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THERMAL SMOOTHING OF ROUGH SURFACES IN VACUO

Georg Wahl

Heidelberg

Rough metal surfaces are not stable at high temperatures: /119*

their structure alters over time. Lengthy baking generally re-

sults in a smoothing of the original roughness. The fact that

grooving at grain boundaries may occasionally result in new

irregularities is not discussed here (we refer to the biblio-

graphy [1] ) . The mechanism of surface alteration is presently

understood by the concepts of W. W. Mullins [1-3] . In this paper,

the equations for the smoothing are derived and the most important

constants are given.

1. The Behavior of Surfaces in Thermodynamic Equilibrium

Before describing the time behavior of unstable surfaces, we

shall briefly go into the thermodynamics of a surface. The most

important thermodynamic quantity is the surface tension [4] :

Here, 3F indicates the work that must be done to increase the area

A by 3A at constant pressure, constant temperature and constant

volume .

<c
Numbers in the margin indicate pagination in the original text,



The surface tension of solids is between 1000 and 3000 erg cm

i.e., greater than that of liquids by a factor of 10. It is only

poorly understood that this is very sensitive to impurities and

also depends on the temperature and the orientation. Figure 1

shows the orientation function of tungsten for the [Oil]-zone

[5]. This is very slight, and shall therefore be disregarded

hereafter.
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Fig. 1. Surface tension of W for the
[Oil]-zone [5]: y-,-,0 - surface tension

in the direction 110, used as the
abscissa (other directions 100, 111, 112
and 332 are shown as radii); y ~ surface
tension in any given direction. ,,_
Key: a - adjusted surface tension y/y

The equilibrium form of a solid at constant volume is given

by the condition [1]:

SJyd.4 =0
(2)

If equation (2) does not apply, the surface is not in equilibrium:

it changes over time.



2. Characteristic Roughness Functions

There are several possibilities of mathematical description

of roughness:

1. The roughness function z = f (x,y) gives the position of

the surface (in terms of the height z above the reference plane)

at any given point of the surface (with coordinates x and y),

relative to a fixed reference plane. This function is very suit-

able for a graphic description.

2. The roughness can also be characterized by the vapor

pressure, which depends on. the surface curvature. We have [1] :

-yVuK (3)

with R as the general gas constant, T as the Kelvin temperature,

VM as the molar volume of metal, or the volume specific to the

quantity of matter, pn as the vapor pressure of the regular sur-

face and p as the vapor pressure above the curved surface. The

factor K gives the average curvature multiplied by -2 [6], which

for slight inclinations can be expressed by the Laplace operator,

applied to the roughness function f:

* = -Af (4)

Thus, equation (3) is simplified:

RTln(p/po) = - y F M A f (5) .

3. Instead of the curvature-dependent vapor pressure, we can

use the chemical potential y corresponding to the particular vapor

pressure:
, ft — fo + R T In (p/po)

(6)



where yn is the chemical potential of the equilibrium vapor pres-

sure p_ above a regular surface. Between y as per equation (6)

and Af, according to equations (3) and (4), the relation obtains:

ft = fl0 - y FM Af

3 . The Smoothing Equations

Three mechanisms are responsible for alteration of surface

structures: 1) the mechanism of evaporation, 2) volume diffusion,

3) surface diffusion. In order to derive the smoothing equation

for the evaporation mechanism, we proceed from equation (3) and

calculate the curvature-dependent evaporation current density i: •

(8)

where M is the molar .mass (assuming an evaporation coefficient

a = 1) . The evaporation current density i produces an eventual

change in the roughness function f:

1 8f
• '--?;*. (9)

where t is the time.

For slight curvatures, K can be expressed by equation (4) /I 20

and equation (8) can be developed to the second term, which gives:

i ef PQ /.
-

The first term on the right of (10) is equal to the evaporation

current density over a regular surf ace. and produces only a parallel

displacement of the surface, but no smoothing. The smoothing

proper is achieved only by the second term. If we ignore the

parallel displacement, which has no significance to the smoothing,



we may describe the smoothing by the equation:

' JL^ PQ VI v (11)
i St ]/ZnMRT RT

which was first derived by W. W. Mullins [2] .

For a one-dimensional, sinusoidal roughness, described by:

(12)

where z_ is the amplitude, of z and k is a reciprocal length, the

time function of the smoothness is given by:

with the evaporation parameter :

Po •-•>
~RTk (14)

The smoothness equations for the volume diffusion mechanism

have also been derived by W. W. Mullins [1,3] . He proceeded on

the assumption that the concentration of voids CT at the metalLI
surface is dependent on the curvature and given by:

(15)

C can be either larger or smaller than the concentration of voids
Jj

CQ on a regular surface. This produces a diffusion stream of voids

between the surface and the interior and a corresponding mass trans-

port, resulting in smoothing . For a one-dimensional roughness,
•

For a further derivation of the integrodif ferential equation
describing the smoothing, cf. the bib..' liography [1,3].



given by equation (12) , the time function can be calculated by:

t =ZQ *-&«** sai(kx) (16)

with the volume diffusion parameter:

' (17)

in which D , is the self-diffusion coefficient for volume diffu

sion.

To derive the smoothness equations by the surface diffusion

mechanism, following Mullins [1] we start with equations (6) and

(7) and write the surface diffusion flow i by the Nernst-Einstein

equation:

IB = -

In (18) , n is the surface concentration of diffusing particles
5

and D is an empirical diffusion constant. Equation (18) can also

be used for volume diffusion in a three-dimensional expansion [7].

Both empirical quantities n and D, are combined by writing:
S CL

with D = (n /N_)D,. The quantity D is known as the surfaces s u d s
diffusion constant; N_ is the concentration of lattice particles

at the surface. This concentration can be estimated from V.. and

the Loschmidt number NT:

Using the continuity equation:



and taking account of equations (19) and (7) , we obtain the

smoothing equation :

The symbol AA designates the double Laplace operator.

For a one-dimensional sinusoidal roughness, the eventual

subsidence, according to equation (22) can be described by:

z =zoe-l>«>t8m(kx) (23)

with 3 , as the surface diffusion parameter:

fc« (24)

4. Comparison of the Smoothing Mechanisms

Figure 2 shows, using the example of smoothing of a one-

dimensional sinusoidal roughness on a tungsten surface, the

temperature/wavelength regions in which the individual mechanisms

prevail. The lines bordering the regions are given by:

(25a)

Pv«r<l/0vol = *

and
0vol/0ol> = *

(25b)

The constants D ., and D required for the calculation (Fig. 3,4),

as well as the vapor pressures, have been taken from [8] . Figure 2

reveals that, for low temperatures and small wavelength of roughness,

the surface diffusion mechanism prevails.
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Fig. 2. Regions in which surface diffu-
sion, volume diffusion and evaporation
are the prevailing smoothing mechanisms
on a tungsten surface: A-C, region of
surface diffusion, volume diffusion and
evaporation; a and b, boundary curves
as per equations (25a) and (25b); X,
wavelength of the roughness, T, Kelvin
temperature; Tc, melting point. Key:

O

1 - adjusted reciprocal temperature.
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Fig. 3. Surface diffusion constants D
for cubic body centered metals: T,
Kelvin temperature; Ts, melting point;
a, curve of equation (26); other values
of DS taken from a table in [9] and from
[10], specifically: b for W after B. C.
Allen (1966), c for.Mo after B. C. Allen
(1969), d for Mo with 0.003% C after
B. C. Allen (1966), e for W after J. P.
Barbour (1960), f for Mo after R. W.
Strayer (1965), g for W after P. Bettler
(1965). Key: 1 - adjusted reciprocal
temperature.
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Fig. 4. Volume diffusion constants D ,

for cubic body centered metals: T and
TS as in Fig. 3; the values for D , for
the metals indicated on the curves taken
from [11] (a is the curve of equation
(27). The numbers on the lines for Li,

Mo and Nb designate the _/rr regions for

which measurements are available for these
lines according to [11] . For better
clarity, these lines are not fully shown.
Since the trend of the lines for Li and
Na is very similar, only the Li line is
shown and Na is indicated 'in parentheses
at the Li line. Key: 1 - adjusted re-
ciprocal temperature; 2 - 1-1.35.
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Fig. 5. Surface diffusion constants DS for
cubic face centered metals: T and TS as in
Fig. 3; a, curve of equation (28); the values
for DS taken from a table in [9], specifically:
b for Cu after N. A. Gjostein (1961), c for Ag
after G. Rhead (1965) , d for Cu after F. J.
Bradshaw (1964), e for Ni (two measurement
series) after P. S. Maija (1967). Key: 1 -
adjusted reciprocal temperature.
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Fig. 6. Volume diffusion constants D
vol

for cubic face centered metals: T and
T-. as in Fig. 3; the values for D , for
S ^ vol
the metals indicated on the curves taken
from [11]; a, curve of equation (29).
Key: 1 - adjusted reciprocal temperature,

5. Empirical Relations, for Surface and Volume Diffusion

A simple empirical rule obtains for both surface and volume

diffusion, which can be used to determine the diffusion coeffi-

cients of many metals. In Fig. 3 through 6, the measured values

of the surface diffusion coefficients and the volume diffusion

coefficients are plotted against the reciprocal temperature T,

adjusted to the melting point T . It can be seen that the diffu-D
sion constants may be approximately calculated by the simple

empirical relations. For cubic body centered metals we have:

/121

cm* e

cm

^ = 3,6e-l (26)

(27)

and for cubic face centered metals:

20 e-
(28)

10



(29)

It was N. A. Gjostein [9] who first selected such representation

of the surface diffusion constants.
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