INSTABILITY IN HYDRAULIC MACHINES DEMONSTRATION RIG

Agnes Muszynska
Bently Rotor Dynamics Research Corporation
Minden, Nevada

M.J. Braun
University of Akron
Akron, Ohio 44325

In fluid-flow machines, the working fluid involved in rotative motion due to shaft rotation significantly modifies the rotor synchronous response. This can result in the rotor maintaining the high vibration amplitude that occurs at resonance over an extended rotative speed range. The phase changes in this range are typically very small. The fluid may also create rotor instability, i.e., subsynchronous self-excited vibrations, when the rotative speed is sufficiently high. This rotor instability is often rub-related and increases with higher rotor unbalance. (Opposite to other types of instability such as oil whirl/whip, internal friction, etc.)

OBJECTIVE

The rotor rig demonstrates typical dynamic behavior of hydraulic machines. At lower speeds the effect of amplitude/phase mentioned above is noticeable; at higher speeds the subsynchronous instability occurs.

ROTOR RIG

The rig consists of a vertical single disk rotor and supported in one rigid and one 10-segment rubber-lined, water-lubricated bearing (Fig. 1 and 2).

INSTRUMENTATION

Two pairs of x-y eddy current proximity probes and one Keyphasor® probe connected to the oscilloscope allow monitoring rotor vibrations at the water bearing and next to the disk. The rotative speed may be varied from 0 to 12,000 rpm.

RESULTS

The results are presented in a form of cascade spectrum, orbit, as well as Bodé & polar plots of the synchronous (1x) response (Figures 3, 4 and 5).
Figure 1. - Vertical rotor rig supported by rubber-lined, water-lubricated bearing.

Figure 2. - Rubber-lined, water-lubricated bearing.
Figure 3. – Cascade spectrum of unbalanced rotor radial response and orbit at 10 500 rpm.

Figure 4. – Cascade spectrum at balanced rotor radial response.
Figure 5. Bode and polar plots of rotor synchronous (1x) response. Graphs indicate existence of low-frequency structural resonance.