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Abstract

A circular waveguide horn coated with a lossy material in its interior wall

can be used as an alternative to a corrugated waveguide for radiating a cir-

cularly polarized (CP) field. To achieve good CP radiation, the diameter of

the structure must be larger than the free-space wavelength, and the coating

material must be sufficiently lossy and magnetic. This device is cheaper and

lighter in weight than the corrugated one.
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I. INTRODUCTION

Circularly polarized (CP) waves are important in many applications, such as

radar systems, ionospheric studies and radio astronomy. A good CP radiation can

be produced by using an antenna with similar E- and H-plane radiation patterns

[1]. One of the first radiators having such a characteristic was the dual mode

horn proposed by Potter in 1963 [2], The Potter horn is simple, but has a

narrow bandwidth and is difficult to control. A larger bandwidth can be

achieved by using dielectric horns [3]-[5]. The most popular CP radiator is the

corrugated horn, because of its excellent axial ratio and wide bandwidth [1],

[6]-[8J. However, corrugated horns are expensive to manufacture and are heavy.

In this paper, we will suggest an alternative: a regular circular waveguide

horn coated with a lossy magnetic material [9], [10]. It is shown theoretically

and experimentally that such a circular waveguide (approximately) satisfies the

boundary condition for the "balanced hybrid" mode, and they have the same E- and

H-plane radiation patterns.

The organization of this paper is as follows. In Section II, the condition

for the identical E- and H-plane radiation patterns of a circular waveguide is

derived. It is shown that such a condition can be approximately satisfied by

coating the waveguide with a proper lossy magnetic material. In Section III,

numerical results are given to verify the condition. In Section IV, experimen-

tal data of the radiation patterns of a coated circular horn are presented and

compared with theoretical values.



H. BOUNDARY CONDITIONS FOR THE BALANCED HYBRID MODE

Figure 1 shows a circular guide coated with a material of magnetic per-

meability y2VVj and dielectric permittivity tj^Q* wnere Wi an<* en are tnose °^

free space. The inner part of the cylinder is assumed to be filled with a

medium of U^UQ and e,£„. Here u2> e2, jj, and e, are in general complex. The

modal fields in such a guide were studied in detail [10]. Apart from a common

factor

exp[j(u)t - k z)] , (1)
Z

the tangential field components of a normal mode are described by the following

expressions:

L (2a)

" = j[{Ck zm/(k2kp 2p)} F3(p) + DF^(P)] e jm<f> (2b)

F ( p ) e (2c)

j (Ck
P2 /k2 ) F3(p) eJm<l> (2d)

(2e)

(2 f )

/k^ FL(p) e
jm<J> (2g)

"jY2(Dkp2/k2) F4(p) eJm* (2h)
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Figure 1. A coated circular guide.



where

,2 = k2 Y0 ~ 1 ' 1

p2 5 k

F3(p) = Jm (kp2p) Nm<kp2b) ' Nm (kp2p)

F3(P) = Jm (kp2p) Nm<kp2b> ' Nm(kp2b) V-kp2b>

Jm (kp2p) Nm( Nm<kp2p ) Jm (kp2b>

F4 (p) = Vkp2p) Nm(kp2b) - Nm (kp2p) Jm (kp2b>

Here superscripts I and II indicate Regions I and II (Figure 1), respectively.

For a nontrivial solution of constants (A, B, C, D), the propagation constant

k satisfies the characteristic equationz

k m
z

k m

k
PiV

a)

k 9F,(a)p2 3

k m

k m

kp2F4(a)

0 (3)



For a guide dimension (a, b) and material (E., Ui, E^, u^), we can determine a

set of multiple solutions for k , each of which describes the propagationz

constant of a normal mode. Now, for a particular combination of (a, b) and

(e , y , e , u»)» an additional boundary condition at the interface p = a may be

satisfied for a special mode, namely,

P x [YQE ± JH] = 0 , at p = a (4)

This mode is called a "balanced hybrid mode." It is known [1] that the

radiation field of this mode with a proper feed is circularly polarized.

If the balanced hybrid mode condition (3) is enforced on the normal mode

expressions in (2), we obtain an additional characteristic equation, namely,

I I
V->kn, F,(a) F,(a)

At the high-frequency limit, Eq. (5) becomes

u2 k ta coth (k -T) _ c^
JBF,(a) Pl P2 [tanh2 (kp2 T) - -±±] - 0 (6)

k0a

where

kp2 = J kp2 • T ~ b - a (7)

The terms in the bracket vanish only when ^j^i/^i^j *s rea^ an(^ less than unity.

The dielectric horn utilizes this condition [5]. On the other hand, the above

equation is also approximately satisfied when the coating material is very



lossy. In this limit, the normal mode becomes an "inner mode," the fields of

which are expelled from the lossy layer and decay exponentially into the lossy

region [10]; the imaginary part of k ~ becomes very large; and Eq. (6) can be

well-approximated by

,a e0W,
P l [1 - -] - 0 (8)

2

This function is a monotonically decreasing function of frequency, assuming

BF,k , a does not vary much with frequency. In fact, as will be seen in the next

section, BF,k .a is nearly constant at high frequencies when the coating

material is very lossy. Thus at sufficiently high frequencies, the condition of

Eq. (5) for the balanced hybrid mode can be easily met. In this case, the

fields at the interface nearly vanish and the characteristic equation deduced in

Eq. (3) is approximately given by

[F[(a)/F1(a)]
2 - (m/kpla)

2 =0 (9)

The radial wave number in Region I for the dominant HE,, mode is given by k ,a =

2.405, which is obtained from the lowest zero of JQ. The transverse fields of

this mode are linearly polarized [10], [13]. It is interesting to note that

when &2 ~ ^2' ̂ " ^^ can ^e satisfied even if the fields at the interface do

not vanish. More discussion will be given in Section III.

The condition of Eq. (5) can be also satisfied at high frequencies when

e2yl^elw2 *s rea* anc* niuch smaller than unity [5]. On the other hand, the

dielectric constant of the material in Region I for the lossy coated guide can

be low to satisfy Eq. (5). A convenient choice of the material would be air.



III. NUMERICAL RESULTS

The medium in Region I is assumed to be air, and only the case of the wave-

guide coated with a lossy material is considered. It has been shown that most

of the low-order modes become inner modes, the modal fields of which are mostly

confined within the air region as a/X increases [10]. In this paper, we con-

centrate on the HE,, mode, which is most important in the CP-antenna applica-

tions. The propagation constants of the normal mode are obtained numerically

from the characteristic equation in Eq. (3) by using Muller's method.

Figure 2 shows the radial wave number (RWN) in Region I of the HE^ mode in

a waveguide coated with a lossy magnetic material as a function of the coating

thickness. Here we plotted the RWN instead of the propagation constant because

the modal behavior can be more easily understood from the RWN than the propaga-

tion constant. Note that the RWN becomes nearly independent as the coating

thickness increases. This implies that the modal fields do not penetrate into

the lossy layer farther than the skin depth of the fields. We note that the

real value of the radial wave number of the HE,, mode in the magnetic-coated

guide is close to 2.40/a. This trend indicates that this normal mode is the

dominant mode and both the tangential electric and magnetic fields are small at

the interface. .As a/A increases, the tangential components of the electric and

magnetic fields at the interface decrease monotonically (Figure 3a). In other

words, the fields are expelled from the lossy layer at a large value of a/A, and

the attenuation decreases very rapidly as frequency increases (Figure 3b). Note

that the exact solutions agree well with the asymptotic solutions by Marcatili

and Schmeltzer [13] where small fields in the lossy layer are assumed. Now it

is clear that we will obtain better CP radiation with a waveguide with a larger

value of a/A.
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The tangential magnetic field H at the interface can be reduced when the

dielectric constant is lowered, but the tangential electric field E increases in

this case (Figure 4). On the other hand, the H field decreases and the E field

increases as the magnitude of the magnetic permeability increases (Figure 5).

The ideal material has the same dielectric constant as the relative magnetic

permeability (Figures 6 and 7). In the waveguide coated with this ideal

material, those two tangential fields are usually small but finite. But notice

that those fields are equal not only in magnitude but also in phase, which is

the requirement for a good balanced hybrid mode (see Section III).

The coating in the waveguide must be gradual for a proper transition of the

TE,, mode in the uncoated section of the waveguide to the HE,, mode in the

coated section. Figure 8 shows the RWNs of the HE,, and EH,, modes as a func-

tion of the coating thickness when the coating material is sufficiently lossy.

The small imaginary part of the RWN of the HE^ mode indicates that the normal

mode becomes the inner mode whose modal fields are confined within the air

region and whose attenuation constant is small. On the other hand, the larger

imaginary part of the RWN of the EH,, mode implies that the modal fields are

shifted more to the surface of the waveguide and the fields at the interface are

larger than those of the HE., mode (Figure 9). Consequently the attenuation of

the EH,, mode is larger than that of the HE,, mode (Figure 10). In general,

higher-order modes have larger fields at the interface than lower-order modes,

and the mode conversion of the HE.. mode to the higher-order modes is not

desirable for CP radiation. As shown in Figure 8, the RWNs (and the propagation

constants) of those two modes become close to each other before they become two

completely .different modes as the coating thickness increases. The mode conver-

sion of the HE,, to EH,, mode is more likely to occur near the thickness of the
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coating layer where the RWNs come close to each other [14]. Thus the mode con-

version may be a problem as the dominant TE,, mode in the uncoated section of

the waveguide is transformed to the HE^ mode in the coated section. In fact,

the HE., mode becomes the surface mode if the magnetic loss tangent of the

coating material is small [10]. When a more lossy material is chosen for the

coating, the separation of the RWNs of those two modes is larger (Figure 11) and

the mode-conversion problem can be abated. Thus in practice the coating

material must be not only magnetic but also sufficiently lossy. However

increasing the magnetic loss tangent does not help in reducing the tangential

fields at the interface (Figure 12).
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IV. EXPERIMENT

Figure 13 shows the coated horn for the radiation-pattern measurements. To

reduce the mode conversion of the HE mode to the higher-order modes, almost

the entire section of the horn is coated with a lossy magnetic material. For

the purpose of comparison, the measured radiation patterns of an uncoated horn

in the E and H planes are shown in Figures 14 and 15. Those two radiation

patterns become very similar when the waveguide is coated with a lossy magnetic

material (Figure 14). These experimental data also agree well with the theoret-

ical values, which have been obtained by a Kirchhoff-Huygen integration [3] over

the conical aperture of the horn, assuming both the tangential E and H fields

vanish at the interface. We also note that the side-lobe level is reduced

significantly after the horn is coated.

We observed that the level at the boresight was reduced by 10 dB after the

coating was applied. Most of the attenuation is believed to occur at the region

of the smaller cross-sectional area. When only a small section near the horn

mouth is coated, the reduction of the power at the boresight is not significant,

but the two radiation patterns in the E and H planes are not as similar as when

the entire section of the horn is coated. This may be due to the higher-mode

excitations because the mode conversion is more likely to occur when the tran-

sition of the coating is at the region of a larger cross section near the horn

opening [14], In a practical design, a power compromise between the power loss

problem and the mode-conversion problem may be chosen. Special attention should

be given in reducing the power loss without serious mode conversion of the HE,,

mode to the higher-order modes.
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V. CONCLUSION

It has been shown that the waveguide coated with a lossy magnetic material

can support the balanced hybrid HE., mode, which can be used to produce a cir-

cularly polarized radiation. The radius of the waveguide/horn at the opening

should be larger than the free-space wavelength, and the coating material must

be magnetic and very lossy. It is theoretically predicted and experimentally

confirmed that the horn coated with a lossy magnetic material can be used to

produce similar radiation patterns in both the E and H planes, and can be a

substitute for a corrugated horn to produce a CP radiation or to reduce the

sidelobe level.
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