSION LINES 

Ring Number r, Coordinates (1st) Polarity Ring 
in ring mm (1 st) polarity 

R, r, 
mm deg 

-

Line 1 (all radii the same #18 AWG) 

1 8 0.51 2.6393 0 + Alt. 
2 8 

1 

4.6593 

1 
-

1 
3 16 6.6793 + 
4 16 8.6993 -
5 16 10.7193 + 

-

Line 2 (five different wire sizes) 

1 8 0.3 2.6393 0 + Alt. 
2 8 .51 4.6593 0 - Alt. 
3a 4 .27 6.6793 0 + Same 
3b 8 .45 ~ 22.5 - Same 
3c 4 .51 45 + Same 
4a 4 .45 8.6993 0 - Same 
4b 8 .35 ~ 22.5 + Same 
4c 4 .3 45 - Same 
5 16 .51 10.7193 0 + Alt. 

-- ------- -_._- ------- '--------_._--

DATA OUTPUT I 

Line 1 Line 2 

L, nH/m 15.33 18.70 
C, nF/m 1.67 1.37 
Z, Q 3.03 3.70 
A mm2 , 26.15 18.95 
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Number 

1 
2 
3 
4 
5 
6 

TABLE IV. - RECOMMENDED WIRE ARRANGEMENTS FOR POWER LINE 

Wi re Total Ranges of values Characteristic Resist-
size number inductance, impedance, ance, 

(#AWG) of wires nH/m Q Q 

18 
18 
21 
22 
24 
24 

High Low High Low 

80 6.3 10.4 1.2 2.1 0.227 
52 9.7 16.0 1.8 3.2 .349 

104 4.8 8.0 0.9 1.6 .342 
132 3.8 6.3 0.7 1.3 .348 
208 2.4 4.0 0.5 0.8 .341 
256 2.0 3.2 0.4 0.7 .277 

TABLE V. - DC AND AC RESISTANCE AND WEIGHT 

FOR MINIMUM NUMBER OF WIRES PER LINE 

[Line Length, 150 m (total length for resistance 
calculation is 300 m), i.e., wires/direction.] 

Number Minimum Rdc' Rac ' 
AWG number of Q Q 

wires/line 

18 26 0.242 0.249 
21 52 .242 .244 
22 65 .244 .245 
33 833 .244 .244 
36 1670 .244 .244 

____ L 

*Rp includes proximity effects. 
**Weight (copper alone). 
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Rp' Weight, 
Q* kg** 

0.349 57.1 
.342 57.0 
.343 56.4 
.342 56.4 
.342 56.4 

Weight 
of 

copper, 
kg 

87.8 
57.1 
57.0 
56.8 
56.8 
69.9 

i 
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Figure 1. - Current distribution in a circular cylindrical 
wi re of radius r 0 at 20 kHz. 

I 

_1/,; 
1 FR 

Figure 2. - Polar coordinates for CRIMPD. F. single-ring 
arrangement. 
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Figure 3. - Polar coordinates for CRIMPD.F, double-ring arrangement. 
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Figure 4. - Parameter definition for equation (5l. 
The direction of currents in the primed con
ductors is opposite to that in the unprimed. 
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Figure 5. - 64-Wire, 5-ring line 2 (inductance values in nH/m). 

[ A"", ,'" 

~. 2 L rO}18R 'I I' M 'I I / #18AWG 

fT I / I 

T-e~e~e~e~e~e~e~e~e~e~ ~e~e@e@e~e@e~e~e~e@e 
12 6 

1 11_e@e@e@e~e~e~e~e~e~e~ ~-~e@e~e~e~e~e~e@e~e~e 

Figure 6. - 80-Wire (4x20) configuration. (All dimensions in inches.) For Er = 2.3, L = 10.42 nH/m, C = 2450 pF/m, and Z = 2.06 Q. 
Scale: 0.2 inch = 1 mm. 
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Conditions Line xl, Yl, Polarity Number of Spacing, Line 
mm mm conditions mm polarity 

1 to 20 1 0 0 + 20 2 All. 
21 to 40 2 

1 
2 -

1 1 1 
41 to 60 3 4 + 
61 to 80 4 6 -

-

y=6 @ e <§ G @ § @ @ @ ~ ... <§ @ @ 
-61 + +80 

y=4 @) @ @ @ @ @ e @ e e···@ @ @ 
-41 + 60 

y=2 @) @ GV @ e @ 9 @ 8 GV···G) GV @ 
-21 + + + + + 38 39 40 

y=O <§) @ e C§) @ @ @ @ @ @ ... <§ @ <§) 
+1 + + + + -18 +19 -20 

x=O x=~ 

Figure 7. - 80-Wire (4x20) configuration with listing of individual self inductances in nH/m ("Inductance" method). 
L = 10.4196 nH/m; C = 2.4526 nF/m; Z = 2.0611 Q; A = 32.6851 mm 2; r =0.51 mm (#18 AWGL 

239 93 163 122 148 131 142 135 139 137 163 93 239 
61 80 

ll3 131 107 122 112 118 114 117 116 116 107 131 113 
41 60 

113 131 107 122 112 118 114 117 116 116 107 131 113 
21 40 

239 93 163 122 148 131 142 135 139 137 163 93 239 
1 2 3 4 5 6 7 8 9 10 18 19 20 

Figure 8. - 80-Wire line ("Capacitance method") individual inductances. L = 6.3115 nH/m; C = 4.0490 nF/m; 
Zo = 1. 2485 Q; A = 32.68 mm2; r = 0.51 mm (#18 AWGL 
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c--A"~I <,,, J 

Condition xl· Yl' Spacing, Polarity Line Radii, 
mm mm mm polarity mm 

1 to 32 0 0 1.0 + Alt. 0.25 
33 to 64 1.0 -
65 to 96 2.0 + 
97 to 128 3.0 -

129 to 160 4.0 + 
161 to 192 5.0 -
193 to 224 6.0 + 
225 to 256 7.0 -

Y=7~ ~ 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q"'~ ~ 
Y=6@ ® 0 0 0 0 0 0 0 0 0 0 0 0 0 O .. ·@ @ 

+193 + + - + -224 

Y=5@ @ @ @ @ 0 0 0 0 0 0 0 000 O .. ·@ @ 
-161 + + + - -1192 

Y=4@ @ eo 0 0 0 0 0 000000 O .. ·@ @ 
+129 + + -159 -160 

Y=3@ @ e @ @ @ @ @ § 0 e 0 @ @ @ @ ... @ @ 
-97 +98 + - + + + + -127 -128 

Y=2@ @ @) § @ § @ B @ 8 @) @ @ ~ @ @ ... @ @ 
-165 -66 -I - + + + - +95 -96 

Y=l@ @ G) GV @ @ @ @ @ ~ GV § @ @ @ GV"·@ @ 
-33 +34 -35 +36 + + + + - + + -63 -164 

y=o@ G @ @ @ @ @ § @ @ @ @ @ @ @ @ ... @ @ 
+1 -2 +3 -4 -t5 -6 +7 -8 +9 -10 +11 -12 +13 -14 +15 -16 -131 -32 

Figure 9. - 256-wire (8x32) arrangement with individual self inductances in nH/m. L = 3.2193 nH/m; C = 7.9382 nF/m; Z = 0.6368 Q; A = 25.1327 mm2; 
r = 0.25 mm; Er = 2.3. 
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60 

I 
I 
I 

L Wi re stripped 
to here 

52 

CD Extruded cross linked 
polyethylene multiwire 
cable (XPE) 

® Cable sealing ring 

! Inner sealing 
\ Front and back / gasket 
\ connectors / 
\ bolted together / 

\ / 
\ / 

r Compressible sealing 
/ gasket (outer) 

\ / 

". . / 

I 
\ 
\ 

I 
I 

\ 
\ 
\ 

® Shallow trough connecting all holes, used 
for iniection of sealant (Teflon or XPE) 

® Vacuum trough connecting an holes 

® Back-connector manufactured in three 
main pieces, molded together here 

CD Crimpable pin 

@ Spring tension socket (Cd HD Au or 
nickel plate) 

(J) 30 Percent GF, 25 percent GF glass-filled 
peek. ETFE, or similar fire rated polymer 

~ """'.rl-. r +--' --+--\::--\ 
t:z::: .. fI \ ~ \ L 20-Gaugepins 

\ 
\ 
\ 
\ 

\... Stripped wires 
fed th rough to 
here and cut 

co n n ected to 
female connector 

Figure 10. - Male-female junction boxes with conventional outlets. 
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300 Isometric view 

(a) Higr. frequency power distribution buss. Top cover not shown; 
material: chassis 0.063 AI-Alloy 5053; scale, 112. 

I. 12.0 'I 
I 

rr 
12.0 

0.4~ 

~~ I II r I 2.40 

--+j 1.6 ~4.00--111- l 
I 
LO.8 

Section A-A 

(b) Junction-box detail. (All dimensions in inches.) 

Figure 11. - Junction box. 
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