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The asymmetric nature of the fluid film stiffness and damping properties in
rotors supported on fluid fi1m bearings causes a forward or a backward whirl depend-
ing on the bearing parameters and the speed of the rotor. A rotor was designed to
exhibit backward synchronous whirl. The rotor-bearing system exhibited split crit-
jcals, and a backward whirl was observed between the split criticals. The orbital
diagrams show the whirl pattern.

INTRODUCTION

The design of a rotor system must consider several aspects such as critical
speeds, peak unbalance response, regions of change of whirl directions, and insta-
bility. 1In general, large rotor systems in continuous operation are supported on
hydrodynamic bearings. These hydrodynamic bearings exhibit asymmetric cross-coupled
stiffness and damping properties that vary with the speed of operation. Such a
property influences the dynamic behavior of the rotors significantly.

The dynamic behavior of such rotors can be predicted by using transfer matrix
methods, finite elements, modal analysis, etc. [1-6]. Rao [7] and Rao et al. [8]
used a simple analytical technique to predict the dynamic behavior of such rotors.
They studied a single-disk rotor on fluid film bearings and observed that for spe-
cific rotor-bearing parameter combinations the system may exhibit two distinct peaks
in the response but sometimes it may show only one peak in the response. Kollmann
and Glienicke [9] have shown experimentally the existence of the split criticals in
a simple rotor supported on fluid fiims bearings. Kellenberger [10] derived equa-
tions for double frequency accelerations in turbogenerator rotors resulting from
anisotropy in the plain cylindrical bearings and showed the occurrence of backward
whirl between the criticals. These studies predict a forward whirl before the first
critical and after the second critical, whereas the rotor executes a backward whirl
between the two criticals. Also, the simple rotor with only a single peak in its
response is known to whirl in the forward direction at all speeds.

Several experimental investigations are reported in the literature regarding
the dynamic behavior of different types of rotor systems supported on hydrodynamic
bearings. A few notable works are by Yamamoto [11], Hull [12], and Lund and
Orcutt [13].

Most of the referred work on practical rotors supported on hydrodynamic bear-
ings does not satisfy conditions for a clear backward whirl and hence the phenomenon
of backward whirl has so far not been observed experimentally. The occurrence of
backward whirl is also not desirable in practice. In the present work conditions
are derived for backward whirl considering bearing damping. Further results of the
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experiments carried out on a laboratory rotor model designed so as to exhibit
backward whirl are reported.
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NOMENCLATURE
disk eccentricity
shaft damping
fluid f11m damping coefficients

forward and backward component, respectively, of 1th modal force
vector

overall exciting force vector

overall stiffness matrix

shaft stiffness

fluid film stiffness coefficients

overall mass matrix

forward and backward component of 1th modal displacement vector

displacement vector at disk location

displacement vector at bearing location

maximum unbalance response of rotor

displacement of rotor at disk location in. Z and Y directions

displacement of rotor at bearing location in Z and Y directions

1th modal displacement vector

1th complex eigenvalue

right eigenvector of system

left eigenvector of system

ANALYSIS

of the rotor is shown in Fig. 1.
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Equations of motion of the rotor
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and the constraint equations are
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Equations (1) to (4) can be written in the form.
(M1 €Q3 + (K] €0} = {F}
where
Iy z y 20 io
0 0 m O 0 0
0 0 0 m 0 0
Ml=im O ¢ O -C 0
0 m 0 ¢ 0 -C
8 0 ¢ O -(c+2czz) -2czy
_? 0 0 ¢ ~2cyz —(c+2cyyl_
2 § z y z4 Yo
-m 0 0 0 0 0
0O -m 0 O 0 0
(Kl =} O 0 k O - 0
0 0 0 k 0 -k
0 0 k O —(k+2kzz) -2kzy
0 0 0 k -2k ~{k+2k
| (krkyy

T
{Q} = Eo ;' Z, Y, ZO' ya

{F} = [0, O, mam2 cos wt, mau2 sin ot, 0, 0]

The eigenvalues and eigenvectors of the system are obtained by solving the

homogeneous form of equations (6) as shown below:
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[M] (Q(t)} + [K] €Q(t)} = O (6)
Assuming a solution of the form
{Q(t)} = {o} exp (At) (7

where {¢} represent the system eigenvectors, and substituting equation (7) in
equation (8) the eigenvalue problem becomes

AMMI{e} + [Kl{o} =0 (8)

Because of the presence of asymmetric cross-coupled stiffness and damping coeffi-
cients in the bearings, the matrices ([M] and [K] are nonsymmetric, resulting in
a non-self-adjoint system. Hence a conventional normal-mode method is not possible,
and 1t is essential to consider that the biorthogonality property of the modes of
the original system are those of the transposed system to the uncoupled equations

of motion. THe left eigenvectors are obtained by transposing matrices [M] and

[K] in equation (6). The eigenvalues of the original and transposed systems are
identical, but the eigenvectors are different.

The solution of equation (5) s assumed in the form

{0(t)} = [olin(t)} (9)

where [¢] contains the eigenvectors of the original system (which are called
right eigenvectors). Introducing equation (9) in equation (5) and premulitiplying
the result by [¢*]T, which is the left eigenvector of the system, lead to the
following uncoupled equations:

[ulin(t)} + [x]in(t)} = {o} (10)
where
[ul = [e*1T[M1le]
[e] = [e*1T[K][o]
and |

{o} = [e*1T{F}
Equation (10) results in uncoupled equation of the form

wing(t) + eyny(t) = o4(t) (11)

~

This is solved by assuming steady-state solution of the form

ni(t)

Ny exp (Jot) + Ny exp (-jot) (12)
and

ai(t) = E4 exp (Jwt) + B4y exp (-jwt)
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Substituting equation (12) in equation (11) results in
(e + Joni) Ny exp (Jot) + (k3 - Jouy) Ny exp (-Jut)
= E4 exp (Jut) + Ey exp (-jwt) (13)

Equating the coefficients of the forward and backward rotation terms, we obtain

Es

R 0o

o ‘ Eﬁ

N1 = k.‘ - jwu1

Hence the displacements are determined from equations (10) to (14) and then the
unbalance response of the rotor is obtained nondimensionally as

po 10 (15)

a.

where a s the disk eccentricity. The complex eigenvalues are obtained from
equation (6).

Depending on the bearing parameters the rotor will have either split criticals
or just a single peak in the fundamental critical speed region, corresponding to
synchronous whirl. In the case of the split criticals in the synchronous whirl, the
backward component W3 1s larger than the forward component Ny between the
split criticals.

EXPERIMENTAL RESULTS

The details of the test rotor are given in table 1. It consists of a circular
shaft with a circular disc at the center and supported on two identical hydrodynamic
bearings at the ends. These bearings are mounted on cast iron pedestals at the two
ends, and in turn these pedestals are rigidly fastened to the support, which is made
of steel angles. The pedestals were impact excited both in the horizontal and ver-
tical directions, and the resulting acoustical response was measured close to the
pedestals. A frequency analysis of the measured sound showed that the first peak
~occurred at a much higher frequency than the critical speeds of the rotor, indicat-
ing that the pedestals were rigid. The bearings are supplied with o1l through a
gravity feed. The unbalance response of the shaft is measured in both the x and y
directions by two proximity pickups. The signals from the pickups are fed to a
twin-channel FFT analyzer, and the orbit diagrams are obtained with a x-y plotter.
The direction of plotter pen motion indicated the direction of rotor whirl.

In designing the rotor such that it exhibits a backward whirl, the bearing
coefficients to be used in equations (3) and (4) were taken from the results of
Lund [14]. These results can also be found in [15]. Lund's results agree well
with the experimentally determined bearing coefficients by Glienicke [9].
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The whirl orbits obtained experimentally are shown normalized with respect to
the disc eccentricity in Figs. 2 to 4 for different rotor speeds. Orbital diagrams
are shown for a bearing clearance of 1.8796x10-4 m, since a backward whirl could
be identified only for this case. The two critical speeds are 2200 and 2600 rpm.
The rotation of the rotor is in the counterclockwise direction and hence Figs. 2
and 4 show forward whirls and Fig. 3 shows backward whirl. The speed corresponding
to the backward whirl in Fig. 3 is 2500 rpm, which falls between the two criticals
at 2200 and 2600 rpm. Since the backward whirl between the criticals is of finter-
est, a photograph of backward whirl motion of the rotor at 2500 rpm was taken from
the FFT analyzer screen. Theory also predicts these whirl directions, and hence
there is a qualitative agreement between theory and experiments.
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TABLE 1: DETAILS OF TEST ROTOR

Shaft Diameter 0.0222 m

Shaft Length 0.5080 m

Weight of Disk 89 N

Shaft Stiffness 8.9 x 10° N/m

Bearing Diameter 0.0254 m

Bearing L/D Ratio 1

0i1 Viscosity at 25.5°C 0.96 x 1079 pascal sec.
Unbalance of Rotor 1.084 x 1074 kg.m

Bearing Clearance 1.8796 x 10™% m (0.0074 in)
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Figure 1. - Schematic diagram of single mass rotor.

AMPLITUDE/ECCENTRICITY

-3 -2 -1 ] 1 2 3
AMPLITUDE/ECCENTRICITY

Figure 2. - Rotor whirl orbit at 2150 rpm (counterclockwise direction corresponds to forward whirl).
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Figure 3. - Rotor whirl orbit at 2500 rpm (clockwise direction corresponds to backward whirl).
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Figure 4. - Rotor whirl orbit at 3000 rpm (counterclockwise direction corresponds to forward whirl).
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