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ABSTRACT

In this report we investigated the use of fmlines for microwave monolithic integrated circuit

application in 20-30 GHz frequency range. Other wave guiding structures, e.g.. microslrip lines are

also examined from a comparative point of view and some conclusions are drawn on the basis of

the results of the study.



I. INTRODUCTION

Current microwave technology allows the fabrication of many active devices operating [l] in

the 20-30 GHz frequency range, and continuous improvement in the performance of these devices

is predicted in the future. The integration of these devices into a monolithic configuration is a

challenging problem and wi l l require the development of new techniques for analyzing the MMIC

circuits. In this study we evaluate a number of waveguide media including the finline which

appears to hold good promise for integration of the active devices. The substrate dielectric

considered is GaAs since it gives good performance at these frequencies, and technique for

fabricating GaAs are widely available.

Several integrated waveguides have been considered in the literature for MMIC application.

These include microslrip. finline, coplanar waveguide, suspended microstrip and hybrid

combinations of these. Some of the guiding structures mentioned above are not very compatible

wi th three terminal devices ices and hence are not considered as prime candidates.

Microstrip has been the favorite at lower microwave frequencies and has, in fact, found some

applications up to the 100 GHz range. At higher frequencies the losses in microstrip lines become

significant and. in the case of unshielded microstrip. the continuous spectrum of modes causes

radiation problems at discontinuities, etc. Shielded microstrip avoids some of these difficulties, but

the shield may not be amenable to integration. Suspended microstrip has lower loss than regular

microstrip and is shown in Fig. 1.

The unilateral finline configuration is shown in I-'ig. 2. Here the slot acts as the guiding

structure. Finline has potential ly lower loss and better modal characteristics than microstrip. The

dominant finline mode has a low frequency cut-off (un l ike microstrip). and over the frequency

range of operation the shield dimensions are usually such that only the dominant mode propagates.

Bilateral finline has identical metalization on both sides of the dielectric. Antipodal finline is

shown in Fig. 3 and wi l l be discussed in relation to the amplifier .



Coplanar waveguide, which is shown in Fig. 4. has potential for millimeter-wave integrated

circuits. Appendix A-C include some papers dealing with coplanar.

Theoretical data for fmline. which is considered to be a prime candidate for integration with a

GaAs substrate, is presented in Section 2.1. A brief discussion of the problem formulation and

numerical solution are given. Section 2.2 indicates some methods for solving various discontinuity

problems which occur in the amplifier (i.e.. solution of the three-dimensional problem). Section 3

provides a relative assessment of the finline technology, along with recommendations.

2. FINLINE ANALYSIS

2.1. Uniform Finline

The uniform fin-line structure may be analyzed by using a spectral domain formulation with

a moment method solution. Phase constant, mode function and characteristic impedance data may

thus be obtained. Waveguides of this form are most simply formulated in the spectral domain,

which involves using a Fourier series representation of all field quantities in the transverse

direction, parallel to the metallization (i.e.. the x-direction ) [2]-[l2]. Consider a spectral variable

&, . which has discrete values given by kx - In 77/26. The fin-line modes are superpositions of

Tli - to - y and TM - to - y modes. Decoupled transverse resonance equations may be obtained

by using a coordinate transformation in the (x.z) plane [6]. This allows use of transmission line

equivalent circuits, which require only minor alterations to be applicable to other, perhaps more

complex, geometries. This analysis results in a type of dyadic Green's function relationship in the

spectral domain, relating slot fields to fin currents in the plane of the metallization. This

relationship may be written in the form

F. 1
(1)

A moment method, namely Galerkin's method, where the testing and basis functions are the

same, may be used to obtain a satisfactory numerical solution to Eq. 1. The fields are expressed as
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A suitable set of basis functions is an orthogonal set of functions, e.g., trigonometric functions or

Chebyshev polynomials, modified b y an edge condition. With the orthogonality of ^ (x ) and

T}(/ Cr ) with J (x ). a homogeneous equation of the form Lf = 0 results, where f is the unknown

containing the coefficients of the basis functions. The numerical solution of the delerminantal

equation yields the eigenvalue solutions, or phase constants, for both propagating and evanescent

modes. The solution for the slot fields can then be obtained by solving the matrix equation for the

relative coefficients of the basis functions. The mode functions can be determined by returning to

ihe transverse resonance analysis. The characteristic impedance may be defined by

I V I 2
Z, = * (3)

2P

where Vv is the slot voltage and P the mode power. The mode power is determined from the

transverse resonance analysis. Theoretical results for the phase constants and characteristic

impedances are given in [6]-[l2] and mode functions in [8]. It should be noted that this definition

for the characteristic impedance is considered a reasonable representation of the physical quantity.

However, the measured characteristic impedance could differ and this aspect needs to be

investigated experimentally.

The fields for the nth mode may be expressed as

E(x .y ,.- ) = Zn (.V .y )e~ji':"z + ?„, (.r .y }e~ik--"" (4a)

/7(.r ,y ,-~ ) = Kn (x .y )e~i'"^ + K,,, (x .y }e~}i:"2 (4b)

where ?„ and K,, are transverse vector mode functions, and e,,, and /T.,, are the longi tudinal vector

mode functions. These mode functions, when normalized, satisfy the following orthogonality

relationship



f f ?„ X /T;), - z d s = 8,,,,, (5)

where S,,,,, is the Kronecker delta.

Two well chosen basis functions, with greater than 16 b/w spectral terms in the inner

product operation used to obtain the matr ix equation, provide reasonable accuracy in the phase

constants. However, a larger number of spectral terms and/or basis functions are required to

obtain satisfactory approximations for the fields or mode functions. It is quite difficult to obtain a

satisfactory representation for the propagating and evanescent mode functions. In fact, the

orthogonality relationship of Eq. (5) is satisfied only approximately by one propagating and about

two evanescent modes, when using two and four basis functions and a sufficient number of spectral

terms to obtain convergence. Therefore, although an inf ini te number of approximate solutions can

be obtained, only the first few such solutions are likely to be useful.

The computed (inline data for normalized wavelength is shown in Figs. 5-9 and the

characteristic impedance is given in Fig. 10. Figure 5 gives the wavelength for the propagating

modes as a function of frequency and slot width. Figures 5-9 give the propagating and first

evanescent mode. Two basis functions for £v and Ez were used. These functions are

cos (p-l)-rr
w

i w \U - s — —)

I -
2(x -s

.p = 1.2.3....

s — v <s +
* 2 (6)

sin a TT , w -.1 — (x — s - —)
w 2

1 - 2(.X -5 )

w

2
.</ = 1.2.3.

Or ) = 0
otherwise

and £,,(.v ) = /\ (s .w ). where P x ( s , w ) is a pulse function of width w centered at x = s . One



hundred spectral terms were used in the evaluation of the matrix for the eigenvalue problem. Two

hundred spectral terms were used to calculate the basis funct ion coefficients and the characteristic

impedances. It should be noted that more spectral terms are required for convergence of the fields

than are required for convergence in the phase constants.

2.2. Discontinuity Analysis

The monolithic integrated waveguide structure, whether it be finline. microstrip or some other

planar geometry, has a number of discontinuities which need to be characterized. Several suggested

configurations are proposed in Section 3. All involve some type of low-reflection transition from

rectangular waveguide to the uniform integrated line, and typically some form of matching to the

FET. The matching could take on a variety of forms, all of which involve a series of

discontinuities. It is thus evident that the analysis of several classes of discontinuities is crucial in

the design and evaluation of the amplifier.

We have been studying such a class of problems for a number of years. The basic problem

and numerical solution is essentially independent of the particular waveguide under consideration.

Hence, generally a solution for one type of waveguide (for example microstrip) could equally well

be applied to another in the same family (for example finline).

A common discontinuity in microstrip is a perturbation in the strip width, for example a step

change. A number of such discontinuities occur in high-speed digital, microwave and millimeter-

wave circuits. Discontinuities form the basis of filter and matching structures. The accurate

solution of this class of problems is essential for the analysis and design of many components.

Formulations for the discontinuity problem may be classified into two categories:

(a) those that employ a representation for the unknown over the transverse

junction plane, and

(b) those that uti l ize unknowns in the plane of the metallization.

These approaches wi l l now be outlined.



Approach (a) relies on the construction of the Green's function using modal solutions.

Included in this category are the mode matching solutions [10], [l3]-[l6]. The unknown quanti t ies

may be represented by a magnetic current (A') in the transverse junction plane, leading to an

integral equation formulation. A solution of this integral equation can then be obtained by an

appropriate numerical method. Iterative and variational techniques for the solution of K have

been investigated by this researcher [17]-[19]. Some success has been achieved with these

approaches. However, the inherent limitation is the difficulty of obtaining accurate numerical

solutions for the higher order modes [ l l ] . More satisfactory approaches are currently under

consideration.

The advantage of approach (b) is that it uses a spectral Green's function which is exact. This

approach is basically an extension of the two-dimensional analysis (one-dimensional spectral

relationship) of Section 2.1. The three-dimensional scattering problem is thus reduced to a two-

dimensional spectral relationship in the plane of the strip [9]. The spectral variable kx takes on the

same values as in the uniform case, and kz is continuous in general. For an infinite periodic

structure. kz is discrete. We are continuing to study [20] several formulations and numerical

methods suitable for this approach. The major difficulties are associated with the problem

containment to a finite z-support. the evaluation of the two-dimensional inner products, and the

number of functions required to adequately represent the unknown.

3. COMPARATIVE ASSESSMENT OF TECHNOLOGIES FOR AMPLIFIER REALIZATION

For the purposes of fur ther research it is important to assess the relative merits of a f inl ine

for use in the 20-30 GHz. The finline configuration is therefore compared with microstrip and

other possible candidates so as to give some insight into the selection.

Finline has definite advantages over microstrip in that it has a lower loss and does not suffer

from radiation problems. The f inl ine structure is generally operated in the single mode region,

which means that coupling to other propagating/leaky modes wi l l not occur at discontinuities.



Unfor tunate ly , it is di f f icul t to incorporate a three-terminal device into finline. Several possible

configurations are shown in l:ig. 11. The geometrv of Fig. l l (a) consists of a combination of

unilateral and antipodal finline. Figure 1 K b ) shows an alternative which is a combination of

unilateral f inl ine and microstrip. The production of a suitable transition from rectangular

waveguide to finline and the discontinuity, such as an exponential taper [21] is important. The

abrupt step in the fin metallization at the FET in the configuration of Fig. l l (a ) is of concern. It

may be possible to compensate via appropriate matching, which should be verified experimentally.

This matching may not be able to compensate for the finline discontinuity susceptance at the

device, which is a higher order evanescent mode phenomena. Test structures for evaluation

purposes could easily be fabricated on alumina substrates (alumina has a dielectric constant of

approx. 9.6. which wil l give insight to the GaAs performance). The structure in Fig. l l(a)

comprises unilateral and antipodal finline. One can reasonably draw conclusions regarding the

antipodal structure, without having pursued the computation, by noting that the fin current

distr ibution is similar to the unilateral case. It can be expected that the phase constants and

characteristic impedance of the antipodal form would not differ greatly from the unilateral case.

The microstrip geometry is more compatible with three terminal devices. For a WR-28 test

arrangement, a satisfactory transition to microstrip is required. Possible rectangular waveguide to

microstrip transitions are shown in Fig. 12. The ridged waveguide transition is illustrated in Figs.

13-15. The van Heuven transition [22], [23] is shown conceptually in Figs. 16 and 17. The van

Heuven transition appears to work qui te well and can be easily fabricated.

The use of coplanar waveguide structure, which is shown in Fig. 4, may provide a viable

low-loss alternative to f inl ine. Coplanar waveguide provides three signal conductor planes and

therefore would be compatible wi th three terminal components. The modal character in the

unshielded guide may be troublesome, as in the unshielded microstrip case. An alternative which

avoids this problem is shielded coplanar waveguide. Coplanar to microstrip transitions have been

produced [24], [25]. Such transitions to microstrip may be useful in the vicinity of the device.



The rectangular waveguide to finline transition often consists of a non-linear taper of the

metallization and then a tapering of the dielectric (the latter would not be the case with a GaAs

substrate due to fabrication difficulties). Such a continuous transition can be modeled by a series of

steps in the slot width. Step changes in the slot width also appear in matching and filter structures.

Solutions to these problems could be obtained by one of several methods as described in categories

(a) and (b):

- mode matching with discrete steps in the slot width

- "quasi" mode matching using approximate model solutions as basis

functions (modal orthogonality is not used here)

- formulat ion with unknowns in the metalized planes

The continuous transition could be modeled by using the concept of a slowly varying parameter,

namely the slot width. The application of these approaches would be valuable longer-term

research activities. There are a number of important problems in the monolithic amplifier

geometries, the solutions of which will require innovative formulations and numerical solutions.

It is suggested that further investigation of both a microstrip and a finline amplifier be carried

out. The microstrip amplifier could easily be realized with a van Heuven transition, and in the

vicinity of the FET the geometry is well known. In the finline case, the tapered rectangular

waveguide to finline transition performs satisfactorily. The basic geometry for the finline amplifier

could be the unilateral/antipodal geometry or the microstrip finline configuration. The possibility

of incorporating coplanar waveguide as an alternative to finline should be investigated further.

The experimental investigation of both the passive and active circuits will yield results to

compliment this study and to permit the most satisfactory technology to be selected.
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Figure 1. Shielded suspended microstrip.
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Figure 2. Unilateral f inl ine.
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l-igure 4. Shielded coplanar waveguide.



1̂
X

1.2

i.o —

0 . 8 -

.A. -

ur- I

0.6

0 .4 -

t ±- -^_- ,-^ __

= 0

-T r -

28 30 32 34 36 38 40
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I - igure 6. Dispersion curves for two modes (£x even about x = s) in unilateral fin-line with a WR-
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l-igure 7. Dispersion curves for two modes (/i'v even about x = s) in unilateral fm-line with a WR-
28 shield. / , = / . , = 3505 mm. 2d = 0.1 mm. e, =13.1. 2b = 3.56 mm. w - 1 mm.
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l - igure S. Dispersion curves for two modes (£v even about x = s) in unilateral fin-line with a WR-
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WITH ANISOTROPIC SUBSTRATES
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ABSTRACT

In this paper the asymmetrical coupled coplanar-type transmission line

(C-CTL) with an anisotropic substrate is investigated using both the quasistatic

method and the hybrid-mode formulations. The line characteristics of interest,

e.g., the propagation constant and the characteristic impedances of the various

types of C-CTLs with anisotropic substrate, are presented.



I. INTRODUCTION

Various types of transmission lines with anisotropic substrates have been

investigated for use in microwave- and millimeter-wave integrated circuits [1].

These include single and coupled striplines [2] - [7], slot lines [8], and

coplanar-type transmission lines [9] - [11]. The coplanar-type transmission

lines (CTLs) are promising because of their easy adaptation to shunt element

connections [12], [13]. The application of coupled coplanar-type transmission

lines to filters and couplers was proposed by C. P. Wen [14]. The propagation

characteristics of coupled coplanar-type transmission lines (C-CTL) have been

studied based on the quasistatic [14], [15] and hybrid-mode formulations [16],

[17], and accurate numerical values are available for the cases with isotropic

and/or anisotropic substrates. However, most of them assume the structural sym-

metry. The theoretical approach for the asymmetrical version is available only

for the propagation constant of the case with a single isotropic substrate [16].

There is no information available for the characteristic impedances of asym-

metrical C-CTLs, even for the simplest case with an isotropic substrate,

although it is required to utilize the advantages of the asymmetrical structure,

the impedance transform nature and the additional flexibility.

In this paper, we present the analytical method for the general structure

of asymmetrical coupled coplanar-type transmission lines with an anisotropic

substrate. This method includes both the hybrid-mode and the quasistatic for-

mulations and is useful for accurately computing the characteristic impedances'

as well as propagation constants of various types of asymmetrical coupled

coplanar-type transmission lines.



II. THEORY

A. Variational Expressions for the Elements of the Capacitance Matrix^of a C-CTL

The variational method will be described for the quasistatic characteristics

of the general structure for asymmetrical, coupled coplanar-type transmission

lines (C-CTLs; Fig. 1) with uniaxially anisotropic substrates, whose permit-

tivities are given by the following dyadic:

e. i,xx

e. e.
i.yy

(1)

The quasistatic characteristics of the symmetrical C-CTL can be expressed in

terms of the scalar line capacitance [15], whereas, for the asymmetrical C-CTL

case considered here, they are described by the capacitance matrix which is

defined as:

-Cm

-Cm

(2)

where V. and Q, are the potential and the total charge on the right strip, and

V- and Q- are those on the left strip, respectively. The variational

expressions of the self and mutual capacitances C , C-, and C will be derived

in the following.

The charge distribution on the conductors can be expressed in terms of the

aperture field e (x) [15];



o(x) = // G(a;x|x') e (x1) do dx1 (3)

with

G(a;x|x') = -j |F(o) eJ
aU~x ; (4)

F(a) =-7̂ -7 (Yn(a) + Y. ( a) ) (5)
TT a u L

where YTT and Y, can be obtained by utilizing the simple recurrent relationU Li

(Appendix). The total charge located between x and x» is given by

Xl
Q(x1>X2) = / a(x) dx (6)

When x. and x_ lie in slots, Q(x.,x_) should be constant, that is,

= Q:( |x2| < a and

Q2(-c2 < x2 < -b2 and jxj| < a)
(7)

We consider the following sets of excitations to determine the capacitances:

i) Vj * 0, V2 = 0 (8a)

ii) VL = 0, V2 # 0 (8b)

iii) V = -V (8c)



Multiplying (6) by e (x,) and integrating over the right slot
X X

(b, < x, < c , ) , we obtain

cl
Q U = f o (v } C\( v v } Hvi v i — i e ^A! } y v.Xi ,x- y ax,11 ', xi i i i

bl
Cl

i // F(o) e ( « • ) ejax' {/ e (x.) i3^ dx, - V. e~JCK2} da dx-
i -» x b. X

(|xJ < a) (9)

by utilizing

Cl
j = / ex(x) dx = - / ex(x) dx (10)

Then, multiplying Eq. (9) by e (x2) and integrating over the left slot, we

obtain

"Q1V1 = // ex(x^ Q(xpX2
) ex(x2) dxl dx2

. . C]

- VVl

F( a) e (x1) eJCtx {-V / e (x,) e ^ dx.
bL

h
ix-} da dx1 (11)

That is,

QIVI = / // F(°) e (x1) cos ct(x - x1) e (x) dx1 dx da (12)
1 i X



Therefore, we obtain the stationary expression of C. as follows:

v2 = o

// / e (x) F(a) cos o(x - x1) e (x 1 ) do dx 'dx
_ X X

— 0 _ (13)
e ( x ) dx}x

Equation (13) gives an upper bound to the exact value. Similar expressions for

Cj and C, + 2C + C2 can be obtained by using (8b) and (8c), respectively. The

Ritz procedure will be applied to the variational expressions (13) for the

numerical computation.

There are two fundamental modes of propagation in asymmetrical coupled

coplanar-type transmission lines (C-CTL), that is, c- and ir-modes, which become

even and odd modes in the symmetrical case, respectively. The propagation

characteristics of an asymmetrical C-CTL can be expressed in terms of two propa-

gation constants, fJ , 0 , and four characteristic impedances, Z- ,
C M J . | C

Z. (i = 1,2), where i = 1 and 2 stand for the right and left strips, respec-1 , IT

tively. The quasistatic values of the propagation constants and the charac-

teristic impedances for two fundamental modes can be calculated by [6], [18]

3 „ = ~£ {L,C, + L9C, - 2L C ± U}2

c ,TT /2 1 1 22 mm '

z i , c = i r ( L i -



=1T ( L 1- VRc>
IT

Z0 = -R R Z,2,c c TT l

± U

C , T T 2U C, - L.C )m 2 1m

7 V2
U = {(L0C0 - L .C. ) + 4(L C. - L.C )(L C0 - L.C )} (14)

2 2 1 1 m l / m m z 1 m

where L,, L_, and L are the self and mutual inductances, which can be obtained

from C,, C0, and C for the case without a substrate.
1 2 m

B. Hybrid-mode Analysis

The network analytical method of electromagnetic fields has been success-

fully applied to analyze the propagation characteristics of various types of

planar transmission lines with isotropic and/or uniaxially anisotropic sub-

strates whose optical axis is coincident with one of the coordinate axes [5], [9],

[10]. This method is based on the hybrid-mode formulation, and no approxima-

tions for simplication are used in the formulation procedure. The propagation

constants of an asymmetrical C-CTL can be obtained easily by using the extended

version of this method and applying the Galerkin's procedure. The charac-

teristic impedance is not uniquely specified because of the hybrid mode of pro-

pagation. The definition chosen here is

V- .
Z. . =T

i^i (i = 1,2; j = C.TT) (15)



where I. . and V. . are the total current on the right strip and the voltage
i»J - 1»J

difference between the right strip and the ground conductor, respectively, and

I« . and V9 . are those for the left strip. The frequency-dependent hybrid-
*•* J *-tJ

mode solutions for propagation constants and characteristic impedances are pre-

sented in Section III.

C. Coplanar-type Transmission Line

The quasistatic and hybrid-mode formulations described above are quite

general and applicable to various configurations, e.g., coupled coplanar wave-

guide (C-CPW; Fig. 2(a)), coupled CPW with double-layered substrate (Fig. 2(b)),

coupled sandwich CPW (Fig. 2(c)) and coupled coplanar three strips (Fig. 2(d)).

In the coplanar-strip case of Fig. 2(d), the charge and current distribution on

the strips are the basic quantities as opposed to the aperture fields in the CPW

cases of Figs. 2(a) - (c). Numerical results for these coplanar-type

transmission lines are included in the next section.



III. NUMERICAL EXAMPLES

Figure 3 shows the quasistatic characteristics of an asymmetrical coupled

coplanar waveguide with an isotropic substrate. Figures .3(a) and (b) depict the

effective dielectric constants e pp • and the characteristic impedanceserr , j

Z; ;(j = c,ir) as a function of the strip width ratio S0/0 . e ee • is obtainedL > j 1 err , j

by

Eeff,j ' C3j/o,/̂ ) (16)

The values for the symmetrical case(S0/0 =1) are in good agreement with those2/S1

of [15]. Another check on the results can be made by investigating the limiting

case as S, , becomes very large, where the left slot is decoupled and£/sl
e ff converges to that of the asymmetrical coplanar waveguide (ACPW)[15] shown

in Fig. 4(a). As S,/0 becomes very small, e ,, converges to that of ACPWi/o. err,c

shown in Fig. 4(b) , which can be considered as the limiting case of S0/c = 0.
2/S1

Figures 5 and 6 show the quasistatic characteristics of asymmetrical coupled

double- layered (Fig. 2(b)) and sandwich (Fig. 2(c)) coplanar waveguides, respec-

tively. They depict e ff . and Z. .(j = C,IT) as functions of the ratio of the
> J *• > J

thickness of the upper to the lower layer d/h. Figure 7 shows the frequency

dependence of the effective dielectric constants for various types of a coupled

coplanar waveguide with uniaxially anisotropic substrates cut with their planar

surface perpendicular to the optical axis. The frequency-dependent hybrid-mode

values of each mode converge precisely to the corresponding quasistatic values

in lower frequency ranges for all cases. The phase velocities of two fundamen-

tal modes of the case with double- layered substrates have close values in the

higher- frequency range, but they never coincide because of the mode coupling.



The mode of propagation can not be identified as the c- or ir-mode by investi-

gating the voltage and current. Figure 8 shows the frequency dependence of the

characteristic impedances of a coupled coplanar waveguide. Figure 9 shows the

effective dielectric constants and the characteristic impedances of coupled

coplanar three strips (Fig. 2(d)) with a uniaxially anisotropic substrate. The

definition for the characteristic impedance of coupled coplanar strips is chosen

as

where I, • and V, • are the total current on the right strip and the voltage1 > J x » J

between the right and the center strips, and I, . and V- . are those for the
'» J *•» J

left strip. Again, the frequency-dependent values converge to the quasistatic

values in the lower- frequency ranges.

Figure 10 shows e ff . and Z. . of an asymmetrical coupled coplanar wave-
err ,1 i , j

guide on a uniaxially anisotropic substrate cut with its surface at y to the

optical axis.



V. CONCLUSIONS

This paper describes the analytical method for the general structure of

asymmetrical coupled coplanar-type transmission lines (C-CTLs) with anisotropic

media. It consists of the quasistatic and the hybrid-mode formulations. The

former gives variational expressions for the line parameters of the cases with

the uniaxially anisotropic substrate cut with its planar surface at an arbitrary

angle to the optical axis; the latter gives the rigorous frequency-dependent

characteristics for the cases with the anisotropic substrate cut with its sur-

face perpendicular to the optical axis. Some numerical examples showed the

accuracy of the method and presented the propagation characteristics, the propa-

gation constants as well as the characteristic impedances of the various types

of C-CTL with anisotropic media, for the first time.
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APPENDIX: RECURRENT RELATIONS

The Fourier transform of the electric field E and the electric flux density
x

D in the layer i(y£̂ .i ^ y > y-) can be expressed as:

CO

E (a;x) =-= / E (x ,y) e"ax dx
X /2TT _„ X

^) + B^inhCp^y)] (Al)

"0 x + ei,yy£0

e. e- p. exp(-b.y) [A. sinh(p.y) + B . cosh (p .y ) ] (A2)
i,yy 0 ri v 1/1 i i i

where A., B. are unknown constants and

b. = j L'xy a (A3)
i J e.

p. - t i - |a | (A4)Ki e. ' '

e. = e. e. - e (A5)i,e i,xx i.yy i,xy

We will derive the recurrent relation in the upper region y > 0. Define the

following quantity at the lower surface of the layer i (Fig. 11):

11



m

J "

1*6 '

Dy
|a| ~

J E
X y=yi+o

(A6)

Considering the continuity conditions at the y = y- + i plane, we obtain the

following recurrent relation with respect to Y.

- t.nh(p.d.)

Y. =
i (A7)

tanh(p.d.)

The electric flux density at the y = +0 plane (the slot plane) can be

obtained as

D (a;y =
y

- YMeja NX (A8)

where e is the Fourier transform of the aperture field e (x). Then, Y,T in
X X U

Eq. (5) can be obtained as

>, .Tu N,e N (A9)

A similar recurrent relation holds in the lower region y < 0, and Y can be
L*

determined.
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LIST OF ILLUSTRATIONS

Fig. 1. General structure of asymmetrical coupled coplanar-type transmission
lines with anisotropic substrates.

Fig. 2. (a) Asymmetrical coupled coplanar waveguide (C-CPW).

Fig. 2. (b) Asymmetrical coupled coplanar waveguide with double-layered
substrate.

Fig. 2. (c) Asymmetrical coupled sandwich coplanar waveguide.

Fig. 2. (d) Asymmetrical coupled coplanar three strips.

Fig. 3. Quasistatic characteristics of asymmetrical coupled coplanar waveguide
versus strip-width ratio S0/c .

2/sl

(a) Effective dielectric constants
(b) Characteristic impedances

elxx = elyy = 9'6> elxy = °

2a/h = 1, S1/h = 2, W1/h = 2, W2/h = 2.

Fig. 4. Asymmetrical coplanar waveguide (ACPW).

Fig. 5. Quasistatic characteristics of asymmetrical coupled coplanar waveguide
with double-layered substrate.

elxx = 9'4> elyy = 1 1- 6> £2xx = £2yy = 2'6> eixy = ° (i = l>2)

Sl/h = l-°> S2/h = °-5> Wl/h = l'5> W2h = 2-°'

Fig. 6. Quasistatic characteristics of asymmetrical coupled sandwich coplanar
waveguide.

elxx = E2xx = 9'4> elyy " £2yy - H.6. eixy = 0 (i - 1,2)

Sl/h = l'°> S2/h = °'5> Wl/h ' l'*> W2/h = 2'°-
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Fig. 7. Dispersion characteristics of various types of coupled coplanar wave-
guides .

C = 1 n Q s ft ^ U s 1 ^ IJ 3 9 ft£>1/h i .U , &2/h U.3, W1/h 1.3, W2/h ^.U

(a) Asymmetrical coupled coplanar waveguide (C-CPW).

elxx = 9'4> elyy = n'6> elxy = °'

(b) Asymmetrical coupled coplanar waveguide with double-layered
substrate.

elxx = 9'4' elyy = U-6« £2xx = £2yy = 2'6>

=0 (i = 1,2), d/h = 0.1.

(c) Asymmetrical coupled sandwich coplanar waveguide.

e, = e0 = 9.4, e, = e0 = 11.6,
Ixx 2xx ' lyy 2yy '

£ix = ° (i = 1)2)> d/h = 1>0'

: Hybrid-mode, ——— - : Quasistatic

Fig. 8. Frequency dependence of the characteristic impedances of coupled
coplanar waveguides.

Dimensions are the same as in Fig. 7(a).

Fig. 9. Frequency dependence of the effective dielectric constants and the
characteristic impedances of coupled coplanar three strips

£lxx = 9'4> £lyy = U-6> £lxy = °

Sl/h = 1'0> S2/h = °'5' Wl/h = l'5' W2/h = 2'0'

: Hybrid-mode, - - .. : Quasistatic

Fig. 10. Effective dielectric constants of coupled coplanar waveguide versus y.

' i x x ^ 3 ' 4 0 ' e l y y = 5 ' 1 2 ' e l x y = ° when Y = 0

S l /h = l - ° > S2/h = °'5' W l /h = K5> W2/h = 2 '°-

Fig. 11. The i-th layer of stratified anisotropic substrates.
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Fig.2 (a) Asymmetrical coupled coplanar waveguide ( C-CPW ).

Fig.2 (b) Asymmetrical coupled coplanar waveguide with double-layer

substrate .

Fig.2 (c) Asymmetrical coupled sandwich coplanar waveguide.

Fig.2 (d) Asymmetrical coupled coplanar three-strips.
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Fig.3 Quasistatic characteristics of asymmetrical coupled coplanar
g

waveguide versus strip-width ratio 2/S .

(a) Effect ive dielectric constants

(b) Characteristic impedances

e, = e. = 9.6 ,Ixx lyy ' e, » 0Ixy

2a/h = 1 , Sl/h = 2 , Wl/h = 2 , W2/h = 2
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Fig. 5 Quasistatic characteristics of asymmetrical coupled coplanar

waveguide with double-layer substrate.
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Fig.6 Quasistatic characteristics of asymmetrical coupled sandwich

coplanar waveguide.

e = E = 9.4 , e, = E, = 11.6 , e. =0 ( i = 1, 2 )
Ixx 2xx lyy 2yy ixy

Sl/h = 1.0 , S2/h = 0.5 , Wl/h = 1.5 , W2/h = 2.0



o.lo

Fig.7



Fig. 7 Dispersion characteristics of various types of coupled coplanar

waveguide.

Sl/h = 1.0 , S2/h = 0.5 , Wl/h = 1.5 , W2/h - 2.0

(a) Asymmetrical coupled coplanar waveguide ( C-CPV ).

e, = 9.4 , e, = 11.6 , e, = 0Ixx ' lyy Ixy

(b) Asymmetrical coupled coplanar waveguide with double- layer

substrate .

e, = 9.4 , e, = 11.6 , e~ = e. = 2.6 ,Ixx ' lyy ' 2xx 2yy '

e, =0 ( i = 1, 2 ) , d/h = 0.1ixy

(c) Asymmetrical coupled sandwich coplanar waveguide.

e« = e- = 9.4 , e. = e~ = 11.6 .Ixx 2xx ' lyy 2yy

eixy= 0 ( i - 1, 2 ) , d/h = 1.0

: Hybrid-mode, : Quasistatic
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Fig.8 Frequency dependence of the characteristic impedances of

coupled coplanar waveguide

Dimensions are same as in Fig.7(a).
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Fig. 9 Frequency dependence of the effective dielectric constants

and the characteristic impedances of coupled coplanar three-

strips

lxx= ' ' elyy lxy

Sl/h = 1.0 , S2/h = 0.5 , W l /h = 1.5 , W2/h = 2.0

: Hybrid-mode, : Quasistatic
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Fig.10 Effective dielectric constants of coupled coplanar waveguide

versus Y «

C1 = 3.40 , c. = 5.12 , e, = 0 when "Y = 0Ixx lyy Ixy
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Fig.H The i-th layer of stratified anisotropic substrates




