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o ABSTRACT

A systematic approach is presented for
designing systolic arrays and their equivalent
configurations for certain general classes of
recursively formulated algorithms. A new method is
also introduced to reduce the input bandwidth and
storage requirements of the systolic arrays through
the study of dependence among the input data. Many
well known systolic arrays can be rederived and
also many new systolic arrays can be discovered by
this approach.

I. INTRODUCTION

A systolic array is a network of processors
that rhythmically process and pass data among
themselves, It provides pipelining, parallelism,
and simple adjacent meighbor cell interconnection
structure so that it is suitable for VLSI
implementation. While most of the earlier systolic
array algorithms were discovered heuristically
[1-3], there has been various work on systematic
approaches to the design of systolic array
aslgoritmms [4-6)., Ian this paper, we shall present
8 systematic approach for designing systolic arrays
and especially focus on their equivalent
configurations for certain general classes of
recursively formulated algorithms. In order to
reduce the input bandwidth and storage requirements
of the systolic arrays, the dependence among the
input data is also investigated in details, It is
shown that many well known systolic arrays can be
rederived and also many mev systolic arrays can be
discovered by this systematic approach. For
simplicity of illustration, we mainly consider the
linear systolic array in this paper. The same ideas
can 8lso be generalized to the two dimensional
mesh-connected systolic arrays.

II. IMPLEMENTATION OF RECURSIVELY
FORMULATED ALGORITHMS

Consider tvo simple but important ways of data
flow pattern in & livear systolic array as shown in
Figure 1 and 2. 1Ibo these twvo figures, P., Q., and
b.. are three given input datsa aequenceslandJR. is
tdbe the output data sequence, where 0<i<m-] dnd
0<j<p-1. For the systolic array, ghown in Figure
1, Q. and R, sre stored in the j  processor, where
R, vill be deated while P, is moving to the right
add b.. is moving down, For the BystoliEhAtray
shown*in Figure 2, P. is stored in the i
processor and R, will be updated as it is moving to
the right with d. wvhile b.. is moving down. All of
the dats movements are ly%éhronized. The R.'s will
successively bave the required ouvtput dsta dfter m
steps, For coovenience, according to the R.'s
behavior of these two systolic arrays, they-”are
respectively named as R-stay and R-move lipear
systolic arrays., There is great similarity between
these two systolic arrays. It can be shown that a
large class of interesting problems in the real
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“world can be implemented by thebe two types of

linear systolic arrays. Besides, various different
but equivalent configurations of linear systolic
arrays can also be derived from them.

Procedure 1 ¢ Given any problem which can be
formulated so that it has P., Q., and b.. as three
input dsta sequences and R.%as fhe outp&e data
sequence, where 0<igm-1 and 0<jsn-1, if R. can
be generated through the following recurrénce
equation
[i+1] _ . p [i)

nj = £(P;, Qj. bij' xj P (1)
vhere R.[o] contains some initial value, £ is £33
functitﬂlof four variables P., Q.» bi" and R, »
and R, is the required outputjdataJR.. thed this
problém can be implemented by the R-stay linear
systolic array of n processors and the R-move
linear systolic array of m processors. [

The complexity and the configuration of the
systolic array depend on the complexity of the
function f and the generation procedure of b...
Some regularity and dependence among bi"'
greatly simplify the whole system. 3

I111. MAPPING INTO FAR-IN TYPE
LINEAR SYSTOLIC ARRAY

Note that for the two linear systolic arrays
shown in Figure 1 and 2,-the input bandwidth and
storage requirements are large in comparison to the
number of processors in the arrsy, which may be
either infeasible or inefficient for many
applications of interests. This is mainly because
the dependence among the b..'s is not efficiently
utilized so that each procedsor needs its own
external input connection due to tbe existence of
all the bi.'s. It is expected that under certain
circumstafides not all of these external input
connections are required. In this paper, we are
also very interested in the issue of reducing the
input bandwidth and storage requirements by showing
under wvhat conditions these external inmput
connections can be removed so tbat only the very
first processor is allowed to have such a
connection, i.e., the input sequences can only be
fanned in through the systolic array. It is shown
that the existence of certain patterns of
dependence among the bi.'s allovs themselves to be
fanned-ipn generated by llightly modifying the
operations involved in each processor witbout
losing the property of adjacent neighbor
interconnection structure. These conditions are
shown in the following two procedures.

Procedure 2 : For the R-stay linear systolic
array, if bi' can be determined through the
following deﬂendence equation

b.. = T(b.

i) x-l.j‘ b;

1.5-1= ui: vj). (2)



vhere u 1;'c“variable wvhich depends only on i, v;_—

is a variable which depends only on j, and T is a
function of four variables, them b.. can be
generated by the fan-in scheme ayatalic array as
shown in Figure 3 rather than being broadcast as
shown in Pigure 1. Also note that b_, . as well as
v.. vhich depends only on j, can be préioaded in
the j  processor, and b. . as well as Ule vhich
depends only on i can be dséd ss a fsnned=in input
eequence. [

Note that for the R-stay linear systolic array
shown_in Figure 1, if b.. is the curreat input to
the j procesgpr, then i-1.3 is the previous-
input to the j  processof ggd bi -1 is the
previous input to the (j-1) proééseor. It is
understandable that in order to avoid the violation
of the adjacent neighbor interconnection structure,
b.. can only depend on b._l . and b, . . as well as
tBd data that can be pre}oaaéd and £8d Aata that
can be fanped in, which is what Procedure 2 ie
about. 1Io general, the systolic array shown in
Figure 3 has two sets of imput data. One of them
consiste of three fanned-in data sequences, P,, use
snd b. ., vhich depend only on the i index, &nd
the offier set consists of three preloaded data
sequences, Q., v. and b_l .» which depend only on
the j index,lwhede u . v:idb. .y 8od b_, . are used
to generate all the B;"J’ P87 each protéssor,
four registers are teqaired. namely Q , V , B and
R, where registers Q a&nd V_ are usedPro Btore the
preloaded data Q. and v, regpectively. Initially
registet[alis lodded as b_, . and register R is set
to be R.'"7, both of which %111 be updated as the
systolic array start operation., The reason to
include so many data sequences is to take care of
the general cases, Hovever, it is expected that in
many applications, not all of these fanned-in and
preloaded data sequences are required, It is often
tbe case that the fan-in generation process of b, .
simply depends on two or three data sequences vhidn
can eitber be fanned-in or preloaded. Similarly
for the R-move linear systolic array, very similar
results can be obtained as follows, :

Procedure 3 ¢ For the R-move linear systolic
array, if bi' can be determined through the
folloving deﬂendence equation

b.. = T(b,

ij i-1,3° bi.j' (33

1; ui: vj).
vhere u. is & variable which depends only ob i, v,
is a variable which depends only on j, and T is a
function of four variables, then b,. can be
generated by the fan-in scheme sysfalic arrsy as
shown ipn Figure &4 rather than being broadcast as
shown in Figure 2. Also note tbat b. _, ss well as
V., W ﬁch depends only on i, can be ﬁfe}oaded in
the i~ processor, and b_, . as well as v, which
depends opnly on j, can be tded 8s & fanned-in input
sequence. 0

Note that for the R-move linesr systolic array
shovntgn Figure 2, if b.. is the current ioput to

the i procesgpr, then Q- is the previous
ioput to the i processor‘égé b. , ; is the
previous input to the (i-1)°" proceddor. What

procedure 3 says simply repeats the fact that in
order to aveid the violation of adjacent neighbor
ioterconnection structure, bi' can only depend on
b._, . and b, .1 &8 vell as’fhe data that can be
p%eléaded and’dhé dats that can be fanned in. In
geveral, the systolic array shown in Figure 3} has

‘two sets of input dsta., One of them consists of
three fanned-in dats sequences, Q.» V., 80d b_, .,
which depend only on the j index,JandJthe other'jet
consists of three preloaded data sequences, P., u.e
aud b, _., which depend only on the i index, where
U., vf: &. and b—l . are used to generate all
the b?.'lf'-}or each ﬁ)ocessor. three registers are
requi%ad. namely U , B and P, vhere registers P and
U_ are used to stofe the preloaded data P, and u..
Ihitially register B istbiaded as bi _, aud outpit
data R, is set to be R, -, both of ¢hdch vill be
updatea as the systolic array start operatiom.

The previous three procedures provide & rather
systematic approach to design the systolic array
erchitecture for the implementation of a given
problem. At first, by checking the existence of
the recurrence relationship as shown in equation
(1), ve are able to know if there exist any
systolic arrays as shown in Figure 1 and 2. Rext,
by checking the dependence among the b..'s as shown
in equations (2) and (3), wve are able td xnow the
existence of the fan-in type systolic arrays as
shown in Figure 3 and 4 so that only small input
bandwidth and storage are required. The key issue
is in bow to search for the recurrence function f
and the dependence function T, It is expected that
there may exist several different forms of
functions due to different possible approaches to
formulate. a given problem, Various forms of these
functions simply create many different but
equivalent configurations of systolic arrays. Also
pote that in the previous discussion, P, Q, b, u,
and v sre somewhat treated as single variables,
however it ie clear that they can be set of
variables and the same results still bhold. This
approach can be applied to design systolic arrays
for many interesting problems in the real world.
Various mew configurations of systolic arrays can
be derived. 1In the next section, we shall
illustrate this design approach by comsidering the
DFT algorithm,

IV, SYSTOLIC ARRAY ARCHITECTURE
FOR DISCRETE FOURIER TRANSFORM

Given n discrete data 8 in the time domsin,
vhere 0<i<n-]l, and n discreté frequencies W, =
(eiZWII)j J

‘n-}1
n-lvj

va WP L eraN, +a.

=8 n-2j 17 0

Y5
Let

f(Po Q. b; R) = (RXb) + P,

By induction, it can be shown that by letting
i+) i
y Ciedd . (Y.F ]

[ol

x Hj) +a %)

and y. e then y.[n 1] = y.» is the
required output. The ex!stence of”a recurrence
function £ and the satisfaction of the recurrence
relationship guarantee that there exists systolic
arrays for the implementation of discrete Fourier
transform as shown in Figure 5 and 6.

n-i-2

It can be seen from Figure 5 and 6 that the
b..'s are not totally independent., Note that P, =
a i._ and b.. = W.. 1In order to see if b,. cad be
fgnées—in ge%étatea. let us examine the da

in the frequency domsin, where 0<j<n-1,
the discrete Fourier tranmsform (DFT) is to compute
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“dependence among the b 's. Many different forms
of dependence function $ exist. For example,

Bij - I®ior,5® PaLgad it vy (s
B
vhere v, = W,. The pair of systolic arrays based

on equalions?(4) and (5) sre shown in Figure 7 and
8., The systolic array showvn in Figure 8 is the
wvell konown systolic DFT [2), whose discovery
appears to be beuristic rather than in a systematic
manner ss from our approach, For anotber example
of T function, note that

v, =wd:ygily

P35 2 %3 e W -
100.. ‘.j-l 1
b.. = T(b, b, Lt u.dwv,)
ij _ 4 d=lyi’ Tiej-1® Tit U
b;, S8, (6

vhere u. = Hl snd bi 4 =V -1. vhich can be either
used as” fanned-in seluences of the R-gtay linear

. . .t
systolic array or preloaded in the i processor of
tbe B-move linear systolic array. The pair of
systolic arrays based on equations (4) and (6) are
shown in Figure 9 and 10. : ‘

Another interesting issue is that the type of
function £ used in this example does not belong to
the class of general matrix vector multiplication.
This confirm the fact that tbe class of problems
covered in the Procedure ] really contains mot only
the class of general matrix vector multiplication.
As wvell known, tbere are two different ways to
consider the discrete Fourier transform. One shows
that the DFT is & specisl case of the evaluation of
s polynomial snd the otber shows tbat the DFT is a
special case of genmeral matrix vector
multiplication. Tbe first way was just considered
in this example. Llet us see what can be obtsined
by folloving the second way. Let

£(P, Q. b; R) =R + (P x D),

By induction, it can be shown that by letting

(iel) [i] i

. sy, + (a. z W, 7
’J ’J (1 J). ()
and y.[°] = 0, then ’.[n] = y., is the required
outpue. The existencd of a néw recurrence function
f and the satisfaction of the recurrence
relationship guarantee that there exists systolic

arrays for tbe implementation of DFT as sbown in
Figure 11 and 12,

From Figure 11 and 12 it can also be seen that
the bi.'s are not totally independent., Note that
Pi = ag and bi' = W.”, Let us examine the data
dependénce amoﬂg the bi.'s. Note that

J
b.=wlrtawdawily oy iy
EES IR 1T
i.e., leJ-lid
b.. = T(b, s b. . St u.sv.)
ij 1-1,3° Ti.3-1° "1 73
= b, 518 (8)
where u, = W. and b. = H.-l. which can be either

used as’fanndd-in sédaenceslof the R-gtay linear
systolic array or preloaded in the i processor of
the R-move linear systolic array. The pair of
systolic arrays based on equations (7) and (8) are
shown in Figure 13 and 14. Also note that

b.. = H.' = W. w
Jopd oW, 3
i.e. i-l.37)
.. = T(b. s b. . .3 u.3 v.)
le - :( ‘-!6?: i.j-1* it 7§ (9)
i-1,5)
vhere v, = W, and -1. wvhich can be either

.= W
preloaddd inlthe jkhlﬁ)ocesgor of the R-stay linear
systolic array or used as fanned-in sequences of
the R-move linear systolic array. The pair of
systolic arrays based on equations (7) and (9) are
shown in Figure 15 and 16.

This DFT example shows that under certain
circumstances it is possible to formulate a given
problem in several different ways to implement with
various different but equivalent configurations of
systolic arrays.

V. CONCLUDING REMARKS

A systematic approach is presented for
designing systolic arrays and deriving their
equivalent configurations for certain general
classes of recursively formulated algorithms. This
approach can be considered 88 8 tvo-stage design
procedure. In the first stage, the existence of
recursiveness is investigated., If it exists,
according to the same formulation the input data
are classified into three parts, tvo of them, P,
and Q., depend only on one index, and another ofie
of thdm, namely b.. depends on both index i and j,
so that the systoiic arrays shown in Figure 1 and 2
apply. However, for certain applications, it is
eitber infeasible or inefficient to store all of
the b..'s. Ibp the second stage, the dependence
among ¢he b,.'s is then investigated to see if it
can be used*fo fan-in generate the b..'s through
the data sequence that can either belﬂreloaded or
faoned in, For & given problem, various
formulations of the recursive property and the
dependence among the b..'s are possible, which
simply lead to many ditferent but equivalent
configurations of systolic arrays.

So far we mainly deal witb the linear systolic
arrays. Howvever, the same technique can be essily
generalized to the two dimensional mesh-connected
systolic arrays, since the mesb-counected systolic
arrays can be simply trested 8s the concatenation
of many livear systolic arrays.
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bin . bm-1,n-1
Qin P » Qout bi,n-1 .
Rin > Rout bo,n-1,
o . bm-1,1
Route= f(P,Qin,bin;Rin), . ° bm-1,
QO\.I'.Q.QXD bii . ¢
. boy bio l
boo | :
@-1,...,Q,Q Po P + = Pm-1
Rn-1, Ri1,Reo — ool

Figure 2: The R-move linear systolic

bin .
¥ . .
Pin Q.R> Pout bn-1,1 .
bm".o .
. . , b1,n-1
Pout€-Pin . ° . bo,n-1
Re£(Pin,Q,bin;R) b1y . l
bio bo1 .
boo l .
Qo %)) Q-
Pm-1,...,P1,Po —3 Ro Ri oo Rn-1
Figure 1: The R-stay linear systolic
array.
wn j Vp =+ uout B«—T(B;bin;uin;Vp)
bin B,Qpl— bout R—f(Pin,Qp .,B;R)
Pin R > Pout Uoute- Uin , boute B
Poutée Pin
um-1 R 1 | » U0 Vo Vi - Vn-1
bm-l.-l....,bl,-l,bo,-lj Qe fe-4{Qn-1
Pm-1 y e P1 , Po Rot+Ri f+-+oRn-1

Figure 3: The fan-in scheme of R-stay
linear systolic array. Note that the
register B in the jth processor is
initially loaded with b-1,34.

Win Wn-1
. ¢ L4
ain —» Y }>» aocut Wi .

Wo .

. . . Wn-1
aoute—~ ain . . Wn-1
Ye(yxWin)+ain w1 P l

Wo W1 .

Wo | .

) '
a0,...,8an-3,an-2 —» Y0 3 ¥yl | ¢¢ ~—nYyn-1

Figure 5: R-stay linear systolic array of
discrete Fourier transform based on

equation (4),

.array.

vin —sUp I vout Be-T(bin;B;Up;vin)
bin - B,P s bout Route f(P,Qin,B;Rin)
Qn —» —> Qout Vouté—Vvin ', boute B
Rin —» — Rout QouteQin

vn-1 Y ,vo —s Uo}a{Ur |s.Um-1
b-1,n-1, ..,b-x.x,b-x,o{ PolsP1 {a.4Pm-1
Qn-1 R 4.1 ’ L’"ﬁ

Rn-1 P 31 » Ro - -

Figure 4: The fan-in scheme of R-move
linear systolic array. Note that the
register B in the ith processor is
initially loaded with bi, -1.

Win Wn-1

[ 4 * .

¥Yin = a > yout ¥Wn-1 .
Wn-1 .

. " . W

Yout«—(yinxWin)+a . Wo

W1 P l

Wi Wo .

Wo ] l

yn-1,..,¥1,¥50 E lan - 3f—» +» —p 80

Figure 6: R-move linear systolic array of
discrete Fourier transform based on
equation (4).

ain —3 ¥p }» aout 8out ¢ A&in

y Y& (yxWp)+ain
\ Wo W Wn-1
a0 ,...,an-3,a8n-2 3 YOI~ ¥1 > —»yn-1

Figure 7: R-stey linear systolic array of
discrete Fourier transform based on
equations (4) and (5).
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Wn-1,...,M1 ,Wo —>an-2 an-3p—-- ao
yn-1,...,¥,y0 —u e ¢ ¢ ]

Figure 8: R-move linear systolic array of
discrete Fourier transform based on
equations (4) and (5)



Wout 1~ Win1
Wout 26~ Wini1xWin2

Win1 — L > Wout1
Winz—> ¥y > Wout2

ain — aout y< (yxWout2 )+ain
8out¢— 8in
Wi —» — i
Wi-1— yo* v1p®»*+ —yn-1
a,...,an-3% ,a8n-2 —» |t > o ¢ =

Figure 9: R-stay linear systolic array of
discrete Fourier transform based on
equations (4) and (6).

Win . Wn-‘n‘l
¢ L]
ain—» Y t=» 8out Win-1 .
Won-1 .
s Wn-11
- . ° °
Boute— &iN Wn-1
yé-y+(ainxWin) Wil . |
Wol W10 .
Woo | .
J 4 )
an-1,...,81,80 — Y0 | V1 e —plyn-1

Figure 11: R-stay linear systolic array
of discrete Fourier transform based on
equation (7).

Wini -+ Wout1 Woutile Wini

Winz = y | Wout2 Wout2¢~Win1xWin2

ain — |+ aout vé y+(ainxWout2)
aouté 8in

Wn-1 ,...,wl .Wo =a =il .

Wn-1-1,..,,W1-1 ,Wo-1y yo|ryr |+reedyn-2

an-1  ,...,al , 80 ! b+ o~

Figure 13: R-stay linear systolic array
of discrete Fourier transform based on
equation (7) and (8).
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ain — ¥y t{—»a8cut Ye— (8inXB)+y

Wo L} Wn-1
;41 , 80 3 YO | 1 —p> ¢ ¢ o —p{YD~1

an-1,...

Figure 15: R-stay linear systolic array
of discrete Fourier transform based on
equations (7) and (8). Note that in the
jth processor, register Vp is preloaded
with W3 and register B is initially
loaded with W3-1.

B BeUpxB
¥in - & |» yout yout ¢ (yinxB)+a

Wi w1 w1
-3¥1,¥0 —slan-2l—»an- e e —3 ao

Figure 10: R-move linear systolic array
of discrete Fourier transform based on
equations (4) and (6). Note that register
Up is preloaded with W1 and register

yn-1,..

B is initially loaded with Wi-1,

Win Wn-10-1
L ]
L[]
Yin—sl @ }» Yout Wn-11 :
Wn-310
Win-1
Youte Yin+(axWin) : ) *, Won-1
Wil . |
w10 Wol .
Woo© | .
YA-1,...,¥1,Y0 — 80 |»| @1 t» . . —dan-1
Figure 12 : R-move linear systolic array

of discrete Fourier transform based on
equation (7).

Up :
B B« UpxB .
yin — a }s yout yout ¢ (yinxB)+a
Wo Wi Wn-1
Yn=1,...,Y1,Y0 —p 80 Lp 8l jugp » ¢ wp{Bn-1

Figure 14: R-move linear systolic array
of discrete Fourier transform based on
equations (7) and (8). Note that in the
ith processor, register Up is preloaded
with Wi and register B is initially
loaded with Wi-1.
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Figure 16: R-move linear systolic array
of discrete Fourier transform based on

equations (7) and (9).
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MODELING AND EQUALIZATION OF NONLINEAR BANDLIMITED
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ABSTRACT

In this paper we consider the problem of modeling and
equalization of a ponlinear satellite channel. The channel is
assumed to be bandlimited and exhibits both amplitude and
phase nonlinearities. A discrete time satellite link is modeled
under both uplink and downlink white Gaussian poise. Under
conditions of practical interest, ¢ simple and compuationally
efficiens design technique for the minimum mean square error
linear equalizer is presepted. The bit error probability and some
numerica) results for a BPSK system demonstrate that the
proposed equalization technique outperforms standard linear
receiver structures.

I. INTRODUCTION

The problem of nonlinear channel modeling and equalization
is of analytical and practical interest. An important example of a
noalinear channel is a digital satellite communication link, which
uses a Traveling Wave Tube (TWT) amplifier operating in a
pear saturation region. The TWT exhibits nonlinear distortion
ip both amplitude (AM'AM copversion) and phase (AM/PM
conversion). In addition. at high transmission rates the channel’s
fipite bandwidth causes a2 form of distortion known as
Intersymbol Interference (ISI).

In this paper. we will examine the problem of modeling and
equalizing this rype of nonlinear satellite communication link.
The observed data are corrupted by addiuve white poise.
uncorrelated with the input data.

A pumber of other researchers have studied this problem.
Fredricsson {1]. considered 2 QPSK system and specified an
optimum linear receiver filter using a Mean Square Error (MSE)
criterion.  The channe! nonlineanty in [1] was handied wvia
successive pumbe: of lineanzations Mesiva et al. [2-3] analyzed
the BPSK system. In [2] a2 maximum likelihood receiver was
considered, while in [3] a simpler linear receiver, based on the
MSE criterion. was presented. In both [2] and [3]. the
ponlinearnity of the TWT is expressed in terms of Besse! function
integrals. The MSE criterion was also applied by Biglieri et al.
[4] in their denivation of an optimum linear receiver. In [1]. [3].
and [4). the autbors work in the frequency domain. and the
solution is given in terms of integral equations that usually have
to be solved using numerical techniques.

In [5). Ekanayake and Taylor presented a suboptimum
maximum-likelihood type dedision feedback receiver. However,
because of the analytical complexiry of their solution, they
approximate the TWT with a hard hmiter. A different modeling
approach was taken by Benedetto et al. (6]. First, they identify
the whole channe] using a Volterra Series expansion [7]. Then
they suggest a noalinear equalizer. based again on the MSE

University of California
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criterion. Although at the output of a nonlinear equalizer the
MSE is smaller than the MSE at the output of a linear equalizer,
it is not completely clear if there is a significant improvement in
the probability of error performance of the system to justify the
complexity of the ponlinear receiver.

In this paper, we present the design and performance analysis
of the optimum lincar MSE receiver for a nouolinear satellite
channel. While the methods considered bere are applicable to
various in-phase and quadri-phase modulation systems, for
simplicity and lack of space we will illustrate this approach by
using only BPSK examples. More generalized results will be
presented elsewhere. There are two major differences between
our design as compared to the above reviewed approaches.
First, we use a very simple model for the input-output
relationship of the TWT amplifier, proposed first by Saleh [8].
Second, by working in the discrete time domain we avoid tbe
complex integral equations of the other approaches. In addition,
a fast and simple iterative algorithm [9] permits the easy
computation of the autocorrelation coefficients of the output of
the nonlinear system. Thus, we are abie to obtain a new simple
and computationally efficient lincar equalization technique under
the MSE criterion. Based on the same modeling approach, a
zero forcing type of linear equalizer was also presented in [10].

In Section 2, a simplified mode! for a typical satellite link is
presented and the corresponding BPSK discrete model is
derived. The optimum MSE equalizer is presented in Section 3.
In Section 4, the probability of error performance of the receiver
is derived. Finally in Section § some pumerical examples. and
comparisons with standard linear receivers are presented.

1. CHANNEL MODELING

Consider the simplified model of a digital satellite
communication channel as shown in Figure 1. We will examine
each one of the different subsystems composing this model. This
study will enable us to derive an equivalent discrete model. By
working in discrete time we will avoid the analytical problems
arising with continuous signals. Our analysis is similar to that of

Ekanayake and Taylor {5}

The source output is a random sequence {U(n)} of equallv
probable uncorrelated symbols. Thus. in a BPSK system,
U(n)={1.-1} a1 n=0.T, 2T..... where P{U(n) = 1] = P{U(n) =
-1] = 0.5, E{U(n)U(n-k)}=0 for k = 0, and 7! is the signaling
rate.

Let p(t) denote a pulse shaping function. Often it can be a
rectangular function of unit amplitude over a time period of
length T. In anv case, the output of the modulator can be
expressed in the form

51.1.1
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()= .i‘U(n)p(l-nT)axw,t, Q)

where «, is the carrier frequency.

We shall assume that the transmission filter is the one which
determines the channel bandwidth. This filter is also responsible
for the creation of ISI. Let G(t) = 2g(t)cosw, ! be the impulse
response of this filter, where g(t) is the impulse .response of a
carrespoading low pass filter. Then the output of this filter can
be expressed as

oL .i‘u(n)h(r-nT)emu,t. )

where b(t)=g(1)*p(t). The purpose of our analysis is the design
of 8 receiver structure for the estimation of the transmitted
source symbol during the b th signaling interval aT S1s(n +1)T.
Thus during the n th signaling interval (2) can be rewritten as

8 (1) = U(n)h(1-nT doosw, ! +;U(i)h(t-ﬂ')cow,r, 3

AT s1s(n+1)T.

The first term in (3) represents the transmitted symbol we want
to estimate, and the second term represents the ISI due to the
filter.

On the uplink channel, s, (1) is corrupted by additive white
Gaussian noise.  Thus, using the parrow band mode] for the
poise, the input to the TWT can be expressed as

""(')"l(’)+n-'(')m"t""-(')5imr'- (4)
ne (1) and ng (1) represent the in-phase and quadrature

components of the uplink noise, each with zero mean and
variance o2. From (3) and (4)

5'a(1) = 1 (1 )cos(w 1+ A (1)) )
where

Ta (1) = [(r (1) nee (1) 4 nd (1)) (6)
r()=U(nh(t-nT)~ ';_U(i)h (¢-T). 0]
and

T @)

1)1: TWT is a nonlibear memoryless amplifier. It exhibits
nonlincar distortion in both the amplitude and the phase. Using
8 Quadrature model. the output s.(r) of the TWT can be
expressed ip the form

14(1) = Plry(1)]cos(w 1+ A(r))-Q{r, (1)]sn(w 1 +X(1)). ®
From Saleh (8] ap expression of P(r) and QXr) is given by

P(r)= a,W (10a)
Q(' %m (10b)

The coefficents of (10) are obiained by a least-square error
curve firting procedure of the specific TWT characteristics,
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which are originally specified by the manufacturer. In Figure 2
the P(r) and Q(r) functions of (10) arc ploned for
a,=20922 8, =1.2466, a,=5.529 and 8, =2.7088[8]. All
input and output voltages were normalized.

Because of the downlink additive white noise ng(r), the
received waveform s'4(1) can be expressed as

54 (1) = 54(2 )+ nae (1 )o0Swe 1 -ng, (¢ )siDwe 1 , 1y
nT=sis(n+1)T.

The signal s'¢(1) of (11) is now coberently demodulated by 2
carrier 2cosw 1. We assume that the bandwidth of the receiving
filters is wide epough so that no additional ISI distorts the signa!
The output y(t) of the demodulator is sampled every T seconds
to produce at the n th signaling interval the in-phase sample

y(n)=y(t0) = P[ra (10)Jcos\(r0)+ (12)
+Q{r. (10)}sIDA (10} + na (10).

1o is an appropriately chosen sampling instant within the interval.
nT<1=<(n+1)T.

Under the assumption of high available power at the earth
stations, the effects of the uplink noise can be considered
pegligible. Thus we can assume that A(r)=0. Then y(n) of (12
becomes

y(n)= Pr(io)}+ na (10). (13
From (7) and (13) ap equivalent discrete-time model for the

communication channe! of Figure 1 can be represented as in
Figure 3. Now. with U(n)={1.-1}, the basic relationships are

r(n)=A.§i”h.U(n-k) . (14)
P(n)=Plr(m)] = 255 . (s
y(n)=P(n)+w(n) ., (16)

where a and B are specified constants that depend on the
specific type of the TWT. wi(n) is white Gaussian noise of zero
mean and variance o2, and uncorrelated with the input data.
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The wvalues of N1 and N2 represent the memory of the
transmitting filter. The gain A depends on the specific operating
point of the TWT.

. THE MEAN-SQUARE ERROR EQUALIZER

Let the receiver output z(n) be expressed as the output of a
Tapped- Delay Line (TDL) filter in the form of

x(n)-‘_s:,qy(n-k) , a7

where from (16), y(n)= P(n)+w().
In the theory of the Mean-Squares criterion, the tap weight

coefficients {c,} of the equalizer are adjusted to minimize the
mean square error

e=ElU(n )-‘g’c.y(n K (18)

Minimization of (16) with respect 1o the {c,} coefficients, yields
the lincar system of M= M1+ M2+ 1 equations

‘X‘C.R,(j-k)=k,,(j). j=-M1...M2. 19)

where R, (k)= R,(-k) = E[yn)y(n-k)] and Ry, (k) =
E{U(n)v(n-k)] for all values of k.

From tbe uncorrelatedness of the input data and the noise.
Rey (k) = R (k). for all values of k. Also. since the output P(n)
of the nonlinearity, and the noise w(n) ase independent

Ry(k)=R,(k)+olbu . (20)

where o is the variance of the noise. Thus in order to solve
(19) it is pecessary to evaluaie first the necessary R, () and
R g(-) coefficients. While in the case of a linear channel the
calculation for the R, () coefficients is straightforward. in the
ponlincar case the evaluation may present some numerical
difficulties.

Compaaation of the Autocorrelation coefficients

'l'henequm{?(n))nﬂzwmdthcnonhnemtymbe
eomduedutheo\mdnﬁnmm machine.
Since the ponlinearity has no memory, from (14) the state
sequence can be given by

s()=[U(n+N1),....U(R)U(@®-1),. U(RN2)]. )

{U(n)} ;:;El]d sequence, thus {s(n)} is itself a stationary

Let us denote by 11 the transitiop probebility matrix of the
Markov chain {s(n)}. A brute force evaluation of R, (-) involves
multiplication of square matrices of dimension 1Nz [9-10},
which would be computational impractical unless special
consideration is given to the special propertics of I1. In (9) a
particularly effective and simple algorithm for the evaluation of
sutocorrelation coefficients of a nonlinear system was presented.
The algorithm, as applied to our specific problem is given below.

Algorithm for the computation of R, (k)

1. Let N=N1+N2+1, and store in vector Bo (of dimension
2¥) the values at the output of the noalinearity for each state s(j)
of (21), for j=1,2,...2¥.

2. Compute the vector ag ( of dimension 2¥), where the j th
compouoent is given by
«o(j) =B, GV2¥ , j=1.2,. . ¥ .

3. Fork=0,1,...,N-1, do the following computations

-+
9 RE=TalIBG).
b) Store in the first 2¥+-1 positions of a;, the vector a;+p,
computed by
n.q(j)= o..(j)+u,(j+2”“"), _]'51,2,”.,2N"'1 .

¢) Store in the first 2¥4-! positions of of the B, wvector, the
vector B, .1, where

Bi-1(j) = M):M Li=1,2. 284

4. R, (k)=0.forkzN.

The above algorithm is easy to implement and requires only two
vectors of size 2V as basic computation storage.

Compuration of Cross-correlations

Since for each state s(j) of (21) the value of P{s(j}]= Bo(J)
has already been computed for the evaluation of the R,(:)
coefficients, a brute force technique can be casily apphed for
the evaluation of the cross-correlation terms.  Thus from |10},

Rulk)= (2 S Pls(). NisksN2, (22)

where the summation in (22) is done over all those states where
Un-k) = 1.

In summary, the design procedure for the optimum linear
MSE equalizer is given as follows. First, compute the 2%
possibie values of P(n) at the output of the nonlineanty. Then
use the algorithm to compute the R,(-) coefficients and (22) to
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compute the R () coefficients. Finally, solve the lincar system
in (19). The solution of (19) yields the tap-weight coefficients of
the MSE receiver.

IV. EVALUATION OF BIT-PROBABILITY OF ERROR

Unfortunately, there is po simple relationship between the
residual mean square error of the MSE receiver and the bit error
probability {11). For moderate channe! and equalizer memorics,
a brute force method that yields an exact result could be applied.
Denote by D; ooe of the 2 *¥-2 possible realizations at the input
of the receiver, with U(n)=1, and by ¢ the M x 1 vector of the
filter cocfficents. Then from (16) and (17), the receiver output
Que to » specific input {U(n)) sequence is given by

L=pPic+We , (23)

where W is a M=M1+M2+1 row vector of noise samples.
Let {w(n)} be a white poise sequence of zero mean and
variance 02. Let n=Wc. Then E[n]=0 and o= 03.2‘&.

Then with U(n)=1 and for a threshold of zero, the conditional
efTor probability

P.(i)= PriDic +n<O{U}] , (24)
is fixed, and

P.(i)= Q(Dicloy). (25)
where

Qi) = V‘ZLJ' Ta (26)

Then the average error probability P, is given by

P, = (UL )';P,(f). Le2M-¥N2 @7

1o our numerical example the SNR is defined as

SAR = 10i0g 1o(P&/202) , (28)

where Po, = (UL)glP(r«)(O)] .

If the exact ertor probability of (27) proves 100 cumbersome
and 100 time consuming to evajuate because of the large number
of terms. one can resort to a number of different approximate
methods that vield tight upper and lower bounds of P, [11].

V. NUMERICAL EXAMPLE

The purpose of this section is to illustrate the application of
our results in the design of a lincar optimal receiver. and to
compare its performance with other receivers for a digital
satellite hink.

In our model of the linear part of the satellite link. we
assume that the 1S is introduced by a 3-pole Bunierworth filter.
The rwo sided bandwidih B of the filter is the same as the
minimum Nyguist rate (i.e.. BT=1). The number of samples
considered for the 1S] is determined by those 1SI samples whose
magnitude are at least greater than 0.01 times the main sample.
In our example. a channel memory (N1+N2) of 3 ISI 1erms was
considered adequate.

The characteristics of the TWT for this study are the same as

those ip Figure 2. Thus in the evaluation of P{r(n)} in (15). the
parameters of the TWT are a=2.0922 and 8= 1.2466. As

mentioned before, those values were taken from Saleh ([8],
Figure 5) and represent a specific satellite TWT. The gain factor
A, of (14) was determined 3o that with po 1SI the TWT would
operate at the 2 dB input backoff point. Because of the low ISI
introduced by the transmission filter, a 4-tap (M1+M2+1=4)
;I'Dli(“hn‘;usr:wvummduedmbendeqm Thus,

Now we compare our optimum lincarly equalized MSE
receiver with the conventional linear receivers. Using the brute
force technique described in Section 4, the bit efror probability
for the various receivers was evalusted and plotted in Figures 4
and S, for values of SNR as defined in (28).

Figure 4 exhibits the P, performance of the designed MSE
filter, and the P, performance of two 3-pole Butterworth
receiving filiers. One receiving filter (with BT=1) is identical 10
the transmitting filter, while the other one has BT=0.75. In
Figure 5, the performance of the M.S receiver is compared with
that of two 4pole Butterworth receiving filters. One has
BT=0.75 and the other one has BT=1. A numerical search
procedure for Butterworth filters with different BT products,
ghowed that an increase in BT does pot necessarily correspond to
an improved P, performance. In fact, filters with BT=2 are
only marginally better than filters with BT=1.
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For P, = 10E-6, the optimum MSE receiver is at least 0.8
dB better than the 3-pole Butterworth filters and 1.2 dB bente:
thap the 4-pole Bunterworth filters. The P, performance of a
channel with no ISI. but with the identical TWT, carrier power
and noise variance was evaluated. The numerical results showed
that for these examples the bit error rate of the MSE equalizer is
very close to that of the no 151 case {10].
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VI. SUMMARY AND CONCLUSIONS

In this paper we considered the problem of modeling and
equalizatioo of a digital satellite ponlinear and bendlimited
channe]. Starting from a typical satellite link, we developed the
comesponding BPSK  discrete-time model, and solved for the
optimum linear MSE receiver. A simple and computationally
efficient algorithm was derived for the evaluation of the
equalizer coefficients, based oo the memoryless ponlinearity of
the system. Numerical examples for a typical satellite link
demoustrated that the optimum linear MSE receiver outperforms
the conventional linear type receiving filters. In general, our
modeling and equalizatiop techniques provide s simple and
computationally efficient alternative to existing .
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On Realizations of Least-Squares Estimation
and Kalman Filtering by Systolic Arrays /? 335

CD}%QW7

M.J. Chen and K. Yao

1. INTRODUCTION

Least-squares (LS) estimation is a basic operation in many signal process
ing problems. Given y=Ax+v, where A is a mxn coefficient matrix, y is a
mx1 observation vector, and v is a mxl zero mean white noise vector, a
simple least-squares solution is finding x which minimizes ||[Ax-y|l. It is
well known that for an ill-conditioned matrix A, solving least-squares
problems by orthogonal triangular (QR) decomposition and back substitution
has robust numerical properties under finite word length effect since
2-norm is preserved. Many fast algorithms have been proposed and applied
to systolic arrays. Gentleman-Kung (1981) first presented the triangular
systolic array for a basic Givens reduction, McWhirter (1983) used this
array structure to find the least-squares estimation errors. Then by
geometric approach, several different systolic array realizations of the
recursive least-sgquares estimation algorithms of Lee et al (1981) were
derived by Kalson-Yao (1985). We consider basic QR decomposition algo
rittms and find that under one-row time updating situation, the House
holder transformation degenerates to a simple Givens reduction. Next, we
derive an improved least-squares estimation algorithm by considering a
modified version of fast Givens reduction. From this approach, the basic
relationship between Givens reduction and Modified-Gram-Schmidt transfor
mation can easily be understood. We also can see this improved algorithm
has simpler computational and inter-cell connection complexities while
compared with other known least-squares algorithms and is more realistic
for systolic array implementation.

Minimum variance estimation (popularized by Kalman (1960)) is the general
ized form of a least-squares problem, where the state vector x is charac
terized by the state equation X 41°Fx W, the system noise w and the
observation noise v are colored. lI'ne original algorithm presented by Kal
man can have poor numerical property. Some algorithms for improving
numerical properties, such as square-root covariance and square-root
information methods have been studied. Now, we find that after the whi
tening processing, this minimum variance estimation can be formulated as
the modified square-root information filter and be solved by the simple
least-squares processing. This new approach contains advantages in both
numerical accuracy as well as computational efficiency as compared to the
original Kalman algorithm., Since all these processings can be implemented
by systolic arrays, high throughput rate computation for Kalman filtering
problems become feasible.



2. SIMPLE LEAST-SQUARES ESTIMATION

Given the equation b=Ax+v, it is well known that we can solve the least-
squares solution % by normal equation, However, this approach not only
requires tne camputation of a matrix inverse but also doubles the condi
tion number when we form A'A, Although using singular value decomposition
for least-squares solution can improve numerical properties, the computa
tional complexity involved in SVD is not low. Besides, fast algorithm for
SVD is still underdevelopment. Lattice structure for least-squares solu
tion was proposed and studied by Lee et al (1981), This approach was
shown to have stable numerical property and regular hardware structure.
However, this method required shifting property of the coefficient matrix
and can not apply to all general cases. QR decomposition is another solu
tion to obtain X, since 2-norm is preserved by multiplying an orthogonal
matrix Q, then by letting QA=R be a upper triangular matrix, the X can be
obtained by using back substitution for the equation Rx=h. This approach
has robust numerical properties since the 2-norm is fixed, the rounding
error caused by finite word length effect will not grow, Basically, there
are three ways for performing QR decomposition, namely, Householder trans
formation, Givens reduction, and Modified-Gram-Schmidt orthogonalization.
It can be shown that under one row time updating situation (as in the sys
tolic array implementation), the Householder transformation matrix will
degenerate to a simple Givens reduction case.

Systolic array implementation for QR decompositions in least-squares esti
mation was first explored by Gentleman-Kung and followed by McWhirter and
Kalson-Yao. By using a triangular systolic array, it was shown that the
estimation error for the last observation can be solved at every clock
period. The systolic array structure for least-squares estimation is
shown in Figure 2.1. To achieve fully pipelined operation, the input rows
are skewed and propagated like wavefronts in the diagonal direction. There
are only two basic processing units, boundary cell and internal cell, are
required by this systolic array. Communication between different process
ing units are all local. The properties of regularity and local communi
cation are consistent with the philosophy of VLSI implementation, Summary
of input/output formats and operation functions for two kinds of process
ing units are shown in Table 1 and Table 2 respectively.

Table 1. Input/Output format of systolic array algorithms

Bl 1 BI BOl H)z II I1 IOl I0

2 1 2 2

Givens o X o' ds/d',x/@' d/4',x/da’ b dsda',x/a! b!

F-Givens o b4 o' d/d',ox/@' d/@',0x/@' b dsd',ox/d@' b’
X X X

M-G-S(I) o x,e o x/d,x/(1-0) x/d,x/(1-06) b,e x/4,x/(1-0) b',e’
d a a

M-G-S(II) © x o' x/@',x/(1-0) x/d@',x/(1-0) b x/d',x/(1-0) b'



The above symbols are for notations only, their physical meaning may
change for different algorithms,

Table 2. Operational functions of processing units

Boundary cells Internal cells
Givens a'=(a%+x%) /2 b'=(a/d")*b - (x/d')*k
BO,<— d/d', x/d' k'=(x/d")*b + (d/d')*k
c'E (d/d')*c
F-Givens d'=d + (o*x)*x b'=b - x*k
BO.<— (o*x)/d', d/ad" k'=(d/d') *k + (0*x/d')*b
o' o*(d/d") .
M~G-S(I) d=e k'=k + b*(x/(1-0))
BO.<— x/d, x/(1-0) b'=b - k'%(x/d)
o'b5 + (x/d) *x e'=e - k'“/d
M-G-S(II) d'=d + (x/(1-0))*x k'=k + b*(x/(1-0))
BO.<— x/d', x/(1~0) b'=b - k'*(x/d")

o'go + (x/d')*x

Fram systolic array point of view, the difference between algorithms pro
posed by McWhirter and Kalson-Yao lies in the basic computations in two
kinds of processing units. Since these algorithms were derived from two
different approaches, specifically Givens reduction and Modified-Gram-
Schmidt orthogonalization, the basic relationship for. these two QR decompo
sition methods under one row time updating can be compared as follows.
First, we derived the modified expression for the fast-Givens reduction as

given by

[((1//4)4, (l/vfa)dkz,. . (1//a>dkk]

Q
| /ox,  Yoby,, ... Yob,

[(1/va'")a', (/v/d')a'k ',...(l//a')d'kk'
0, /5'b2', /E'bk' ,

the updating equation for this modified-fast-Givens algorithm becomes,

Boundary cell: a'=ad + x2/(1/5) (1/6)=(1/0) + x%/d
Internal cell: '=b - (x/d)*dk a'k'=dk + b*x/(1/0) (1]

By camparing the computational camplexity between the fast Givens algo
rithm by Gentleman (1973) and that in [1], we can see [1] has one multi



plication less than the original algorithm., And since we do not have
interest on the real rotated elements like (1/vd)dk,, we do not have the
risk of dividing by a very small d. The numerical Eroperties of the modi
fied algorittm is then expected to comparable to the numerical properties
of the original one. By equation [1], the basic duality associations
between Givens reduction and Modified-Gram-Schmidt orthogonalization is
summarized in Table 3, which allows us to derive different algorithms for
least-squares estimation from different approaches with efficiency.

Table 3, Duality association for M-G-S and Fast—-Givens reduction.

M-G-S(II) k o X b d

mgs mgs mgs mgs mgs
; - *
F-Givens dfg*kfg 1 ofg ofg xfg ofg*bfg dfg

With systolic array implementation, comparison of computational complexity
for algoritims discussed above can be made by comparing the number of
operations required in each processing unit. When the dimension of the
coefficient matrix becomes large, wavefront array processing of Kung
(1983) becames more appropriate for the control scheme. In this case, the
speed of this "“wavefront" will be decided by the slowest processing unit
along each wavefront. In modified fast Givens algorithm, equations for
boundary cell are non-recursive and can be done in parallel if we can
double the computational capability of each boundary cell. In this case,
the wavefront speed and then the throughput rate can be doubled. The sys
tolic array we discussed above will generate estimation error at each
clock period. While the estimated vector £ is not shown explicitly, & can
be solved by back substitution which can be done by just appending a nxn
identity matrix after the coefficient matrix A.

3. MINIMUM VARIANCE ESTIMATIONS AND KALMAN FILTERING

Often the signal vector x is a random process and can be modeled as a
first order recursive equation., In this case, a first order recursive
estimation (or Kalman filtering) problem can be stated as follows,

Xy SFX W,

yiitx +8,, [2]
where F and C are time-varying coefficient matrices with dimension nxn and
mxn respectively. w, is a nxl and v, is a mxl zero mean noise vectors
with known covariancé matrices W, a.né Vi respectively. It is assumed that
noises w and v are uncorrelated gnd E[wiw.]=E[v.lv.]=0 for all i#j. Under
the mm.msm variance criterion, we want td find*%d for all k, such that
Elltx, -% )“]| is minimized. Kalman showed that %, Can be obtained by the
recu§si5e algorithm given as



£ =Fx . +K [y _._]I
Kb ErlhcTyy Tl |

wherf B, =rB _F'w, [3)

Pk=Pk-KkCPk'
The information matrix is defined as the inverse of the error covariance
matrix P. Besides [3], it is shown that instead of propagating the error
covariance matrix, the Kalman filtering problem can be solved by propagat
ing the information matrix during the iterations. Both covariance and
information filters are recursive since the current updating depends only
on results from previous stage. The choice between covariance filter and
information filter depends on the values of n and m. When nd>m, which is
usually the case, the original Kalman filtering is chosen to avoid the
inverse of the nxn matrix. However, Kalman algorithm is known for its
poor numerical properties, especially for non—observable oosfficient mat
rices. The original Kalman filter needs an approximate O(n”) multiplica
tion time for each iteration. If m>l, computation of a matrix inversion
is inevitable. Since all equations are sequential in manner, if real time
computation is required for a Kalman filtering problem, some modifications
must be done to insure the capability for parallel computation. Among
many possible modified algorithms, square-root filtering have been proved
to have camputational efficiency and robust numerical properties under
finite word length effect (Kaminski 1971). The main advantage of the
square root filter is that we can handle the covariance matrix by its
square root form which has condition number smaller than the original one.
Therefore, for ill-conditioned problems, when we used the square root fil
ter with a single precision machine, we can expect the same numerical
result as if we have used the original algorithm on a double precision
machine, Updating processings for both square root covariance filter and
square root information filter can be expressed in matrix forms and
handled by the QR decomposition method which is capable of systolic array
implementation., However, only square-root information filter allows us to
update the estimated state vector as well as the information matrix by
using the same transformation matrix Q. When both updated covariance mat
rix and state vector are important to us, we find square-root information
filter is a better solution for the systolic array implementation. The
square-root information filter requires computation of the inverse of the
coefficient matrix F, which will cause bad numerical properties for F
being near singular. One version of the square root information matrix
method for Kalman filtering was considered by Paige and Saunders (1977).
It is shown that by using whitening processing through Cholesky decomposi
tion, the Kalman filtering can be represented as a simple least-squares
problem. This approach does not require the computation of the inverse of
the matrix F and is more suitable for systolic array implementation.

The whitening processing can be briefly described as below. Assume
w=L, 1 ' and v=L L ' are the Cholesky decomposition of covariance
malt:.Yigﬁ,s W and §.Z,IWitt3 Y i=LWL ''and V =Lva' » it can be proved that
L =L and L =L ~. w=L 'wk ing \7k=Lv'vk are whitened noises with
i8enfity covafiafce matficgs.

Denote F=L 'F, C=L 'C, and § =L 'y,. We can express the whitened
system equitions i¥ the matr$x-Yeckor form as



0 EX 0o |rx @]
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41 ¥ X2 M
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H C : + |:
: . . X, _ [4]
Lyk 0 C Vi
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Since the noise vector in [4] has zero mearjm and identity covariance mat

rix, we can get X . =[%,,...% } by solving [4] as a LS problem. After
applying QR decu@gitian to lf4l at time k, we have

[ 0 [ X, -
D 4% | [
‘
k

X
o 1 Ez-l,k“ x

-1 . (5]
-1,k -1
k] L}Y‘t

We can see that R,, i=1,2...k, in [5] are all upper triangular matrices,
and ik' the gptin@n estimated vector at time k, depends only on the last
line, 'i.e., Réi =y, . Furthermore, at T=k+l, the updating equation
depends on th EasE row of [5] only. That is, the QR decomposition at
T=k+1 only depends on a (2mm)x(2n+l) matrix as in [6]. When the QR .
decamposition of [6] is completed, we have §k+l (upper triangular) and
Y41 ready for iteration of next stage.

3

Re 0, ¥ R e+l Sk
o (F L)' 0 = |0 +1  Tk+l
0 C yk 0 0 * (6]

where * is the term used to compute the residue,

The upper triangular matrix can be shown to be the square-root of the
inverse of the error covariance matrix P =E[(x =X )(x =x )']. That is,
this algorithm, which propagates the squgre rost Enfoﬁnaléion matrix for
next iteration, is actually a modified square-root information filtering.

4. SYSTOLIC ARRAY IMPLEMENTATIONS FOR KALMAN FILTERING

From last section, we can see that the basic operations for square root
Kalman filtering can be described in two parts. The first one, whitening
processing includes operations such as Cholesky decomposition, inverse of
triangular matrix, and matrix multiplication. Secondly, the QR decomposi
tion is applied. Obviously, these two parts can be operated in parallel.
That is, we can start the whitening processing for the (k+l)st iteration
as well as the QR decomposition for the k-th iteration at the same time in
a pipelined manner.

The original square-root information filter involves the computation of
the inverse of the coefficient matrix F which not only increases the com
putational camplexity but also causes bad numerical properties when coef
ficient matrix F is singular or near singular. This shortcoming can be



recovered by choosing the modified square root information filtering in
[4]. As shown from [4]-[6], formulation of the modified square-root
information filter involves only multiplication between coefficient mat
rices and the inverse of the square root noise covariance matrices. For
noise with positive definite covariance, square root covariance matrix
always exists,

4.1 whitening Processing

The whitening processing is done by nult;glying the coefficient matrix
with a whitening operator L' where (LL') ~ is the given covariance matrix
of the additive noise. Since a covariance matrix is a positive definite
symmetric matrix, the square root matrix can be obtained by the Cholesky
decamposition., A triangular systolic array for Cholesky decomposition is
designed for this purpose with outputs skewed to match the input format of
the QR systolic array.

The inversion of a upper triangular matrix is simple after we built the
basic systolic array for QR decomposition., The idea for the inversion of
a upper triangular matrix is the same as solving the back substitution.

With UU 1=I, let U 1=[.u r Mor e ], with u. being a nxl column
vector, A matrix inveréion can be Bivided into n sets of linear equa
tions, each having form of Wy.=e., i=1,2,...Nn, where e. is a nxl
column vector with i~ element eqﬁalé to 1, and all otherslbeing 0, and
can be solved by a systolic array.

4.2 QR Decamposition for Kalman Filtering

Bquation [6] suggests that %, can be solved as a least-squares solution by
a 2nx2n QR systolic array. However, serious delay will be caused by the
fact that and RE* are not in-place computations. That is, we have
trouble to e th ;lewly formed R from the upper-right corner to the low
er-left corner in our triangular array for the next iteration., That is,
the camputation at stage k+l1 can not start until the last element of is
completed. In this "waiting” period, most of processing units are idl
and the pipeline is empty. It will cause delay for at least 2n clock
periods.

This disadvantage can be overcome by in-place computations for and

Rp . This can be done by partitioning the original matrix into two

s r}ps, and perform the partitioned QR decomposition by the systolic array
structure proposed in Figure 2. In this approach, a nxn QR systolic array
as well as a rotation array which consists of nx(n+l) internal cells are
used. Once elements of R are formed, it is ready to be used for
computations at stage k+l. Here we need only to pass transformed elements
generated by the first strip to the rectangular rotation array for the
pre-processing of the second strip. This input format is shown in Figure
3. Since all these can be done in fully pipelined manner and in-place
camputations are obtained, complicated inter—cell connection and control
scheme can both be avoided. To obtain the estimated value Stk, we can
just append an identity matrix I after the second strip, and we get result
every 3n+m clock periods.



5. OONCLUSION

In this paper, we first survey existing algorithms for least-squares esti
mations by systolic arrays. Basic comparisons are made based on computa
tion and inter—cell connection complexities of elementary units. Finally,
by choosing the square-root information filtering algorithm, we showed a
simple way to solve the Kalman filtering as a least—squares problem that
can be processed by systolic arrays. Systolic array for Cholesky decompo
sition is also proposed for whitening processing. By manipulating the
data properly, the Kalman filtering can be processed under fully pipelined
manner. There is no special constraint on our system equations and stan
dard time-varying coefficient matrices and non-stationary colored noises
are assumed in our model. Most of the processing units we need for this
square root information filter do not involve square-root computations.
The only exception is the computations for the Cholesky decomposition.
However, for pipelined operation between whitening processing and QR
decamposition, the later certainly involved more computational work than
the former. Since there is only n square-root computations required in
each iteration as compared with the operations required for QR decomposi
tion, Cholesky decamposition will not become the bottleneck for this algo
ritim. For many real life problems where we can assume noises are sta
tionary, then covariance matrices W and V are fixed during our operation.
In this case, inversed square-root covariance matrices can be obtained by
pre-processing and our Kalman filtering can be solved as a simple least-
square problem. Since all operations can be performed by the designed
systolic array processing, which have the input/output formats matched to
each other, the entire hardware design can be viewed as a pipelined struc
ture. The estimated gec,tor can be obtained with the O(n) in time while
compared with the O(n”) for the original Kalman filter. Finally, since
this is a square root matrix operation, good numerical property can al
be obtained. ]
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Figure 1: Systolic array for least-squares estimation.
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Figure 2: QR systolic array for Kalman filtering
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Figure 3: Input format for systolic array Kalman filtering





