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In this paper the influence of bearing misalignment upon the dynamic characteri- 
stics of statically indeterminate rotor bearing systems is investigated. Both bearing 
loads and stability speed limits of a rotor may be changed significantly by magnitude 
and direction of bearing misalignment. The useful theory of short journal bearings is 
introduced and simple analytical expressions, governing the misalignment problem, are 
carried out. Polar plots for the bearing load capacities and stability maps, describing 
the speed limit in terms of misalignment, are presented. These plots can be used by 
the designer to estimate deviations between calculation and experimental data due to 
misalignment effects. 

INTRODUCTION 

Bearing misalignment and initial shaft bow may considerably change the dynamic 
characteristics of a rotor bearing system. In general, bearing misalignment and shaft 
bow represent imperfections of a system with unknown m u n t  which cannot be predicted 
exactly by the designer. Therefore, a qualitative analysis, investigating the influ- 
ence of bow and misalignment upon vibration amplitudes, dynamic bearing loads, and 
stability, etc., of a rotor, might be useful. Also significant deviations between 
experimental data and theoretical calculations of a rotor bearing system may be caused 
by bearing misalignments, for example. In this case an error estimation between ex- 
periment and calculation, considering the above mentioned imperfections, is necessary. 

It is well known from the literature that beside static and dynamic unbalance of 
a rotor a residual shaft bow may be considered as an additional external force that is 
exciting the rotor with constant amplitude independent of the speed. If a linearized 
(first order) analysis is applicable to a system then initial shaft bow and unbalance 
do not change the stability characteristics of the rotor. In other words, no interac- 
tions between self-excited shaft whirl and external excitation can be described by a 
linear approach; for example, see reference 1 .  Therefore, in this paper the response 
of unbalance and shaft bow is not considered, since, in a first order sense, it does 
not change the onset of instability of the rotor. 

Gasch has shown in his paper, see reference 2, that in a statically indeterminate 
rotor bearing system the static bearing loads depend upon the speed of the shaft be- 
cause of nonlinear hydrodynamic bearing characteristics. Nasuda and Hori, reference 3, 
investigated the influence of journal bearing misalignment upon the stability charac- 
teristics. The-determined socalled "contour stability maps" for a two-mass and four- 
bearing rotor. 



I n  t h i s  paper the theory of sho r t  journal  bearings i s  used, see reference 4 ,  i n  
order  t o  ca l cu la t e  bearing loads,  bearing s t i f f n e s s  and damping coe f f i c i en t s ,  and sta- 
b i l i t y  thresholds of a f l e x i b l e  r o t o r  i n  terms of bearing misalignment. Both, magni- 
tude and d i r ec t ion  of the misalignment vec tor  of a bearing are var ied and ranges of 
high and low s e n s i t i v i t y  of the s t a b i l i t y  li+t can be observed. 

NOMENCLATURE 

[A] dynamical matrix (l/s2) L bearing length (m) 

b magnitude of i n i t i a l  s h a f t  bow (m) X misalignment a t t i t u d e  angle  (direc-  

B phase angle of i n i t i a l  sha f t  bow t o  vertical x-axis) (rad) 

C r a d i a l  bearing clearance (m) 

t i o n  of misalignment with respect  

( rad)  
m magnitude of misalignment (m) 

[CBl bearing damping matr ix  (Ns/m) 

[C,] ex te rna l  damping matrix (Ns/m) 

m m misalignment components i n  x- 
and y-direction, resp.  (m) X’ 

[MI mass matrix (kg) 
[C,] i n t e r n a l  damping matrix (Ns/m) 

E bearing e c c e n t r i c i t y  t o  clearance 
11 dynamic v i scos i ty  of bearing lubr i -  

cant  (NS /m2) 

N+ s t a b i l i t y  speed likt (Hz) r a t i o  

c learance r a t i o  w a n p l a r  speed of s h a f t  (1  /s) 

{Fo} external static load (N) JI s h a f t  cen ter  a t t i t u d e  angle  (rad) 

{FBI dynamic bearing load (N) R radius  of the s h a f t  a t  a bearing 

IFBo) static bear ing load capaci ty  (N) 

n hor izonta l  s h a f t  displacement t o  

s t a t i o n  (m) 

3 POL R 
4r C2FBo 

Somnerfefd number (P bearing load a t t i t u d e  angle (rad) S= 

[I1 i d e n t i t y  matrix 

[KB] bearing s t i f f n e s s  matrix (N/m) 

[KI] 

is eigenvalue (l/s) 

t time (s) 
s t i f f n e s s  matrix due t o  i n t e r n a l  
damping (N/m) CUI unbalance vec tor  (kgm) 

[Ks] s h a f t  s t i f f n e s s  matrix (Nlm) W t o t a l  weight of the r o t o r  (N) 

K misalignment t o  c learance r a t i o  (z )  s h a f t  displacement vector  (m) 

5 vertical s h a f t  displacement t o  Iul eigenvector 
clearance r a t i o  
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Subscripts Superscripts 

B bearing T transposition of a matrix or 

f,l 
column vector 

girst and last bearing station, 
respectively Brackets 

{ I column vector 

[ ] matrix 

j station number (16j6n) 

n total number of shaft stations 

0 static load conditions ( ) function of 

x,y vertical and horizontal direction, 
respectively 

EQUATIONS OF MOTION 

Various definitions of bearing misalignmnts can be introduced for a rotor-bea- 
ring system. For example, in figure 1, lateral displacements of the bearings are mea- 
sured with respect to a line that is connecting the centers of the outer bearings 
(i.e. first and last bearing). Beside lateral bearing misalignment slope misalignment 
of the bearing axis may occur in practice but is neglected in this paper. Also slope 
deviations between shaft axis and bearing axis are not considered in this investiga- 
tion. Therefore, at least three bearings have to be present in order to get a stati- 
cally indeterminate system that exhibits misalignment effects. 

Initial shaft bow, for example, can be measured in a %on-assembled" strain-free 
configuration of the shaft where shaft centers and bearing centers at the first and 
the last bearing station coincide, see figure 1. In general, for an n-stations shaft 
the lateral misalignment vector is defined as 

The magnitude of misalignment m. for a "no-bearing" station j is defined to zero. Ini- 
tial shaft bow is given by 

{b(t)} = {blcos(wt+B1),. ..O,. ..b.cos(ut+B.) ,... O,.. .bncos(wt+Bn) [ 
(2) J J 

J J 
[b1sin(wt+B1),.. .O,. . .b.sisr(ut+B.) ,. . .O,. . .bnsin(wt+Bn) T 

in terms of the shaft rotational angle ut, see figure 1. If internal and external dam- 
ping forces are considered and gyroscopic forces are neglected then the equations of 
nrotion of the rotor-bearing system can be written in the form 
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where {z) = {~1,...xn/yl,...y~)~ is a column vector containing lateral (vertical and 
horizontal) displacements of the shaft at n stations, see reference 1 .  A Taylor-ex- 
pansion of equation (3) with respect to the nonlinear bearing forces {FBI is conver- 
gent if the static preload {Fo} is sufficiently high compared wirh unbalance and 
shaft bow excitation forces. Under this assumption an expansion leads to 

and 

with {z) = { z o l  + {zl (t) 1 being the "first order" solution of equation (3 ) .  The sta- 
tionary part { z o l  = ho({Fol,{mI,w)} of this solution is evaluated from the nonlinear 
system equations (41, with w = const.+ 0 being the angular speed of the shaft. The 
stability of {zo l  is governed by the linear system of differential equations ( 5 )  with 
initial shaft bow and unbalance being set to zero. 

Note that first order stiffness and damping characteristics of the bearings, IC,] 
and [RBI respectively, depend upon the stationary solution {zo({FO}, {m),w) le  There- 
fore, the rotor's stability limit depends upon bearing misalignment {m) and is not 
influenced by the shaft bow {b) as long as the above expansion converges. 

BEARING CHARACTERISTICS 

Static load capacity 

The static load capacity {FB~} of the bearings is evaluated by employing the 
theory of short journal bearings, see reference 4 and figure 2 .  For a single bearing, 
located at station j, the static bearing load components i n  the vertical x- and the 
horizontal y-direction can be written in the form 

where 

is the local bearing eccentricity ratio at station j and E0j = xoj/Cj, QOj = yo-/Cj, 
and ~j = mj/Cj are local static shaft displacement and bearing rmsalignment to 6ea- 
ring clearance ratios, respectively. Substituting equation (6) for each bearing into 
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equation ( 4 )  yields a nonlinear system of relations to be solved numerically for the 
static displacement vector { z o )  = {xol ,. . .xon~yo~, . . .yon) . T 

Bearing stiffness and damping 
characteristics 

Once the stationary solution of the rotor at w = const.) 0 is determined for a 
given misalignment {m} , local bearing stiffness and damping matrices can easily be 
evaluated for a bearing at station j from 

and 

n 

4E0,(I+€',) ' lr 
OJ I 

2 312 (I-€2.)3 Of I I 2(1-c OJ .) 

lr( 1+2EL.) I -4€0. 
2 2  2 OJ )5/2 ~ I 

I (1- .I 
o j  OJ 

( I - €  

respectively, with E 0 0 and 
o j  

being an orthogonal transformation matrix between a local r-t-reference frame of the 
bearing j and the global x-y-system, see figure 2. As an example, in figure 3a and 3b, 
respectively, dimensionless first order stiffness and damping coefficients for the 
short journal bearing are shown in terms of the Sommrfeld number. The load attitude 
angle 4 is chosen to be zero in this example, i.e. the direction of the static load 
coincides with the global (vertical) x-axis. For any other arbitrary load direction 
equation3 (8) and ( 9 )  have to be applied. 
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STABILITY 

After substituting the local bearing stiffness and damping matrices into the glo- 
bal matrices of equation (5) the corresponding eigenvalue problem 

can be solved for u as a function of the rotor angular speed w and the bearing misa- 
lignment vector Em). The dynamical matrix [A] is of dimension 2n x 2n and is given by 

Figure 4 shows a symmetric five stations rotor with three short journal bearings 
and two major masses mounted on a flexible shaft. The data for this rotor are listed 
in Table 1. The center bearing of the system may be misaligned with respect to the 
outer bearings by % and 9 in a vertical and horizontal direction, respectively. The 
numerical calculations for this example were carried out on the main frame computer 
CDC-CYBER 170/730 of the Technical University of Vienna, Austria. The nonlinear equa- 
tion solver ZSPOW and the eigenvalue solver EIGRF of the IMSL-computer library were 
used. 

Figure 5 shows the static load ratio of the center bearing in tern of the shaft 
speed. The horizontal misalignment nhp is kept zero while the vertical misalignment ax 
is varied. It can be seen that each curve in figure 5 approaches the stability thres- 
hold at a certain speed of the rotor. The bearing load gradient is high at low speeds 
and decreases with increasing speed. The stability threshold is increasing with in- 
creasing misalignment above 12 urn and below -5 um in this example. In general, the 
center bearing load ratio in figure 5 is increasing with incrasing speed except with- 
in a small range of misalignments between (-30 um 5 m, S -15 pm) at low speeds. A si- 
milar diagram can be drawn for the outer bearing load ratios. Note that these bearing 
load characteristics might change with changes in the shaft bending stiffness and the 
bearing clearances. Also, in practice, the misalignment attitude angle X is unknown 
and different from zero. Therefore, the influence of both m, s# 0 and my + 0 upon bea- 
ring loads and stability limits has to be studied. 

Figure 6 shows polar plots for the bearing load ratios with the rotor speed kept 
constant at N=200 Hz. Curves of constant magnitudes of misalignment are drawn in a 
planewhere the polar angle indicates the direction of misalignment (attitude angle A ) 
and the radius is the bearing load ratio, i.e. at constant radii the bearing loads are 
constant and at constant polar angles the ratio ?/% is constant. At zero misalign- 
ment the load ratios of both center and outer bearings are constant. Hence, the curves 
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m=O represent circles with constant bearing loads. For increasing magnitudes of dsa- 
lignment the bearing load ratios change substantially with the direction of misalign- 
ment 1. For example, if a misalignment of 10 pm is present in the system, (i.e. 40% 
of the center bearing clearance or 1/24000 of the outer bearing span) then the center 
bearing load ratio varies between 0.2 at X=2So and 1.09 at X=225O. A corresponding 
change for the outer bearing can be seen on the right hand side of figure 6. 

It is to expect that for misalignment directions that cause low bearing loads in 
the system the stability speed limit of the rotor is decreased also. This can be ob- 
served from figure 7, showing a polar plot of the stability limits of the present ro- 
tor. The polar angle in this diagram again indicates the direction of misalignment X 
while the radius now is the stability speed limit. Curves of constant misalignment 
magnitudes are drawn in the figure. For low misalignments up to m 1 2  pm and for atti- 
tude angles of about X=2Oo and X=22Oo the stability limits tip down significantly.For 
example, if nrl0 um, then the stability limit of the rotor changes between N+=275 Hz 
and N+=365 Hz. Within the ranges of (180° 6 X 5 2500) and (OS612 um) a high sensiti- 
vity of the stability speed limit with respect to the direction of misalignment can 
be observed. 

the designer and make it possible for him to estimate misalignment effects upon the 
stability thresholds and the bearing load capacities of a given rotor. 

Stability maps and polar plots as discussed above give a complete information to 

CONCLUSION 

The theory of short journal bearings makes it possible to formulate the misalign- 
ment problem of statically indeterminate rotor hearing systems in a simple and easy 
manner. The numerical effort to carry out bearing loads and stability limits in terms 
of misalignment is comparetively low even for a multi-station rotor supported by a 
multi-bearing system. There are a number of good and reliable algorithms available 
in various computer libraries to solve the governing equations of the problem. Since 
magnitude and direction of bearing misalignment are never exactly known in a real sy- 
stem the above presented theory is sufficiently accurate for practical applications 
and can be used by the designer in order to make a good estimation on whether or not 
a certain amount of bearing misalignment might dynamically endanger or damage a rota- 
ting machinery. Also the above results may explain deviations between experimental 
data and predictions where misalignment effects were not included. 
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INITIAL SHAFT BOW AND BEARING MISALIGNMENT OF A 
MULTI-MASS MULTI-BEARING ROTOR 

b l  
bn 

n-2 1%-l n 1 f a 2  3 1-1 1 

Figure 1. n 
Y 

CROSS SECTION, ATTITUDE ANGLES, AND 
REFERENCE FRAMES OF A JOURNAL BEA- 
RING UNDER STATIONARY LOAD CON- 
D I TI ONS 

Figure 2. 
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DIMENSIONLESS BEARING STIFFNESS AND DAMPING CHARACTERISTICS 

(Load attitude angle Q = 0') 

FOR THE SHORT JOURNAL BEARING 

STIFFNESS DAMPING 

1 0 0  

0 
h* 10 
\ 
0 
x 
n 

1 u 

0.1 

0.01 

IO'* 10-1 1 10 

SOMMERFELD NUMBER 

Figure 3a. 

SYMMETRIC ROTOR BEARING SYSTEM 
WITH MISALIGNMENT 

41 
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Figure 4. 
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Figure 3b. 

CENTER BEARING LOAD RATIO VS,  
SHAFT SPEED FOR VARIOUS VERTICAL 

MISALIGNMENTS MX 
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SPEED (Hz) 

Figure 5 .  
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BEARING LOAD RATIOS FB/W IN TERMS OF MISALIGNMENT ATTITUDE 
ANGLE A AND MISALIGNMENT MAGNITUDE M 

(Kotor speed N = 200 Hz) 

CENTER BEARING OUTER BEARING 

1 SO0 m = - 2 0  um iaoo 

Figure 6. 

DATA OF THE ROTOR BEARING SYSTEM 
AS SHOWN IN FIGURE 4 

STABILITY SPEED LIMITS N+ IN 
TERMS OF MISALIGNMENT ATTITUDE 
ANGLE A AND MISALIGNMENT MAGNI- 

TUDE M 
Total mass of the rotor 16.8 kg 

2 Shaft bending stiffness 3350 Nm 
Outer bearing span 240 nrm 

Diameter 
Radial clearance 25 urn 
Lubricant vicosiry 0.01 NsIm2 

~ ~- 

Table I .  

O0 

Figure 7 .  


