
Semi-Annual Report

to

NASA-Ames Research Center
Grant Award No. NAG 2-304

NASA Technical Officer: Karl Anderson

for

A Survey of the State of the Art and
Focused Research in Range Systems - Task II

Principal Investigator
Rung Yao

Electrical Engineering Department
University of California

Los Angeles, California 90024

June 1986

(NASA-CR-176988) A S U R V E Y OF THE STATE OF N86-30069
{THE AST AND FGCOSED R E S E A R C H IN R A N G E THfiO
(SYSTEMS, TASK 2 Semiannual Report N86-3G072

(California U n i v . ) 22 p CSCL 09C Dnclas
G3/33 43497



In the period from January to June 1986, the following research activities

and publications performed under NASA-Ames Research Contract Grant Award

Number NAG-2-304 are enclosed:

1. C. Y. Chang and K. Yao, "On Some Equivalent Configurations of Systolic

Arrays," Proc. of the Twentieth Ann. Conf. on Information Sciences and

Systems, Princeton, NJ, March 1986.

2. S. Kalson and K. Yao, "Results in Least-Square Estimation Algorithms

with Systolic Array Architectures," in Digital Communications, edited

by E. Biglieri and G. Prati, Elsevier Science Press, 1986, pp. 235-249.

3. K. Konstantinides and K. Yao, "Modeling and Equalization of Nonlinear

Bandlimited Satellite Channels," Conf. Record of Inter. Conf. on Communi-

cations, June 1986, pp. 1622-1626.

4. M. J. Chen and K. Yao, "On Realizations of Least-Squares Estimation and

Kalman Filtering by Systolic Arrays," Proc. of Inter. Workshop on Systolic

Array, Oxford, England, June 19860



ORIGINAL
Of POOR

ON SOME EQUIVALENT CONFIGURATIONS
OF SYSTOLIC ARRAYS

C.Y. Chang and K. Yao
Electrical Engineering Dept
University of California
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ABSTRACT

A systematic approach is presented for
designing systolic arrays and their equivalent
configurations for certain general classes of
recursively formulated algorithms. A new method is
also introduced to reduce the input bandwidth and
storage requirements of the systolic arrays through
the study of dependence among the input data. Many
well known systolic arrays can be rederived and
also many new systolic arrays can be discovered by
this approach.

I. INTRODUCTION

A systolic array is a network of processors
that rhythmically process and pass data among
themselves. It provides pipelining, parallelism,
and simple adjacent neighbor cell interconnection
structure so that it is suitable for VLSI
implementation. While most of the earlier systolic
array algorithms were discovered beurietically
[1-3], there has been various work on systematic
approaches to the design of systolic array
algorithms [4-6]. In this paper, ve shall present
a systematic approach for designing systolic arrays
and especially focus on their equivalent
configurations for certain general classes of
recursively formulated algorithms. In order to
reduce the input bandwidth and storage requirements
of the systolic arrays, the dependence among the
input data is also investigated in details. It is
shown that many well known systolic arrays can be
rederived and also many new systolic arrays can be
discovered by this systematic approach. For
simplicity of illustration, we mainly consider the
linear systolic array in this paper. The same idea
can also be generalized to the two dimensional
mesh-connected systolic arrays.

II. IMPLEMENTATION OF RECURSIVELY
FORMULATED ALGORITHMS

Consider two simple but important ways of data
flow pattern in a linear systolic array as shown in
Figure 1 and 2. In these two figures. P., Q., and
b. . are three given input data sequences^nd^. is
tojbe the output data sequence, where Oii<m-l and
Oij<n-l. For the systolic array shown in Figure
1, Q. and R. are stored in the j processor, where
R. will be Updated while P. is moving to the right
add b.. is moving down. For the systolic, array
shown1In Figure 2, P. is stored in the i
processor and R. wilt be updated as it is moving to
the right with 4- while b. . is moving down. All of
the data movements are synchronized. Tbe R.'s will
successively have the required output data after a
steps. For convenience, according to the R.'s
behavior of these two systolic arrays, tbey^are
respectively named as R-stay and R-move linear
systolic arrays. There is great similarity between
these two systolic arrays. It can be shown that a
large class of interesting problems in the real

world can be implemented by these two types of
linear systolic arrays. Besides, various different
but equivalent configurations of linear systolic
arrays can also be derived from them.

Procedure 1 : Given any problem which can be
formulated so that it has P.. Q.. and b.. as three
input data sequences and R.vas the output data
sequence, where 0<i<m-l and 0£J£n-l, if R. can
be generated through the following recurrence
equation

_ f/p- f(P.. vb.j \). (1)„R. . .

where R. contains some initial value, f is any
function, of four variables P.. Q.. b. .. and R. .
and R. is the required oufput JdataJR . , theiJ this
problem can be implemented by the R-stay linear
systolic array of n processors and the R-move
linear systolic array of m processors. 0

The complexity and the configuration of the
systolic array depend on the complexity of the
function f and the generation procedure of b...
Some regularity and dependence among b. .'s ml^
greatly simplify the whole system. ^

III. MAPPING INTO FAN-IN TYPE

LINEAR SYSTOLIC ARRAY

Note that for the two linear systolic arrays
shown in Figure 1 and 2, -the input bandwidth and
storage requirements are large in comparison to the
number of processors in the array, which may be
either infeasible or inefficient for many
applications of interests. This is mainly because
the dependence among the b..'s is not efficiently
utilized so that each processor needs its own
external input connection due to the existence of
all the b..'s. It is expected that under certain
circumstances not all of these external input
connections are required. In this paper, we are
also very interested in the issue of reducing the
input bandwidth and storage requirements by showing
under what conditions these external input
connections can be removed so that only the very
first processor is allowed to have such a
connection, i.e.. the input sequences can only be
fanned in through the systolic array. It is shown
that the existence of certain patterns of
dependence among the b..'s allows themselves to be
fanned-in generated by slightly modifying the
operations involved in each processor without
losing the property of adjacent neighbor
interconnection structure. These conditions are
shown in the following two procedures.

Procedure 2 : For the R-stay linear systolic
array, if b. . can be determined through the
following dependence equation

v (2)



vbere u. if a variable vbicb
ie a variable vbich depends
function of four variables, tben b. . can be

depends only on i. v.
only oo j. and T is aj

generated by the fan-in scheme systolic array aa
shown in Figure 3 rather tban being broadcast aa
shown in Figure 1. Also note that b , . as well aa
v.. vbicb depends only on j. can be prlJoaded in
lie j processor, and b. , as veil aa u., which
depends only on i can be deed aa a fanned-in input
sequence. 0

Note that for the R-stay linear systolic array
shown in Figure 1, if b.. is the current input to
the j processor, then B._. . is the previous-

it to the j processor agd b^ . j is
rious input to the (j-1) processor,
arstandable that in order to avoid the
Che adjacent neighbor interconnection

b.. can only depend on b._. . and b. ._. as well as
tie1 data that can be preloaded and tfie1 da
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input to the j processor aid b. ._. is the
previous input to the (j-1)8 processor. It ia
understandable that in order to avoid the violation
of the adjacent neighbor interconnection structure,
b.. can only depend on b._. . and b. ._. as well as

ie1 data that can be preloaded and ffiJ data that
can be fanned in, which is what Procedure 2 ia
about. In general, the systolic array shown in
Figure 3 has two sets of input data. One of them
consists of three fanned-in data sequences. P., u.,
and b. ., which depend only on the i index, and
the offier set consists of three preloaded data
sequences, Q., v. and b , ., which depend only on
the j index, wber'e u., v.J^b. , and b . . are used
to generate all the D..'S. F6r each professor,
four registers are required, namely Q , V , B and
R, where registers Q and V are uaed"to (tore the
preloaded data Q. ana v. respectively. Initially
register,B,is loaded asjb . and register R is set
to be R. , both of which whl be updated aa the
systolic array etart operation. The reason to
include so many data sequences ia to take care of
the general cases. However, it is expected that in
many applications, not all of these fanned-in and
preloaded data sequences are required. It is often
the case that the fan-in generation process of b. .
simply depends on two or three data sequences which
can either be fanned-in or preloaded. Similarly
for the R-move linear systolic array, very similar
results can be obtained as follows.

Procedure 3 : For the R-move linear systolic
array, if b.. can be determined through the
following dependence equation

v (3)

. is a variable which depends only on i, v.
riable which depends only on j, and T is a''

where u.
is a variable
function of four variables, tben b.. can be
generated by the fan-in scheme systolic array aa
shown in Figure 4 rather than being broadcast as
shown in Figure 2. Also note that b. , as well aa
u., vhich depends only on i, can be preloaded in
tie i processor, and b , . as well as v., which
depends only on j, can be used as a fanned"-in input
sequence. Q

Note that for tbe R-move linear systolic array
shown in Figure 2, if b. . is tbe current input to
the i processor, then 0. ._. is the previous
input to the i processor'ana b. , . is tbe
previoua input to the (i-1) processor. What
procedure 3 says simply repeats the fact that in
order to avoid the violation of adjacent neighbor
interconnection structure, b.. can only depend on
b. , . and b. . , as well as1the data that can be
preloaded anJ'tlbe data that can be fanned in. In
general, the systolic array shown in Figure 3 has

two sets of input data. One of them consists of
three fanned-in data sequences, Q.. v., and b_j .,
which depend only on the j index,Jandjthe other'set
consists of three preloaded data sequences. P., u.,
and b. _.• which depend only on tbe i index, where
u., v.l o. , and b , . are used to generate all
tie b^.'a?*~For each processor, three registers are
required, namely U , B and P, where registers P and
D are used to etoPe the preloaded data P. and u..
Initially register B is,-loaded aa b. _. and output
data R. ia set to be R. » both oflwblch will be
updated aa the systolic array start operation.

The previoua three procedures provide a rather
systematic approach to design the systolic array
architecture for the implementation of a given
problem. At first, by checking the existence of
tbe recurrence relationship as shown in equation
(1), we are able to know if there exiet any
systolic arrays as shown in Figure 1 and 2. Next,
by checking the dependence among the b..'s as shown
in equations (2) and (3), we are able to know the
existence of the fan-in type systolic arrays as
shown in Figure 3 and 4 so that only small input
bandwidth and storage are required. Tbe key issue
is in how to search for the recurrence function f
and the dependence function T. It is expected that
there may exist several different forms of
functions due to different possible approaches to
formulate a given problem. Various forms of these
functions simply create many different but
equivalent configurations of systolic arrays. Also
note that in the previous discussion, P, Q, b, u,
and v are somewhat treated as single variables,
however it is clear that they can be aet of
variablea and tbe same results atill bold. This
approach can be applied to design systolic arrays
for many interesting problems in the real world.
Various new configurations of systolic arrays can
be derived. In the next section, we shall
illustrate this design approach by considering the
DFT algorithm.

IV. SYSTOLIC ARRAY ARCHITECTURE
FOR DISCRETE FOURIER TRANSFORM

Given n discrete data a. in tbe time domain,
where 0<.i£n-l, and n discrete frequencies W. =

(e /n)J in tbe frequency domain, where 0.<j<n-l,
the discrete Fourier transform (DFT) is to compute

.
j

• ,W.n-1 j

n"1 • ,w.°-2 +n-2 j 0.
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Let

f(P. Q, b; R) = (R x b) 4 P.

By induction, it can be shown that by letting

and y.twj = a^. then y.[n"13 = y.. is the
required output. Tbe existence of^a recurrence
function f and the satisfaction of the recurrence
relationship guarantee that there exists systolic
arrays for the implementation of discrete Fourier
transform as shown in Figure 5 and 6.

It can be seen from Figure 5 and 6 that the
b..'a are not totally independent. Note that P. =
a ._? and b.. = V.. In order to see if b.. can be
fanned-in generated, let us examine the data1



"dependence among the b..'§. Many different form*
of dependence function1? exist. For example*

V (5)

where v. - V.. The pair of systolic arrays based
on equal!ionsJ (4) and (5) are shown in Figure 7 and
8. The systolic array shown in Figure 8 is the
well known systolic DFT [2], whose discovery
appear* to be heuristic rather than in a systematic
manner ai from our approach. For another example
of T function, note that

i.e.*

(6}

where u. s V. and b. , s W. . which can be either
used as fanned-in sequences of the R-stay linear
systolic array or preloaded in the i processor of
the R-move linear systolic array. The pair of
systolic arrays based on equations (4} and (6) are
shown IB Figure 9 and 10. '

Another interesting issue is that the type of
function f used in this example does not belong to
the class of general matrix vector multiplication.
This confirm the fact that the class of problems
covered in the Procedure 1 really contains not only
the class of general matrix vector multiplication.
As well known, there are two different ways to
consider the discrete Fourier transform. One shows
that the DFT is a special case of the evaluation of
a polynomial and the other shows that the DFT is a
special case of general matrix vector
multiplication. The first way was just considered
in this example. Let us see what can be obtained
by following the second way. Let

f(P. Q. b; R) = R •» (P x b).

By induction, it can be shown that by letting

j j i j

and y. B 0. then y. s y.» i* the required
output. The existence of a new recurrence function
f and the satisfaction of the recurrence
relationship guarantee that there exists systolic
arrays for the implementation of DFT as shown in
Figure 11 and 12.

From Figure 11 and 12 it can also be seen that
the b..'s are not totally independent. Note that
P. = a-? and b. . = V.1. Let us examine the data
dependence amon'g the1 b..'s. Note that

b.. = W.1 = W.J = W.J~1H. = W. .V
ij _ . J ui i i j-1 i

" i.j-1 i*i.e.i
b..
»0 = b.

bi.j-l{ V V

-1

(8)

where u. = W. and b. _. = W." . which can be either
used as fanned-in sequences of the R-stay linear
systolic array or preloaded in the i processor of
the R-move linear systolic array. The pair of
systolic arrays based on equations (7) and (8) are
shown in Figure 13 and 14. Also note that

"ij ;jj -;jt "j
i.e.

(9)

where v. = W. and b. . = W. . which can be either
preloaded injthe j p'r'ocess'or of the R-etay linear
systolic array or used as fanned-in sequences of
the R-move linear systolic array. The pair of
systolic arrays based on equations (7) and (9) are
shown in Figure 15 and 16.

This DFT example shows that under certain
circumstances it is possible to formulate a given
problem in several different ways to implement with
various different but equivalent configurations of
systolic arrays.

V. CONCLUDING REMARKS

A systematic approach is presented for
designing systolic arrays and deriving their
equivalent configurations for certain general
classes of recursively formulated algorithms. This
approach can be considered as a two-stage design
procedure. In the first stage, the existence of
recursiveness is investigated. If it exists,
according to the same formulation the input data
are classified into three parts, two of them, P.
and Q., depend only on one index, and another one
of th^m. namely b.. depends on both index i and j,
so that the systolic arrays shown in Figure 1 and 2
apply. However, for certain applications, it is
either infeasible or inefficient to store all of
the b..'s. In the second stage, the dependence
among the b..'s is then investigated to see if it
can be used to fan-in generate the b..'s through
the data sequence that can either be preloaded or
fanned in. For a given problem, various
formulations of the recursive property and the
dependence among the b..'s are possible, which
simply lead to many different but equivalent
configurations of systolic arrays.

So far we mainly deal with the linear systolic
arrays. However, the same technique can be easily
generalized to the two dimensional mesh-connected
systolic arrays, since the mesh-connected systolic
arrays can be simply treated as the concatenation
of many linear systolic arrays.
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Figure 1: The R-stay linear systolic
array.
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Figure 3: The fan-in scheme of R-stay
linear systolic array. Note that the
register B in the jth processor is
initially loaded with b-i.j.
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discrete Fourier transform based on
equation (4).
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Figure 10: R-move linear systolic array
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ABSTRACT

In this paper we consider the problem of modeling and
equalization of a nonlinear satellite channel. The channel is
assumed to be bandlimited and exhibits both amplitude and
phase nonlinearities. A discrete time satellite link is modeled
under both uplink and downlink white Gaussian noise. Under
conditions of practical interest, a simple and computationally
ffficieni design technique for the minimum mean square error
linear equalizer is presented. The bit error probability and some
numerical results for a BPSK system demonstrate that the
proposed equalization technique outperforms standard linear
receiver structures.

I. INTRODUCTION

The problem of nonlinear channel modeling and equalization
is of analytical and practical interest. An important example of a
nonlinear channel is a digital satellite communication link, which
uses a Traveling Wave Tube (TV\T) amplifier operating in a
near saturation region. The TWT exhibits nonlinear distortion
in both amplitude (AM/AM conversion) and phase (AM/PM
conversion). In addition, at high transmission rates the channel's
finite bandwidth causes a form of distortion known as
Intersymbol Interference (ISI).

In this paper, we will examine the problem of modeling and
equalizing this type of nonlinear satellite communication link.
The observed data are corrupted by additive white noise.
UDCorrelated with the input data.

A number of other researchers have studied this problem.
Fredhcsson (!]. considered a QPSK system and specified an
optimum linear receiver fil ter using a Mean Square Error (MSE)
criterion. The channel nonlinearity in |1] was handled via
successive number of linearizations Mesiya et al. [2-3] analyzed
the BPSK system. In [2] a maximum likelihood receiver was
considered, while in ]3] a simpler linear receiver, based on the
MSE criterion, was presented. In both [2] and |3], the
oonlinearir) of the TWT is expressed in terms of Bessel function
integrals. The MSE criterion was also applied by Biglieri et al.
[4] in their derivation of an optimum linear receiver. In [1]. (3).
and |4}. the authors work in the frequency domain, and the
solution is given in terms of integral equations that usually have
to be solved using numerical techniques.

In (5). Ekanayake and Taylor presented a suboptimum
maximum-likelihood type decision feedback receiver. However,
because of the analytical complexity of their solution, they
approximate the TWT with a hard lirruter. A different modeling
approach was taken by Benedetto et al. [6J. First, they identify
the whole channel using a Volterra Series expansion [7]. Then
they suggest a noolinear equalizer, based again on the MSE

criterion. Although at the output of a nonlinear equalizer the
MSE is smaller than the MSE at the output of a linear equalizer,
it is not completely dear if there is a significant improvement in
the probability of error performance of the system to justify the
complexity of the nonlinear receiver.

In this paper, we present the design and performance analysis
of the optimum linear MSE receiver for a nonlinear satellite
channel. While the methods considered here are applicable to
various in-phase and quadri-phase modulation systems, for
simplicity and lack of space we will illustrate this approach by
using only BPSK examples. More generalized results will be
presented elsewhere. There are two major differences between
our design as compared to the above reviewed approaches.
First, we use a very simple model for the input-output
relationship of the TWT amplifier, proposed first by Saleh [8].
Second, by working in the discrete *im> domain we avoid the
complex integral equations of the other approaches. In addition,
a fast and simple iterative algorithm [9] permits the easy
computation of the autocorrelation coefficients of the output of
the nonlinear system. Thus, we are able to obtain a new simple
and computationally efficient linear equalization technique under
the MSE criterion. Based on the same modeling approach, a
zero forcing type of linear equalizer was also presented in [10].

In Section 2, a simplified model for a typical satellite link is
presented and the corresponding BPSK discrete model is
derived. The optimum MSE equalizer is presented in Section 3.
In Section 4, the probability of error performance of the receiver
is derived. Finally in Section 5 some numerical examples, and
comparisons with standard linear receivers are presented.

n. CHANNEL MODELING

Consider the simplified model of a digital satellite
communication channel as shown in Figure 1. We will examine
each one of the different subsystems composing this model. This
study will enable us to derive an equivalent discrete model. By
working in discrete tune we will avoid the analytical problems
arising with continuous signals. Our analysis is similar to that of

Ekanayake and Taylor [5].

The source output is a random sequence (U(n)} of equally
probable uncorrelated symbols. Thus, in a BPSK system.
U(n)={l.-l] at n=0. T, 2T where P(U(n) = 1] = P[U(n) =
•1] = 0.5, EJU(n)U(n-k)] = 0 for k * 0, and r1 is the signaling
rate.

Let p(t) denote a pulse shaping function. Often it can be a
rectangular function of unit amplitude over a time period of
length T. In any case, the output of the modulator can be
expressed in the form
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(i)

where w, is the curia frequency.

We ihall •**"""• that the transmission filter is the one which
determine the channel bandwidth. This filter is also responsible
(or the oration of IS. Let G(t) - 2g(t)cosci>r i be the impulse
response of this filter, where g(t) is the impulse -response of a
corresponding low pass filter. Then the output of thit filter can
be expressed as

«.(')• r. (2)

where h(t)»g(t)"p(t). The purpose of our analysis is the design
of a receiver structure for the estimation of the transmitted
tource symbol during the n th signaling interval n7"Sjs(n+1)7.
Thus during the n th signaling interval (2) can be rewritten as

«. (f ) • U (n )h (i -nT )coswr r + Y V (i )h (i -IT Jcosw, r ,

The first term in (3) represents the transmitted symbol we want
to estimate, and the second term represents the IS] due to the
filter.

Ob the uplink channel. s,(t) is corrupted by additive white
Gaussian noise. Thus, using the narrow band model for the

oise, the input to the TWT can be expressed as

(4)*'•(')« t. (')•*•"«(' )cosuf r -n« 0 )s>nu>r t.

n«t(') and n.(i) represent the in-phase and quadrature
component* of the uplink noise, each with zero mean and
variance a; From (3) and (4)

*'.(i)-r.(i)cos(u) rr-(-X(r)).

where

and

tan1

(5)

(6)

(7)

(8)

The TWT is a nonlinear memoryless amplifier. It exhibits
nonlinear distortion in both the amplitude and the phase. Using
a quadrature model, the output *,(/) of the T\VT can be
expressed in the form

14(>)* P [r. (i )]cos(h>, i •* X(f ))-Q [r, (i )]sin(ur i -i- X(i)) . (9)

From Saleh [8] an expression of P(r) and CH'r) is g)veD by

(10a)

and

(10b)

The coefficients of (10) are obtained by a leas-square error
curve fining procedure of the specific TV«T characteristics.
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CUta)) «tt)
it*

••-— "-* aoi**
,(t)

S*t*lliu tytt«

which are originally specified by the manufacturer. In Figure 2
the P(r) and Q(r) functions of (10) are plotted for
a,=2.0922,&,-1.2466,af-5.S29and&,-2.7088[8]. All
input and output voltages were normalized.

Because of the downlink additive white noise MO, the

received waveform s'i(i ) can be expressed as

(11)

The signal ;'*(') °f (H) >* DOTV coherently demodulated by a
carrier 2cosu>r(. We assume that the bandwidth of the receiving
filters is wide enough so that no additional ISI distorts the signal
The output y(t) of the demodulator is sampled every T seconds
to produce at the n th signaling interval the in-phase sample

y(") = y('o)= '*[''• ('o)]cosX((o)+ (12)
* Q lr. ('o)]smX(/0)-<- n* ('o).

ID is an appropriately chosen sampling instant within the interval.

Under the assumption of high available power at the earth
Rations, the effects of the uplink noise can be considered
negligible. Thus we can assume that X(r)=0. Then y(n) of (12i
becomes

From (7) and (13) an equivalent discrete-rime model for the
communication channel of Figure 1 can be represented as in
Figure 3. Now. with U(n) = {l.-l), the basic relationships are

(11)

where o and (J are specified constants that depend on the
specific type of the TWT. w(n) is white Gaussian noise of zero
mean and variance a;, and uncorrelated with the input data.

51.1.2
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The values of Nl and N2 represent the memory of tbe
transmitting filter. The gain A depends on the specific operating
point of the TWT.

m. THE MEAN-SQUARE ERROR EQUALIZER

Let the receiver output z(n) be expressed as the output of a
Tapped- Delay Line (TDL) filter in the form of

where from (16), y(n)=P(n)+w(n).

In the theory of tbe Mean-Squares criterion, the tap weight
coefficients {c,} of tbe equalizer are adjusted to minimize the

i square error

> •(«-*)?. (18)

Minimization of (IS) with respect to the {c,} coefficients, yields
the linear system of M= Ml •*• M2-*- 1 equations

(19)

where *,(*) E{y(n)y(n-k)] and
E|U(n)y(n-k)] for all values of k.

From tbe unconelatedness of the input data and the noise.
J?«, (t) = R^(lt). for all values of k. Also, since the output P(n)
of the nonlinearity. and the noise w(n) are independent

where o; is the variance of the noise. Thus in order to solve
(19) it is necessary to evaluate first the necessary R,(-) and
Jf^(-) coefficients. While in the case of a linear channel the
calculation for tbe R f ( ) coefficients is straightforward, in tbe
nonlinear case tbe evaluation may present some numerical
difficulties.
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Computation of At Autocorrelation coejficitna

The seqtiBncf (P(n)} at the output of the nonlinearity on be
considered as the output of a finite state aequeatial machine.
Since the nonlinearity has no memory, from (14) the state
aequence cm be given by

*(*)m[U(n+Nl),...,l/(ii),r/(fi-l) U(n-ft2)]. (21)

{U(n)> a an i.i.d aequence, thus («(n)} is taelf a stationary
Markov chain [9].

Let us denote by n the transition probability matrix of the
Markov chain {s(n)J. A brute force evaluation of £,(•) involves
multiplication of square matrices of dimension 2*'**1*1 [9-10],
which would be computational impractical unless special
consideration is given to the special properties of II. In [9] a
particularly effective and simple algorithm for the evaluation of
autocorrelation coefficients of t nonlinear system was presented.
The algorithm, as applied to our specific problem is given below.

Algorithm for the compulation dK f(t)

1. Let N-N1+N2+1, and store in vector Po (of dimension
2") tbe values at the output of tbe nonlineariry for each state s(j)

2. Compute tbe vector oo ( of dimension 2*), where the j tb
component is given by

>-U ..... V .

3. For k=0,l,...,N-l, do the- following computations

b) Store in the first 2"-1 ' positions of a», the vector
computed by

c) Store in tbe first 2*J-' positions of of tbe fa vector, tbe
vectoi PJ - 1 , where

4. K f ( t ) = O.for ia /V.

The above algorithm is easy to implement and requires only two
vectors of size 2* as basic computation storage.

Computation of Cross-correlations

Since for each state s(j) of (21) the value of P(s(j)]= &oO')
has already been computed for the evaluation of tbe K f ( - )
coefficients, a brute force technique can be easily applied for
the evaluation of the cross-correlation terms. Thus from [10],

>)=(l/2"-i) F\t(j)]. (22)

where the summation in (22) is done over all those states where
U(n-k) = 1.

In summary, the design procedure for the optimum linear
MSE equalizer is given as follows. First, compute the 2A

possible values of P(n) at tbe output of tbe nonlineariry. Then
use tbe algorithm to compute the K f ( ) coefficients and (22) to

51.1.3
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compute the KJ.) coefficients. FinaDy, solve the linear system
in (19). The solution of (19) yields the tap-weight coefficients of
the MSE receiver.

IV. EVALUATION OF BIT-PROBABILITY OF ERROR

Unfortunately, there is no simple relationship between the
residual mean square error of the MSE receiver and the bit error
probability (11]. For moderate channel and equalizer memories,
• brute force method that yields an exact result could be applied.
Denote by D,i one of the 2"*"-} possible realizations at the input
of the receiver, with U(n)-l, and by c the M 11 vector of the
filter coefficients. Then from (16) and (17), the receiver output
due to a specific input {U(n)} sequence is given by

(23)

where W is a M- Ml + M2+ 1 row vector of noise samples.

Let Mn)} be a white noise sequence of zero mean and

variance ol. Lei TI-WC. Then Eh]-0 and 0^-= a2 5 «*•

Then with U(n)-l and for a threshold of zero, the conditional
error probability

is fized, and

where

Then the average error probability P, is given by

ID our numehcal example the SNR is defined as

SKK

(25)

(26)

(27)

(28)

where />„ = (1/1 )fep[r<'KO)] •

If the exact error probability of (27) proves too cumbersome
and too time consuming to evaluate because of the large number
of terms, one can resort to a number of different approximate
methods that yield tight upper and lower bounds of P, [11].

V. NUMERICAL EXAMPLE

The purpose of this section is to illustrate the application of
out results in the design of a linear optimal receiver, and to
compare its performance with other receivers for a digital
satellite link.

In our model of the linear pan of the satellite link, we
assume that the 1S1 is introduced by a 3-pole Bunerworth filter.
The two sided bandwidth B of the filter is the same as the
minimum Nyquist rate (i.e.. BT=1). The number of samples
considered for the 151 is determined by those 1SI samples whose
magnitude are at least greater than 0.01 times the main sample.
In our example, a channel memory (Nlf N2) of 3 IS1 terms was
considered adequate.

The characteristics of the TWT for this study are the same as
those in Figure 2. Thus in the evaluation of P|r(n)] in (15), the
parameters of the TWT are o= 2.0922 and £ = 1.2466. As

mentioned before, those values were taken from Saleh Q8J,
Figure 5) and represent • specific satellite TWT. The gain factor
A, of (14) was determined so that with no IS the TWT would
operate at the 2 dB input backoff point. Because of the low IS
introduced by the transmission filter, a 4-tap (M1+M2+1-4)
TDL linear receiver was considered to be adequate. Thus,

Now we compare our optimum linearly equalized MSE
recerver with the conventional linear receivers. Using the brute
force technique described in Section 4, the bit error probability
for the various receivers was evaluated and planed in Figures 4
and 5, for values of SNR as defined in (28).

Figure 4 exhibits the P. performance of the designed MSE
filter, and the P, performance of two 3-pole Bunerworth
receiving filters. One receiving filter (with BT- 1) is identical to
the transmitting filter, while the other one has BT-0.75. In
Figure 5, the performance of the M.S receiver is compared with
that of two 4-pole Bunerworth receiving filters. One has
BT-0.75 and the other one has BT-1. A numerical search
procedure for Bunerworth filters with different BT products,
showed that an increase in BT does not necessarily correspond to
an improved P, performance. In fact, filters with BT«=2 are
only marginally better than filter* with BT- 1.

For P, = 10E-6, the optimum MSE receiver is at least 0.5
dB better than the 3-pole Butterwonh filters and 1.2 dB better
than the 4-pole Bunerworth filters. The P, performance of a
channel with no ISJ. but with the identical TWT, carrier power
and noise variance was evaluated. The numerical results showed
that for these examples the bit error rate of the MSE equalizer is
very close to that of the no IS1 case [10].

51.1.4
1625



ORIGINAL PAGE SS
OF POOR QUALITY

VI. SUMMARY AND CONCLUSIONS

IB this paper we considered the problem of modeling and
equalization of • digital satellite nonlinear tod t*mA\iirntfA
channel. Starting from » typical satellite link, we developed the
cunesponding BPSK discrete-tune model, and lotved for the
optimuni linear MSB receiver. A simple and computationally
efficient algorithm was derived for the evaluation of the
equalizer coefficients, based on the memoryless oonlineanty of
the system. Numerical examples for a typical satellite link
demonstrated that the optimum linear MSE receiver outperforms
the conventional linear type receiving filters. In general, our
modeling and equalization techniques provide a ample and
computationally efficient alternative to existing approaches.

REFERENCES

1. S.A Fredricsson, Optimum Keceiver Fitters in Digital
Quadrature Phase-Shift Keyed Systems with a Nonlinear Repeater.
IFFT Trans, on Comm.. Vol. COM-23. No. 12, pp.1389-1399,
Dec. 1975.

2. M.F.Mesiya, P.J. McLane and L.L. Campbell, Maximum
Likelihood Sequence Estimation of Binary Sequences Transmitted
Over Bandlimited Nonlinear Channels, TFFF Trans, on Comm.,
Vol. COM-25. No. 7.pp. 633-643, July 1977.

3. M.F.Mesiya, P.J. MdLaoe and L.L Campbell, Optimal
Keceiver Filters for BPSK Transmission over a Bandlimiied
Nonlinear Channel, TFFF Trans, on Comm., Vol. COM-26.
pp. 12-22, Jan. 1978.

4. E.BigLen, M.Elia and L. L.Presti, Optimal Linear Receiver
Filler for Digital Transmission over Nonlinear Channels. Proc.
1983 Intern. Tirrenia Workshop on Dig. Commun., pp. F.3.1-
F.3.13, Sept. 1983.

5. E.Ekanayake and D.P. Taylor. A Decision Feedback
Receiver Structure for Bandlimited Sonlinear Channels. TFFF
Trans, on Comm.. Vol. COM-29, No. 5, pp.539-54S. May 1981.

6. S.Benedetto and E.Biglieri. Nonlinear Equalization of Digital
Satellite Channels, IFPF Journal on Select. Areas in Comm..
Vol. SAC-1. No.l. pp.57-6:. Jan. 1983.

7. S.Benedetto. E. Biglieri, R. Daffara. Modeling and

Performance Evaluation of Nonlinear Satellite Links- A Volierra
Series Approach. TFFF Trans, oc Aerospace and Elec. Sterns.
Vol. AES-15, No.4. pp 494-506. July 1979.

8. A.A.M. Saleh. Frequency -Independent and Frequency
Dependent Sonlinear Models of 7"WT Amplifier*. IEEE Trans on
Comm.. Vol. COM-29. No if. pp :715-1720.. Nov 1981.

9. R.Padovani and G.L.Pitrobon. Spectra! Analysis of Digital
Messages Through Finite-Memory Traasformannns. TFFF Trans.
on Comm.. Vol. COM-32. No. 11. pp. 1214-1218. Nov. 1984.

10. K.Konstaatinides, Channel Modeling and Equalisation
Algorithms Based on Least Squares Techniques. Ph.D
Dissertation. Un. of Calif., Los Angeles, 1985.

11. J.G. Proakis, Digital Communications. Me. Craw-Hill.
1983.

51.1.5
1626



N86-30072
On Realizations of Least-Squares Estimation

and Kalman Filtering by Systolic Arrays J'ff 3 3

M.J. Chen and K. Yao

1. INTRODUCTION

Least-squares (LS) estimation is a basic operation in many signal process
ing problems. Given y=Ax+v, where A is a mxn coefficient matrix, y is a
mxl observation vector, and v is a mxl zero mean white noise vector, a
simple least-squares solution is finding x which minimizes ||Ax-y||. It is
well known that for an ill-conditioned matrix A, solving least-squares
problems by orthogonal triangular (QR) decomposition and back substitution
has robust numerical properties under finite word length effect since
2-norro is preserved. Many fast algorithms have been proposed and applied
to systolic arrays. Gentleman-Kung (1981) first presented the triangular
systolic array for a basic Givens reduction. McWhirter (1983) used this
array structure to find the least-squares estimation errors. Then by
geometric approach, several different systolic array realizations of the
recursive least-squares estimation algorithms of Lee et al (1981) were
derived by Kalson-Yao (1985). We consider basic QR decomposition algo
rithms and find that under one-row time updating situation, the House
holder transformation degenerates to a simple Givens reduction. Next, we
derive an improved least-squares estimation algorithm by considering a
modified version of fast Givens reduction. From this approach, the basic
relationship between Givens reduction and Modified-Gram-Schmidt transfer
nation can easily be understood. We also can see this improved algorithm
has simpler computational and inter-cell connection complexities while
compared with other known least-squares algorithms and is more realistic
for systolic array implementation.

Minimum variance estimation (popularized by Kalman (I960)) is the general
ized form of a least-squares problem, where the state vector x is charac
terized by the state equation Xfc+î fXk4'*'' ̂ e system noise w and the
observation noise v are colored. The original algorithm presented by Kal
man can have poor numerical property. Some algorithms for improving
numerical properties, such as square-root co-variance and square-root
information methods have been studied. Now, we find that after the whi
tening processing, this minimum variance estimation can be formulated as
the modified square-root information filter and be solved by the simple
least-squares processing. This new approach contains advantages in both
numerical accuracy as well as computational efficiency as compared to the
original Kalman algorithm. Since all these processings can be implemented
by systolic arrays, high throughput rate computation for Kalman filtering
problems become feasible.



2. SIMPLE LEAST-SQUARES ESTIMATION

Given the equation b=Ax+v, it is well known that we can solve the least-
squares solution H by normal equation. However, this approach not only
requires tne computation of a matrix inverse but also doubles the condi
tion number when we form A'A. Although using singular value decomposition
for least-squares solution can improve numerical properties, the computa
tional complexity involved in SVD is not low. Besides, fast algorithm for
SVD is still underdevelopment. Lattice structure for least-squares solu
tion was proposed and studied by Lee et al (1981). This approach was
shown to have stable numerical property and regular hardware structure.
However, this method required shifting property of the coefficient matrix
and can not apply to all general cases. QR decomposition is another solu
tion to obtain x, since 2-norra is preserved by multiplying an orthogonal
matrix Q, then by letting QA=R be a upper triangular matrix, the x can be
obtained by using back substitution for the equation Rx=fc. This approach
has robust numerical properties since the 2-norm is fixed, the rounding
error caused by finite word length effect will not grow. Basically, there
are three ways for performing QR decomposition, namely, Householder trans
formation, Givens reduction, and Modified-Gram-Schmidt orthogonalization.
It can be shown that under one row time updating situation (as in the sys
tolic array implementation), the Householder transformation matrix will
degenerate to a simple Givens reduction case.

Systolic array implementation for QR decompositions in least-squares esti
nation was first explored by Gentleman-Kung and followed by McWhirter and
Kalson-Yao. By using a triangular systolic array, it was shown that the
estimation error for the last observation can be solved at every clock
period. The systolic array structure for least-squares estimation is
shown in Figure 2.1. To achieve fully pipelined operation, the input rows
are skewed and propagated like wavefronts in the diagonal direction. There
are only two basic processing units, boundary cell and internal cell, are
required by this systolic array. Communication between different process
ing units are all local. The properties of regularity and local communi
cation are consistent with the philosophy of VLSI implementation. Summary
of input/output formats and operation functions for two kinds of process
ing units are shown in Table 1 and Table 2 respectively.

Table 1. Input/Output format of systolic array algorithms

B02 IIa II2 X̂  I02

Givens

F-Givens

0

a

x

x

o1 d/d1

o' d/d1

,x/d«

,ax/d'

d/d1

d/d1
,x/d'

,ax/d'

b

b

d/d1

d/d1

,x/d'

,°x/d'

b

b

i

i

M-G-S(I) o x,e a' x/d,x/(l-o) x/d,x/(l-c) b,e x/d,x/(l-°) b',e'
d d d

M-G-S(II) o x ° ' x/d',x/(l-a) x/d',x/(l-o) b x/d',x/(l-o) b1



The above symbols are for notations only, their physical meaning may
change for different algorithms.

Table 2. Operational functions of processing units

Boundary cells Internal cells

Givens

F-Givens

M-G-S(I)

M-G-SUI)

B0,<— d/d'r x/d
1

o's (d/d')*o

d'=d + (o*x)*x
BOX— (o*x)/d'r d/d

1

O'E o*(d/d')

d=e
BOX— x/d, x/d-o)
o'£o + (x/d)*x

d'=d + (x/(l-o))*x
BOX— x/d1, x/Q-o)
o'=o + (x/d')*x

b'=(d/d')*b - (x/d')*k
k'=(x/d')*b + (d/d')*k

b'=b - x*k
k'=(d/d')*k (°*x/d')*b

k'=k + b*(x/(l-o))
b'=b - k'*(x/d)
e'=e' - k'Vd

k'=k + b*(x/(l-o))
b'=b - k'*(x/d')

From systolic array point of view, the difference between algorithms pro
posed by McWhirter and Kalson-Yao lies in the basic computations in two
kinds of processing units. Since these algorithms were derived from two
different approaches, specifically Givens reduction and Modified-Gram-
Schmidt orthogonalization, the basic relationship for these two QR decompo
sition methods under one row time updating can be compared as follows.
First, we derived the modified expression for the fast-Givens reduction as
given by

,(l//d)dk0,...(l//d)dk.

^ox,

0,

)d'k. 'k 'Kk

the updating equation for this modified-fast-Givens algorithm becomes,

Boundary cell:
Internal cell:

d'=d + x2/(l/o)
b'=b - (x/d)*dk

(l/o1) =
d'k'=dk

+ x2/d
b*x/(l/o) [l]

By comparing the computational complexity between the fast Givens algo
rithm by Gentleman (1973) and that in II], we can see [1] has one multi



plication less than the original algorithm. And since we do not have
interest on the real rotated elements like (l/v3)dk. , we do not have the
risk of dividing by a very small d. The numerical properties of the modi
fied algorithm is then expected to comparable to the numerical properties
of the original one. By equation [1], the basic duality associations
between Givens reduction and Modified-Gram-Schmidt orthogonalization is
summarized in Table 3, which allows us to derive different algorithms for
least-squares estimation from different approaches with efficiency.

Table 3. Duality association for M-G-S and Fast-Givens reduction.

M-G-S (II)

F-Givens

kmgs Orogs xrogs
1-Oc 0- *X,f g f g f g

mgs rags

With systolic array implementation, comparison of computational complexity
for algorithms discussed above can be made by comparing the number of
operations required in each processing unit. When the dimension of the
coefficient matrix becomes large, wavefront array processing of Rung
(1983) becomes more appropriate for the control scheme. In this case, the
speed of this "wavefront" will be decided by the slowest processing unit
along each wavefront. In modified fast Givens algorithm, equations for
boundary cell are non-recursive and can be done in parallel if we can
double the computational capability of each boundary cell. In this case,
the wavefront speed and then the throughput rate can be doubled. The sys
tolic array we discussed above will generate estimation error at each
clock period. While the estimated vector £ is not shown explicitly, £ can
be solved by back substitution which can be done by just appending a nxn
identity matrix after the coefficient matrix A.

3. MINIMUM VARIANCE ESTIMATIONS AND KALMAN FILTERING

Often tne signal vector x is a random process and can be modeled as a
first order recursive equation. In this case, a first order recursive
estimation (or Kalman filtering) problem can be stated as follows,

where F and C are time-varying coefficient matrices with dimension nxn and
mxn respectively, w. is a nxl and v. is a raxl zero mean noise vectors
with known co-variance matrices W. ana V. respectively. It is assumed that
noises w and v are uncor related and E [w. w . ] =E [v . v . ] =0 for all î j. Under
the minimum variance criterion, we want to find x? for all k, such that
E||(X. -xV) || is minimized. Kalman showed that xk can be obtained by the
recursive algorithm given as
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infonnation matrix is defined as the inverse of the error covariance
matrix P. Besides [31 , it is shown that instead of propagating the error
covariance matrix, the Kalman filtering problem can be solved by propagat
ing the information matrix during the iterations. Both covariance and
information filters are recursive since the current updating depends only
on results from previous stage. The choice between covariance filter and
information filter depends on the values of n and m. When n>ro, which is
usually the case, the original Kalman filtering is chosen to avoid the
inverse of the nxn matrix. However, Kalman algorithm is known for its
poor numerical properties, especially for non-observable coefficient mat
rices. The original Kalman filter needs an approximate 0(n ) multiplied
tion time for each iteration. If m>l, computation of a matrix inversion
is inevitable. Since all equations are sequential in manner, if real time
computation is required for a Kalman filtering problem, some modifications
must be done to insure the capability for parallel computation. Among
many possible modified algorithms, square-root filtering have been proved
to have computational efficiency and robust numerical properties under
finite word length effect (Kaminski 1971) . Hie main advantage of the
square root filter is that we can handle the covariance matrix by its
square root form which has condition number smaller than the original one.
Therefore, for ill-conditioned problems, when we used the square root f il
ter with a single precision machine, we can expect the same numerical
result as if we have used the original algorithm on a double precision
machine. Updating processings for both square root covariance filter and
Square root information filter can be expressed in matrix forms and
handled by the QR decomposition method which is capable of systolic array
ijnplementation. However, only square-root information filter allows us to
update the estimated state vector as well as the information matrix by
using the same transformation matrix Q. When both updated covariance mat
rix and state vector are important to us, we find square-root information
filter is a better solution for the systolic array implementation. The
Bquare-root information filter requires computation of the inverse of the
coefficient matrix F, which will cause bad numerical properties for F
being near singular. One version of the square root information matrix
method for Kalman filtering was considered by Paige and Saunders (1977) .
It is shown that by using whitening processing through Cholesky decomposi
tion, the Kalman filtering can be represented as a simple least-squares
problem. This approach does not require the computation of the inverse of
the matrix F and is more suitable for systolic array implementation.

processing can be briefly described as below. Assume
of covariance
can be proved that

=L 'v. vare whitened noises with

Denote F=L 'F, fc=L 'C, and y =L . 'y. . We can express the whitened
System equations in the matrix-vector form as

ity covar'ian'ce matrices.
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14]

has zero mean and identity covariance mat
After

Since the noise vector in [4
rix, we can get X̂  =[*, f.xkJ by solving [4] as a LS problem.

QR decomposition to i41 at time k, we have

-l,k

k
'

Kk,k Jr1
[5]

We can see that R., i=l,2...k, in [5] are all upper triangular matrices,
and x., the opt imam estimated vector at time k, depends only on the last
line, i.e., J^x-sy. . Furthermore, at T=k+l, the updating equation
depends on the last row of [5] only. That is, the QR decomposition at
T=k+l only depends on a (2n-Hn)x(2n+l) matrix as in [61. When the QR
decomposition of I6J is completed, we have K , (upper triangular) and

ready for iteration of next stage.

Rk
F

0
-T. •

Vk

V 9cw yk J
where * is the term used to compute the residue.

[6]

theThe upper triangular matrix R, can be shown to be the sguare-root of th
inverse of the error covariance matrix P. =E[(x.-x, ) (x.-x. )']. That is,
this algorithm, which propagates the squire root information matrix for
next iteration, is actually a modified square-root information filtering

4. SYSTOLIC ARRAY IMPLHffiNIATIONS FOR KAI/4AN FILTERING

From last section, we can see that the basic operations for square root
Kalman filtering can be described in two parts. The first one, whitening
processing includes operations such as Cholesky decomposition, inverse of
triangular matrix, and matrix multiplication. Secondly, the QR decomposi
tion is applied. Obviously, these two parts can be operated in parallel.
That is, we can start the whitening processing for the (k+l)st iteration
as well as the QR decomposition for the k-th iteration at the same time in
a pipelined manner.

The original square-root information filter involves the computation of
the inverse of the coefficient matrix F which not only increases the com
putational complexity but also causes bad numerical properties when coef
ficient matrix F is singular or near singular. This shortcoming can be



recovered by choosing the raodifled square root information filtering in
[41. As shown from [4]-l6Jf formulation of the modified square-root
information filter involves only multiplication between coefficient mat
rices and the inverse of the square root noise covariance matrices. For
noise with positive definite covariance, square root covariance matrix
always exists.

4.1 Whitening Processing

The whitening processing is done by multiplying the coefficient matrix
with a whitening operator L' where (LL1) is the given covariance matrix
of the additive noise. Since a covariance matrix is a positive definite
symmetric matrix, the square root matrix can be obtained by the Cholesky
decomposition. A triangular systolic array for Cholesky decomposition is
designed for this purpose with outputs skewed to match the input format of
the QR systolic array.

The inversion of a upper triangular matrix is simple after we built the
basic systolic array for QR decomposition. The idea for the inversion of
a upper triangular matrix is the same as solving the back substitution.

With UU*~ =1, let u" =tu-r J12' ••• 1LJ» with ji- being a nxl column
vector. A matrix inversion can be oivided into n sets of linear equa
tions, each having the form of tii-re., i=l,2,...n, where e. is a nxl
column vector with i element equals to 1, and all others being 0, and
can be solved by a systolic array.

4.2 QR Decomposition for Kalman Filtering

Equation [6] suggests that x. can be solved as a least-squares solution by
a 2nx2n QRjsystolic array. However, serious delay will be caused by the
fact that R. and R. +. are not in-glace computations. That is, we have
trouDle to move the newly formed R from the upper-right corner to the low
er-left corner in our triangular array for the next iteration. That is/
the computation at stage k-fl can not start until the last element of R̂  is
completed. In this "waiting" period, most of processing units are idle
and the pipeline is empty. It will cause delay for at least 2n clock
periods.

This disadvantage can be overcome by in-place computations for R. and
R.+,. This can be done by partitioning the original matrix into two
strips, and perform the partitioned QR decomposition by the systolic array
structure proposed in Figure 2. In this approach, a nxn QR systolic array
as well as a rotation array which consists of nx(n+l) internal cells are
used. Once elements of R, are formed, it is ready to be used for
computations at stage k+1. Here we need only to pass transformed elements
generated by the first strip to the rectangular rotation array for the
pre-processing of the second strip. This input format is shown in Figure
3. Since all these can be done in fully pipelined manner and in-place
computations are obtained, complicated inter-cell connection and control
scheme can both be avoided. To obtain the estimated value x., we can
just append an identity matrix I after the second strip, and we get result
every 3n+m clock periods.



5. CONCLUSION

In this paper, we first survey existing algorithms for least-squares esti
nations by systolic arrays. Basic comparisons are made based on connputa
tion and inter-cell connection complexities of elementary units. Finally,
by choosing the square-root information filtering algorithm, we showed a
simple way to solve the Kalman filtering as a least-squares problem that
can be processed by systolic arrays. Systolic array for Cholesky decompo
sition is also proposed for whitening processing. By manipulating the
data properly, the Kalman filtering can be processed under fully pipelined
manner. There is no special constraint on our system equations and stan
dard time-varying coefficient matrices and non-stationary colored noises
are assumed in our model. Most of the processing units we need for this
square root information filter do not involve square-root computations.
The only exception is the computations for the Cholesky decomposition.
However, for pipelined operation between whitening processing and QR
decomposition, the later certainly involved more computational work than
the former. Since there is only n square-root computations required in
each iteration as compared with the operations required for QR decomposi
tion, Cholesky decomposition will not become the bottleneck for this algo
rithm. For many real life problems where we can assume noises are sta
tionary, then covariance matrices W and V are fixed during our operation.
In this case, inversed square-root covariance matrices can be obtained by
pre-processing and our Kalman filtering can be solved as a simple least-
square problem. Since all operations can be performed by the designed
systolic array processing, which have the input/output formats matched to
each other, the entire hardware design can be viewed as a pipelined struc
ture. The estimated vector can be obtained with the 0(n) in time while
compared with the 0(n ) for the original Kalman filter. Finally, since
this is a square root matrix operation, good numerical property can also
be obtained.
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Figure 1: Systolic array for least-squares estimation.
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Figure 3: Input format for systolic array Kalman filtering




