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In this report, progress in the investigation of empennage
buffeting is reviewed. In summary, the following tasks have been
accomplished:

(1) Relevant literatures have been reviewed.

(2) Equations for calculating structural response have been

formulated.

(3) Root-mean-square values of root bending moment for a 65-
degree rigid delta wing have been calculated and compared
with data. |

(4) Water-tunnel test program for an F-18 model has been
completed.

items (1) - (3) are described in more detail in Appendix A, while

item (4) is presented in Appendix B.
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Appendix A:

Investigation of Buffeting by LEX Vortices

by

C. Edward Lan and I. G. Lee



1. INTRODUCTION

Buffeting flow arises when flow separation occurs on an
airplane. The resulting flow field is highly turbulent, thus
producing fluctuating pressures on lifting surfaces in the detached
flow region. Boundary layer separation is perhaps the most common
source producing buffet on most conventional configurations.
Research in this area has been quite extensive and involved
measurements'of fluctuating pressures on models together with some
theoretical methods to extrapolate these results to full-scale
vehicles (see, for example, Refs. 1-3). Frequently, these pressure
measurements are made on a conventional "rigid" model, instead of an
aeroelastic one, because the latter can not withstand high enough
dynamic pressures to be realistic. Based on this consideration,
several theoretical methods to use these pressure measurements to
predict buffet response have been developed. Some of these methods
will be reviewed later. Review of some test results can be found in
References 4 and 5; and of theoretical methods, in References 6 and
7.

Of particular interest in the present investigation is the
buffeting caused by leading-edge vortices on slender wings. Test
results showed that

(a) buffeting was low before vortex breakdown and became

severe after that (Ref. 8 and 9);
(b) high-frequency buffeting'was caused by boundary layer

fluctuation, and leading-edge vortices produced mainly



low-frequency fluctuation (Ref. 10);

(c) the results were not sensitive to Reynolds numbers (Refs.
10 and 11), so that flight and tunnel measurements céuld
be weii correlated (Ref, 12);

(d) buffeting at vortex breakdown was associated with the wing
response at the fundamental mode (Ref. 8).

One conclusion from this early-day research on leading-edge
vortces was that the buffeting induced by vortex breakdown would
mostly be academic because a‘slender—wing airplane would normally
not operate in the voftex-breakdown region of angles of attack.
Investigation on the effect of vortex breakdown on the buffeting of
nearby lifting surfaces, such as tails, was scarce. However, it is
known that the vortex from the strake (or leading-edge extensién,
LEX) may reduce the buffet intensity on the wing before it bursts
(p. 109, Ref. 7).

In the present study, the main obsective is to predict
buffeting on vertical tails induced by LEX vortex bursting.
Fundamental equations for structural response will first be
derived. Existing theoretical methods for buffet prediction will be
reviewed, The present method and some numegical results will then

be presented.




2. THEORETICAL DEVELOPMENT

2.1 Formulation of Equations

Structural Equations of Motion:

Let the structural displacement, Z,(x, y, t), be expressed in

terms of normal mode shapes, ¢,(x, y). Then

N
z (x, ¥, 8) = n§1 q (t)¢ (x, ¥) (1)

where qn(t) is the so-called generalized coordinates. It can be
shown that the structural equations of motion in forced oscillation
in generalized coordinates can be written as (Ref. 13, pp. 131-139,

or Ref., 14, Chapter 10):

Mma +Moe?q =0 = [[ip_ +p,)é (E, mdkdn (2)
where

Mn = ff¢n2mdxdy, the generalized mass

m(x, y) = mass per unit area

w, = frequency of the nth normal mode

the generalized force.

On
The generalized force consists of two terms, one being the
externally applied force (i.e., the pE-term) and the other being the
force due to structural motion (i.e., the pM-term).

The py-term can be further decomposed in terms of the

generalized coordinates as

N qj .
pM = 21 Apj(x, y; W, Mw) b—o' (3)



where Apj is the 1lifting pressure at point (x, y) on the wing caused
by the motion of the jth normal mode and b, is the reference length,

e.g. the root semichord. 1It follows that

N q . N q
Qun = .Z v /I bp ¢ dEdn = q_ 'Z v /I ac, ¢ ddn
q, %
=b 2y LAY | (4)
° bO j:‘] njqj

where Anj is the generalized aerodynamic force matrix and is -defined

as
A = [/ Aij¢n d%dn (5)
E=Dbt
_ (6)
n = 2n

In Equation (4), g, is the dynamic pressure (= me2/2).

Equation (2) can now be written as

N :
” 2
Ma+ Moq - 29, j§1Anjqj = [f pE(E,n,t)¢n(€, n)d&dn

t) (7)

In the above derivation, neither structural nor viscous dampings
have been included. To include the former, wnz is usually replaced
with wn2(1 + ign) , where g, is the structural damping coefficient
for the n™™ mode and is usually taken to be 0.03 if not known

experimentally, To account for the latter, 2;annén is added to

the equation with z being the damping ratio. Equation (7) becomes



. . 2 .
Mﬂn+“%%%+%ﬂﬂ‘+wﬁ%”“% nj %5 R

Il ~2Z
jes}
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(8)

Structural Response to Random Excitation:

If the excitation force QnE(t) is random, it may be represented

in a Fourier integral (Chapter 14, Ref. 15),
wt
(t) fQ (iwe®au : (9)

where

T . :
- E, . .1 E -iwt :
Qn (iw) = lim e f Qn (t)e dt _ (10)
T+ -T
The displacement qn(t) will also vary randomly, so that a Fourier
integral representation is appropriate.
« it
qn(t) = f qn(lw)e dw | (11)

Substituting BEquations (9) and (11) into Equation (8), and requiring

the relétion to be valid for all t, it is obtained that

n
a (1w) [-M w4 2izw w+ M o 21+ ig )} - fa_ ) a a
]:
- E,.
=0, (iw)
or,
N 5 2 -
j§1 {[-an + 2iM Tw w+ M ow (1 + lgn))dnj - QqEAnj}qj
- E,. ’
= Q (iw) ' n=1,..4,N (12)




Let

2 . 2 .
an(m) = [-Mnm + 21Mn;wnm + ann (1 + 1gn)]6nj - wap.nj

(13)

Note that an(m) is called the complex impedance of the system; and
its inverse, Z‘1, is the so-called structural transfer function.

To describe quantitatively a random response in a meaningful
manner, statistical methods must be used. The most important
quantity for this purpose is the meén square value, It is.defined

for a random function F(t) as (Ref. 15)

T T . .
| . . t
Lin o [ PA()at = lin o= [ F(t) [ fliwe “auat
T -T T'-»c0 -7 -00

F2(t)

@ T .

= lin [ fliw [ F(t)e'“fatdw

2T
Tro <7 o -T

v PN ® . mlflw|?
= lim ——-f f(iw)2rf (iw)dw = f lim ————— dw (14)
27T T
T+ - - T3
where £ is the complex conjugate of f. Define
£(iwf (iw)
S(w) = lim 2 220 (15)
T oo
Equation (14) becomes
2 oo
F(t) = [ s(wdw (16)

- 00
In case the random function depends also on space coordinates,
the definition of S(w) must be modified. For the generalized force

of the nth mode, QnE(t), it is defined as (Equation 7)



E —
o (t) = [ p (r, t)¢ (r)aa . | (17)

where space coordinates (£, n) are now represented by r. The

Pourier épectrum of QnE is

Q_‘E(iw) = ] B liw¢_(r)an (18)

th

The power spectrum of the n-" generalized force is given by

lin 3 énE(im)én*E(iw)

T3>

S (w)
n

lin T [ B (iw)¢ (r )AA, [ B (iw)¢ (r_)dA
T E n 1 1 n 2 2
T+ A A

T T
. T 1
= lim [f ¢ (xr )¢ (r)-— [ [ p(r, t)Ip (r , t)
mow T aa RV mi20 o2 T TE TR 2 2

iw(t,-t,)

2
e dt dt,da da, (19)

Let t, - t; = 1. Equation (19) can be written as
T

.11
[[ o (x o (rNlim - — [ [ p(r , t)p (r_, t + 1)
an B 1" 'n 2 Taoo T 4 e p E 1 1 "E 2

1]

s (w)
n

. e %3t q14a aa
1 197

-+ .
1 -10T
_— dtd
/] ot ) (r,) f o7 Ry, (ryr Ty Tle 1dA dA,
AA o
(20)
where

T
. 1
, = lim +— , t , at
R (r1 r T) im 5T f pE(rT 1)pE(r2 t1 + 1) ] (21)
Tso -T

is known as the space-time correlation or cross correlation



function. Define

o e
-iwt
w =— | R (£, 1, T)e dr (22)

the cross power spectral density of pressures at r, and r,. It

1 2
follows that ‘

s (w) = i ¢,(r) i ¢ (r)s (r, r wdn da (23)

S{w) or Sn(w) is known as the power spectral density. This is
because if F(t) were a current, the power develobed by this current
as it passed through a resistance of one ohm would be F2(t).

Returning to calculation of the total response, Equations (11)

- (13) show that the amplitude of the motion in the nt" mode is
® 1(=E iwt
q (©) = [ (27 {57(1w }) e"du (24)
-0
The total displacement is therefore
N © .
-1 (=E.. iwt
Za(x, y, t) = z [ (1z2(w) 1{Q (1w)})n¢n(x, yye Yaw (25)
n=1 -

from which the Fourier spectrum of the total displacement can be

identified as

(120 ™ {S%Gw })_¢ (x, ¥ | (26)
1

[~

n

and the corresponding power spectrum is

N ’ N
. -1=E,. -1
s (0 = 1im 2 { ] (127 57G0 ) 6 (x, »IH I (12(w)]
Troo n=1 n=1
=E, . *
{o"aw}) "o (x, »} (27)



once S (w) is known, the mean square value of displacement can

be obtained as

2 . ,
z, =/ s (w)dw (28)

Responses in accelerations, loads, moments, and stresses, etc.,
can be similarly formulated.

Equatipn (27) is difficult to simplify because of mode coupling
through the generalized aerodynamic forpe matrix,.Anj; If the
aerodynamic force due to structural motion is ignored, or Anj = 0 if

n # j, then Equation (27) can be further simplified. Let

M (o2 o 2 ; _
Znn(m) = Mn[ w” + Zlcuhw + W (1 + 1gn)] £q¢§nn (29)

Equation (27) can be rewritten as

. N0 Fwe (x, v) N B F iwe (x, ¥)
s (@ = lim & { }I{HZ .

T+oo n=1 Znn(w) Znn (w)

o~1

(30)

After multiplying this out, it can be obtained that

- E <E* , 2
, Qn Qn ¢n (x, y) -
s,(w) = lim {3 * +
: T+~ n=1 z 2z
nn nn

EIE

- E- *E
N 0.0

22 _.0,]
. x ¢3¢y
j=1 £=1 ijzu

J#2

N ¢2(x, y)
= 3 _n — [ ¢ (r ) [ ¢ (r s _(r , r, wdA dA_ +
L Iznn(w)|2 A RO S IO P R 2

~12
~

+

N N ¢'(XIY)¢ (xr Y)
+ Z z J 2'* f ¢'(r1) f ¢£(r2)s12(r1r rzr w)dA
=1 2=1 zj.(w)zu (w) A 3 A
I#4

da
2 1

(31)



The first series of Equation (31) represents the sum of the spectra
of the responses in individual modes. The second series repreéents
the correlation between the responses in different modes. The
second series can be ignored if only two or three modes are present
and their natural frequencies are widely separated (rRef., 15).

In Reference 16, the cross power spectral density was specified

in exponential functions with coefficients determined by experiment.

2.2 Existing Theoretical Methods for Buffet Prediction

All existing theoretical methods require some types of
experimental data to work with. Sophistication of these required
data distinguishes one method from the other.

Cunningham and Benepe (Refs. 17 and 18):

Pressure power spectral densities are first converted into
pressure distributions over the wing for each frequency. The
doublet lattice method (DLM) is then used to calculate induced
pressures on the tail due to downwash produced by the wing buffet
pressures., The wing and tail pressures are used in the DLM to
calculate the generalized aerodynamic forces. The whole equation
(12) is used without simplification. The calculation is similar to
that for gust response.

B. H. K. Lee (Ref, 19): '

Again, Equation (12) is used. However, the cross‘correlation
function 312 in Equation (23) is either taken to be constant over an

aerodynamic panel or asumed to vary exponentially in space.

10



Mullans and Lemley (Ref. 20):

The fluctuating pressure on a rigid model is again used to
calculate the generalized aerodynamic forces. However, the
aerodynamic forces due to wing vibration, i.e. Anj_terms, are
ignored.

J. G. Jones (Refs, 21 and 22):

It is assumed that each mode behaves as a single-degree-of-

freedom system: ‘ N

. . 5 E _
= t

ann + 2Mnr,wnqn + ann q o, (t) (32)

The aerodynamic forces due to wing motion are ignored. Applying the

Fourier transform to Equation (32), it is obtained that
2 : 2,= _ = E,.
M (-w” + 2ige w+ 0 )3 =9 “(iw) A (33)

Using the definition of power spectral density, Equation (15), the

power spectral density of the response can be obtained:

S-O: (w)

sy(w = n (34)

. . 2
M (-w2 + 2izw w+ W 2)(-m2 - 2izw w4+ w )
n n n n n

The mean square value of d, is therefore

Q
ct
]

f Sq(w)dw

o Sb.n(w)
] — — do (35)
oM “H (w)H_  (w)
n n n

where

H (w) = —? 4 2izw w+ w 2 (36)
n n n _

11




The main contribution to the value of the integral in BEgquation (35)
comes from the peak response at w = wn. 1f sé(m) is assumed not to
vary appreciably in the neighborhood of Wy o it can be factored out
of the integral in Equation (35) and the result integrated
analytically based on the residue theorem in the theory of a complex
variable: Results are available in Reference 23 (p. 218).

Therefore, Equation (35) can be reduced to

S= (w)
2(1;) 53 I _%‘.__n . ( 37')
N 2 2. 3
M "w
n -°n

Instead of qnz(t), Jones determined qnz, the mean square

acceleration. Note that the Fourier transform of qn is

. 2-
a, = (iw) a, (38)
Therefore,
(iw)4sén(w)
S; = > . (39)

M Hn(w)Hn (w)

The result for qn2 is (Ref. 21)

— W,
q_n § 5 S‘é (wn) (40)
M ¢ n
n
Let '
2_
5= (w) = £X (q 8)2 (41)
0, v e

where q_ is the freestream dynamic pressure and E2 is a

nondimensional aerodynamic excitation parameter, It follows that

12



M
E=2/7 () "Dy ——2) | (42)
-w S q.
= Ew qms
- (VZE)VZET (43)
272

To use Bquation (43), the damping ratio (z) is needed. It
consists of both the structural damping (;s) and the aerodynamic
damping (ca). The latter arises from the effective angle of attack

due to wing vibration and is given by

2M T wq = 295K o e,
where K, the aerodynamic damping parameter, is a nondimensional
parameter depending on the mode shape, the wing planform, and the
sectional lift-curve slope. Equation (44) is aséumed applicable to

both attached and separated flows. It follows from Equation (44)

that
q.SK
Ca = M wV (45)
nn
M w VL
K =41 "2 (46)

In Jones' method, both E and K are assumed fo be independent of
the scale effect. In other words, tﬁeir values determined from
model test can be applied to full-scale airplanes. Practical
procedures of applying this method were discussed by Butler and
Spavins in Reference 24. They are as follows:

(a) Determine modal frequency w the mode shape, generalized

nl

mass M, and structural damping Cs from wind-off resonance

13



(b)

(c)

(a)

(e)

(f)

(g)

tests on model and aircraft. Note that the relevant model
mode shape must be approximately correct.

Measure rms acceleration or bending moment E;'at a point
on the wing, the total damping 7, flow velocity Vv, and
dynamic pressure q_,, at a given Mach number and angle of
attack in wind-tunnel tests,

Relate E; to ;n in generalized coordinates using the mode.
shape (see Section 2.3).

Calculate E from Equation (42).

Calculate K from Equation (46).

Calculate total damping of aircraft by adding calculated
L, from Bquation (45) to the measured z..

Predict rms acceleration or bending moment at a point on
the aircraft wing from BEquation (43) using the measured

aircraft mode shape.

Mabey's Method (Refs. 25 and 26):

This method was developed to determine qualitatively the flight

conditions for light, moderate and heavy buffeting for the full-

scale aircraft from measurement of wing root bending moment of a

conventional wind-tunnel model. It is assumed that the wing

responds to buffeting pressures in somewhat the same way as to the

wind-tunnel turbulence at the wing fundamental frequency.

Let the tunnel unsteadiness vYnF(n) be defined so that the total

rms pressure fluctuation coefficient is given by

14
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1
2_. [ [(nF(n)) = an (47)
2 o n
q, -
where
= f
n ow/v
w = tunnel width
f = wing fundamental bending frequency in cycles
per second
V = freestream velocity.
Define

CBB(M, a) = wing-root strain signal/q, (48)
Before the onset of flow separation on the model, CBB(M, a) has been
shown experimentally to be constant equal to CBB(M, ﬁ = 0). This is
the portion of the model response caused by the tunnel unsteadiness vnF(n)
. Assume that
Cpp(M, a = 0°) = Kg/nF(n) (49)
where Kg is a scaling factor. Then

Cag' (M, o= 0°) =1 c_ (M, a=0°) = /nF(n)

KB BB
(50)
Beyond buffet onset, CBB(M,a) is increased due to wing buffet
pPressures. Let
CBB"(M' a) = [CBB'(M' G)z - CBB'(M' Q = 00)2]1/2 (51)

The angle of attack at which CBB"(M, a) first differs from zero is
the buffet-onset angle. From correlations on nine models of fighter

aircraft, the following buffeting criteria were suggested:

15
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Buffet onset Con" =0

BB
Light buffeting Cgg" = 0.004
Moderate buffeting ' Cgg" = 0.008 -
Heavy buffeting Cgg" = 0.016

Note that in using this method, the total damping of the wing
fundamental mode should be relatively constant, independent of wind
velocity and density. This is true if models with solid wings of
steel or light alloy are used, because in this case the strugtural
damping will predominate. No mass, stiffness (or mo) and damping
for both models and aicraft are needed. It is useful during
comparative tests for projects with alternative wing designs,

Thomas' Method (Ref. 27):

At transonic speeds, buffeting is closely connected with flow
separation due to shock-boundary layer interaction and shock
oscillations. Using conventional boundary layer methods, the
development of boundary layer on airfoils at transonic speeds can be
calculated. By comparing calculations with experimental results,
Thomas postulated that buffet onset started if the point of rear
separation coming from the trailing edge reached 90% of the airfoil
chord.

Redeker (Ref. 28) extended this method to infinite yawed wings
by using the pressure distribution on a section normal to the
leading edge and applying a three-dimensional comp?essible boundary

layer method.

16



Further extension of Thomas' method to finite wings was made by
Proksch (Ref. 28). A buffeting coefficient (CBi) is defined which
is directly related to the rms value of the wing root bending
moment, It is assumed that the fluctuations of the wing root
bending moment are proportional to the integral evaluated along the
wing span of the product of local 1lift fluctuations and the distance
from the wing root (n - nR). A further assumption is that the ;ocal
lift oscillations caused by flow separétion are proportional to
length zs(n) of the separated flow at a spanwise station of the

wing. It follows that

1 Qs( n) ;Y
Cpi = / — (n - n.)dn ~ /CB (52)
TIR c

2.3 fThe Present Proposed Method

Theoretically, it is possible to use Equations (23) - (28) to
calculate buffet response in the most general way. However, it
would be an expensive undertaking because extensive fluctuating
pressure measurement on empennage must be made. 1In addifion, these
fluctuating pressures are configuration dependent and vary with
flight conditions. fTherefore, a method similar to Jones' in concept
is proposed.

In developing the proposed method, the following steps are
needed.

(a) Buffeting vortex strength in the burst region must be

known. It is known that steady vortex strength from a

17
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slender wing or LEX can be estimated by the method of
suction analogy (Ref. 29). Similarly, buffeting vortex
strength can also be estimated if buffeting normal force
data on slender wings are available. This is because.any
buffeting on slender wings can be assumed to be caused by
the leading edge vortex. A limited amount of such data
was published in References 4 and 9.

Let cg be the sectional suction coefficient. Based
on the suction analogy, the vortex lift is proportional to
Cge The vortex lift can also be expressed in terms of the

vortex strength I' through Kutta-Joukowski theorem as

1 2
- PV cscdy = pl'w

> ed2 . (53)

L
where Yoe is the normal velocity at the leading edge and

df is the vortex length along the leading edge. It

follows that

T
- 42 =
\' .

[ -]

and
b/2 c c

_ r 1 s
fe=Jy =51 @
oo o

wze/V°I°

The average strength per unit length is

1 ‘b/2 cgC

2S \ /V°°

T. =T./s =
t v le %e o e

dy (54)

where SZe is the length of the leading edge. The unsteady

aerodynamics program of Reference 30 was revised to

18
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(b)

calculate Tt. In the calculation, the buffeting normal
force is obtained by assuming a vertical oscillation of
constant amplitude over the region of predicted vortex
breakdown. The latter was calculated by a semi-empirical
method to interpolate or extrapolate experimental data
(Ref. 31). The amplitude was adjusted to match the
experimental data on fluctuating normal force coefficients
in Reference 9. ©Unfortunately, only data at a low
frequency for some delta wings were measured in Reférence
9. On the other hand, the power spectrum over a range of
frequencies at the vortex-breakdown angle of attack for
the BAC 221 configuration is available (Fig. 24 of Ref,
4). Unless additional data are available in the future,
for the present purpose the low-frequency data of
Reference 9 will be used to derive the buffeting strength
for a range of angles of attack. At other frequencies,
the strength will be multiplied by a ratio obtained from
data for the BAC 221 in Reference 4.

The root bending moment can be calculated as

b/2

N
M_(t) =£ [2(y, &) + 2.0y, t) - (n§1 q (£)¢ (y))mly)lydy

(55)

where g is the sectional 1lift due to external forces, 2
is the sectional 1lift due to structural motion and the

last term is the inertial forces, For a rigid wing, the

19
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last two terms can be ignored. 1In Jones' analysis, zM was

also ignored. Using the notation of Equation (4), %y can

-be written as

N N qy . :
Ly, &) =a_ } I 5= [ ac (x, ¥)(¢ (x, yImdx (56)
@ . pP. n
n=1 j=1 © 3

Let the Fourier transform of lE(y, t) be written as

T(YI t) =

- i (v, iwd F(iw) (57)

1 En

22

n

where iE is the sectional lift due to a unit generalized
n

force in the nth

mode. Applying the Fourier transform to

Equation (55), it is obtained that

_ b/2 N _ 2, N2 g
Mo(lm) = { z .QE (y, iw) + p_— + 2 M Ho) m¢n(Y)]Qn ydy
(o) n=1 n 'Qn n=1 n
N , . w? - E
= ) (BM, (1w) + BM, (iw) + gorms fmo (V)Y dylo,
n=1 n n n n
= H_ (00 Eliw) (58)
M 9

where Equation (33) has been used. HBM(w) is the bending

moment transfer function and is defined as

N 2 »/2
HBM(w) = ) [BME (iw) + BM,, (iw) + T (o) / m¢n(y)y dy]
n=1 n n nn o
(59)
The power spectral density of M (t) is therefore
s, (w = |H_.(w)]%s= (w) (60)
BM BM Qn .

20



(c)

(4)

where Sé is the power spectral density of the buffeting
n
excitation., For a rigid wing, Equation (60) can be

simplified to
. . 2 .
Spu(® = IBME(lw)I S‘—?n(w) (61)

In applications, BME will be calculated by assuming a
unit buffeting excitation over the region of vortex
breakdown at a range of frequencies. The mean square

value of bending moment is then given by

————2 a0

M= {w Spy(Wdw = 2 ({ Spy(Wdw (62)

which is to be integrated numerically.

Since only total force power spectrum, instead of pressure
power spectrum, will be used, it is assumed that the
preésure fluctuations at every point on the wing are
perfectly correlated in space and are in phase., Based on
this assumption, Mabey and Butler showed that the total
force power spectral density was proportional to the
pressu;e power spectral density (Ref. 11). The results
from this were shown to be reasonably accurate.

In the present application to empennge buffeting due
to a LEX vortex, those unsteady buffeting vortices, once
generated, will be convected downstream in accordance with
the general principle of unsteady aerodynamics.

With the power spectral density of buffeting vortex

strength determined at a given flight condition,
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fluctuating normal velocity will be induced on the
empennage, By satisfying the usual flow tangency
condition, buffeting pfessure spectral density .on the
empennage can be calculated. From the buffeting pressure
spectral density, the power spectrum of bending moment or
other aerodynamic cha;acteristics can be determined. The
root mean square values of root bending moment are
calculated by using Equation (62).

Similar to Jones' method, the calculation of buffet
response requires structural data, such as mode shapes,
generaiized ﬁass, and damping ratio.

In applications to empennage buffeting, the locations of

LEX vortex bursting will be based on experimental data.
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3. SOME NUMERICAL ﬁESULTS AND DISCUSSIONS

In Reference 9, data for a cambered and a flat model of 70-
degree delta wing are available at a frequency parameter n of 0.05,
where

n = fc/v_ - (63)

and f is the frequency in cycles per second. This is converted into
the conventional reduced frequency k by multiplying by 2n. Before
vortex breakdown, the normal force fluctuation is assumed to be
caused by tunnel flow unsteadiness. The resulting amplitudes of
vertical oscillation (or buffeting excitation) in the vortex-
breakdown region needed to produce the experimental mean sqﬁare
values of normal force coefficients are shown in Figure 1. At each
angle of attack, a buffeting vortex strength Tt can be calculated
from Pquation (54). The same expression is used to calculate the

vortex strength Ts in steady flow using the steady-flow c Now, if

s.
Figure 1 is replotted in terms of the ratio of buffeting to steady

vortex strengths, Rb/s’

Rb/s = Tt/Fs (55)

those two curves in Figure 1 tend to collapse into one as shown in
Figure 2. From Figure 2, it can be concluded that the buffeting
vortex strength is a function of steady-flow vortex strength and Ag,
where Aa is the incremental angle beyond that of vortex breakdown

which occurs at the trailing edge.

23



The methéd is now used to analyze a cambered delta wing of 6S-
degree sweep as shown in Figure 3. To find the buffeting
characteristics for a flat 65-degree delta wing, it is assumed that
the buffeting excitation (AMPLG) for the latter is equal to that for
a cambered 65-degree delta wing if Rb/s is the same. Therefore, at
a given Aaq, Rb/s is obtained from Figure 3. Using this Rb/s' §MPLG
can be determined from Figure 4. Note that Figure 4 was constructed
from the experimental data for a cambered wing. The resulting
buffeting excitation amplitudes for a flat delta wing are plotted in
Figure 5. This type of data extrapolation must be used with
caution. This is done here mainly because test data for fluctuating
normal force coefficients of the flat 65-degree delta wing are not
available., However, test data for the rms values of root bending
moment are available for comparison with predicted results.

The buffeting force characteristics for both 70-degree and 65-
degree delta wings are compared in Figure 6. The difference between
these two curves arises mainly from differences in forward
progression rate of breakdown points.

To check the theory, test data of Reference 32 for the root
bending moment will be used. Static bending moment coefficients
based on ¢ are presented in Figure 7. Calculated results from
Reference 29 are also presented for -comparison. It is seen that at
high angles of attack, the theory overpredicts the root bending
moment. This is because the theory does not account for the inboard
movement of vortex flow as the angle of attack is increased. An

investigation to correct this discrepancy is under way.
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To calculate the dynamic response of a rigid wing, Egquations
(61) and (62) will be used. To calculate the transfer function
(BME) for the root bending moment, a unit amplitude of vertical
excitation is prescribed over the region of vortex breakdown at each.
frequency. Some results are presented in Figure 8. The
corresponding power speétral densities for the excitation are
obtained by multiplying the values in Figure 5 (for a low frequency
only) by a ratio obtained from Figure 24 of Reference 4 for other
frequencies. The results are shown in Figure 9. Equation (62) .is
then integrated by the trapezoidal rule to producé the mean séuare
values of root bending moment. The rms values are presented in
Figure 10. Note that experimental data were obtained at resonant
freguencies of the fundamental bending mode. Since the spectral
density is higher at higher frequencies (Figqg. 9),4the'ca1culated
response of a rigid wing tends to be similar to the test data at a
high frequency, although the magnitudes are underpredicted. It is
expected that the prediction can be improved if. the structural

flexibility is accounted for.
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4. WORK UNDER WAY

All geometric data for the F-18 have now been acquired and
computerized in the input format for the VORSTABR code (Ref. 29).
Wing sectional aerodynamic characteristics are being calculated with.
the Eppler's code (Ref. 33) to form a part of the input. At a given
angle of attack, the wake and the LEX vortices will be allowed to
deform until an equilibrium position is reached. The resulting
position of the LEX vortices relative to the vertical fins of F-18
will then be input to the unsteady aerodynamics program of Reference
30 to calculate the fin buffetingf For this purpose, the program of
Reference 30 must be modified to include the effect of large
geometric dihedral angles. Again, only the response of rigid fins

will be calculated in the current plan.
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Water Tunnel Testing of an F-18 Model
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William H. Wentz, Jr.,
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DISK: S5 FILE:FA18/JA6
SUBJECT: PROGRESS REPORT, F/A-18 FIN BUFFET PROJECT
To: Eddie Lan, KU Date: 20 Jan 1986

From: Bill Wentz, WSU

STATUS OF WORK STATEMENT ITEMS:

The work statement items for the WSU portion of this
project are quoted from the proposal, followed by the
status for each item.

1. "Participate in detailed water tunnel test planning
with NASA-Dryden and Navy personnel.®- Planning and ‘tests
were completed during December 1985.

2. "Assist in the interpretation of available
literature on F-18 and similar aircraft pertinent to the
fin buffet problem."- This activity is to be in

coordination with Professor Lan. No activity to date on
this task. '

3. "Review data obtained from water tunnel tests."-
This has been a continuing process since completion of the
tests. Key results are included 1in later sections of this
report. At the present time, no additional water tunnel
tests are recommended. Possible recommendations for
addtitional water tunnel tests, and recommendations for the
flight tests will follow completion of analysis of water
tunnel test data.

4. "Contribute to the preparation of a technical
report summarizing the results of this project."- Water
tunnel test results are being prepared in form appropriate
for the final report.

FACILITY AND MODELS:

Water Tunnel tests were conducted in the NASA-Dryden
flow facility during the period 13-17 Dec 1985. Model
configurations were as follows:

Basic F/A-18. - This model is essentially the complete
aircraft configuration with missiles removed. Wing 1leading
edge flaps were deflected 34° and trailing edge flaps were
un-deflected. This configuration is consistent with flight
operations at angles of attack above 25" .

F/A-18 without wings. =~ This model was used to
evaluate the interference effects of the wing and leading

edge extension (LEX) flow fields.
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F/A-18 without fins. - This model was used to evaluate
the possibility that the fin "blockage" might generate an
adverse pressure field of sufficient strength to cause
premature bursting of the leading edge vortices.

F/A-18 without LEX's. - The purpose of this model was
to identify the role and interaction of forebody vortices,
and to ascertain possible wing or forebody vortex
interactions with the fin.

All models were constructed from 1/48 scale
commercially available Monogram kits, fitted with
hypodermic tubing for introduction of flow tracers. The
models were also equipped with engine exhaust tubing
connected internally to the engine inlets so that engine
inlet flow was simulated. '

TEST CONDITIONS:

For all but a few tests, inlet flow was established to
provide an inlet capture area ratio of one. Most tests were
conducted at a tunnel speed of 0.25 ft/sec, which
corresponds to a Reynolds number of 4,000 based on (1/48
scale) model wing mean aerodyg;mic chord of 0.24 ft. Mach
number for this speed is 5 x 10 °.

Angle of attack was varied from 0° to 40°, in 5°
increments. At 40°, the model nose was nearly in contact
with the test section wall, so higher angles could not be
tested without wuse of an offset sting. Video and still
photos were obtained from top and side views in separate
runs., One series of runs were made with the basic
configuration with 5% sideslip. '

INSTRUMENTATION:

Instrumentation consisted of video cassette recording
equipment, and camera for still photos. In addition, the
fin of the basic model was fitted with a strain-gage and 2
different types of surface hot-film anemometers (Disa and
Micro-Measurements). These instruments were intended to
detect unsteady flow over the fin, for correlation of fin
buffet with flight test data. An oscilloscope was available
for monitoring of strain-gage or hot-film output signals,
and a modal analyzer was utilized to perform frequency
analysis of the dynamic signals.

The Disa hot-film anemometer and the strain-gage
provided only very low-level signals, and did not provide
consistentresults which could be distinguished from random
noise. The MM hot film gage, however, produced a signal

which displayed characteristics which changed in a consistent



manner with angle of attack. Therefore only the data from
this gage was utilized for spectral analysis.

RESULTS OF FLOW VISUALIZATION:

BASIC MODEL - The flow video and still pictures show a
consistent and repeatable pattern for the vortex flow of
this aircraft onfiguration. As angle of attack .is

increased from 0°, increasingly stronger vortices form
along the LEX's. These vortices flow aft above the
horizontal tail_ surfaces but beneath the fins for angle
below 20°. At 20°, busting occurs aft of the wing trailing
edge and outboard and beneath the fin. At 25° angle of
attack, the LEX vortex burst point is located inboard, with
the primary axis of rotation nearly coincident with the fin
leading edge. The burst point is slightly forward from the
fin leading-edge at this angle of attack. As angle of
attack 1is increased further, the burst point progressively
moves forward. Vortex burst locations are shown in figures
1 and 2.

MODEL WITHOUT FINS - The absence of the fins had
little effect on the flow field. Vortex locations and burst
position were essentially unchanged from the basic model.

MODEL WITHOUT WINGS - 1In this configuration, LEX
vortices formed in much the same manner as for the full
model. As angle of attack was increased, however, the
vortices were located at more inboard location than the
basic_model, and they remained intact, without bursting, up
to 30° angle of attack. This test series clearly indicates
that the wing pressure field has a dominant role in the
vortex bursting process. The adverse pressure gradient
field associated with the portion of the wing aft of the
leading edge flap hingeline 1is evidently a dominant factor
producing vortex bursting.

MODEL WITHOUT LEX'S -~ With this model, no clear
picture of vortices impinging on the fins was observed.
Camparison of this configuration with the basic model
reveals the strong role of the LEX's in producing the
vortices which impinge on the fins.

RESULTS OF HOT-FILM SIGNALS: (BASIC MODEL ONLY)

The modal analyzer was uti%ized to _obtain Psd data for
each angle of attack from 0~ to 40°. Results of these
studies are summarized as follows: .

(1) For angles of attack of 0° to 20°, no
dominant frequency was observed.
o (2) For angles of attack of 25°, 30°, 35° and
407, dominant frequencies were discernable.



For 30° and 35°, runs were also made with tunnel
speeds of approximately two- and three~times the nominal
value. Results were plotted as frequency versus velocity in
figures 3 through 6. These results show that frequency
increases linearly with tunnel speed, resulting in a
constant Strouhal number. Further, the §Strouhal number
associated with the vortex bursting is essentially
independent of angle of attack. The observed Strouhal
number is approximately 0.7 for all cases.

All test conditions scheduled have been run, and all video
cassettes, photos and modal analyzer plots have been
provided to WSU.

CURRENT ACTIVITIES: The NASA-provided video 3/4-inch tape
cassettes have been transcribed onto 1/2-inch tape
cassettes for ease of analysis using the WSU stop-action
VCR unit. BAnalysis of these tapes 1is continuing, and WSU
will extract primary LEX vortex location (vortex <core
location and 1location of the bursting point) from these
images for the sideslip and non-standard configuration
cases. Additional narrative describing the flow phenomena
and associated hot film measurements will be developed.
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