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1. INTRODUCTION

1.1 Summary

This report details research performed under NASA Grant NAG3-491,
with startup date of November 15, 1983 and completion on December 31,
1985, The research centers oﬁ evaluation of fhermoviscoplastic
constitutive models for metals at elevated temperatures. The primary
intent of the research was threefold in nature: 1) to improve existing
experimental facilitiés within the Mechanics and Materials Labs at Texas
A&M University in order to perform the complex egperiments required
under the grant; 2) to compare existing models to experiment for the
materials to be discussed herein; and 3) to extend existing models where
necessary to better predict complex material response. The research
group consists of Drs. W.E. Haisler and D.H. Allen, assisted by five

graduate research assistants.

1.2 Acknowledgement
The authors express their thanks for the support provided for this
research by the NASA Lewls Research Center. The technical grant monitor

is Dr. R.L. Thompson.

2. RESEARCH OUTLINE
2.1 Summary of Completed Research
The 1important details of the research are outlined in this
section. The findings are divided into the following six sections: 1)
numerical integration techniques; 2) thermodynamics and internal state
variables; 3) experimental iab development; 4) comparison of models at

room temperature; 5) comparison of models at elevated temperature; and



6) integrated software development. These topics are summarized in the
rollowihg seven sections (2.2 through é.7). Fufther details are given
in the technical reports in the appendix. A summary of important
findings is given in Section 2.8. - . ,A/QQJSj};/
N86-30228 D,-37
2.2 Numerical Integration Techniques _3 ‘/ ?

The sensitivity of the unified constitutive theories proposed by
Bodner, Walker, Krieg, and Miller, to numerical integration techniques
and slight changes in material parameters was investigated. Evaluations
were based upon numerical simulations of Hastelloy-x at 1800°F, in
uniaxial form, by specifying input strain histories and comparing output
stress histories. The constitutive models selected for this study were
chosen primarily because of the availability of a prescribed methodology
for material parameter evaluation. In addition, they appear to be the
most qualitatively attractive theories available and thus Qarrant
further evaluation.

The 1investigation begins by presenting the various models in
uniaxial differential equation form, followed by a description of the
methods used for material parameter evaluation. The main thrust of the
research was to assess the degree of sensitivity of each quel;:to
integration techniques and/or variations in the respective material
constants. An example is shown in Fig. 1 for Bodner's model.

For the numerical time integration study, four commonly used
algorithms were selected. These included Explicit Euler Forward
Difference, Implicit Trapezoidal, 4th Order Runge—-Kutta, and Trapezoidal
Predictor—Correction.methods. In addition, four differégt strain rate

input histories were selected to insure that evaluations were not biased
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to one specific simulation. The strain histories considered were not

developed to model any specific physical phenomena. However, they are

répresentative of conditiohs under which a material could be strained
either in the laboratory or the field.

The integration investigation was divided into two tasks. The
first task included a comparison of the numerical stability of each
constitutive theory in order to assess the degree of nonlinearity of the
prescribed growth laws. The comparisons were based upon predicted
stress—strain‘ behavior for constant strain rate tests simulating
monotonic loading. Explicit Euler Forward integration was used to
obtain stress histories for various time steps. It was concluded that
Miller'é model was the most sensitive to step size variatioh because of
the oscillatoby response of the stress-strain curve for the larger At
Qalues. It is pbstulated that the 6scillatory nature of Miller's model
can be tracéd back to the hyperbolic sine function that is used to
éharacteriie the inelastic stréin rate and other growth laws.

In addition, it was found thaﬁ the predicted stress response for
éach model appears to be "self correcting"” for large time increments
when the constitutive equations are integrated by the Euler method.
~This "self-correcting" phenomenon appears to be an intrinsic property of
the prescribed growth laws and the coupled nature of the equations.

The secbnd task of the integration investigation was to evaluate
the constitutive theories in terms of solution stability, accuracy, and
computational z=fficiency when numerically integrated using the various
algbrithms considered. A test matrix consisting of integration method,
-time step sizés, and strain input histories was established in order to

make qualitative and quantitative comparisons. For each strain history



considered, a baseline or "pseudo correct" solution was obtained

"analytically, since no experimental data were available.

The computational efficiency of each integration method was
obtained through selection of equivalent At's, Euler's method was
ovserved to bé the most efficient, followed by the Implicit Trapezoidal
method, then the i4th 6rder Runge-Kutta method, and finally the
Trapezoidal Predictor—-Corrector method. In addition, each model was
eQaluated for its computational efficiency. The results indicate that
Walker'é model resulted in the fastest execution time, followed by
Krieg, Bodner, and Miller, respectively.

In'terms of qualitative and quantitative comparisons the following
observationé weré made: 1) In general, for equal time step size and
equivalent computation integration times, the Uth order Runge-Kutta
hethod consistently overpredicts the state of stress while the
Tfapezoidal method generally underestimates the stress history. The
Euler and Predictor—corfector methods appear to provide accurate results
at any point in the simulation; 2) the amount of stress—overshoot (for
the larger step sizes) appears to grow with increasing strain rate; and
3) no "self-correcting" tendency was observed when either the U4th order
Runge-Kutta or Trapezoidal method was used.

Another.imbortant issue this research addressed was what amount of
degradation in predicted response could be expected due to variations in
material constants. Two procedures were developed to study this. The
first procedure characterized the sensitivity of each constant within a
particular constitutive model. Each constant's sensitivity to variation
was determined by adjusting it by 5% and comparing predicted results.

The second procedure provided an "upper bound" on the effect that



experimeéntal error would have on the determination of the material
parameters and ultimately, predicted response. The effect of
experimental uncertainty was studied by adjusting numerical test data by
+5% and then using the adjusted data to determine new material
constants.

From the results of the sensiﬁivity study, the following
observations were made: 1) For the 'load history considered,
constitutive models_can have up to a 12% variation in predicted response
for as little as a 5% variation in a given material constant; and 2)
Miller's model was shown to be the least sensitive to material parameter
variation possibly due to its strong microphysical basis. On the other
hand, Walker's model was the most sensitive, showing a 30% over-
prediction in stress during the relaxation period of the load history
considered. Bodner's and Krieg's models were found to be between these
two extremes. Further details on this phase of the research can be
found in Appendices 6.1 and 6.2.

It should be noted that the conclusions reached from this study
are baseé on the use of uniaxial simulations. It is expected that the
conclusions would hold for multiaxial situations. However, Ffurther

evaluation is needed in this area.

2.3 Thermodynamics and Internal State Variables

As a part of the researcn effort it was concluded that a casting
of the currently available constitutive models into a common framework
would help in identifying the relative merits and/or deficiencies of
each model. For this purpose it was decided to cast the models into the

framework of internal state variable (ISV) theory, in which a set of



state variables which are not observable are utilized to account for

_thermodynamically dissipative processes such as dislocation movement,

grain boundary sliding, deformation twining, phase changes, etc. This
framework has been used to determine qualitative differences in the
models studied under the current grant. Furthermore, in this process it
was found that certain thermodynamic issues could be clarified.

The specific ISV framework uses the approach initially proposed by
Coleman and Gurtin [1], in which the observable state variables are

supplemented with a set of internal state yariables:

where atj are a set of n internal state variables, in this case
designated as secéhd order tensor functions of space X and time tf

The methdd of Coleman and Noll [2] may be utilized to obtain
thermodynamic constraints on the class above of materials including a

broad range of -thermoviscoplastic metals. The results are:

O%1 T P 3e. ' (2)

where o

K1 is the stress tensor, ¢

K1 is the infinitesimal strain tensor,

p is the mass density, and h is the specific Helmnoltz free energy,

given by

h=u-Ts = h(e_, T, a..) (3)



where u is the internal energy, T is the temperature, and s is the
entropy. The Helmholtz free energy is then expanded in a Taylor series
- in strain, témperature, and the ISV's and substituted into (2) to obtain

the stress-strain relation:

1

=C (Ekl - eEl - akl ) (%)

%3 ijkl

where Cijkl is the elastic modulus tensor, and eglis the thermal strain
tensor. The above equations serve as a framework of comparison for all
of the models considered in this research. These are adjoined with ISV

gbowth laws of the general form:

_ p
alJ QlJ (Emn; T, an) : s (5)

The ISV's represent localiy averaged measures of dislocation arrangement
(back stress) dislocation density (drag stress), etc. ISV growth laws
(5) represent the principal differences between the models studied in
the current research effort. These  equations have been itemized in
Table 1 for ﬁen different current models. Qualitative differences in
the models are also-discussed in the table.

The main content of this part of the research has been to review
and clarify the continuum and thermodynamics based internal state
variable model for application to thermoviscoplastic metals, In this
process the following points have been made:

1) the definition of an internal state variable utilized in this

model has been clarified;



TABLE 1.

.

COMPARISON OF UNIAXIAL MODELS

ALIVYNO ¥00d 40
$1-39Vd TYNIDNO

Stress-Scrain Material |
Theory Ralaxat {on Internal State Variable Growth Laws Coment s Perameters |
|
i
|
I T :I 0-G
Cernocky (T1) e=Efe-c -c") | (T2) ¢ ““Fr- 1. C=G(c,T) is obtained E.R .RL.R‘z,
and ' from extrapolation of Ry :
Krempl relaxation data. :
2. k 19 curve-fit to
|
|
. .[h-chl
Z ]
R, e §
keR e * :
. la-a, 112 L
Krieg, (T3) o~E[c-¢") ('rb) il- <y % sgn(o-ay) E.c),cy.€5,
Swearengen, Ceal €4sCgeCg.C
+€5:€6C7¢
and ('1‘5)1‘2 "‘1'°3&‘I’°A°§[’ 5 1-llf;gn(al_) ay .n |
Rohde 2. 1 n ¢ ,
(T6) 02“‘:6" |- °7[°2°°2°] i
1,
-2n i
Bodner (17) ooE[c-c!) (e)! ila -——D e [ ][°2] sgn(o) 1. Up-oél :'DO'“'m'?‘l'
et al. ZpA T |
. . ay-21]"
(19) °z'[z1'°z]"p'“1[""zr]
1 1,1 ooy 1]° \ |
Walker (T10) o=E{c-¢"] (T1l) % agn(o-uz) 1. R is the cumulative E.n.nl.nzj,ni.
inelastic strain: n‘.ns.nﬁ.hr
@27 4pmlnytn )it t Regt e e’y ng.Rg.Ryq.a.
~loy-ay -n ef101e] Isg¢in N‘R][Xn(mﬂ)])* loy - oy [* ) Q.ay 0,
Y 3 e b 2. The growth law for a,, 1" 2l
; €q.(T13), 1s not ‘
(T13) 52'05|ix|"\9“I|°2‘“10['2‘°2°]q presently used in the ‘[
model; ey is assumed
to be & constant, !
‘{
.7 1,1 lo- 1' 1.5 -2 “'
M{ller (T14) o=E[c-c"~¢ )] (T15)" ¢‘=Bo’|sinh(—=) ugn(c-el) l.0'=¢ ior'l‘>0.61‘m E.B,n,H A

(116)1+2 & =k, 11, Bo’ [sinh(Allcll)] sgn(ay)

(rin? 5,eH, |t |[c2+|.1|

..2]-u2 zlo'[oinh(Az 1®

. .'[u:&' ][m( ?-;Ti'i )+1

for T<0.6 T,

rm is uinltkg tap.

k is the gas constant.




o-a
Coscotte | (T18) e=E[c-c!-cT) J(min)? l!-f(l—;z—l-l) sgn(o-a;) Lfh,r,h,n 4
and ‘T, aTe expar imenzally
Leckie »(120)2 3= % hc.l -0, : determined fisctions,

(T21) éz-h‘ -

’ M
/2[lo-a | .
Hart (122) 0=E(e -¢X-eT] (123} &x_é,[:z;]" [“’ ‘1] sgn(a-a,) 1. The drag stress is Ear v,
. ® g g taken to be a constant, Cm,f£,Q.%,
= v, hance there 4s 1o i.¢c
‘i “ .& g % ﬂz as in othar todels,
(rzfoza-’é‘-—[—-]———-"r - = Thers 1s, however,
7 303 JL/A Q| third interral state
1:\('{]_]'.,,1 .8 g varisble, termed o) .
> 0 . T {s the sheolite tep.
'2"&' o1* a) g™ Z.R:::hpeau:::
(125) a3 e[.}] N [;{ T s 3 =

_01_.

- n-1
fobinson |  (T26) e=E(e-¢® -¢T] (T27) ilm z-}[,%—‘—"{-‘-ﬂ fo-e,] | 1.6 1a the tnictal value | B Kin,,
‘ . - 2 ""'°o
e
n-p-1 of .
(28)? )= - n[ﬁ;—'%ﬂ oy 2

2uH
A

Valanis (T29) e-E[c-.I_.,T] (T30) EI-klfl(c,c): + szz(a,c) 1. R simplifisd E.kx,kz,fl, 1
1T 1 form of Valanis® model. £,
| (T3 o=Ele-c -] (132) eilo-0)] + &lovey] » 1. Constderable curve- Eigs.t
an ]
Haisler : (T33) &;=i(0-0,] firring and interpola-
2 tion of stress-strain
(136) a,°£1) _ and creep data

required to obtain
material parexaters
i, g ads.

1 x>0
1 sgn(x) B{O x=0

1 x<0

2 il can be sbstinued directly into growch lav for oy &nd o, o
obtain a form consistent with internal state variable growth laws (14).

Note: parentheses ( ) imply “function of”’, whereas brackets { J imply
mulcipiication, :




S e

'disloéééiaﬁﬂér;éhé;ment, dislocation d;héig;; and iﬁterg?gnular damage,

3) in the cbntext of the ISV definition given here, inelastic
strain may also be interpreted as an internal state variable;

M) the path dependent Helmholtz free energy may be expanded in a
second order expansion in elastic strain and temperature in order to
obtain a stress-strain equation of state;

5) rate dependence enters the constitutive equations implicitly
via the inelastic strain, as demonstrated by the nonlinear standard
solid analog; and

6) a three—dimensional generalization of the standard solid may
be used as a means of comparison of the general form of several
cﬁrrently proposed models.

Further details of this development are contained in Appendix 6.3.

2.4 Experimen;al Lab Development

This section describes the test equipment used to carry out the
tests required for this work. The first sub-section describes the test
sef-up used for the éreep and strain trangient tests based on a dead
weight creep frame. Topics to be covered include the load frame, data
acquisition, and temperaturefmeasurement and control. . The next sub-—
section describes the test set-up used for the monotonic strain rate,
fully reversed cyclic tests, and transient tests during cyclic loading
as well as creep and strain transient tests based on a computer

controlled test set-up.
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Creep Frame Test Set-up

ALoad Frame. The load frame utilized was a creep frame produced at
Texaé A&M University. The initial configuration included a constant
load cam and a consﬁant stress cam as described by Garofalo, et al. [3].
The 1ift for the pan was provided by an ATS (Applied Test Systems) 2081
cyclic load module.‘ Sévebal modifications were made to this set-up. The
constant stress cam was .removed and a second constant " load cam
instaliéd. This inckeaéed the maximum weight limit from 400 1lbs. to 800
1bs. This aisé increaéed the stability of the loadpan during load-up
and proQided a seveﬁ to one 1load magnification. The 1load pan was
increased in size and supports wereA added to further aid stability
during load-up. The'cyclic load table was removed and replaced with a
Century;Fox médel CF-59 5 ton capacity hydraulic jack. This provided
more 1lift capacity 'and gave more room fér machine deflection during
load-up. The Pinal configuration of the machine is shown in Fig. 2.

Further improvements included a hbre advanced load pan which would
provide automated :removai and replacement of portions of the load.
Jones, et al. [U] have described éucﬁ an apparatus. This modification
is needed to improve the results of the strain transient tests. A
second improvement was a more advanced method of load-up. For this
purpose, a pneumatic jack was included.

Data Acquisition. The load was measured with a Strain sert TLN20-

256K Tension Link driven by a Hewlett Packard 8805A Carrier Preamp. The
strain was measured with an ATS model 4112 LVDT (Linear Variable
Displacement Tﬁansducer) and the extensometer was driven by an ATS model

6974 signal conditioner. Two Hewlett Packard 8803A Low Level Preamps

-12-



Fig. 3. MTS 880 110Kip Testing System
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and two low pass filters were necessary to achieve the necessary

resolutién.riLoad ahd;strain méésuremenis were ;ecorded 66 ; Hewléﬁé
Packard series 7700 strip chart recorder.

This data acquisition system was very prone to drift, noise, and
nonlinearity. All strain . amplification, filtration, and data
acquisition. equipment were eventually replaced with a Kiethly model 197
logging digital multimeter. This set-up proved much more stable.
However, it lacked the ability to take in a large number of data points.
Much improvement is needed in strain data acquisition to produce a
system which is stable, can take in large numbers of points, and has
sufficient resolution. A common set of transducers and a common data
acquisition system should be utilized for both load frames. This would
negate errors arising from using two different systems.

Temperature Measurement and Control. An ATS 2961 Clamshell oven

and an LFE series 230 température controller were used for temperature
control. Temperatuﬁe méasurement was handled by two 20 gauge K-type
thermocouples. These were placed in contact with the sample in the
middle of the gauge section on diametrically opposite sides. One
thermocouple was used as input to the teﬁperature controller. The other
thermocouple was input to a Fluke 2176A digital thermometer for readout.

Improvements in this system would include the ability to monitor
the temperature at several points simultaneously along the gauge
section. The temperature should also be input to a data acquisition
system. The method of thermocouple attachment should also be upgraded.
The optimum method of thermocouple attachment would be individual

welding of the leads to the sample surface. This is described in the

ASTM Thermocouple Handbook [5]. Such a procedure was attempted with 20

-14-~



gadge-thermocoupie wire‘and a Duracom thermocouple welder. The samples

tended to fail prematurely at.the. thermocouple welds. _ Therefore, this_._ __. _
method of thermocouple attachment was abandoned. Another possible

method using smaller 28 gauge thermocouples was used with the strain-
cbntrolled set-upv and will be discussed in that section. A common
temperature measurement and control system for both load frames would be

another improvement. This would eliminate relative errors between the

two systems.

Computer Controlled Test Set-up

Load Frame. The load frame utilized in this set-up was an MTS
(Materials Test System) model 880 electro hydraulic testing machine.
MTS 652.01, water-cooled, hydraulic grips allowed fully. reversed cyclic
tests to be carried out at high temperature. The frame was controlled
by a Digital Micro PDP-11. Computer programs were written to run
monotonic tension tests, cyclic tests, cyclic tests with hold times,
creep festé, and creep stress drop tests. The load frame is shown in

Fig. 3.

Data Acquisition. The Micro PDP-11 also handled data acquisition
functions. An MTS 661.21A-02 10 kip load cell was the load transducer.
An MTS 632.41B-02 axial extensometer was the strain transduéer. This
device had quartz extension rods which contacted the sample at two 120°
punch holes. All data were stored on 5;25 inch floppy diskettes and

could be retrieved in hard copy or graphical form.

Temperature Measurement and Control, An MTS 652, three-zone,
clamshell furnace and three Research Incorporated 63911 Process
Temperature and Power Controllers were used for temperature control.

Temperature Measurement was handled by six 28 gauge K-type

-15-



thermocouples. Thése were placed in contact with the sample. Three
_ thermocouples were fed ,into a Fluke 2176A Digital Thermometer - for
readout. These were placed with one each at the top, middle, and bottom
of the gauge section. The other three thermocouples were fed into the
temperature controllers. These were placed in the center of the furnace
zone each was to sense. One thermocouple was placed in the center of
the gauge section and one on each grip.

The thermocouples were supported at the grips by fiberglass
thread. They were fixed to the sample by self-supporting means. The
thermocouples at the top and bottom of the gauge section were wound
around the sample. The thermocouples used in the center of the gauge
section were brought into the oven from different directions and tied to
each other. These thermocouples were then wound around the sample. The
thermocouples used in the center of the gauge section were brought into
the oven from different directions and tied to each other. These
thermocouples were then wound around the sample for contact. Welding
the thermocouples to the sample would have produced harder contacts with
more reliable temperature measurement. However, as mentioned earlier,
premature failure occurred at the welds.

Further details about the experimental development are given in

Appendix 6.5.

2.5 Comparison of Models at Room Temperature

The purpose of the room temperature testing was to compare three
theories based. on considerations of microstructural behavior. These
theories are those of Krieg, et al., Bodner, et al., and Miller, et al.

(references [18], ([107], and [115], respectively, in Appendix 6.4).
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Each theory is pfopoéed in uniaxial form to simplify experimental and
analytical analysis. Since each theory is proposed for a different
material, a set of experiments is performed with a candidate material in
order to create a common experimental data base with which the
mathematical representation of each model can be characterized. These
theories are subsequéntly analyzed quélitatively and quantitatively over
a broad range of material behavior to determine their suitability for
predicting inelastic deformation.

The experiﬁental data base requirements for each theory are as
follows. The theory of Bodner, et al., requires several constant strain
rate ﬁensile tests and several creep tests. The theory of Miller,
et.al.,. requires several ﬁreep tests, several constant strain rate
tensile tests, and some information about the material such as the
melting point and ;he activation energy. The theory of Krieg, et al.,
requires a cbnstant strain rate tensile test, a creep curve complete
with primary and secondary regions, and several stress—-drop tests in
which the étress is reduced rapidly during steady-state creep in order
to examine the resulting transient strain response. In each case the
actual number of tests, unless specified, is dependent on the amount of
data deemed necessary for accurate evaluation of the material constants.
The candidate material chosen is the aluminum alloy 5086 in the form of
uniaxial bars, and the material tests are performed at room temperature.

In determining the material constants for each theory from these
tests, the procedure proposed by the authors is followed. It is found
thnat some of these procedures may be difficult to implement. In
particular, difficulties are encountered in interpreting the stress-drop

test, in which the quantity of interest is a zero strain rate or merely

-17-



the absence of a resolvable strain rate after unloading. It can be seen

- -—_-that. the ﬁesultszofzthisﬁtestrane,somewhat dependent- on _the_resolution __.

of the experimental equipment. In addition, the values of several
constants in tﬁe theories are set arbitrarily, possibly 1leading to
inaccuracies in the ensuing predictions. Many procedures require
extensive data reduction and graphing, making an interactive data
acquisition and computer system an indispensable tool. Finally,
correction of the value of any one constant can be a difficult task, as
some of the constants of each theory may be interdependent.

Each constitutive theory is presgnted by highly nonlinear,
numerically "stiff" differential equations. Since the objective of this
research is not to determine numerically efficient integration
techniques for these equations, a stable first ofder forward integration
scheme was Qsed.

Numerical simulations were performed to compare the predictive
capability of'each theory to experimental results for constant strain
rate tensile testé, 'constant strain rate cyclic tests, and complex
straiﬁ rate history tests. As an ekample, Fig. &4 compafes theory to
experiment for the first cycle of a constant strain rate cyclic test.
The experiment is modelled fairly well, but it can be seen that the
elastic-inelastic transitions are too sharp, possibly indicating a need
for more éomplex hardening laws. In addition, the Bauschinger effect
may not be modelled welliby Bodner's theory and Miller's theory due to
the lack of a representation for the back stress. The discrepancy in
the width and height of the hysteresis loop predicted by Krieg's theory
may be due to the ambiguous measurements of the back stress in the

stress—drop tests, leéding to possible inaccuracies in the material

constants. Results and conclusions of comparisons of other tests may be

found in detail in Appendix 6.5 of this report.
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Fig. 4. Comparison of Models to Experiment for IN 718 at 1100°F
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2.6 Comparison of Models at Elevated Temperature

The theories used in this work include Bodner's anisotropic model [6];
Krieg, Swearengen, and Rohde's model [7]; Schmidt and Miller's model [8]; and
Walker's exponential model [6]. These models have been chosen because they
are widely publicized, examples of constant calculation methods have been
presented, and the attempt is being made to extend them to non-isothermal
mode1ling.

Bodner's anisotropic model utilizes an inelastic strain rate equation
extended ffom classical plasticity theory. The inelastic strain is assumed to
be exponential in stress. A directional parameter has been included as an
incrémenta]iy isotropic variable. The growth laws are microphenomenologically
based and model hardening, dynamic recovery, and static thermal recovery.

Bodner's model is given below:

2 1,202
D30 e -7 (7 sgna
L= ZI+ ZA = ZI + B sgno f
2V e m(z,- 2Ny W- A, 2 (—E—:—EZ) 1
=m{4 p~ A1 4 Z,
- Ay - 12, T2 A
B = M2(Z3 sgno-2") W - R, Z( Z; ) sgn Z (6)

Krieg, Swearengen, and Rhode's model 1is based on microphenomenological
considerations. The inelastic strain rate equation is based on a power law
formulation. The growth laws model hardening and static thermal recovery.

This model is given below:

t'= ¢ (%% "sgn (o-8)

A,(B-B )2

La,8-8)% > © -1) sqn(8)

B = A &
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Schmidt and Miller's model is a microphenomenologically based model which
uses a hyperbolic sine ihelastic strain ratelequation. The growth laws for
back stress and drag stress model hardening and static thermal recovery.
Parameters have been added to this model which account for strengthening due

to solutes. Schmidt and Miller's model is given below:

[s)
= - B o
.1 ' . E 1.5;n sgn(z -B)
¢ =8 sinh [ (—— Yo _ E
D+ Fso]
B=H &¢'-HB sinh (A[B]) "sgn(B)
- I Ay 3 v 1.5y n
D = H, [& |(C,+ |8 -7 0 ) Hy Cp B sinh (A,0'%)

log(]é])-Tog (N)]) 2
[ og(l [)-Tog ( )l) (8),

Fso1 = Fsotl max *P(-

Walker's model has an exponentially based inelastic strain rate
equatioh. 'The back stress growth law models hardening dynamic recovery, and
static thermal recovery. The dynamié recovery term has been modified to
handle negétive strain rate sensitivity. The drag stress variable allows for

cyclic hardening or softening. MWalker's model is presented beiow:

éI = EXQ C‘ C-B! -lsgn(U-B)

: : R
B=n, L8 [ng+ n, exp(—n5|1og(j—)|] R+ ng

Ro

o
1}

Dl+ 02 exp (—n7R)

R = |&!| (9)
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2.6:1 Matef{alikés;ohse

The material used in this work is Inconel 718 at 1100° F. A1l samples
have been sent through a common heat treatment prior to being tested. This
material system has several distinctive characteristics. The material
responds with negative strain rate sensitivity. Discontinuous yielding or the
Portevin-Le Chatelier effect is observed. The material cyc]icaliy work-
softens and has a fatigue 1ife of 5 to 30 cycles when cycled at strain 1imits
over + 1 percent strain. The yield point of the material is in the region of

95 to 110 ksi.

2.6.2 Experimental Considerations

The material samples were configured to meet ASTM standard E606-77T. The

tests were carried out on a computer-controlled, MTS 880, 110 kip, electro--

hydraulic testing machine. A Digital Micro PDP-11 computer controlled the
tests and acquired the data. An MTS 652 furnace system with three-zone
clamshell furnace and hydraulic grips was'uti]ized. An MTS 632-41-02 high-
temperature axial extensometer was utilized for displacement measurement.
Temperature was monitored with K-type fhermocouples and a Fluke 2176A digital
thérmometer. We1ding of the thermocouples to the samples initiated failure
and a self-supporting, surface contact method was used for thermocouple
attaﬁhment.

The test program consisted of the following tests:

(a) 2 monotonic tension tests to 1.5% strain

-3 6

([1] 3.15 x10 sec'1[2] and 7.25x10” sec'l)

(b) 5 fully reversed cyclic tests to t .8% strain

3 1 6

(strain rates between 1x10 “sec” “and 7x10” sec'l)
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(c) 5 constant load creep tests
' (applied stresses between 120 ksi & 140 ksi)

(d) Back stress measuring tests during cyclic loading and during secondary
creep

(e) a complex history test

2.6.3 Determination of Parameters
Beek [4] has shown that the parameter calculation process presented with
each model can produce constants which may produce undesirable model

response. A method for determining material parameters which 1essened.this

probiem and provided some commonality in the calculations was used. A set of

initial assumpfions was made based on the expected response of the material.

These initial assumptions included the following:

(1) Back stress was responsible for hardening in monotonic tension;

(2) Drag stress was responsible for cyclic softening;

(3) Thermal recovery could be neglected for rapid tests
(éT> 1x10'4sec'1)

(4) Drag stress thermal recovery could be calculated from slow cyclic tests;
and

(5) Back stress thermal recovery could be calculated from creep tests.

Hand calculations based on these assumptions provided initial estimates
of the material parameters. Computer-aided iterations were then used to tune
the response to match specific data boints. - The parameters which resulted
from the iteration process indicated that the following initial assumptions
would have been more appropriate:

(1) the inelastic strain rate equation constant could be set to provide the
proper scaling and strain rate sensitivity;
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back stress hardening produced monotonic hardening;
solution strengthening parameters produced negative strain rate
sensitivity;

drag stress hardening could be used to set cyclic work softening
characteristics; and

thermal recovery effects were small and masked by solute strengthening.

A comparison of the response of the solute strengthening corrected models

to experiment is shown in Fig. 5. These results provide several conclusions

concerning various parts of the models. The theories of Walker and Bodner

with exponentially based inelastic strain rate equations handle the negative

strain rate sensitivity most effectively. The theories of Krieg, et al.,

Miller, and Bodner produce oversquare stress-strain curves.
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The addition df dynamic }ecovery terms to the dfrecf%ona] érb@fh lawi
appears to help the strain rate sensitivity problem. Bodner's corrected model
shows less response to strain rate jumps. This is dug to hardening based on
plastic work rate. Walker's correction for solute strengthening comes closest
to reproducing the strain rate sensitivity. The correction applied to
Bodner's model produces unstable response and a correction similar to Walker's
should be considered. The correction factors negated the effects of thermal
recovery during hold times for Bodner's and Krieg, et al's. models. The drag
stress growth law of Walker provided the closet fit to data over several
cycles at the higher strain rates. Lower strain rates showed Bodner's model
handling cyclic response most effectively. Walker's model suffers from the
1ack of drag stress thermal recovery at the lowest strain rate.

These results show that the combination of exponential strain rate
equations with dynamic recovery work best for this material system. Isotfopic
thermal recovery and exponential growth of the isotropic internal state
variable are useful for modelling cyclic response.

Further details of this portion of the research are given in Appendix

6.5.

2.7 Integrated Software Development

Because of the vast number of constitutive theories available, only four
" candidate models were selected f&r this research. These include the work of
Walker[6,9], Krieg, Swearengen, and Rohde[7], Bodner[6], and Schmidt and
Miller{10]. These models were chosen primarily because they appear to be the
most qualitatively attractive theories available and thus warrant further
evaluation. For this paper, only the procedure developed for Walker's model

will be presented.
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The model proposed by Walker is a viscoplastic theory which uses an
exponential type inelastic strain rate relation. The growth law modeling back
étress is of the hardening/recovery format and accounts for both dynamic and
static thermal recovery. The drag stress term models isotropic hardening,
thus taking into account the cyclic hardening or softening characteristics of
a material. The uniaxial differential form of Walker's exponential model may

be written as:

o-B

.1 exe(—g ) -1

€ = 2 sgn(oc - B) . (10)
B =n,il - Biln, +n, exp(—nshog(—Ff—H R+ ng) , (11)
D =D, - D, exp(-n,R) , Ro (12)
S

R =le’|, (13)

where g is the applied stress, eI is the inelastic strain, B is the _bdck
stress, and D is the drag stress. A superposed dot above the variables
denotes differentiation with respect to time. In addition, 8 , Ny, N3, Ny,
Ngs Ngs N7, 02 and D, are material parameters. Therefore, this model requires
nine constants to be evaluated, along with selecting Young's Modulus E and the
strain aging parameter éo .

The tests required to determine the constants for Walker's model using
the following procedure include: 1) A series of constant strain rate steady
state hysteresis loops under fully reversed strain controlled conditions; 2)
cyclic hold tests performed on the unloading branch of the cyclic tests; and
3) long term monotonic tension tests. The monotonic tension tests may not be
necessary if acceptable values of the limiting stress oq3m €aN be obtained

from the first half cycle of the cyclic tests.
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Ther determination of the constants begins by plotting Oyipm VErsus
In (éI) . A nonlinear representation signifies that strain aging and/or
thermal recovery effects are present and thus need to be modeled. If %1im is
not obtained experimentally, it can be estimated in a manner similar to that
propqsed by Lindholm, et al.[6].

I

Under conditions of uniaxial tension loading, when ¢~ is assumed to be a

constant and equal to the applied strain rate, eq. (10) may be written as:

o =D 1n (sél) +B . (14)
Using the evolution equation defining the back stress (eq. (11)) and on the
physical basis that D vremains constant during monotonic loading,

then do/deI (or o) may be written as:

o =n, - 8ln, + n,exp(-n,|log (—g—)l) + nG/éI] . (15)
R

0]

Thus, equations (14)'and (15), can be combined yielding

o= -No + [n, + NDIn(se!)] ,  (16)

where .
N =n, +n, exp(-ng|log(--)[) + ng/e! . (17)

R

0

Therefore, equation (16) indicates that a plot of o versus ¢ will be linear,
having a slope of N and an x-intercept of %1im
The constant ng is computed by determining where the effect of strain

aging is considered negligible and may be written as:

-28-



ny = -[In(x)/110g (2|1 . (18)
R

0

The constants ﬁo and ﬁl represent the strain rate at which the strain aging
correction is a maximum and minimum, respectively, and v denotes the residual
correction at rate ﬁl . It should be noted that t also affects the rate of
decay of the strain aging correction and selection of too small of a value
will result in a very localized correction.

The next step in this procedure is to compute the dynamic and static
thermal recovery constants n3, n,, and "6 using equation (17). Equation (17)

can be rewritten a number of times, corresponding to the different monotonic

tests as:
N, = n; +n,f. + nG/é£ . (19)
where .
. R
f; = exp(-ns[log (—)[) . . (20)
R

0

Thus, the three parameters, n3, ng, and ng, may be obtained simultaneously
using a multiple linear regression scheme.
The constant n, is computed on the basis that B saturates to By;, at
large inelastic strains. Hence, B=0 and equation (11) reduces to
n2

B,. = ) o (21)
1im n, + nf + nG/éI

If it dis assumed that the ratio °exp/Bexp will remain the same for the

1imiting condition at sufficiently large inelastic strains, then

8] Gqs
Bexp - B11m . (22)
exp Tim
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Substituting eq. (21) into (22) and solving for n, results in

) .1
[n; + n,f + n./e o, B
n, = 3 “ 1im_exp . ‘ (23)
g
exp
where 5y im values are obtained from long term monotonic tension tests
or e-plots and Qexp and Bexp values come from cyclic hold tests.

The initial value drag stress Do and the inelastic strain rate scaler g
are determined by rewriting equation (14) using the limiting values of ¢ and

B as:
.1 '
o14m = Byim = Do1n(e’) + D In(s) . (24)

Since Byj, fs given by equation (21), it can be substituted into (24)

resulting in

8.5 = DoIn(E) + DgIn(s) (25)

where
n2

= oy, - i 26)
B~ “lim -1 (
¢ n, +n, +n./e

é

Equation (25) indicates that a plot of § g versus 1n(éI) should be  linear,
having a slope of 0g and an intercept of D In(g) from which g can be found-
directly.

Up to this point, the only tests that were needed, in order to compute
the material parameters, have been monotonic tension and cyclic hold tests.
To obtain the isotropic hardening and recovery constants 0y, 02, and nq,

saturated cyclic hysteresis data are regquired. By estimating the cumulative

-30-



inelastic strain from applied stress, E, and strain amplitude and assuming

that D saturates to D), then ny can be approximated as:
n, = -1n(1)/Ravg . (27)

where Ravg is the average of R for a number of tests and v is an approximation
of zero.
On the physical basis that B saturates much more rapidly than D, equation
(14) can be written as:
0. - By,
0 - D lim 1im

. = . , ' (28)
1im 1 1n(ee1)

where

Byin = Mo/N (29)

The values of and N in equations (28) and (29) are estimated from the

®lim
o-plot aftér cyclic saturation has occurred. If several tests are used, Dg

would be computed as the arithmetic mean.
The final parameter to determine is D,. When R=0 equation (12) reduces

to

2 s , (30)

from which DZ may be computed directly, completing the constant calculation
procedure.

The computer algorithm used to compute the material parameter proceeds in
the following manner:

1) Values of and N from monotonic tension tests are computed using

%Vim
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equation (16) and a least squares procedure.
2) After selecting Ry, R, and 1, ng is evaluated using equation (18).

3) The parameters nj, ng, ng are determined from equations (19) and (20)
using a multiple 1inear regression scheme.

4) The back stress hardening coefficient n, is computed directly by
equation (23).

5) The constants Dy and 8 are evaluated using equations (25) and (26)
" via a least squares procedure.

6) After computing the cumulative inelastic strain from the experimental
data, ny is evaluated directly from equation (27).

"7) Dy and D, are computed'using equation (28) and (30).

A method for obfaining the material parameters for Walker's model has been
presented | which is a synthesis " of both physical and numerical
abproximations. The associated computer algorithm allows the user to use
either a totally automated procedure or engineering intuition at selected
points when computing constants. Numerical simulations of Inconel 718 at

1100°F are to be presented.

2.8 Conclusion

Several general conclusions can be made from the current research. These
are as follows:

1) Euler's method is the most efficient for integrating the models of
those methods considered herein;

2) ~Walker's model is the most economical to integrate, while Miller's
model is least economical and also tends to be unstable;

3) ISV theory can be used as general framework for comparing all of the
models in the current literataure;

4) a laboratory has been developed at Texas A&M which is capable of
performing all of the complicated elevated temperature experiments necessary
to perform the research detailed herein;

5) for aluminum at room temperature, none of the models considered
herein appears to be very accurate in predicting uniaxial cyclic response;

6) at 1100°F Walker's model appears to be most accurate for predicting
the uniaxial cyclic response of IN718.
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NUMERICAL CONSIDERATIONS IN THE- DEVELOPMENT //'é;‘fiiff—_d

AND IMPLEMENTATION OF CONSTITUTIVE MODELS

“Pred pur gs
W.E. Haisler and P.K. Imbrie
Aerospace Engineering Department /1/3ﬁ5<'55 /:7'66/

Texas A&M University
College Station, Texas 77843

Several unified constitutive models were tested in uniaxial form by
specifving input strain histories and comparing output stress histories.
The purpose of the tests was to evaluate several time integration methods
with regard to accuracy, stability, and computational economy. The sen-

sitivity of the models to slight changes in input constants was also in-
"vestigated. Results are presented for IN10OO at 1350°F and Hastelloy-X at

1800°F.
INTRODUCTION

The characterization of the constitutive behaviour of metals has its
roots in the early work of Tresca, Levy, vonMises, Hencky, Prandtl, Reuss,
Prager, and Ziegler (Refs. 1-8). These early models are incremental in
nature, assume that plasticity and creep can be separated, and they incor=- .
porate a yield function, flow rule, and hardening rule to define the plastic e
strain increment. These original incremental theories have been expanded
and modified by many researchers so that they provide adequate, and often
very good predictions of rate-independent plastic flow (see for example -

Refs. 9-10). However, they are sometimes criticized as having no formal »
micromechanical basis upon which to make the assumption of an uncoupling ‘ﬁe
of the inelastic strain into rate-independent (plastic) and rate-dependent

(creep) strain components. Nevertheless, the classical incremental theories

are widely used.

During the last ten years, a number of unified constiutive models have
been proposed which retain the inelastic strain as a unified quantity with-
out aritifical separation into plasticity and creep components. These in-
clude the models developed by Bodner (Refs. 11-13), Stouffer (Refs. l4-13),
Krieg (Ref. 16), Miller (Ref. 17), Walker (Refs. 18-19), Valanis (Refs. 20-
21), Krempl (Ref. 22), Cernocky (Ref, 23-24), Hart (Ref. 25), Chaboche (Ref.-
26), Robinson (Ref. 27), Kocks (Ref. 28), and Cescotto and Leckie (Ref. 29).

- The applicability of these viscoplastic constitutive theories (mostly to

high temperature applications) has been investigated by several researchers.
Walker (Ref. 19) compared the predictive capability of several models (Walker,
Miller and Krieg) for Hastelloy-X at 1800°F. More recently, Milly and Allen
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(Ref. 30) provided a qualitative as well as quaatitative comparison of the
models developed by Bodner, Krieg, Walker and Krempl for IN10O. Both Refs.
19 and 30 conclude that these models generally provide adequate results

for elevated isothermal conditions, they provide poor and overly-square
results at low temperature, the material constants are often difficult to
obtain experimentally, the resulting rate equations are "stiff'" and sensi-
tive to numerical integration, and the models do not provide any satisfac-
tory transient temperature capability. Beek, Allen,.and Milly (Ref. 31)
have shown that all the unified viscoplastic models mentioned above can be
cast.in a functionally similar form (in terms of internal state variables).

None of the published literature provides a thorough evaluation of cur-
rent viscoplastic constitutive models with comparison to experimental re-
sponse for complex input histories. Such an evaluation is difficult at pre-
sent for many reasons, namely: 1) Material constants for most models are
usually available only for a single material and often for a single temper-
ature; 2) The experimental procedures given by model developers for deter-
mining material constants from experimental data are often sketchy at best;
3) Material constants for some models are often obtained by trial-and-error
and are not based on experiments; and 4) There is a lack of good experimental
data against which the models can bé evaluated (that is, test data which is
significantly different from that used to generate the material constants).

The purpose of the present paper is to report some preliminary evalu-
ations of several of the unified viscoplastic models (Bodner, Krieg, Miller,
and Walker). These four models are evaluated with regard to 1) their sen=~
sitivity to numerical integration and 2) their sensitivity to slight changes
in input material constants.

CONSTITUTIVE MODELS CONSIDERED

The constitutive theories which have been studied to date include Bodner's
(Refs. 11-15), Krieg's (Ref. 16), Miller's (Ref. 17), and Walker's (Refs.
18-19). These particular models were selected for this initial study be-
cause material constants for Hastelloy-X were available for three of the
models. Other models are currently being considered as material constants
become available. Each model is listed below in uniaxial form using a con-
sistent notation as presented by Beek, Allen and Milly (Ref. 31). 1In Ref.

31, it is shown that all of the current viscoplas:ti:z zcdels considered mzv
be written in uniaxial form as

g = E(e - @) - eT) 1)

where g is stress, E is Young's modulusT € is strain, a; is the inelastic
strain (internal state variable), and €* is the thermal strain. Each vis-
coplastic theory postulates a particular growth law for the internal state

variable(s) and the inelastic strain is obtained by time integration of
the growth law for o, i.e. '
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where

t

= . 1 ]
o f %, (t")de (2)
. day; .
Ctl = '&t—‘ = al (s! T’ azt a3l LA am) (3)

In equations (2) and (3), t is time, T is temperature, a, is the back stress
(related to the dislocation arrangement and produces kinematic hardening

or the Bauschinger effect), and ay is the drag stress (which represents

the dislocation density and produces isotropic hardening).

Bodner's Theory

The growth law for the inelastic strain in Bodner's model may be writ-
ten in uniaxial form as

a

where

-2n
2 n+l g
-,/—_‘TDO exp ["’ (‘23“) (a;) ] sgn(0) (4)
a, - 2.\
° 3 I
3 = m(Zl - 0.3)wp - AZI (——Z-I—) (5)
=g &l ' (6)

The quantities E, Dy, n, m, ZI’ A, Z, and r are material constants. As
noted before, the variable @3 1s ‘similar to the drag stress used in
many models (a measure of isotropic hardening or dislocation density).

It is noted that the model contains no parameter representing the back
stress and cannot account for the Bauschinger effect in kinematic harden-

ing materials.

The material constants are tabulated for IN100 at 1350°F

(732°C) in Table 1 (taken from Ref. 14).
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Krieg's Theory

The inelastic strain growth law for the model developed by Krieg and
coworkers may be written in terms of state variables representing back
stress and drag stress:

2

. Io - azl

o, = C1 —__E;—_- sgn(g - az) (7)

3, = Cy b, = C, o [exp(Cc a® ) - 1] sgn (&) @)
27 %3% T ®2 5 %2 g 1%,

4y = Colay| = Co(aq = ay )P (9)
3 671 773 3o

The model contains ten constants (Cl’ C2 e e ey C7, E, a3°, and n).

These have heen evaluated by Walker (Ref. 19) for Hastellov-X at 1800°F
(982°C) and are tabulated in Table 2. It should be noted that equations
(7), (8) and (9) form a coupled set of ordinary differential equations.

Miller's Theory

The growth laws for Miller's model may be written in uniaxial form as

1.5
. ’ lo—azl
&, = B8' {sinh — sgn(c = a

(10)
! 3

2)

a, = Hjo, ~ HB8' [sinh (A |o,)]1" sgn(a,) (11)

. 2 3 ‘ 3\|?
= - — - ' 3 1
a3 HZ lall C2 + Iazl !1 23 HZC2 Be s;nh(éza3)q (12

Miller's theory contains nine constants which are tabulated for Hastelloy-
X at 1800°F (982°C) in Table 3 (see Ref. 19).
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Walker's Theory

Walker's nonlinear viscoplastic theory can be cast in the following
uniaxial form

lo - a,] °

1 ° ay sgn(o - @) @2

] nSR

a4, = (A, + 0o = (o, azo‘“a){|°‘1l 3R l_(“ +“R)2“(1+n6a 1)

3
+n, iaz - o }m-l}_ (14)

Gy = ng 8] = ng [aglay = g (a3 - 0y )° (13)
37 g 1% 9 191193 7 Pyo 3 7 %3

where R is the cumulative inelastic strain

jﬁ ac!
o}

The general model requires sixteen constants (E, n, m, q, nj, 102, . .
n 2 and o (c =0). In determining the constants for Hastelloy-X at 1800 F
o

de! : (16)

(982°C), Walker made several simplifying assumptions [including &3 = cons-

tant = a3(t=0)] which reduces the number of parameters to those shown in Table 4
(see Ref, 19). Further, the constants reporCed in Ref. 19 were developed from tests
using strain rates in the range 10 "% to 10 sec” ! and strain ranges of x0.67%.

NUMERICAL TIME INTEGRATION STUDY

The integration of the constitutive relationship given by equations
(1), (2) and (3) forms an integral and extremely important part in any nu-
merical solution of a nonlinear field problem. It has been observed by
many researchers that the coupled system of ordinary differential equations
defining the state variables may be locally "stiff" and thus are sensitive
to the time ster size and numerical algorithm. The accurate integration
of these stiff equations can be accomplished by various means: use of small
time steps, higher~order or multi-point integration schemes, subincrementation
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procedures (Refs. 33-35), "smart" algorithms which attempt to select appro-
priate time steps in order to achieve accuracy and stability (Refs. 36,37),
algorittms tailored for individual constitutive theories (Refs. 32,37), or
combinations of these approaches. In general, the computation time required
for the accurate solution of materially nonlinear problems is directly re-
lated to the numerical integration scheme used.

Regarding the constitutive models reviewed herein, Walker (Ref. 32)
uses a stable, iterative implicit scheme which takes advantage of the func-
tional form of the integrand in the development of the reccurence relation.
Miller originally used Gear's method (Ref. 36) to integrate the stiff equa~
tions in his theory but later concluded in Ref. 37 that an implicit back-
ward difference method was more economical and preferable to either Gear's
method or the explicit Euler forward integration method. The type of num-
erical integration scheme used by Bodner and Krieg is not knowm.

‘"The selection of an appropriate time integration scheme to be used in
a computer code is very important but is often based on the answers to such
questions as: "What i{s available in the present code?", "What will work
most of the time?", "What can we use that most users will understand?",
"What 4{s the cheapest and easiest to use?"', and the like. The usual re-
sponse given is "it depends on the problem being solved!"

In general, equation (3) may be integrated between time t and t + At
by writing .

t+At t+it
f da, =f @, dt (17)
t ‘ t
or
A t+it
Aal a al(c + At) - ul(r.) = j ul dt (18)

t

where @y 1is defined by the particular constitutive theory being used. The
present investigation considers four integration schemes: explicit Euler
forward integration, implicit trapezoidal method, trapezoidal predictor-
corrector (iterative) method, and Runge~Kutta 4th order method. The approx-
imations for each of these methods is given in Table 5.

Each of the integration schemes in Table 5 were used to obtain stress-
time and stress-strain responses for the four constitutive models considered
herein when subjected to the uniaxial, alternating square-wave strain-rate
history shown in Fig. 1. Figure 1l shows the 35 second response obtained
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bv Krieg's theory for Hastelloy-X at 1800°F using a time step of 0.l sec~
onds. For this time step, the Euler and trapezoidal predictor-corrector
methods provide essentially the same results and are virtually identical

to that obtained for all methods using a time step of 0.005 seconds. The
4th order Runge-Kutta method generally overestimates the peak response while
the trapezoidal method underestimates the response. Figure Z presents re-
sults for three integration methods such that the total computation time
for a 35 second response solution is approximately the same. For equiva~-
lent computation times, the Euler method provides the most accurate results
~although smaller time steps are required. Similar results are observed for
Miller's model.

Figures 3 and 4 illustrate that various constitutive models may behave
appreciably different using the same integration method (in this case the
Euler method). 1In Fig. 3, Miller's theory (for Hastelloy-X at 1800°F) gives
considerable oscillatory response for a time step of 0.005 seconds while
Walker's theory shown in Fig. 4 gives a much smoother response for the same
time step. Comparing Figs. 3 and 4, it is seen that a smaller time step
is required (with Euler integration) in Miller's theory than in Walker's
theory.

Figure 5 presents results for IN100 at 1350°F using Bodner's model.
Time steps were chosen for each integration scheme to obtain solutions which
required approximately equal computation times. These results, when com-
pared to solutions with much smaller time steps, indicate that the Euler
method provides the most accurate results. Again, the time step used is
smaller than that for the other methods but the computation time is the
same (for integrating the constitutive equations).

SENSITIVITY STUDY FOR MATERIAL CONSTANTS

In the previous section, results were presented which showed how the
numerical integration method used to integrate the constitutive equations
could affect the accuracy and computation times of predicted results for
stress-time and stress-strain responses. In this section, we consider
another important parameter in the application of any constitutive theory.
Namely, "how does the accuracy to which material constants are determined
from experimental test data affect the predicted response?"”

Figures 6 and 7 present results for Walker's model (Hastelloy=-X at
1800°F subjected to an alternating square-wave strain-rate history as shown)
wherein specified input material constants have been adjusted by 5%Z. Fig-
ure 6 shows the effect of a =-5% change (error) in the stress exponent n
(the most sensitive parameter). Figure 7 shows that a +5% error in all test
data required to compute material constants results in significant predicted
response errors, up to 307 over-prediction in the stress at a time of 35
seconds (during the relaxation period).

Figures 8 and 9 present similar results for Krieg's model (Hastelloy=-X

at 1800°F) and Bodner's model (IN10O at 1350°F), respectively. Both results
indicate that the most sensitive parameter is the stress exponent "n" and
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that a 5% error in specifying n may produce significant errors in the pre-
dicted response. Miller's model appears to be much less sensitive to er-
rors in input material parameters.

Figure 10 provides a comparison of the Miller, Krieg, and Walker models
for the Hastelloy-X test at 1800°F (using constants obtained by Walker for
all models). The Euler method was used with a time step of 0.0005 seconds
which provides a solution with no significant truncation error. The results
obtained here show approximately 10-157 differences in peak stress ampli-
tudes between the three constitutive models. Since no experimental results
are available at this time, no conclusions can be drawn as to which model
mere accurately represents observed test data. However, the results do
point out that significant differences (greater than 15%) can be obtained
for stress peaks and stress relation values through the use of different
constitutive models.

CONCLUSIONS AND FUTURE WORK

The results of this study are not complete since only a portion of the
available constitutive models and numerical integration schemes have been
considered. However, some tentative conclusions can be reached. First,
it appears clear from the present investigation, and the work of others,
that simple integration schemes (like the Euler forward defference method)
are often preferable to more complex schemes from the standpoint of accur-
acy, computation time, and ease of implementation. Although not reported
herein, our work in progress indicates that Euler's method used with a simple
subincrementation strategy provides the most accurate and economical solu-
tion for most constitutive models.

The sensitivity study on material constants indicates that most visco-
plastic constitutive models are significantly sensitive to one or more mat-
erial constants derived from laboratory tests. It has been shown that a
5% "error" in laboratory measurements may lead to errors of 25%, or greater,
in predicted stress responses. Although most model developers have fine-
tuned their models and input material constants for specific material/temp-
erature/strain-rate combinations, it is not clear that end-users will be
able to do so when called upon to develop material constants for a new sit-
uation. The problem can be negated to some extent by defining more explicit
tescing procedures for obtaining material constants and by guidelines de-
fining which constants are most sensitive to experimental error.

Our current and future work concerns the application of several inte-
gration schemes to the other constitutive theories, investigation of sub-
incremental strategies, and consideration of "smart" integration methods
which detect local "stiffness" and adjust time steps but without signifi-
cant computational expense. The material parameter sensitivity study will
be continued by considering other constitutive theories, and more impor-
tantly, by comparison with laboratory tests which involve complex thermo-
mechanical loadings including transient temperature inputs.
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Table 1. Material Constants Used in Bodner's Model
for INL1QOO at 1350°F (732°C)

Bodners notation Beek and_Allen's notation Numerical Value

E E 21.3x10% psi

n n 0.7

Zy 4 1.105x10° psi
1 i

m m 2.57x101 psi *

Do Dy 10" sec 1 -

A A 1.9x10 % sec !

r r 2.66

Z¥ Zy 0.6x10° psi

g (t=0) al(c=0) 0.0

Z, a5 (t=0) 0.915x10° psi
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Table 2.

Material Constants Used in Krieg'
for Hastelloy-X at 1800°F (982°C)

8 Model

Walker's notation
for Krieg's constants

Beek and Allen's notation

Numerical Value

Q3q

n

a1 (t=0)
a2 (t=0)
a3(t=0)

.0
.49

.0x1068 psi _ -
6.21x10 ° psi * sec !
4.027x10°7 psi 2

100 psi seci/n Jn-
4.365 psil™ " sect/PT2
13.2x10° psi

59,292 psi secl/n
4.49

0.0

0.0

59,292 psi

1
4
l

Table 3.

Material Constants Used in Miller's Model

for Hastelloy-X at 1800°F (982°C)

Miller's notation

Beek and Allen's notation

Numerical Value

2.363
2.616x10 ° sec !
1x10° psi_ -
1.4053x10 ° psi }
100 psi sec!/B
5,000 psi
4.355x107 22 psi 3
13.2x10°% psi

0.0

0.0

8,642 psi
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Table 4. Material Constants Used in Walker's Model
for Hastelloy-X at 1800°F (982°C)

Walker's notation Beek and Allen's notation Numerical Value

Q ' 2 -1,200 psi

a1 ny 0 psi (not used)

n; n2 1x10° psi

ng * 312.5

n7 nz 2.73x10° ? psil™ sec”?

n n 4.49

o o 1.16

E E 13.2x10°% psi

c(t=0) oy (£=0) 0.0

Q(t=0) : oz (t=0) 0.0

K(t=0) a3 (t=0) 59,292 psi
ng,Ngy,N19,9 0 (not used)

3 A nSR
R = o —
3R, | (?3 ¥ 9,R) fa TR * 1)

t+Are
o

Table 5. Numerical Integration Approximation for da) = cf 1 de
Method Approkimacion '
Euler Forward Difference A01= At &1 (t)
Trapezoidal Rule | A01= %—t-[&l (e) + &1 (t+ae) ]
Trapezoidal ?rediécor-Corrector Same as trapezoidal exf:epc iterate
Runge-Kutta 4th Order Aal = %(Kl + 21(2 + 21(3 + KA)

u

Kl. At &l(t,al(t))

K, At al(t+Ac/2.a1(:)+K1/2)

u

[}

At &l(c+Ac/2.a1(c)+K2/2)

~
[}

At oy (r.+Ar.,o.1 (t)+K3)
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ABSTRACT

The sensitivity of the unified constitutive theories, proposed by
Bodner, Walker, Krieg, and Miller, to numerical integration techniques
and slight changes in material parameters was investigated. Evaluations
were based upon numerical simulations of Hastelloy-X at 1800° F in uniaxial
form by specifying input strain histories and comparing output stress
histories. The integration sensitivity study involved the use of both
single and mu]tifstep integration schemes. The various algorithms were
compared with regard to accuracy, stability, and computational economy.
The material parameter sensitivity was studied by varying the material
constants by a specified amount and comparing predicted responses.
Numerical comparisons show that, of the numerical integration methods
‘studied, Eulers method is the most accurate, stable, and efficient pro-
cedure. The input sensitivity studies indicated that some constitutive
models are more sensitive to experimental errors than 6thers and that a
5% error in certain material constrants may lead to 15-30% changes in

predicted response.
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CHAPTER I
INTRODUCTION

For many years there has been a substantial amount of research
performed in the area of hodeling the constitutive behavior of in-
elastic deformation. Recently, new unified formulations have been
proposed which aré attracting much attention because these theories
treat the inelastic strain as a unified quantity, incapable of being
separated into time dependent and time independent parts. However,
thése new models have two potential problems which can effect their
predictive capabilities. These include sensitivity to the numerical
integration of the differential equations describing the inelastic
strain component, as well as a difficult and sometimes ill-defined
method of'determining the material parameters.

Recently, Beek, Allen and Milly [1] have shown that a number of
proposed thermoviscoplastic constitutive models can be cast into a
common internal state variable framework. The first state variable
is thé inelastic strain (sI) Whose rate of grthh is a function of both
current conditions (stress o and temperature T) and one or more internal
state variables. These unified formulations form a system of nonlinear
ordinary differential equations in the independent variable time (t).
Many researchers [2-16] have observed these equations to be well

behaved in some portions of the strain response and mathematically



stiff in other regions. Therefore, in order to obtain a stable and
accurate prediction of inelastic behavior, one must carefully consider
the method of integration. There are a variety of numerical
algorithms available, from the simple Euler integration scheme
wherein one mustbﬁudiciously select an appropriate time step size to
insure solution stability and accuracy, to the more sophisticated
method of Gear [7-9] where the step size is automatically selected
after checking for the existence of stiffness.

The growth laws which are used to describe the stress-strain
response of a particular material rely on a number of material
parameters. The material parameters (or constants) are determined,
either implicitly or explicitly, from a series of uniaxial tests
which are prescribed by the model developer. Typically some
combination of the following tests is required: 1) constant strain
rate tensile tests; 2) constant strain rate tensi]g tests with
intermittent hold times; 3) coﬁstant strain rate cyclic tests;

4) relaxations tests; 5) creep tests; or 6) stress drop tests.
The application of test data in determining material constants varies
- from model to model. In most cases, because of the lack of
standardization, it would appear that the end user will be burdened
with a trial-and-error method for determining specific material
parameters. This burden might be eased if.a quantitative assessment
of the méde] sensitivity to slight changes in material constants was
provided. However, there is no such information available in the

literature, nor is the problem even addressed.



The purpose of this research will be to evaluate numerical
simulations of several unified constitutive models, in uniaxial form,
by specifying input strain histories and comparing output stress
histories. Integration methods and slight changes to material
parameters will be the prime variables. This will allow for a
qualitative analysis of solution stability, accuracy, and sensitivity.

In fulfillment of these objectives, this thesis will proceed
in the following manher. First, a review of the pertinent literature
is presented in addition to a brief overview of the origin of
stiffness., Next, the constitutive theories considered herein are
discussed and the various methods used to determine their material
parameters are outlined. Finally, the numerical integration and
pafameter sensitivity study is presented, wherein the use of
various integration algorithms selected for this study are
investigated and the effects of varying material constants,
gimulating "experimental error", are analyzed. Evaluations are
based upon numerical simulations of Hastelloy-X at 1800° F, in

uniaxial form, when subjected to several strain input histories.



CHAPTER 11

BACKGROUND

Constitutive Modeling

Constitutive modeling of inelastic deformation is not a new
concept, it has been in practice since 1864 starting with the
early work of Tresca [17]. Levy [18] and von Mises [19] added to
the study of plasticity by developing what have come to be known as
the Levy-Mises equations. The development of classical plasticity
continued with the work of Hencky [20], Prandtl [21], Prager [22],
and Ziegler [23] to name just a few. These early models were
incremental in nature, assumed that plasticity and creep could be
separated, and they incorporated a yield function, flow rule, and
hardenfng'rule to define the plastic strain increment.

.In addition to classical plasticity based-theories, other
fundamenta] bases were proposed to describe inelastic deformation.
These inc]ude.the microphenomenologically-based theories and thermo-
dynamically-based nonlinear viscoelastic theories. The aforementioned
models can be further categorized as unified or uncoupled theories,
where the two differ in their treatment of rate-independent and
rate-dependent strain components. The uncoupled theories partition
the inelastic strain into plastic and creep components; whereas,
the unified constitutive models retain the inelastic strain as a
unified quantity. However, it should be noted tha§ the partitioning
method used in the uncoupled models is questioned because it has no
formal micromechanical basis and does not account for creep and

plasticity interaction.



Over the past decade a number of unified constitutive theories
have been developed. These new theories include the work of Bodner,
et al. [24-26], Cernocky and Krempl [27,28], Cescotto [29], Chaboche
and Cailletaud {30], Hart [31], Krempl [32], Krieg, et al. [33],
Kocks [34], Miller [35], Robinson [36], Stouffer [37,38],

Valanis [37,40], and Walker [41,42].

As stated earlier Beek, Allen, and Milly [1] and Krieg [16]
have shown that all thermoviscoplastic constitutive models can be
cast into a common internal state variable framework. For the

uniaxial case, a general form of these unified models may be

written as:
o =E(e-cl - (1)
b= fe B0, ) (2)
B = hy & - ry(T,B) | (3)
L I (4)

where o is the applied stress, E is Young's modulus, € is the strain,
eI is the inelastic strain or first state variable (with both
plasticity and»creep included), eT is the‘thermal strain, B is the
-back or rest stress corresponding to the disltocation arrangement
which produces kingmatic hardening or the Bauschinger effect, and

D is the drég stress corresponding to the dislocation density which
produces isotrbpic hardening. In addition, f is the inelastic strain

rate function, T is the temperature, a, are additional state variables

which are presently undefined, and hB’ hD’ rgs and rp are the hardening



and recovery functions for the back or drag stress (designated by the
subscript B or D), respective]y. A superposed dot above the
variables denotes differentiation with respect to time.

The abstract model presented above (equations (1)-(4)) contains
all three of the commonly used internal state variables; however,
specific theories may omit one or more of the growth laws which
characterize either the back stress, drag stress, or other variables,
In all cases, the inelastic strain is obtained via time integration
of the specified internal state variable growth law for eI, i.e.,

t
el = / éI(t')dt' , (5)

-~ 00

where éI is defined in functional form by (2), t is the current time

of interest, and t' is a dummy variable of integration.

Integration Methods

A number of integration strategies have been evaluated
[2,3,5,6,10—14j for integrating constitutive equations which have
"locally" stiff regimes. These algorithms have been implemented
into both 1arge multi-axial finite element programs and small
uniaxial constitutive codes. For the purpose of this discussion,
only those publications dealing with integration on the constitutive
level will be reviewed.

Numerical schemes for the solution of the inelastic response
behavior were explored by William [2]. He used a generic constitutive
formulation in order to examine the algorithmic properties of various

numerical solution methods. These included the explicit forward



Euler method, the forward gradient method, the predictor-corrector
method, and the Newton-Raphson method. A qualitative comparison of
the four incremental solution methods was presented for pure creep
and pure relaxation behavior; however, no specific conclusions were
stated with regard to the "best" scheme.

An explicit trapezoidal method for handling deformation in
stiff regimes was proposed by Shih, Delorenzi, and Miller [3].
Results using the explicit trapezoidal scheme demonstrated both
improved stability and computational efficiency over either exp]icit
forward Euler integration or the trapezoidal method with a Newton-
Raphson corrector. It was shown that the predictor-corrector
method eventually converged to the same solution predicted by the
explicit trapezoidal scheme, while the Euler predicted response was
unstable.

Another promising numerical technique, called the a or NONSS
(Noniterative, Self-correcting Solution) method, has been developed
by Tanaka and Miller and is discussed in Reference [4]. The implicit
quaﬁtities are removed by a Taylor series expansion of the prescribed
growth laws through the use of an integration operator a. The
integration operator, o, has the range of (0,1). This alogrithm
also incorporates automatic time-step control and an error corrector.
Another scheme similar in style to the aforementioned is the ©-method
(déscribed in Reference [5]) which incorporates the explicit forward
Euler method (0=0), the implicit trapezoidal scheme (0=%), or the
implicit Euler strategy (o=1). Numerical expériments indicated that

the forward Euler integration scheme (0=0) with an automatic stepping



and error control was computationally more efficient.

For integrating constitutive equations o% the work hardening-
recovery type, Miller and Shih [6] have developed a method wherein
improved accuracy or larger time steps or some combination of both
can be obtained. This is accomplished through a Taylor series
expansion of the recovery function resulting in a more accurate
calculation of the internal variable(s) during each time step.

A comparison between this special algorithm and Euler integration
from Zircaloy-2 simulations verify the accuracy and stability of
this method.

| Gear's method [7-9] has also been an effective tool for:
integrating stiff differential equations. It is a multi-step
predicfor correcfor scheme whose qrder is automatica]]y chosen.
Either an Adams' method or methods suitable for stiff equations
can be selected. Three alogrithms are available, STIFF-O, STIFF-1,
and STIFF-2. Chang and Chang [5] believe that Gear's package is
well suited to solving one-dimensional constitutive relations, but
is -much too cumbersome for use on the structural level. Based on
this work, it may be tentatively concluded that Gear's method is not
suitable for implementation into finite element packages.

A very comprehensive study on numerical integration of stiff
constitutive models was reported by Kumar, Morjaria, and
Mukherjee [10]. Hart's equations for predicting inelastic behavior
were used to compare various numerical approximation strategies.
Several input histories of stress and strain were considered and

the accuracy and computational efficiency of the results were



compared. The study concluded that a simple Euler type one-step
method with automatic time-step control worked well; however, it
emphasizes that a one-step strategy is not necessarily the best.

A combination of the two-step Adams' method (for outside the
viscoplastic limit) and Euler's method (for inside the viscoplastic
limit), was found to be the most efficient in terms of computational

speed and accuracy.

The Origin of Stiffness

The'purpOSe of this section is to familiarize the reader with
the concept of stiff equations through a physical and mathematical
definition. By understanding this concept, researchers may then
devise methods tq test for stiffness or more simply concede to its
existence and develop_appropriate solution algorithms.

A system of differential equations is said to be stiff if the
physical processes being modeled contain time cOnstaﬁts with
“different scales. In the case of a uniaxial test specimen, there
is grain boundary orbdisldcatioﬁ movement in one time scale;
whereas the total stress-strain response is measured using a
different time constant. The stiffness of equations (2) thru (4)
arises from the following phenomenaon, The inelastic strain rate,

I, may be a sfrong function of o, B, and D in (2); that is small

€
'changes in o, B, and D cause large changes in EI, which then
influences o, B, and D through (1), (3), and (4). Ultimately, the
absolute stability of equations (2) thru (4) requires that the step

size used during numerical integration be not much greater than the
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smallest time constant present in the physical system; howevef, for
computational reasons this is not always possible. Therefore,
integration methods must be used that are "stiffly stable".

The mathematical definition as described in [44] is as follows:

"The nonlinear system Y' = F(X, Y) is said to be stiff in an
interval I if for X € I the eigenvalues A, of the Jacobian J

satisfy the following conditions." k
1) Re Ay < 0, k=1,...,m
2) max min
]<k<m|Re Akl > ]<k<m|Re Ak|

Where thé Ao k=1,...,m are the eigenvalues of F.
The Ratio '

max
T<kem!R€ 2|
min lRe 2 l (6)
1<k<m k

is called the stiffness ratio

Basically this means that if the real eigenvalues are négative or
if the spread of rea] eigenvalues is large, then the equations are-
stiff. Gear's hethbd [7-9] uses this definition to test for the
existence of stiffness. However, this can be very expensive

expecially when large systems of equations are being analyzed.

Material Testing

Each constitutive model has a number of material parameters which
are determined through a set of complex tests; therefore, the end
user must be informed about the effect that small variations, i.e.

typical experimental error, have on the particular models' predictive
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capabilities. In general, the testing of materials is a difficult
process in which the propensity for error is great. This experimental
error is known to occur in all stages of testing and will be discussed
herein; however, the reasons for its occurrence are beyond the scope
of this research.

Experimental error may develop in all phases of testing; however,
it occurs most frequently in the fo]]owing areas. The nonrepeatabi]ity
of strain measurements for uniaxial strain rate, cyclic or creep
tests makes interpretation of results difficult even when new high
technology axial and diametral extensometers are used. When testing
requires elevated temperatures, érror may result while measuring and ‘
maintaining the specimen's temperature. anal]y, experimental error
oécurs in its mosf rudimentdry form in the sfatistica] variafion of
the test sample's measurements. Whilé these éré only an example of
where ekperimenta] error occurs, they are kepresent§tive of the-
problems experimentalists must cope with and why absdlute values of

material constants are difficult if not_imbqésib]e to obtain,

Objectives

The objective of this research is to study the sensitivity of
the unified constitutive theories proposed by 1) Bodner, et al.,
2) Krieg, Swearengen and Rohde, 3) Miller, and 4) Walker to
numerical integration techniques and slight changes in material
parameters. Evaluations are based upon numerical simulations of
Hastelloy-X at 1800° F in uniaxial. form by specifying input strain
historie§ and comparing output stress histories. The integration

sensitivity study involves the use of both single and multi step
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integration schemes. The material parameter sensitivity is studied
by varying material constants by a specified amount and comparing

predicted responses.
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CHAPTER 111
CONSTITUTIVE THEORIES CONSIDERED

The constitutive models selected for this study include the work
of Bodner (et al.) [24-26], Krieg (Swearengen and Rohde) [33],
Miller [35], and Walker [41-42]. These models were chosen primarily
because of the availability of material parameters for the same
material (Hastelloy-X), the exception being Bodner's model (constants
for Bodner's model were obtained by simulating the requireq uniaxial
tests using Walker's model). A secondary reason for se]ecﬁing these
models is that they appear to be the most qualitatively atéractive
theories available (42, 43] and thus warrant further evaluation.
In the following sections, each model is presented in one-dimensional
form and the methods used to compute the material constants are

discussed.

Bodner, et al.'s Theory
| The model proposed by Bodner, et al. 1is a microphenomeno-

logically based theory for characterizing inelastic behavior. This

theory was developed to predict the response of a material which work
hardens isotropically. The model contains two internal state variables;

the inelastic strain and the drag stress. Bodner's model contains

no parameter which represents the back stress and thus cannot

account for the Bauschinger effect in kinematic hardening materials.

The uniaxial-differential form of Bodner's model may be written as
(e

e 2n’'D

.I_
e = €

= 5 sgn (o) (7)
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. . D-Dz r

D = m(D] - D)wp - AD] -Ti;— R (8)
where

Wo=odl . (9)

The material parameters to be determined are E, Egs Ms M, A, r,
Do’ D], and DZ’ where D0 is the initial value of D. The constant €
represents a limiting value of the inelastic strain rate and is usually

assumed to be 104 sec'] unless the strain rates are very high.

Determination of Material Parameters. The material parameters

for Bodner's mdde] are determined through a series of constant strain
rate tensile tests and constant stress creep tests. Control
parameters for both sefs of experiments should encompass values
which are compatible with the numerical simulation to be performed.
The first step in the evaluation of the material constants, as
described by Stouffer [37] and Milly and Allen [43], is to determine
n from the constant strain rate tensile data. By observation, when
the stress reaches a saturated value during a constant strain rate
test equatioh (7) is satisfied if and only if D is a constant.
Therefore, by neglecting recovery via rapid loading of the test
specimen, D can be assumed to be in its fully work hardened state
and have a maximum value D, . Thus (7) may be rewritten, to account

for the steady state flow condition, as

3 el _ . +1
In [-1n(5 Z;)] = -(2n)Ine + [2n 1nD]+’In(92—ﬁ—)] ) (10)

If the experimental data base is good, the left hand side of equation
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(10) must be a linear function of Ino. Thus, a plot of these two
variables (as depicted in Fig. 1(a)) yields a straight line where
the slope and intercept are defined by the quantities -2n and
[2n In D + In((n+1)/2n)], respectively, from which n andD], may be
determined.

To determine the parameters m and Do’ constant strain rate
tensile test data is used. If work hardening is assumed negligible,

(8) may be rewritten as

dD = m(D]-D)dwp , (11)

which can be integrated to give |

1n(D]-D) =.-mwp + 1n(D]-Do) R (12)

where wp is the inelastic work defined by (9) and D0 is the initial
value of hardness D. To obtain D for measured values of stress and

inelastic strain rate, equatidn (7) is inverted and may be written as
1/2n '
D=o¢ -gﬂ—) n (—E—le) (13)
n+1 3 éI R '

Thefefore, by using values of ¢ and éI from the nonlinear portion of
the tensile response data the quantity D may be determined by
equation (13). Since equation (12) is a linear representation of
1n(D]-D) and wp, a plot of these variables will be a straight 1ine_
(sée Fig. 1(b)) having a slope of m, Thus, knowing m, D0 may be
determined through simple substitution and rearrangement of equation

(12).
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The last set of constants, A, r, and D2 are computed using data
obtained from constant stress creep tests. During secondary creep
the creep rate is approximately constant; therefore, the value of D
must be constant and b = 0. Thus, the hardening rate equation (8)

for secondary creep becomes

r

(D-Dz)
'“(DrD)Wp = AD, 5/ (14)
linearization of (14) results in
] (0-02 -
In [m(D]-D)wp] = r In 0, ) + 1n(AD1) , (15)

where stable va]ues,of D are computed using equation (13) and 02 is
the minimum ca]cuéa;ed value of D. By plotting ]n[m(D]-D)ﬁp] as

a function of 1n(—%;g), similar to Fig. 1(c), the variables A and r
may be determined. From equation (15), it may be seen that r
represents the slope of the straight line plot and 1n(AD])is the
intercept. Hence, A may be computed once the value of the
1n[m(D]-D)wp] intercept is known.

Since'no experimental data for Hastelloy-X at 1800° F was
available, the material parameters for Bodner'§ model were computed
using Walker's theory (as described in the next section) to predict
the deformation response. Numerical simulations included both

constant strain rate and constant stress (creep) tests., The material

constants computed for Bodner's model are tabulated in Table 1.
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Table 1. Material Constants Used In
Bodner's Model For Hastelloy-X

at 1800° F
Bodner's Constants Numerical Value
‘ 6 .
E 13.2 x 107 psi
€ 1.0 x 104 sec']
0
n _ 0.103
m - 0.178 psi
r 0.294
A | 0.162 x 107" sec”]
D, 0.329 x 107 psi
7 .
02 ' 0.305 x 10" psi
I,,_
e (t=0) 0.0

D(t=0) = D0 ’ 0.317.x 10" psi
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Waiker's Theory

The model proposed by Walker is a viscoelastic theory deQe]oped
by modifying the constitutive relation for a three parameter visco-
elastic solid. This model contains three internal state variables;
the inelastic strain, the back stress, and the drag stress. The
back stress introduces nonlinear kinematic hardening into the model
to account'for the Bauschinger effect and the drag stress introduces
jsotropic hardening into the model to account for cyclic hardening
or softening of‘the material. Creep, relaxation, and strain rate
effects are modeled by a power law function for the inelastic strain

rate. The uniaxial-differential form of Walker's model may be

written as
! =l"?‘ﬁn—'](o- B) (16)
B = (ny+n) & - (8B-B-n ) | (17)
D =g [&'] - ng |1 D= nyy (D - DY, (18)

where the value of é is defined to be

n.R

-1, 3 5 °m-1
| _8? [ (n3 + n4R) ]n(w + ])]"’ n7|B"B| (]9)

G = |e

and R is the cumulative inelastic stran

iaeI
'at’

dt' . (20)

Walker made several simplifying assumptions to equations (17) and (18),
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including D = constant for the Hastelloy-x material. Therefore,
history dependence in this model is exhibited entirely by a

simplified growth law for the back stress.
. W1 ° 1 g o.m=1
B = (n] + nz).e - (B—B—nle )(nge + nq |B-Bj ) (21)

Thus, the material parameters to be determined are E, n, m, s

o
UPe n7, ng, B, and D.

Determination of Material Parameters. The material parameters

for Walker's model are determined through a series of constant strain
rate steady state hysteresis loops under fully reversed strain
controlled conditions at a constant temperature.

The first step in the evaluation of the material constants, as
described by Walker [41], is to determine the value of E. The
asymptotic steady state value of B may be obtained under conditions of

uniaxial tension loading at a known constant strain rate because

the back stress will saturate to a constant value as eI > o if n] = Q.

]Em B = E * : 2 o m-1
g€ ngR + n,|B-B|

(22)

The back stress becomes rate-independent and will saturate to a

maximum value for rapid monotonic foading in tension and compression

[

when R = &'. Thus, the static thermal recovery term involving ny

in (22) may be neglected and maximum values of the back stress, in

tension and compression, may be obtained by
t _ 2 : -
Brax = B * Ny/ng (23)
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and

(o]

C -
Brax = B~ Mo/ng - (24)

For large strains, stress is assumed to approach an asymptotic

such that &l = £; therefore, equation {16) may be rewritten as
s=B+De/M . (25)

The maximum values of stress in rapid tension and compression loading

are then obtained as

t o “1/n
Opax = B ¥ No/ng + D (26)
and
c .. _ o oi/n
Omax - B n2/n9 D e (27)
Hence, B may be obtained'using the relation
°_ 1, t c
B =13 (Omax * omax) : , (28)

To determine the constants n and D equation (25) may be

rewritten in terms of steady state values of o and B in tenson as
t

5} - Pt n .
¢ = ma x - max‘> . (29)

If 9 and Oy denote the corresponding maximum tensile stresses at the

two maximum strain rates, é] and é2 where B attains its maximum

saturated value, then equation (29) gives

n = In (&4/6,)/1n { (oy-B7 )/ (0,-8Y )} (30)
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and

B t - =-1/n
D = (o.I - Bmax) € . (31)

The value of B;ax used in equations (29)-(31) is determined
from stress drop tests. If the material is cycled under steady
state strain controlled conditions around a closed hysteresis
loop as depicted in Fig. 2,positive creep will occur at point C
if the stress is he]d constant and alternately if the stress
is held constant at point I, negative creep will occur. Since the

. . . t
saturation stress in tension, B

nax’ is desired, a point F on the

hysteresis loop between points C and I must be found such that the
creep rate ceases instantaneously when the stress is held at a
constant value. Walker indicates that it is difficult to estimate
the value of B;ax using the above procedure because the creep

rates are usually small on the unloading branch. He §uggests that
a better estimate may be obtained by a relaxation test, noting

the point at which initial relaxation changes from positive (stress
decreases) to neéative (stress increases),'since relaxation
progresses more rapidly than creep.

Values for the material parameters n, and ng may be determined
from the initial monotonic stress-strain curve. For rapid loading
rates ny = 0 and G = Ny h, therefore the back stress may be expressed
as

B=B+ (B -8)(1- e 9(e - o/E)y (32)
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%

-»Creep
...... - = «==0-B = cOn-
stant

o

® GJAHI - True Stress Curve, ao/e
® KDEF - Back Stress Curve, B/e

Fig. 2. Back Stress and True Stress-Strain Curve
Used in Walker's Theory.
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For tensile loading equation (16) may be written as

. 1 do . _ _ (o-Byn
e-faec-v0-¢g = &F) (33)

.9
€T

and combined with equation (32) to give

t o
n, = (e - /E)'] In Pnax - ° (34)
9 €-0 A (1 - l_gg_)l/n
max ~ 7YY E de

where y is the applied strain rate and do/de denotes the instantaneous
slope of the uniaxial monotonic stress-strain curve at the point
where the Stréss iS‘o and the strain is €. An estimate of the
constant n, can then be made by rewriting equation (23) as

t (]
(B - B)
n = .__m_a_x—___ (35)
2 Ng

The>fina1 two constants to be determined are m and n7.
Equation (21), with ny = 0, yields the expression for the back

stress rate for tensile loading as

B =n,c - (B-B)ng e +ne-B"") . (36)

At the peaks of the hysteresis loops B saturates to a constant

value, B =0 and o = 0 for tensile loading, so that equation (36)

gives

9 g (8, - )™ ' (37)

- B)n 1

Ny €4 (B4 +n,

or

(oo e

"

+ n,{B,. -

7( : )m-

n, eg (B5 - B)n9 eg (38)
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If 4 and ¢ denote the maximum tensile stresses at the two
smallest strain rates é4 and és, then B4 and BS’ which represent
the saturated back stresses: for these two strain rates, may be
determined by equation (25). By combining equations (37) and (38)

m is obtained in the form

n N, €4 = Ng €, (84 - B)
n, e - ng €. (B - B)
m = 2 5 9 E 5 (39)
- {8, -8
In _i——ﬁ'
' 85 - B

Knowing m, equation (37) may be solved for ng. Note that " is
assumed to be zero in these appiications. |

The material constants computed for Walker's model, simulating
Hastelloy-X, were evaluated by Walker [41] and are tabulated in
Table 2. | |

Krieg, Swearengen, and Rohde's Theory

The model proposed by Krieg, Swearengen, and Rohde uses a
power law function to model the iﬁe]astic strain rate and is based
upoh the microstructural aspects of deformation mechanics. This
mode] cdntafns three internal state variables; the inelastic strain,
the back stress, and the drag stress. The growth laws for the
- back stress aﬁd drag stress are formulated as the differences in
hardening and recovery rates. The back stress is a kinematic
hardening state variable which is used to model the Bauschinger
effect and the drag stress is an isotropic hardening state variéb]e

which attempts to account for the dislocation density or mechanical
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Table 2. Material Constants Used In Walker's
Model For Hastelloy-X at 1800°F

Walker's Constants Numerical Value

6 .

E 13.2 x 10° psi

n 4.49

m 1.16

ny _ : 0.0 psi

n, : 1.0 x 106 psi

n, 2.73 x 10'3 psi]'m sec']

»n9 312.5

B - 1,200 psi

D : 59,292 psi

|
e (t=0) 0.0
B(t=0) 0.0

D(t=0) 59,292 psi
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strength of the material. The uniaxial-differential form of

Krieg's model may be written as

i n-1
1 i<’—D—n§—L ( - B) (40)
. : o ° o2
8 = A < - A, (B-8)[8 - 8l(eh3(BB) ) (41)
D = Aglet] - Ag (D- D" . (42)

It should be noted that equations (16) thru (18) vary in form from
those origﬁna]]y'proposed by Krieg [33], instead the notation |

adopted by Walker [42] is presented. The material parameters to

o

be determ1neq are E, n, A], A2, A3. A4, A5, B, and DO.

Determination of Material Parameteré. The material parameters
for Krieg's model are determined through a series of constant
strain rate cyclic tests and stress drop tests.

The'constants n, DO’ E, and A1 in Krieg's model are analogous
to the material parameters n, D, §, and (n] + n2) respéctive]y,
in Walker's Theory. Therefore, the interested reader is referred
back to Walker's model for a detailed explanation of their
determination.

~Under steady state conditions where o = 0, equation (40) shows

that B = constant for constant strain rates. That is,

loe]
1

_ _ -1/n
1 9 D €1 (43)

or

_p.i/n 44
2 dy D€2 s (44)

o=
it
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Where B] and 82 are saturated values of the back stress for strain
rates é] and é2 respectively. Therefore, by equating equation (41)
to zero and noting that ¢ = éI if o =0, gives (for e positive)

o2

1) _ -8’ (P38 - E)Z_])
2 €

(45)
By applying known values of the back stress (B] and BZ) for the
given strain rates (é] and éz) to equation (45) to give two
'equations with the unknowns, (A]/Az) and A3, the constant (A]/Az)

may be eliminated so that A3 is determined by

o 2 :
€ B, -8B °
: 1 2 : 2
Iny1 + '.EZ—( B———_—'é‘ (eA3(82 - B) _])
Ay = ] ,  (46)
(8, - B)

which can be solved using_an interative technique.

The constant A2 may be determined from steady $tate hysteresis
160ps where B = 0. Under these conditions, equation (41) may be
written as

Al e

A, = . ] S (47)

> - >
(8 - )2 (e"3(8-B)" 1)

The final two constants to be determined are A4 and A5. The
parameter A4 controls the amount of isotropic hardening produced
by a given amount of strain. As such, it plays an important role

in three different transient situations: 1) When a tensile
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test is simulated, A4 controls the rate of work hardening;
2) When a creep test is simulated, A4 controls the amount of
primary creep; and 3) When a fatigue test is simulated, A4 controls
the rate of cyclic hardening (or softening). A best-fit value for
A4 can be tried and the resulting simulations compared with the
test data for the same loading, to select the one which causes
the closest agreement. Once a value for A4 has been selected, the
constant A5 may be determined from the following relation

Ae

4
Ap = ——— (48)
5 (D]'Do)n

where D, is the steady state value of the drag stress at a constant

1
strain rate, e.

The material constants computed for Krieg's model, simulating
Hastelloy-X at 1800° F, were evaluated by Walker [42] and are

tabulated in Table 3.

Miller's Theory

The model proposed by Miller [35] is a phenomeﬁo]ogica]]y based ;
theory which uses a hyperbolic sine function for the inelastic
strain rate. This model contains three internal state variables;
the inelastic strain, the back stress, and the drag stress. The
theory is capable of simulating many of the structurally significant
deformation phenomena inc1uding cyclic hardening/softening,
Bauschinger effect, strafn rate effects, and annealing, among others.
The growth laws for the back stress and drag stress are formulated

as the difference between hardening and recovery rates.
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Material Constants Used In Krieg's

Model For Hastelloy-X at 1800° F

Krieg's Constants

Numerical Value

e (t=0)
B(t=0)
D(t=0)

6.21 x 10°

13.2 x 10° psi

4.49
1.0 x 10% psi

6 -1

psi'1 sec

4.027 x 1077 psi?

100 psi sec]/n

4.365 psi]'n sec /N2

1,200 psi

59,292 psi sec]/n

0.0
0.0
59,292 psi
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The uniaxial-differential form of Miller's model may be written as

I ' . o-B 1.5 n
£ =Beo sinh 5 sgn(o-B) (49)
B=Hel - HBoe'  {sinh A [B] 3" son (B) (50)

-~ .1 3 . 3y4n

D = Hzle | (€, + [B] - AD7/AL) - HZCZBCO'{s1nh(AZD )y . (51)

The material parameters to be determined are E, BCO', n, H], H2,'
A], Az, CZ’ and DO' The only constants which depend on temperature

are the coefficients Bce' and DO'

Determination of Material Parameters, The material parameters

for Miller's model are determined through a series of constant strain
rate steady state hysteresis loops under fully reversed strain“
controlled conditions at a constant temperature.

The starting point for the calculation of the constants is to

find the values of B.0', n, and A that satisfy one following steady

C
state equations

el = Bo' [sinh (A ogg)T" (52)

The constant A does not appear explicitly in the final equations, but
it enters into the calculation of A] and A2'

During monotonic loading under steady state conaitions the back
stress and drag stress reach their saturated values, thus é and 6 are
zero. Therefore, by equating equations (50) and (51) to zero and
solving for the resulting steady state plastic strain rate gives

.1
€ss

B.O' [sinh(A]BSS)]" , ' (53)
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I‘ o -B 1.5 n
.1 . SS
€gg = Beo' sinh <—-S—[S)———> , (54)

| ss

1 Gy B [sinh(AzDSS3)]n

- i (55)
Cy + Bgg = ADss /A,

Thru separation of variables in equations (52) through (55), it may

oss = Bgs 15 3
AiBec =[}——T§;;——-] = A Dgg” = Aoge - (56)

be seen that

Hence, from equation (56) explicit relations for the constants A]

and A2‘may be obtained:

Ag

SS
A, = (57)
1 BSS
and
A 3
A, = ( v~—7— (58)
2 I-Bss/cSS
By linearizing equation (52) one obtains the }elation
]n(éss) =n In [sinh(AoSS)] + In (Bce') . (59)

The constant A is chosen so that a plot of 1n (é;s) versus
n [sinh(AoSS)] falls on a straight line. If the test data points
fall on a straight line for a particular value of A, then Fig. 3
shows that (CD/AB)/(EC/EB) = 1, or
In é4 - 1In és ln[sinh(Ao4)] - 1n[sinh(A05)]

. . = . . * (60)
In ey - In gg 1n[s1nh(Ao])] - 1n[s1nh(A05)]

Where Oys Ops and og are the steady state asymptotic stress



33

In (&)

\j

In [sinh(Ac)]

Fig. 3. Plot Used to Determine The Material
Constant A For Miller's Model.
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obtained from hystresis loops executed at strain rates é], é4,

and és respectively. Once a value for A has been chosen, then
from equation (59) the slope of 1n(eés) versus 1n[sinh(AoSS)] plot
is n and the intercept is 1n(Bco').'

From stress drop creep tests the value of BSS can be
established and the constants A] and A2 may be computed from
equations (57) and (58) respectively. In additon, once A] and A2
are known, then DSS = D0 may be found from equation (56).

The constant H, in equation (50) governs the hardening rate
of the back stress. This constant is analogous to the constants
ny +n, in Walker's model; therefore, the interested reader is
referred back to Walker's model for a detailed explanation of
their determination.

The final two constants yet to be determined are'H2 and C2.
The parameter H2 controls the mount of isotropic hardening
produced by a given amount of strain. A best-fit value for H2
can Be tried and the resulting simulations compared with the
test data for the same loading, to select the one which causes
the closest agreement. The constant C2 sets a "floor" under the
drag stress and its value is estimated by a best-fit procedure to
the actual test data.

. The material constants computed for Miller's model, simulating
Hastelloy-X at 1800° F, were evaluated by Walker [42] and are |

tabulated in Table 4.
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Table 4. Material Constants Used In Miller's
Model For Hastelloy-X at 1800° F

Miller's Constants Numerical Value
6 .
E , 13.2 x 107 psi
n 2.363 _
, ' -5 -1
Bce 2.616 x 10 ~ sec
6 .
H] 1.0 x 10”7 psi
A, 1.4053 x 1073 psi]
H, 100 psi sec'/"
C2 5,000.0 psi
A, 4.355 x 10712 psi™3
I _ .
e (t=0) _ 0.0
B(t=0) : 0.0

D(t=0) 8,642 psi
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CHAPTER 1V
EVALUATION OF SELECTED THEORIEs

Evaluation .of the unified constitutive theories considered
herein is based upon numerical simulations of Hastelloy-X at
1800° F in uniaxial form by specifying input strain histories
and comparing output stress histories. Since this thesis addresses
Fwo separate problems, a section on the numerical time integrqfioh
study is presented first, followed by a section detailing the

material parameter sensitivity study.

Numerical Time Iritegration Study

Accurate fntegration of the constitutive relationship given
by equations (1) through (4) is extremely important to the numerical
so]ution‘bf a‘nonlinear field problem. However, the integration
procgss{js gqmeWhat hindered because the coupled system of ofdinary
diffefeﬁtia] equations defining the state variables may be "locally"
stiff and thus is sensitive to the time step size and numerical
_algoritﬁm. The instability probléms associated wfth integrating
stiff O.D.E.'s can be minimized through proper sé]ection of time
step size, when using standard integration techniques, or through
the use of specially tailored algorithms which check for stiffness
and automatically take the appropriate action.

In general, equation (5) may be integrated between time t and

t + At by writing
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t+at

R del = Lt (61)

™
—
—
o+
—
P

or

s el = el (teat) - el(t) = ddat L (62)

where éI is defined by the particu]ér constitutive theory being

employed.

Integration Algorithms Considered. Four of the more commonly

used integration schemes were selected for use in this study. These
include: Explicit Euler Forward Difference Method, Implicit
Trapezoidal Method, Runge-Kutta 4th Order Method, and Trapezoidal
Predictor-Corrector (Iterative) Method.

The basic presumption of the Euler method is that the inelastic
strain rate function is assumed to be a constant over an interval of
interest. For all but the highly-nonlinear portion of the stress strain
curve, this assumption is quite reasonéb]e at constant strain rates.
However, when the material response is nonlinear, the assumption may no
longer be valid unless a sufficiently small time interval is chosen. In
addition, the Euler method is sensitive to numerical round-off. The
major advantage of using the Euler technique is its ease of implementa-
tion. The approximation to the solution of equation (5) using Euler's

method may be written as

s el =at el () . | (63)
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-

The Implicit Trapezoidal Method is another commonly used
integration strategy from the family of single step schemes.
Overall solution accuracy is improved by averaging the evaluated
function over the desired interval assuming a small enough time
increment has been selected. The Implicit Trapezoidal Method

approximates the inelastic strain variable as
pel = 8L [ el(e) + el(tran)) (64)

The'Runge—Kutta Method, which is also a single step scheme,
provides a straight forward high order approximation for computing
AeI for various locations along the interval in question. The
self-starting characteristic and small error per step of this
algorithm has made it popular among researchers for numerically
integrating differential equations. It is pointed out that, like
most other numerical procedures for solving differential equations,
the methods of Runge-Kutta are sensitive to variations in the
selected interval. Too small a value leads to an excessive number
of computations; on the other hand, too large of an interval may
well lead to an answer that differs significantly from the ?rue one.
The 4th order Runge-Kutta integration method approximates the

solution to equation (5) as

I .
Ae + 2K3 + K4] R (65)

1/6 [K] + 2K2

where

at 2l(t, f(t))

~
—
]
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x
"

ot éI(t + LAt, eI(t) + %K])

-~
n

st el (e + nat, el(t) + uk,)

=
]

-1 1
g = Ote (t + at, e (t) + K3)

The last integration algorithm selected for use in this study is
the multi-step Trapezoidal Predictor-Corrector method. The objective
of this strategy is to predict AEI as acturate]y as possible using an
iterative procedure. As a first guess, eI(t+At) is computed by the

Euler method

Predictor: eI(t+At) = el(t) + at éI(t, eI(t))- (66)

This value is then substituted into the Trapezoidal scheme
Corrector: eI(t+At)j = cle) « 8 e,
-1 I .
+ ¢ (t+at,e (t+ut)j)] ‘s (67)

which may aiso be written as

sey = S N0 + l(enan)]. | (68)

The subscript j in equations (67) and (68) refers to the jth

iteration. If the values for AEI determined by (66) and (67) differ
too greatly, equation (67) is re-evaluated using the most recent
computed value of eI(t+At)j. This iterative process is continued

until the convergence criterion,

AeI.
J
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is satisfied. Selection of an appropriate r is important

tol
because it governs solution accuracy, number of iterations per

interval, and ultimate solution time. For this study r was

tol
chosen to be 0.000001. While the error of this iterative procedure

is greatly reduced, it is still sensitive to numerical round-off.

Strain Histories Considered. All numerical simulations were

performed under strain control conditions using one of four input
histories. These included: An alternating square-wave strain rate; -
a ramp up and ramp down strain rate; and -two complex multi-step
strain rate histories. Restrictions which were arbitrarily imposed
on each loading sequence inciuded: 1) the total response time
would be 35 seconds; 2) the total strain.wou1d not exceed 0.5%; 3)
all simulations would begin with a positive (or tensille) load; and
4) the numerical experiments would end with a 10 to 15 second
relaxation period. While these strain rate historiés (see Fig. 4)
were not developed to model any specific physicé1 phenomena, they
are representative of conditions under which a material could be

strained either in the laboratory or the field.

Qualitative and Quantitative Comparisons. The integration

investigation was divided into two tasks. The first task included a
comparison of the numerical stability of each constitutive theory

in order to access the degree of nonlinearity of thelprescribed
growth laws. The comparisons were based upon predicted stress-strain
behavior for constant strain rate tests simulating monotonic loading.

Explicit Euler forward integration was used to obtain the stress
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histories presented in Fig.'s 5 through 8 for various time steps.
From Fig. 8 it may be concluded that Miller's model is the most
sensitive to step size variation because of the oscillatory response
of the stress-strain curve for the larger at values.

The oscillatory nature of Miller's model can be traced back
to the hyperbolic sine function that is used to characterize the
inelastic strain rate and other growth laws. In contrast, the power
law function used by Bodner, Walker, and Krieg, to model a material's
response appeérs to be much more stable for a wide range of time
increments.

Figures 5 through 8 also reveal that as the step size is
increased, all of the constitutive theories tend to overestimate
the stress history in the 0.1 to 0.2 percent strain region and
then automatically correct themselves as deformation continues.
The "self-correcting" phenomenon of predicted stress appears to be
an intrinsic property of the prescribed growth laws as is illustrated
in Fig's. 9 and 10. Figure 9 is a plot of the inelastic strain
computed by Walker's model for at's of 0.0005 and 0.1 seconds. If
the smaller time step is defined to predict the correct results, then
the inelastic strain cdmputed when using the larger At is initially
underestimated. Because of the coupled nature of equations (1)
through (4), subsequent integration reverses this tfend and results
in an over prediction of the inelastic strain. While not shown in
Fig. 9, the difference between the two curves assumes a more constant
value as the totai strain is increased. That is, theAdifference

(or error) does nof grow. Figure 10 shows the identical situation
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arises in the prediction of the back stress. The over/under
estimation of computed stress continues until the equations

( (1) through (4) ) naturally dampen themselves out, as is Shown

in Fig. 6. It should be noted that the "self-correcting" nature

of the constitutive models was only apparent when the Euler method
was used to numerically integrate the prescribéd growth laws.
Figure 11 shows that when either the 4th order Runge-Kutta or
Trapezoidal method was used, the peak va]ues of stress were simply
over- or under- predicted and there was no self-correcting tendency
observed.

The second task of the integration investigation was to
evaluate the constitutive theories considered herein in terms of
solution stability, accuracy, and computational efficiency when
numerically integrated using various algorithms. A test matrix
consisting of integration methods, time step sjzes, and strain
input histories was established in order to make qualitative and
quantitative comparisons. However, before this phase of testing
could begin both a baseline or "pseudo correct" solution for each
input history was needed and the integration algorithms needed
to be functionally verified so that, in the limit, they would
predict the same response.

For each strain history considered, a baseline or "pseudo correct"
solution was obtained analytically, since no experimental data
were avai]abie. The Euler method was used to numerically integrate
the prescribed growth laws for each constitutive model until

successive changes in step size predicted an identical response.
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This process was repeated for the various input histories, thus
developing a family of baseline solutions.

Verification of the integration algorithms was accomplished
by using an a priori assumption that all numerical approximation
procedures would yield the same output stress histories if the step
size was small enough. Results of this investigation indicate
that the various integration schemes converge to the same solution
for the strain histories and constitutive theories considered
herein., In addition, the computational efficiency of each method
was obtained through selection of equivalent at's. Euler's method was
observed to be the most efficient (in terms of execution time on
an Amdahl 470V/8 computer), followed by the implicit Trapezoidal
method (a factor of 2 slower), then the 4th order Runge-Kutta method
(a factor of 4 slower), and finally the Trapezoidal Predictor-
Corrector method (a factor of 12 slower). A p]aﬁsib1e explanation
for the relative slowness of the Predictor-Corrector method was the
selection of an inappropriate convergence criterion,

In the ensuing paragraphs qualitative and quantitative
comparisons are made for the various test matrix parameters
presented earlier. Since the amount of data generated during this
study waé voluminous, only a representative sampie of the results
will be presented.

Figure 11 demonstrates the response predicted by Miller's
model for a uniaxial, alternating square-wave strain rate input'
history. The growth laws were integrated using four different

numerical approximations and a constant step size of 0.1 seconds.
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The results indicate, for monotonic loading and unloading, that
integration by the 4th order Runge-Kutta method consistently over-
predicts the state of stress by as much as 15%. Conversely, the
Trapezoidal method generally underestimates the stress history by
4%. The Euler and Predictor-Corrector methods appear to provide
accurate results at any point in the experiment. Similar observa-
tions were made for Walker's, Krieg's, and Bodner's model, when
subjected to the same strain rate history. These results indicate
that for equal time steps, the 4th order Runge;Kutta method
provides the least accurate results.

Figures 12 and 13 illustrate that various constitutive models
may differ appreciably when the same integration method is used
(in this case the Euler method). In Fig. 12 it can be seen that
Miller's theory gives a considerable oscillatory response for time
steps greater than 0.05 seconds,while Walker's theory shown in
Fig. 13 gives a much smoother response for the same time step.
Figures 12 through 15 also demonstrate that numerical §tabi]ity
and stress-overshoot are strain rate dependent. Note that in
Fig's. 12 and 14 the oscillatory response of Miller's model does
not occur until a strain rate of 0.001 in/in/sec is applied.

In Fig's. 13 and 15 the amount of stress-overshoot (for the larger
step sizes) appears to grow with increasing strain rate.

Figures 16 and 17 present results predicted by Walker's model
for a ramp-up-ramp-down strain rate history. Unlike the constant
strain rate histories, this type of loading appears to affect the

predictive capabilities of the model. As is illustrated, the
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tensile response is well behaved and the peak response is estimated
fairly accurately for all step sizes. However, the compression
response is oscillatory and inconsistent for At's greater than 0.05
seconds.

Figure 18 shows a 35 second response obtained with Bodner's
theory using various integration algorithms. Time steps were
selected to obtain solutions which required approximafe]y equivalent
computation times. As can be seen, the Euler method solution compares
favorably with thé baseline prediction, whereas the 4th order Runge-
Kutta and Trapezoidai methods ténd to over- or under- predict the
peak response. Again, the time step used for the Euler method was
smaller than those used in the other methods but the total computation
time was the same. Similar observations were made for Walker's,

Krieg's, and Miller's models when evaluated under the same conditions.

Material Parameter Sensitivity Study

Another important issue this research addressed was what amount
of degradation in predicted response could be expected due to
variations in material constants. Since each model has a number of
matéria] parameters which are determined through a set of complicated
tests, the end user must be made aware of the effect small variations,
i.e. typical experimental errors,have on the predictive capabilities
of the constitutive theory in question. In addition, the experi-
mentalist will better understand the importance of setting up and
conducting accurate experiments from which the material constants are

obtained.
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Two procedures were developed to study the effect of material
parameter variation. The first procedure characterizes the
sensitivity of each constant within a particular’constitutive
model. Hence, the experimentalist will know what parameters need
to be determined most accurately. Each constant's sensitivity to
variation was determined by adjusting it by a prescribed amount and
comparing predicted results.

The second procedure provided an "upper bound" on the effect
that experimental error would have on the determination of the
material parameters and ultimately, predicted response. Therefore,
the experimentalist will know to what degree of accuracy the test
data need to be obtained in order to insure accurate results.

The effect of experimental uncertainty was studied by adjusting
test data by a prescribed amount (simulating some type of error)
and then using that data to determine the material constants.

The overall material parameter sensitivity study was performed
by subjecting Bodner's, Walker's, Krieg's, and Miller's models to
an alternating square-wave strain rate history. Culer's method was
used to numerically integrate the prescribed growth laws using a
time step of 0.005 seconds.

A1l nine of the material constants in Bodner's model were:
individually adjusted by -5% in order to identify the parameters that,
when changeé, would have the most pronounced effect on the predicted
response. Results of the sensitivity study indicate that the th
most sensitive constants were the stress exponent, n, and the

" hardening recovery constant, DZ’ with the first of the two causing
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the largest deviation from the baseline solution. The predicted
response, after each parameter was changed by -5%, is shown in Fig. 19.

The constant n, in Bodner's model, is determined from a series
of constant strain rate tensile tests, where the stress has reached
a saturated value. Through the use of equation (10) or by plotting
the data as depicted in Fig. 1 (a), it can be seen that the only
experimentally measured quantity that affects the value of n is the
stress. The parameter 02 is obtained primarily from constant stress
creep tests. Equation (13), which is used to compute‘Dz, shows that
the measured creep rate and the peak stress values (which are used to
calculate the material constant n) can affect the determination of
this parameter. Hence, the aforementioned experimental quantities
must be measured very accurately in order to insure a minimal error
in the predicted response,

In addition to studying the sensitivity of individual constants
in Bodner's model, the effect of a #5% change in the test data
(simulating experimental error) used to compute all of the material
parameters was investigated. From the procedure discussed above, the
stress exponent was shown to be the most sensitive constant.
Therefore, the values of stress, determined from constant strain
tests, were adjusted by +5% in order to produce the largest change in n.
Then the creep rates, from constant stress creep tests, were
modified by +5% in order to obtain the laraest variance in DZ' Hence,
with new values of stress, creep rate, n, and D2, the other seven
material parameters were re-evaluated and the resulting stress

history, as shown in Fig. 20, was predicted. However, Fig. 20
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indicated that as a result of the way.the constants are determined
in Bodner's model, a +5% change in the test data used to compute
the material parameters has little effect on the predicted respénse.

The sensitivity of the nine constants used in Walker's model
were evaluated by individually changing each parameter by -5% and
comparing the predicted stress history to a baseline solution.
Identified as the two most critical constants were the drag stress
(assumed to be a constant value in this model), D, and the stress
exponent, n, with the latter of the two being the most sensitive.
Shown in Fig. 21 is the predicted response when each parameter
(D and n) was adjusted by -5%.

To compute both the stress exponent and the constant valued
drag stress, the two maximum tensile stresses at the two highest
strain rates (from steady state hysteresis loops) are needed. In
addition to the above data, the saturated back stre§s in tension -
(B$ax), obtained from stress drop tests, is required. Values for
n and D may then be determined from equations (30) and (31),
resbective]y. In order to insure accurate output stress history
predictions, precise experimental measurements of o and B;ax are
necessary. It should be noted that Walker [42] indicated that it is
difficult to estimate the value of B;ax because the creep rates are
usually small and it is very difficult to discern when the creep
rate ceases instantaneously.

The effect that experimental error would have on the determination

of the material parameters and ultimately, predicted response, was

investigated for Walker's model. By adjusting the experimentally

A
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measured values of stress from constant strain rate hysteresis loops -
and saturated back stress by +5% to create a worst case scenario,

each of the nine constants were sequentially recomputed. The effect

of experimental uncertainty on the output stress history for Walker's
theory is shown in Fig. 22. It can be seen that a +5% error in all

the test data required to compute the material parameters results.in
significant predicted response errors, with up to 30% over-prediction in
the stress during the relaxation period.

In a similar fashion, Fig. 23 illustrates the sensitivity of
the stress exponent, n, and initial drag stress, D, to a -5% change
in Krieg's model. Since these constants are analogous to the |
parameters, n and D, used in Walker's model, it is simply reiterated
that the measured values of ¢ and B;ax must be determined very
precisely in order to insure an accurate estimation of the predicted
response. However, from Fig. 24 it can be seen that even after the
constants are re-evaluated to reflect a +5% change in the experi-
mental test data, the output stress history is virtually unaffected.
‘Hence, Krieg's theory appears to be more tolerant to experimental
uncertainty than any of the mode]é previously discussed.
| The nine constants in Miller's model were individually varied
by -5% in order to characterize their sensitivity. However, unlike
the preceding models, selectively changing any one parameter in
this set of constitutive equations had little effect on the predicted
response. In any event, the most sensitive constants were found to
be n and A2. Figure 25 illustrates the effect that a -5% change in

each of these pérameters had on the computed stress history.



Stress (KSI)

t = 0.5000-D3 SEC WALXER MUDEL (EULER) CORRECT SOLUTION
---------- At = 0.50CD-02 SEC  WALKER MODEL (EULER)

U.5000-02 SEC NWALKER MODEL lEULER)} ALL TEST DATA ROJUSTED BY +/5%

20.0 =
12.0f 2
-
4.0
|
] 1 J
olo 24.0 28.0 32.0 36.0 40.0
a0}
Time (sec)
~12.0}
i " -- A anE e
—-20.0t= v -o.oml- I—J '—l 10-0

Time (ser)

. 89

Fig. 22. Sensitivity of Walker's Model to a 5% Change In Experimental
Test Data Used to Generate Input Constants
(Hastelloy-X at 1800° F).



20.0 'Sﬂgi
2}
_ §z
QP
12.0 o9
cr
B
ia
4.0
| 1 J
ol 24.0 28.0 32.0 36.0 40.0
1.0 ,
Time (sec)
-12.0
i T
—20.6*—- '\;-u.uml L——' l—-—' 0o

—-—-— At = 0.05000-03 SEC KRILG MUDEL {EULERY CORRECT
.......... At = 0.5000-02 SFEC KRIEGC MDDEL (EULER)
= e AL = 0500002 SEC KRIEG NOREL (FULER)
S AL = 0.5000-02 SEC KRIEG NODEL (EULER)D

SCLUTION

VALUE OF N ANJUSTED BY -57%
VALUE OF D NDJNSTED BY -5%

Time (sec)

Fig. 23. Sensitivity of Krieg's Model to a -5% Change In Input
Constants (Hastelloy-X at 1800° F).

69



Stress (KSI)

he]
(]
]

12.0

4.0

[}
5N
@]

-20.0

G.5060-C3 SEC HKRIENG MDOEL (EULER! CORRECTY SOLUTION
0.500D-02 SEC KRIEG MODEL (EYLER)
0.500D-02 SEC KRIEG MODEL {EULER} ALL TEST ORTA ADJUSTED BY /5%

b
tag
nonou

- o

\\_~
\

+| 1 | I D Y T N R S

A1 1 | 1 1
olo 4.0 8.0 12.0 16,0 20. 24.0 . 28.0 32.0 36.0 40.0
o Time (sec)
-12.0}= ' '
~

- o A
- '\':-u.r.\mL u |—-—J w0

Time (vec)

F{g. 24. Sensitivity of Krieg's Model to a +5% Change In Experimental
Test Data Used to Generate Input Constants
(Hastelloy-X at 1800° F).

0L



Stress (KSI)

———- AL = (.S060-03 SEC  HILLER NODEL (LCLERY  CORRECT SOLUTION
---------- At = 0.5000-02 SEC  MILLER NODEL (EULLR)
---------- At = 0.500D-N2 SEC MILLER MODEI (FULER) VALUE OF N ADJUSTED BY -57%
-------- At = §.S000-02 SEC MILLER HONFi (EULERI VALUE OF A? ROUUSTLO BY -5%
20.0 ~
) R . e
_/,-‘»""/ s 3 o
120 o ~ “
\‘%\'5:
- ’“\“-f....,&__,_‘_
1.0
{
1 | | 1 1 ] 1 | I | ! 1 1 1 J
¢] [0 4.0 3.0 12.0 1610 24.0 28.0 32.0 36.0 40.0
4.0k .. o
Timme (sec)
}_
= 12,0 f=- \
RN
- T U000
e
it en.n
"‘7_00L— v 0_0[_)]'. |:__-l l.___l

Timie (vec)

Fig. 25. Sensitivity of Miller's Model to a -5% Change In Input

Constants (Hastelloy-X at 1800° F).

LL



72

In order to minimize the error in the computation of n, the
steady state asymptotic stresses obtained from hysteresis loops
executed at several strain rates must be measured very accurately.
In addition, to determine the parameter A2’ one must precisely
eétab]ish the value of the steady state back stress from stress
drop creep tests.

While Mi]]erﬂs model appears to be fairly insensitive to small
variations in particular material constants, when the parameters
were collectively re-evaluated (to simulate experimental error in
the test data) an appreciable deviation from the baseline so]ution.
was noticed. Shown in Fig. 26 is the output stress history resulting
from a 5% change in the steady state stfesses and back stresses
that were used to recompute the respective constants. ‘As can be

seen, a significant over-prediction in peak stresses. occurs,
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CHAPTER V

CONCLUSIONS

In conclusion, the sensitivity of the unified constitutive

theories

proposed by Bodner, Walker, Krieg, and Miller, to numerical

integration techniques and slight changes in material parameters was

investigated. The integration sensitivity study involved the use of

the Explicit Euler Forward Difference method, the Implicit

Trapezoidal method, the Runge-Kutta 4th Order method, and the

Trapezoidal Predictor-Corrector method. From the results of this

study, the following observations were made:

1)

It appears that a simple integration scheme, like the Euler
Forward Difference Method, is preferable to more complex
schemes from the standpoint of accuracy, computation time,
and ease of implementation. The results also indicate
that.under the conditions tested, the 4th Order Runge-Kutta
method provided the least accurate results.

The constitutive models may differ appreciably, in terms

of numerical stability, whén the same integration method and
strain input history is used. Miller's model was shown to
be the most sensitive to time step variation, which is
apparently due to the hyperbolic sine function that is used
to characterize the inelastic strain rate function and other
growth laws.

The predicted stress response appears to be ;se1f correcting”
for large time increments when the constitutive equations

are integrated by the Euler method. However, when either
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the 4th Order Runge-Kutta or Trapezoidal method was used, the
peak values of stress were simply over- or under- predicted

and no self-correcting tendency was observed.

The material parameter sensiti?ity study involved the

characterization of the sensitivity of each constant within a

particular constitutive theory and provides an "upper bound" on the

effect that experimental error would have on the determination of the

material parameters and ultimately, predicted response. From the

results of this sensitivity study, the following observations were

made:

1) Small changes (5%) in the material constants may produce

significant and unacceptable errors in the predicted stress,

particularly the peak stress amplitudes during cyclic
loading, and the amoUnt of residual stress during stress
relaxation.

From. this numerical study, it would appear that more precise
predictions can be achieved if the experimentally obtained
data can be measured more accurately. The type of tests and
data that are required to determine the matefia] parametefs
for each model vary, however some generalizations can be |
made. For e%amp]e, most theories require either monotonic
or cyclic loading of the specimen in order to obtéin peak

or saturated values of stress for several constant strain
rates. In addition, most models require a stress drop or
constant stress creep test in order to determine the steady

state or saturated back stress. While other specific
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experiments may need to be performed, those mentioned abéve
are probably the most critical to obtaining accurate
analytical predictions.
It should be noted that the conclusions reached herein are based
on the use of uniaxial simulations. It is expected that the
conclusions would hold for multi axial situations; however, further

evaluation is needed in this area.
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ON THE USE OF INTERNAL STATE VARIABLES 1IN
THERMOVISCOPLASTIC CONSTITUTIVE EQUATIONS

D.H. Allen and J.M. Beek
Aerospace Engineering Department
Texas A&{ University

ABSTRACT

The use of internal state variables in modeling of inelastic solids is
gaining widespread usage in current research. Therefore, it is useful to con-
struct a well-defined framework for internal state variable models which is
based in continuum mechanics. The objective of this paper is to review and
clarify the general theory of internal state variables and to apply it to in-
elastic metals currently in use in high temperature environments. In this
process, certain censtraints and clarifications will be made regarding internal
state variables.

It will be shown that the Helmholtz free energy can be utilized to con-
struct constitutive equations which are appropriate for metallic superalloys.
Furthermore, internal state variables will be shown to represent locally av-
eraged measures of dislocation arrangement, dislocation density, and inter-
granular gracture. Finally, the internal state variable model will be demon-
strated to.be a suitable framework for comparison of several currently pro-
posed models for metals and can therefore be used to exhibit history depen-
dence, nonlinearity, and rate as well as temperature sensitivity.

INTRODUCTION

The prediction of inelastic behavior of structural materials at elevated
temperature is a problem of great importance which has accordingly been given
a great deal of interest by the research community in recent years. These
materials exhibit substantial complexity in their thermomechanical constitu-
tion. In fact, so complex is their material response that it could be argued
that without useful apriori Information, experimental characterization is fu-
tile. The purpose of this paper is to show how the thermodynamics with in-
ternal state variables can be utilized to emplace certain constraints on the
allowable form of thermomechanical constitutive equations, thus providing some
limited insight regarding experimental requirements.

Historically, there have been two distinct approaches to the modeliing
of inelastic materials: 1) the functional theory [l], in which all dependent
variables are assumed to depend on the entire history of independent variables;
and 2) the internal state variable (ISV) approach [2], wherein history depen-
dence is postulated to appear implicitl¥ in a set of internal state variables.
Lubliner [3] has shown that in most circumstances ISV models can be considered
to be special cases of functional models. For experimental as well as ana-
lvtic reasons numerous recently proposed models for the classes of materials



discussed herein have been proposed in ISV form. Therefore, in this paper
the ISV method will be reviewed as well as clarified and it will be shown that
this general framework is useful in modeling metals at elevated temperature.

The paper begins with a review of ISV theory, and this is supplemented
with a section describing the procedure for constructing macroscopically av-
eraged internal state variables. These concepts are then applied to metals’
at elevated temperatures. Finally, applications to boundary value problem
solving techniques are discussed.

REVIEW OF THE INTERNAL STATE VARIABLE (ISV) APPROACH

The concept of internal state variables, sometimes called hidden vari-
ables, was apparently first utilized in thermodynamics by Onsager [4,5] and
numerous applications are recorded since the second world war [2,6-14]. Al-
though not originally described for application to solids, the approach which
will be discussed herein is due to Coleman and Gurtin [2].

In the theory of internal state variables applied to solids the follow-
ing state variables are required in order to fully characterize the state of
the body at all points xj and at all times t:%

1) the displacement field A u; = ui(xk,t) 3 (1)
2) the stress tensor gij = Uij(xk,t) ; (2
3) the body force per unit mass fi = fi(xk,t ; (3)
4) the internal energy per unit mass .u = u(xk,t) 3 (%)
5) the heat supply per unit mass : r = r(xk,t) . ; (5)
6) the entropy per unit mass s = s(xk,t) ; (6)
7) the absolute temperature T = T&xk,t) s (D
8) the heat flux vector q; = qi(xk,t) ; (8)
and
9) a‘i‘j =u‘i‘j(xm,t) , k=1,2, ..., n ; (9)
where o are a set of n internal state variables which are necessaryv to

Gy 5
account for inelastic material behavior. Although thev are listed here as

second order tensors, theyv may be tensors of other rank as well [15].

* For convenience, onlyv infinitesimal deformations will be considered here,
although the general theory applies to finite deformations as well.



The method of Coleman and Noll [16] may be used to obtain the spatial
and time distribution of the body force f; and heat supply r from the conser-
vation of linear momentum and energy, respectively, assuming the displace-
ments u; and the temperature T are specified independent variables. Subse-
quently, it is hypothesized that constitutive equations of state may be con-
structed for the state variables described in (1) through (8) in terms of
u, and T and their spatial derivatives:

Gij(xk,t)= Jij (smn(xk,c), T(x,,t), gm(xk,t), ain(xk,t)) ; (10)
WG, t) = (e (L), Tt g (o0, ap (x,0) B
S t) = s(e (xa8)y T 0, g (x,0), of (oo0) ; (12) and
q; G a€) = qy (e (e at), TOr,E), gulx,t), op G5y ,t)) ; (13)

where & is the spacial temperature gradient T,m and

—~
(=N

i ‘/z(ui,j + uj,i) . (14)
The form of equations (11) through (13) implies that all constitu-

tive equations are evaluated in the specified state (xx,t). For this rea-

son Jij, u, s, and qi are termed observable state variables since they

can be determined from equations of state even though there is implicit

history dependence via the internal state variables “mn’ which are defined

to be of the form:

k- .k 2
= . , O ; 15
O(.ij ij(emn’ T, gm u.mn) (15)
where time and spacial dependence have been dropped for notational con-
venience. If equations (15) are at all times integrable in time, then
the following form is equivalent to (15):

t
k k
-~ = (‘L 1 1 .
G ) f NCRILE: ; (16)

-0

where t is the time of interest and t' is a dummy variable of integra-
tion. Therefore, it is apparent that a§j are not directly observable
at any time and must therefore be considered to be hidden or internal.

Although the above framework has been shown to be applicable to rate
dependent crystalline solids [17,18], it is often misconstrued that the ab-
sence of explicit strain-rate dependence renders the model inappropriate
for use in viscoplasticity theories. It is altermatively hvpothesized that

~

. '(‘
g..,=0..( , e , T, g, 17
ij oiJ( mn’ “mn T gm OLmn) (17)
is an appropriate form of thermomechanical constitutive equations (10). Al-

though metals at elevated temperature certainly exhibit strain-rate depen-
dence, there are several reasons why equations (l7) are less desirable than
equations (10). First, equations (17) are not actually equations of state
since the inclusion of strain rate implies knowledge is required at some time
other than the current time t. Secondly, as demonstrated in discussions of



materials similar to (17) but without internal state variables [19], very
little useful information will come from thermodynamic constraints. Finally,
explicit strain rate dependence is actually redundant for the materials dis-
cussed herein, as will be shown later. Therefore, although this is certainly
a semantical issue, equations (10) through (13) and (15) are utilized as the
constitutive model in the balance of this paper.

1t should also be pointed out that internal state variable growth laws
(15) could contain explicit strain-rate dependence:

L] k Ll :2,

= £, , , (18

%5 = % S Tr Bp O (18)
as in the example of a rate independent elastic-plastic material, in which
equations of the above form are linear in strain rate:

& k g

uij = Qiqu(gmn’ T, g’ amn)qu (19)
Such a form, although not excluded by the principle of equipresence [20],

is only necessary in the circumstance wherein specific rate independence is
required, as can be demonstrated by direct substitution of (19) into (16).
Furthermore, although the thermodynamic constraints will vary somewhat when
(19) are utilized [21,22], the results will be quite similar to those described
below.

_ On the basis of the Coleman-Mizel procedure [23] it can be shown that
satisfaction of the first and second laws of thermodynamics for the class of
" materials detailed above will lead to the following conclusions:.

k

u-Ts=h(e , T, a ) ; (20)

h

T

‘where h is the specific Helmholtz free energy;

3h

G, o = 0 =2 ; (21)

k& dvki

3h °

S = - 'é-,i; . N (22)

and
= - ) P
a; = Ky 8y * 0(g)) . (23)

Equations (21) should not be interpreted as defining as hyperelastic material
since the Helmholtz free energy, described by (20), is dependent on the in-
ternal state and therefore path dependent.

Although not directly related to our problem, it is useful to note that
the path dependence of the Helmholtz free energy precludes the usefulness
of equations (21) in Rice's J-integral for fracture mechanics {24]. However,
in the case wherein the loading path is radial:

«
)

GIR
|

€ .=k, € 4. =k g; <=V ¢, , (24)
1] 1] 1] 1] 1] 1]



2 . L
where kijj and kij are constant coefficients, then it is well known that equa-

tions (15) are directly integrable so that the free energy can be described
by

i
o1

Pq
Thus, for the case of proportional loading only, the constitutive equa-

tions are derivable directly from a potential function and the J-integral
method is applicable.

(e )) =h(s__, T) . (25)

i “mn mn

THE LOCAL AVERAGING PROCESS

Constitutive equations (10) through (13) and (15) are theoretically
pointwise in nature; that is, they are applicable to fixed infinitesimal
material points. However, practically speaking, there is no way to construct
experiments on material points since at the microscopic level the continuum
assumption becomes invalid. Rather, it is considered acceptable to construct
constitutive equations by subjecting local specimens to surface deformations
(or tractions) which lead to spacially homogeneous stresses and strains so
that some local average of the pointwise observable state variables can be
determined directly from the effects on the boundaries of the specimens.

As shown in Fig. 1, the scale of the smallest dimension of a local speci-
men is generally constructed so as to be at least an order of magnitude larger
than the scale of the largest material inhomogeneity. This sizing helps pre-
serve the continuum assumption while at the same time averaging out the efiects
of point defects such as crystal lattice dislocations. Conversely, the scale
of the largest dimension of a typical specimen should be as small as possible

compared to the scale of the global boundary value problem of interest. This
constraint is necessary in order to pre-

serve the notion that constitutive equa-

tions are indeed pointwise in nature, but . Ry
it is pragmatic in that it is a simple \\ global
matter of economy. ' O ' domain of
, “ . Interest
The local rather than pointwise con- . \ ‘\"k;_/
stitutive equations that result from ex- - . R A
perimentation are assumed to be of the . — 1 '
same form as pointwise equations (10) 1 | \\
through (13) and (15). For example, in I i Tl \ B
Fhe uniaxial test described in Fig. 1 //"—_' Xg v 1
it is customary to define ¥
Xy . :- local l
- 1 physical ., . |specimen |
%1 7 1 Jr 011dx2dx3 ’ (26) inhomogeneitied * ., * /“/ J
B \~_zrj—f“' . !
! R *

™|
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Figure 1



and

T = T(a,, a

, (28
1* 3y 33) (28)

where L is the local specimen gage length, A is the cross-sectional area in
the X9=X3 plane, and (a}, ag, a3) is some arbitrary poiant on the surface of
the specimen. Utilizing these quantities, it is then hypothesized that

= =2

I
A

[ = G € s (29

Iy (s T ) 20y (s T )
where

—2 _ 1 2 10

@ 5 ./-amn dxl dx2 dx3 » (30)

v

and all quantities with bars represent the locally measured state variables.

Although equations (29) represent an often used way of relating point-
wise equations to experimental results, the local averaging process is never-
theless fraught with shortcomings since definitions (26) through (28) all re-
resent nonunique relations between pointwise state variables Oij» €ij» T, aij
and their locally defined counterparts Oijs Sij> T, and oj;. Thgre are in
fact an infinite number of distributions aén(xl, X9, x3) w%ich will result
-in identical values of Opn- However, assuming that the scale of inhomogen-
"eities is small and that the distribution of Sy is ragdom the §pecimen will
- be statistically homogeneous and the relation between ag, and a$n will be
reasonably one to one.

For example, suppose that during some monotonically fncreasing local
strain history Ell a particular internal state variable «j; such as a single
dislocation arrangement is governed on a pointwise basis by the almost dis-
continuous behavior shown in Fig. 2. Suppose further that the time t at
which the internal state begins to change =
is determined by the pointwise stress “1
state. Then the number of dislocation //////
rearrangements occurring in the local
"specimen as a function of time might be
distributed as shown in Fig. 3. If the
local specimen is large compared to the
scale of the dislocation, and there are
numerous dislocation rearrangements, as
is usually the case in testing of metals,
then the peak of the curve sHown in Fig. ﬁldl
3 will be several orders of magnitude
greater than unity. It follows from
equations (30) that the locally averaged
value of the internal state variable
represented in Fig. 2 will be as quali-
tatively shown in Fig. 4.




APPLICATION TO METAL CONSTITUTION

In order to describe the class of metals discussed herein, the free en-
ergy maybe expanded in terms of the elastic strain tensor 5&1 and the temper-
ature T in a second order Taylor series expansion as follows:

E I T

€5 1 i T Fij » (31)

where EE is the thermal strain tensor and sl is the inelastic strain tensor,
considered to be an internal state variable [i? 18,22,25], and

1 E E CV :
= — £ - —_ - 2
Bo=hp + 55 &3PS T T TR > (32)
where the subscript R refers to quantities in the reference state, Dijkl is
the linear elastic modulus tensor, and C, = T<§f§ is the specific heat at

constant elastic strain. Substitution of equation (32) into (21) will result
in
1 T

le = Dklmn(emn - Smn - Emn) - (33)

The above equations, together with internal state variable growth laws (153),
will be shown to be a suitable framework for comparison of all of the models
to be discussed herein.

Internal State Variables in Metals

It is now generally agreed in the literature that in single crystals there

are two locally averages internal state variables: the back stress (ql )
- l ]
representing dislocation arrangement; and the drag stress (qo) representing

~dislocation density; where the bars have been dropped for convenience and the
superscript has been converted to a subscript in order to avoid the confusion
which would arise if a state variable were raised to some power. For obvious
reasons the back stress is a second order tensor, whereas the drag stress is
a scalar. In specimens composed of multiple crystals it is generally agreed
that a third internal state variable loosely termed damage (w3 ) is neces-

sary in order to account for intergranular mechanisms such as graln boundary
sliding and microvoid growth and coalescence that may occur at high tempera-
ture and/or large strain. Although damage is obviously a directionally re-

lated quantity and therefore tensorial in nature, it is difficult to distin-
guish phenomenologically between damage and drag stress since both are pri-

marily stiffness reducing mechanisms.

Within the thermodynamic framework described earlier it is also possible
to define the inelastic strain tensor to be an internal state variable. How-
ever, this interpretation is not generally utilized within the materials



literature. It is hypothesized that the - 1no. of dislocation
rate of growth of the internal state vari- rearrangements in
ables does not depend on the inelastic a local

strain tensor so that specimen

*k
o

i] ) . (34)

k .
- Qij(emn’T’gm’al

mn mn

Due to the form of equations (34) it is /
said that since the inelastic strain ten- /
sor does not appear on the right hand /

side it is not an internal state vari- K \\\\
able. However, within the framework de-~ - .
fined herein, it is still possible to : dt
construct an internal state variable

growth law of the form Figure 3
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which is precisely in agreement with def- L

initions (15).

In order to qualitatively verify the
supposition that the inelastic strain ten-
sor can be regarded to be an ISV, consider
the example of a uniaxial bar subjected to .
applied displacements such that the end /
tractions will be evenly distributed. It /

is customary to deduce the inelastic strain o - .
in an experiment of this type by utilizing dt

the output from a load cell to determine
the stress and then making use of equations
(33) to determine the elastic strain. This result and the total strain mea-
sured by an extensometer are then substituted into equations (31) to deter-
mine the inelastic strain. Nevertheless, this does not imply that the inelas-
tic strain tensor in an observable state variable. This result can be arrived
rat only in constitutive experiments such as uniaxial bar tests in which the
stress and strain tensors are spacially homogeneous. In heterogeneous boun-
‘dary value problenms, only two state variables may be input (temperature and
either stress or strain), and for this case equations (31) and (33) must be
supplemented with an ISV growth law of the form of equations (35) in order

to determine the inelastic strain tensor. Therefore, in the context of the
current thermodynamic framework the inelastic strain tensor may be interpreted
to be an ISV.

Figure 4

A Framework for Current Metals Models

In order to establish that current models can be constructed from equa-
tions (33), consider the standard solid shown in Fig. 5. The governing dii-
ferential equation for this analog is

+ ' E ¢+ 1 e

C+tg- 0 =E ¢ Ny {1+ E; ]

M A

» (36)

(e



where by convention the stress is denoted
G and the strain is €. Equation (36) may
be written in the following equivalent

form IRy YNNI Yy,

- [E\{EE ] +_F% i;f} ' GD L E
hy © 2 © < S
[

In accordance with the instantaneous lin- 5;
ear elastic behavior of metals, it is as- <
sumed that Em<:
= = A = :
EM+Eoo = E = Young's modulus constant, (38) lf:JnM

so that it is clear that equation (37) can
be integrated in time to give the following —
stress formulation 5

og(t.)

- _ 1 I ; : :
;(tl) = £ + £ (tl) . (39) ! g
wheqe EI is the inelastic strain, defined
by
t1 Figure 5
I EM [o-E_g] ' &
€ (tl) = -— —— dt . (40)
. E nM
-0

Equation (39) may be solved for the stress and substituted into equation (40)
so that it is clear that equation (40) is in accordance with ISV growth laws
(16). Further, it can be seen from the standard solid analog in Fig. 5 that
since O~Em€ represents the stress in the Maxwell element, el is not observ-
able, so that el satisfies the two conditions required for it to be an internal
state variable.

Equation (39) may be written equivalently in the following strain for-
mulation:

o(t)) = Ele(t)) - €' (e))] | , (41)

which is an equation of state compatible with constitutive equations (10) as
well as equations (33). Since no other internal state variables are present
in this equation, and also, no additional internal state variables are present
in growth law (40) it is apparent that the standard solid analog with constant
coefficients EM’ Mhy and E_ is a single internal state variable model.

It has been noted by several researchers that the standard solid is an
appropriate analog for thermoviscoplastic metals if the springs and dashpot
are nonlinearized [26,27). 1In order to demonstrate this feature, consider a
multiaxial extension of equation (36):



1% + K (.)' =G g + M é , (42)
Pq pqun mn pqmn mn pgqmn mn

where by convention the small strain tensor &€;; is used in conjunction with
the work conjugate stress tensor Ojj. ;n order to model metal§ Kpqmn » Gp%mn’
and Mpqmn aTre required to be nonlinear in some as yet undetermined way. n
addition, in accordance with constraint equation (38), it is required that

-1

- 43
Kijmn Monk1 Dijkl > (83)
where Djjk] is the linear elastic modulus tensor. Equations (42) may be re-
written in a strain formulation equation of state form as follows:

= - /s
95 = Pijk1 [%k1 ~ Sl > (44)
where Eil is the inelastic strain tensor, defined by
t
1 .
I _ -1 /
g.. = M., [c -G £ _]dt . (45
-1 1JPq pq Ppdqmn mn
Substituting equations (43) and (44) into equatioms (45) will result in -
|
1 -1 I -1 .
€., = ;/ﬂ {Kijmn[bmn ;mn] Miqu qumnemnj dt : , (46)

-0

so .that equations (46) are in accordance with growth laws (16). The number

of internal state variables contained in the model will depend on the degree
of nonlinearity proposed in the nonlinear tensors qumn’ qumn’ and Mpqmﬁ’

and this will be discussed in the following section. However, before continu-
ing, it should be pointed out that the constitutive equations developed in
this section assume that the elastic and inelastic strain tensors may be lin-
early decoupled. It has been shown that this assumption is invalid for finite
deformation [28]. However, even under finite deformation conditions the in- .
elastic strain is decoupled from the elastic strain in such a way that the
inelastic strain tensor may be considered to be an internal state variable.

Current Models for Metals

The framework for metals models discussed in the previous section can
be used to describe numerous models currently under development [26,27,29-58].
For example, the microphysically based isothermal model proposed by Krieg,
et al., [30] is of the form described by equations (33):

I .
95 = Piyka 1 T Skr? : > (47)

where
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Ea S - . >
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Pq pPq

and €, and m are material constants, and o}; is the deviatoric stress tensor
and aiij is the deviatoric component of the back stress tensor.. Since equa-

tions (48) contain the stress tensor, substituting equations (33) into (48)
will result in equations consistent eith growth laws (15). In addition, Krieg,
et al., give the back stress and drag stress to be, respectively,
al
i el lij

P T ’
1ij o ij o (éi ai )i
Pa pq

(49)

and
-I }i
AR (8 ) - rR - ,» (50)

where A, and Ap ‘are hardening constants, and r, and rp are recovery functions
of temperature and internal state variables. It can be seen that since ISV
growth laws (49) and (50) are consistent with equations (15), the model pro-
posed by Krieg, et al., contains three internal state variables: the inelastic
strain tensor, the back stress temsor, and the drag stress tensor.

Furthermore, classical plastic1ty theories can be described by the gen-
eral form

cij = Dij (e -€") - N ’ » (B1)
where
‘I ’ . aF
€. = A : . (52)
ij acij

A is a.scalar valued function of state, and F is a scalar valued state func-
tion for inelastic behaviour often taken to be the yield function. If F is
described by the von Mises yield criterion [53], given by

F(o,. - a, ) =x(@.,, ~a ) = k » (33)

: s ) (0, -«
ij lij ij lij ij lij

where o) ~ 1is a tensor describing the yield surface center in stress space and

ij
k is a constant representing the yield surface size, then equatlons (52) can
be written as



c = Aoy -ap ) » (54)
ij

: resulting in a kinematic hardening model with constant yield surface size.
Substitution of equations (51) into the above will yield a result consistent
with rate independent ISV growth laws (19).

Furthermore, if the yield surface translation is derived from the Ziegler
modification [60] of the Prager work hardening rule [61], it may be described
by

@ = u(Oi - al__) , s (35)
ij ]

where U is a scalar valued function of state. By use of equations (51), equa-
tions (55) can also be shown to be consistent with' equations (19). Therefore,
a classical plasticity-based kinematic hardening model contains two internal
state variables: the inelastic strain tensor and the yield surface transla-
tion tensor representing the back stress. t

In order to further illustrate the applicability of equations (33), (35)
and (15) to current models for metals, ten of these models have been cast in
uniaxial form in Table 1, wherein it is shown that although the framework for
each model is identical (Valanis' model is in simplified form), the ISV growth
laws vary widely both in number and form.

CONCLUSION

The main content of this paper has been to review and clarify the continuum
and thermodynamics based internal state variable model for application to ther-
~moviscoplastic metals. In this process the following points have been made:

_ 1) the definition of an internal state variable utilized in this model
". has been clarified; ’

_' 2) internal state variables in metals represent local averages of dis-
location arrangement, dislocation density, and intergranular damage,

3) in the context of the ISV definition given here, inelastic strain may
also be interpreted as an internal state variable;

4) the path dependent Helmholtz free energy may be expanded in a second
order expansion in elastic strain and temperature in order to obtain a stress-
strain equation of state;

5) rate dependence enters the constitutive equations implicitly via the
inelastic strain, as demonstrated by the nonlinear standard solid analog; and

6) a three-dimensional generalization of the standard solid may be used
as a means of comparison of the general form of several currently proposed
models. '



Further ramifications of the ISV model discussed are also of importance,
although not detailed herein. For example, this model may be utilized to con-
. struct a coupled heat conduction equation which may be utilized to predict
 heat. generation in thermoviscoplastic metals [62]. Furthermore, the concept
of internal state variables may be utilized to construct models for the mech-

anical constitution of composites with damage [63,15,65,66].
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2 ln.(_nz' /A v
Vg
o-a; n-1
Robinson |  (126) o=E[e-e! -TY (127) il- ,%[7;- Y ] (e-e,) LGy s the itrlal vala | i,
ll.l.cb
*1
2. 24H .1 O V| Raite of .
(T28) a" ——L—'n—- ¢ - R[7r Yﬂ sy ?
1]%1
Al
valanis (129) o=E[e-¢2-T1 | (130) elak £y (o006 + Kyfy(a,e) . Represents simplified B
. form of Valanis’ wodal. £,
Allen (131) o=E[c-cl-eT| (132) ileifo~a,] + &lo-a,] i fieot
and b ad
(T33) &,=s(0-a,] irting and interpola-
Haisler i W ;1 tim of stress-strain
(134) 8,~£1) and creep data
required to abcatn
material parassters
i, g andy,

1l x>0
18@(&)»{0 x=0
=1l x <0

2 ¢ ean be sbstinted directly into growth law for o; &nd o, to
obtain a form consisteax with internal state variable growth laws (14).

Note: pérentheses ( ) tmply "fuhction of', whereas brackets [ ] imply
multiplication. '
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ABSTRACT

A Comparison of Current Models for Nonlinear Rate-Dependent
Material Behavior of Crystalline Solids. (May 1986)
Joachim Michael Beek, B.S., Texas A&M University

Chair of Advisory Committee: Dr. D. H. Allen

This thesis reviews three theories for prediction of
inelastic deformation which are based on considerations of
the microstructural behavior of materials. These theories
are those of Krieg, et al., Bodner, et al., and Miller,
et al. The thesis opens with a review of the mechanics of
continua with internal state variables and a review of the
historical development of constitutive modelling. A
detajiled discussion, including chronological development,
review of theory, and method of determination of material
parameters, of each model follows. An experimenﬁal datav
basejis established from which the material parameters of
the constitutive equations are calculated. Finally,
computer simulations of various load histories are
éerformed and compared to experiment, and conclusions of
the ability of each theory to model inelastic deformation

are drawn.
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INTRODUCTION

The prediction of inelastic material behavior in metals
is a problem of great importance whiéh has accordingly been
given a great deal of attention by the research community
in recent years. Recent technological advances require
materials to function in severe chemical, mechanical, and
thermal environments such as nuclear reactors and gas
turbines. Superalloys have been developed that are able to
sustain loads at extreme temperatures; however, due to this
environment, these materials exhibit substantial complexity
in their material constitution in that they are highly
nonlinear, rate-dependent, temperature-dependent, and
history—dependent.

Numerous theories have been proposed to predict the
thermomechanical behavior of inelastic solids at elevated
temperatures. These theories are usually based on one of
the following concepts: 1) rate-dependent extensions of
classical plasticity theory retaining the concept of a
yield surface, 2) thermodynamics and/or nonlinear

viscoelasticity theory, and 3) considerations of the

The style and format of this thesis follow the Journal
of Engineering Materials and Technology.




microstructural behavior of the material. It is important
that each of these theories be able to model diverse
phenomena associated with inelastic deformatioﬁ including
anelasticity (completely recoverable time-dependent strain
at zero loaa), the Bauschinger effect, cyclic strain
hardening/softening, rate sensitivity, creep, relaxation,
and tensile and compressive loading and unloading. These
are illustrated in Figures 1 and 2.

The purpose of this research is to review tbree
theories based on considerations of microstructural
behavior. Since each theory is proposed for a material
and temperature of its authors' choosing, a set of
experiments is performed bysthis author with a single
candidate material in order to create a common expefimental
‘déta‘Sése with which the mathematical representation of
each model can be characterized. The theories are
subsequently analyied quaiitatively and quantitatively over
a range of material behavior to determine their suitability
in predicting inelastic deformation.

This thesis opens with a short review of the mechanics
of continua with internal state variables. This is
foliowed by a literature review and, utilizing the
framework of internal state variables, a detailed study of
the models chosen for discussion. The experimental progran

associated with the research for this thesis is presented



as an assessment of the experimental data base requirements
for each model, accompanied by the results of the
experiments. A uniaxial comparison of the predictive
capabilities of the models follows and, finally,

conclusions from the complete survey are presented.
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THE EQUATION OF STATE APPROACH

The concept of internal state variables, sometimes
called hidden variables, is gaining widespread usage in
current research on the modelling of inelastic solids.
Therefore, it is useful to construct a well-defined
framework for internal state variable models which is based
on continuum mechanics.

The concept of internal state variables was apparently
first utilized in Onsager's work in thermodynamics [1,2]
and has found numerous applications since the Second World
War [3-12].

In the theory of internal state variables applied to
solids, Coleman and Gurtin [3] defined the elastic field
problem to be one in which the following state variables
are required in order to characterize fully the state of a

body at all points xj and at all times t: ¥

1) the displacement field u, = uj(xj,t); (1)

* For convenience, only infinitesimal deformations will
be considered here, although the general theory applies to
finite deformations as well.



2) the stress tensor 0.. = a..(x

3) the body force per unit mass fy = fi(xj't); (3)

4) the internal energy per unit mass

u = u(xj.t); (%)

5) the heat supply per unit mass r

1

r(xj,t); (5)

6) the entropy per unit mass s = s(xj,t); (6)

7) the absolute temperature T = T(xj,t); (7)
and

8) the heat flux vector q = qi(xj,t). (8)

Thermodynamic constraints will lead to the conclusion that,
for elastic bodies, entropy is generated only through heat
conduction [3]. For inelastic bodies, however, this
conclusion cannot be drawn because additional entropy is
generated. The state cannot be characterized solely from
the observable state variables; rather, a set of internal
state variables a?i is also necessary, and these are

determined by observation of the entire past history of



states of the body:

(x_,t), (9)

where the superscript k ranges from one to the number of
internal state variables necessary to characterize fully
the state of the body. Although listed here as second
order tensors, they may be tensors of other rank as well
(131].

The method of Coleman and Noll [t4] may be used to
obtain the sbatial and time distribution of the body force
fi and the heat supply r from the conservation of linear
momentum and the conservation of energy, respectively,

assuming the displacements u, and the temperature T are

i
specified independent variables. It is hypothesized
subsequently that constitutive equations may be constructed

for the remaining state variables in terms of Uy and T and

their spatial derivatives:

p .
oij(cmn(xk’t)'T(xk' t)’gm(xk't)'amn(xk’t>)' (10)



k&) o=

e (x,,€),T(x,,t),8 (X, t),al (x.,t)); (11)
s(xk,t) =
sCey (X, t),T(x,,t),8 (X, t),ab (x,,t)); (12)
a;(x, ., t)
Qg (e (X0 t), T(x, . t) 8 (X, 8) el (x ,6));  (13)
where g, is the spatial temperature gradient T,m and
(u, .+u, ) (14)

is the infinitesimal strain tensor. The form of equations
(10) through (13) implies that all constitutive equations

are evaluated in the specified state xk and t. For this

reason, Oij’ u, s, and q; are termed observable state

variables since they can be determined from equations of

state, even though there is an implied history dependence

through the internal state variables aﬁn' These are

defined to be of the form:
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R, .(e_ ,T,8 ’amn)' (15)

where time and spatial dependence have been dropped for
notational convenience and the superscripts k énd p range
from one to the number of internal state variables
necessary to characterize fully the state of the body. If
equations (15) are integrable in t at all times, then they
can be rewritten as

agj(xm,t) = fEmQEJ(xm,t')dt'. (16)
where t is the time of interest and t' is a dummy variable
of integration.

The above framework has been shown to be applicable to
crystalline solids [15,16] and further discussion of this
subject is provided in reference [17].

On the basis of the Coleman-Mizel ﬁrdcedure (18] it can
be shown that satisfaction of the first and second laws of

tnermodynamics will lead to the following conclusions:

- - - _ P
h = u Ts h(bmn,T,amn). ‘ (17)

where h is the Helmholtz free energy;

o
i

K1 p éh/éekl; (18)
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s = -0h/93T; , (19)
and

= -k,.g. + 0(g.),
a; 1383 (gJ) (20)

where k1j is the thermal conductivity tensor. Although
further results are obtainable [3,15-17], they are not
pertinent to the current research. The importance of the
results above is that, in order to codstruct a complete
description 6f constitutive equations (10) through (13) and
(15), it is necessary only to prescribe the Helmholtz free
energy. In order to desc;ibelthe class of materials
discussed herein, the free energy is expanded in terms of

the elastic strain tensor efj and the temperature T in a

second order Taylor series as follows:
/2p = ¢, (T - TR)/ZT, (21)

where the subscript R refers to quantities in the reference

state, DiJkl is the linear elastic modulus tensor,

c

v ~T(d%2h/dT?) is the specific heat at constant elastic

I

volume, and

eB o e - el - T (22)



where ezj i{s the thermal strain tensor and sI is the

1]
inelastic strain tensor, which can be considered to be an
internal state variable [15,16,18-21]. Substitution of

equation (21) into (18) will result in

o1 = Pkimn ‘Can T €un T €gn’- (23)
The above equations, together with internal state variable
growth laws (15), will be shown to be a suitable framework
for comparisdn of all the models discussed herein.

Theoretically, constitutive equations (10) through (13)
and (15) are applicabie to fixed infinitesimal material
points. In practical terms however, it is not possible to
construct experiments on material points since the
continuum assumption becomes invalid at the microscopic
level. Rather, it is considered acceptable to construct
constitutive equations by subjecting local specimens to
surface deformations (or tractions) which lead to spatially
hombgeneous stresses and strains. In this manner, a local
average of the pointwise observable state variables can be
determined directly from the effects on the boundaries of
the specimen.

As shown in Figure 3,'the scale of the smallest
dimension of a local specimen is generally assumed to be at

least one order of magnitude larger than the scale of the
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largest material 1nhomogeneft}} ghile the scale of the
largest dimension of the local specimen is much smaller
than the scale of the domain of interest. The former
preserves the continuum assumption, while the latter
conserves the notion that constitutive equations are indeed
i
pointwise in nature. The local constitutive equations tha%

result from experimentation are assumed to be of the same

form as pointwise equations (10) through (13) and (15); for

example,

0, = 0,,(e,.,T,abl ) (24)
11 11 11" "“mn’’

where

.. = Yy oo dx. dx (25)
11 A’B,%11%%2% 3

.. = Yroe ax . (26)
11 L°L™11 1

and

T = T(a1,a2,a3), (27)

where L is the length of the local specimen, A is the

cross-sectional area in the x -x3 plane, (a1,a2,a ) is an

2 3

arbitrary point on the surface of the specimen, and
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P
amndx1dx2dx (28)

3"
It is then assumed that equation (24) is a suitable
replacement for equation (10). There are obvious
shortcomings in this assumption in that equation (24)
represents a solution to a boundary value problem. This
implies volume averaging of local balance laws, which
violates the local nature of constitutive equations. In
addition, there may be a question of uniqueness-resulting
from the fact that more than one global state of a given
internal state variable will map into the globally averaged
state variable described by equations (28). However,
assuming that the scale of inhomogeneities is small and
that the distribution of agn is random, the specimen will
be statistically homogeneous and the relation between agn
and Emn reasonably one-to-one. The above procedure

remains the only reasonable method for constructing

constitutive equations from expefimental data bases.

<-3
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LITERATURE REVIEW AND GENERAL DISCUSSION OF MODELS

Man's curiosity about his environment and his constant
striving to harness the power and resources of nature with
increasing efficiency have been the driving force behind
the study of the laws of nature and the attempts to use
these laws to predict the solutions of many problems.

The theory of elasticity dates to the 17th century with
Robert Hooke's discovery that the tension in a spring is
directly proportional to its extension. This heralded the
beginning of the characterization of mechanical behavior of
materials using mathematical congtitutive mogels.
Contributions to the theory of elasticity were also made by
Galileo, the Bernoullis, Navier, Cauchy, Euler, and

Saint-Venant, to name a few [22].

Classical Plasticity Models
Often only a small part of material deformation is
.elastic and, in general, a material will not behave
elastically at large strains. Consequently, in 1864 Tresca
[23] proposed a criterion to predict the onset of inelastic
deformation in metals based on the maximum shear stress
reaching a critical value. This was followed in 1913 by von

Mises [24] with a yield criterion based on an equivalent
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stress state reaching a critical value; this has been
interpreted as the elastic shear strain energy reaching a
critical value [25].

Independently of each other, Levy [26] and von Mises
[24] formed the basis of classical plasticity by proposing
a three-dimensional relationship between the strain
increment and the stress tensor which became known as the

Levy-Mises equations:

= At
deij da I (29)
where deij is the total strain increment, d) is a scalar,

and oij is the deviatoric stress tensor, given by

ij ij %okkéij (30)
where dij is the Kronecker delta. In equations (29), the
elastic strain component is assumed to be negligible; these
equations consequently describe a fictitious, rigid,
perfectly plastic materjal. Equations (29) were extended
to take into account the elastic strain component by
Prandtl [27] in 1924, who solved the plane stress case, and
by Reuss [28] in 1930, whc generalized the equations to

three dimensions:
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P
dcij = dai Oijp (31)

where de};J is the plastic strain component and di is a
scalar history-dependent material property. The total

strain increment deij is then assumed to be the sum of the

plastic strain component deij
E

ij°

and the elastic strain
component de

These developments enabled the classical plasticity
theory to model elastic and rate-independent inelastic
deformation féirly éccurately for most metals with only a
few restrictions. These were that the material be
subjected to monotonically increasing loads and low
nQn—transient homologous temperatures; that is,
temperatures less than three tenths of the absolute melting
temperature, At higher temperatures, however, rate
dependence of material behavior becomes significant,
limiting the use of the existing plasticity theory.

Rate dependence was initially treated as an extension
of classical plasticity theory by Bingham [29] in 1922 by
using the concept of a yield function dependent on the
excess of the stress intensity over the yield stress for
the case of simple shear. This was generalized by
Hohenemser and Prager ([30] in 1932 for the
three-dimensional case. Further progress in plasticity

theories was slow and advanced vastly and diversely only
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after completion of World War II. Prager [31] and Ziegler
[32] proposed work-hardening rules for rate-independent
plasticity to allow the yleld surface to translate to model
kinematic hardening. Drucker's stability postulate [33]
serves as a basis for the incremental theories of
plasticity, in which the plastic strain increment is
determined by the stress and the stress increment. Rate-
dependent plasticity models proposed in the postwar period
included those by Freudenthal [34], Malvern [35,36], who
constructed a one-dimensional equation relating the stress
increment to.the strain rate, Lubliner [371, who modified
Malvern's equation to include a limiting stress-strain
curve, and Perzyna [38-41], who generalized Malvern's
equations to three dimensions and finite strains.

Many classical plasticity models have been extended to
include rate dependence by adding an uncoupled rate-
dependent strain component to the rate-independent strain
component. No observable difference exists between the
physical mechanisms causing these phenomena, however, and
it has been argued that the two terms should be combined
(42]. Naghdi and Murch [43] attempted to include rate
dependence by introducing interdependent, although not
unified, plastic and viscoelastic strain components.

Classical plasticity theories are usually described by
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Oij = Dijmn (emn " fmn T emn)' (32)

where D, . is the linear elastic modulus tensor, eT is
ijmn mn

the thermal strain, and eén, the inelastic strain, is

_ given by

éI = X oF/o00 (33)

mn mn'’

where 1 is a scalar valued function of state and F is a

scalar valued function for inelastic behavior often taken

to be the yield function. If F is described by the von

Mises yield criterion [24], given by

Flo, . = a,.) = (o

1 i3 - ai.)(o.. - ui.) = k7, (34)

1J
where aij is a tensor describing the yield surface center
in stress space and k is a constant representing the yield

surface size, then equations (33) can be written as
€.. = A (o,. = a,.), (35)

resulting in a kinematic hardening model with constant
yield surface size. Furthermore, if the yield surface
translation is derived from the Ziegler modification [32]

of the Prager work-hardening rule [31], it may be described
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by

@y 5 ) (36)

[}
=
—
Q
j .
|
Q

where ﬁ is a scalar valued function of state.

By use of equations (32), equations (35) and (36) can
be shown to be consistent with growth laws (15). It can
then be seen that classical plasticity theories are
consistent with the thermodynamic framework develbped in
thé equation of state approach.

Recently'proposed theories include those by Snyder and
Bathe [44], Yamada and Sakurai [45], Allen and Haisler
[46,47], which attempts to model transient temperature
effects, Zienkiewicz and Cormeau [48], and Robinson [49].
Bodner and his associates proposed a model [50] whiéh uses
a flow law similar to equations (31), although the internal
state variable growth laws are based on microstructural
considerations. Robinson's model and Bodner's model are

still under active development.

Nonlinear Viséoelasticity Models
Nonlinear viscoelasticity models are usually based on
thermodynamics and/or mechanical analogs composed of
springs and dashpot combinations such as the three

parameter standard solid, shown in Figure 4. 1In 1954, Bilot
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[6,7] proposed a theory of linear thermoviscoelasticity
based on the principles of irreversible thermodynamics.
Schapery [12] later modified this to include nonlinear
behavior and introduced a reduced time scale to solve the
resulting highly nonlinear equations. Valanis [51-53]
proposed a viscoplasticity theory, termed the endochronic
theory, which includes a history-dependent reduced time
parameter, This was later shown to be a special case of
Schapery's model [54]. Some other models based on
thermodynamics are those of’Coleman and Noll [55,14], Green
and Rivlin [56], and Green and Naghdi [57]. These tend to
be quite complex in nature and difficult to solve.

Many of the recent models are based on variations of
the three parameter standard solid. The standard solid
shown in Figure 4 has been demonstrated to be an
appropriate representation for therwmoviscoplastic metals if
the springs and dashpot are nonlinearized [58,59]. The:

governing differential equation for this solid is
o + (nM/EM)o = E_e + (nM/EM) (EM + E_de. (37)
This may be rewritten in the equivalent form

e = o/(Ey + E) + E/[ny (B, + E)] (o - E_e). (38)



In accordance with the instantaneous linear behavior of

metals, it is assumed that

E, + E = E = Elastic modulus = constant, (39)
and equation (38) becomes
+ €, (40)
where cI is Fhe inelastic strain, given by

€ = (E,/nyE) (o - E_e). (41)

The nonlinearity of the springs and dashpot can be
introduced by considering a multiaxial extension of

equation (37):

0 + K 0 =

pq pamn mn qumnemn ¥ Mpqmnemn' (42)

In order to model metals, and M are

K , G ,
pqmn’ “pgmn pqmn

nonlinear material functions determined from experimental

data. 1In addition, constraint (39) requires that

-1

KiymnMmnk1 = Pijka- (43)

24
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where Dtjkl is the linear elastic modulus tensor.

Equations (42) and (43) lead to

(e - € - €_ ), (44)

%3 " Pijan ‘Can mn mn

where the inelastic strain eI is given by

£

-1 _ M-1 (o -G

€1 1jk1 k1 klmn€mn) * (45)

Substitution of equations (44) into (45) will result in
equations cohsistent with growth laws (15). It can then be
seen that nonlinear viscoelasticity models are consistent
with the thermodynamic framework developed earlier in the
equation of state approach.

Some recent models which are based on nonlinear
modifications of the three parameter standard solid are

those of Krempl, et al. [59-66], and Walker [58,67,68].

Microstructural Models
Microstructural models have generated increased
interest in recent years because their formulation is based
on microphysical considerations rather than a statistically
averaged macroscopic view, The primary micromechanisms
which cause inelastic deformation are dislocation glide and

climb, deformation twinning, diffusion, grain boundary
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sliding, aqd microvoild growth and coalescence. These
mechanisms are difficult to modei individually and are
usually reduced to three more general mechanisms:
dislocation arrangement, dislocation density, and damage.
In the concept of microphenomenology it is assumed thét the
three mechanisms can bé characterized by internal state
variables. One internal state variable represents the back
stress for modelling the disiocation arrangement. Another
internal state variable, termed the drag stress, models
dislocation density. In addition, it can be argued that
the inelastic strain represents the third internal state
variable [15,16,19]. Current research is in progress to
account for damage in materials using a fourth internal
state variable [69-71]; although it is difficult to
distinguish between damage and the drag stress since both
are primarily stiffness-reducing parameters.

Early research in this.field was performed by Coble
[(72], Nabarro [73], and Herring [74] in their work on
diffusion-controlled creep. Other important contributions
were made by Sherby, et al. [75-77], Garofalo [78], Argon
L42), Weertman [79], Alden [80], Kocks [81], and Hart [82].

Mukherjee, et al. [83], studied the effectiveness of
using a power law of the following form to model

dislocation climb:
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oA (ere)®, (46)

where D i1is the self-diffusivity, E is Young's modulus, and
A and n are temperature-dependent material parameters. The
authors concluded, however, that a model in terms of a
single dislocation mechanism may not completely
characterize high-temperature creep.

Gibbs [84] proposed a two-internal-state-variable
theory in which the inelastic strain rate is characterized
by an exponential function of temperature and an effective
stress:

¢t = 2" expi-la, - (o-0,)10°1/kT}, (47)

where A* is a structure factor, Qc is the dislocation core
diffusion energy, k 1s the activation energy, T is the
absolute temperature, b is the Burger's vector, and oa and
1 are internal state variables representing, respectively,
back stress and drag stress.

It is generally recognized [85] that at intermediate to
high stresses and at temperatures above O.STm, where Tm is
the absolute melting temperature, stress is related to the

inelastic strain rate by a power law of the form

e = A o, | (48)
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where A and n are constants. At very high stress levels,
the relationship is

el o exp(mo), (49)

wnere B and m are constants. Power law and exponential
relationships represent limiting cases for the more general
empirical relationship

.

tl . ¢ [sinh(k0)1P, ‘ (50)
where C, p, and k are constants. Equation (50)
approximates a power law when ko¢<0.8, but it approximates
an exponential curve when ko¢>1.2. See Figure 5 for a
comparison of the forms of equations (48), (49), and (50).
Microstructural models are usually similar in nature,
differing only in the propoéed relationship between stress
and inelastic sﬁrain (that is, equations (48), (u9), or
(50)) and in the proposed internal state variable growth
laws. The growth laws for the internal state variables
representing the back stress aﬁd the drag stress usually
follow the framework established by Bailey [86] and Orowan
[87] in which a hardening term, proceeding with accumulated
deformation, competes simultaneously with a softening or

recovery term, proceeding with time. For example, the
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log(él)

exp nx
JR ¢!
sinh x

Fig. 5 A comparison of the hyperbolic sine, power law, and

exponential forms of the inelastic strain rate equation
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isothermal model proposed by Krieg, et al. [88]), is given

in its uniaxial form by
I
o = E (e - €7), . (51)
where the inelastic strain is given by
e =c¢, [lo - ay]|/a,] sgn(o - a,), (52)

where the growth laws for the back stress o, and the drag

1

stress a, are given as the differences of hardening and

softening rates:

!

Gy = cgit - cya? Cexplega?) - 11 sgn(a,) (53)

and

c6|éI| - cq (o, - azo)n, (54)

R
N
u

where 01, 02, 03, cu, 05, c6, c7, n, and u20 are
temperature-~dependent material constants, and sgn() is the
signum function.

Substituting equation (51) into (52) will result in

equations consistent with growth laws (15). In addition,

since equations (53) and (54) are consistent with growth
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laws (15), it can be seen that microstructural models agree
with the thermodynamic framework developed earlier in the
equation of state approach. Cescotto and Leckie [89)]
proposed a model which has the interesting feature that no
particular forms are assumed for the inelastic strain rate
function and the hardening and recovery functions; only
weak hypotheses are required and the functions are defined
experimentally.

Other recently proposed models include those of Miller,
et al. [90], in which a hyperbolic sine function is used
for the stress-inelastic strain rate equation, Walker [58],
in which a power law is used for the inelastic strain rate
equation, and Bodner [50], in which an exponential function
is used. An interesting aspect of these last two models is
that, although the respective growth laws for the back
stress and the drég stress are formulated from
microstructural considerations, Walker's inelastic strain
rate equation i1s based on a nonlinear modification of a
three parameter viscoelastic solid, while Bodner's
inelastic strain rate equation is based on a floQ law
similar to the Prandtl-Reuss equation of classical
plasticity (see the literature reviews on nonlinear
viscoelasticity models and classical plasticity models,
respectively).

Since theories based on microstructural considerations
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have been given a great deal of study in recent years, the
theories chosen for comparison are taken from this field
and are those of Krieg, et al. [88], Miller, et al. [90],
and ,Bodner, et al. [50]. The motivation for the choice of
these three models is that they are still under
development; they have been cast in a common thermodynamic
framework; the authors have included in thelr theories
detailed accounts of methods of determination of the
material constants; these models have received considerable
attention [20,68,91-93]; and research is in progress to
extend these isothermal models to include transient

temperature response [68,91,94].
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KRIEG, SWEARENGEN, AND ROHDE'S MODEL

Chronoloéical Development

In 1977, Krieg [95] cast several current unified
constitutive models into the common framework of a skeletal
model in which general similarities, such as the use of
competing hardening and recovery rates for internal state
variable growth laws, are noted. These models include
those of Bodner, et al., Robinson, et al., Hart, Lagneborg,
Miller, Pasley and Wells, Ponter and Leckie, and an early
development of Krieg's model, which is described as a
composite of the aforementioned models., All hardening and
softening functions are taken to be constants in the
skeletal model in order tc make observations about
difficulties encountered i nﬁmerically integrating
mathematically stiff const.tutive equations. Finally,
‘integration techniques are proposed to alleviate these
difficulties.

In a development of this model, Krieg, Swearengen, and
Rohde [88] proposed a power-law kinetic relation in
multiaxial form to model pure aluminum at room temperature.

Th.s model has three internal state variables: the

inelastic strain, the back stress and the drag stress. The
growth laws of the back stress and the drag stress are

formulated in the usual hardening rate/recovery rate
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format. The hardening functions have not been defined and
are assumed to be constant; recovery is considered to be a
thermally-activated process and dynamic recovery 1is not
included. Furthermore, the response of puré aluminum at
room temperature is very nearly kinematic and, as a
consequence, the drag stress (the isotropic hardening
variable) is taken to be constant. Krieg, et al., present
a test method in which all material constants, except
Young's modulus, are calculated by determining values of
the back stress from a set of stress-drop tests. In‘this
test, a portion of the load on a specimen during secondary
creep is removed and the resulting strain transient is
recorded. The authors have obtained reasonable results for
pure aluminum at room temperature for various load
histories, although the pfedicted hysteresis loops are
"over-square" and the model's Qse is 1imited in higﬁ strain
rate ranges.

In 1982, Jones, et al. [96], noted that, while most
unified creep-plasticity models require an extensive number
of tests for characterization of material parameters, the
model proposed by Krieg, et al., requires only a set of
stress-drop tests. It is pointed out that, although simple
in concept, the stress-drop test is difficult to perform in
practice. The critical measurement in this test, a zero

strain rate after unloading or merely the absence of a
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resolvable strain rate, results in a strong dependence of
the parameters on experimental resolution. The authors
present the design of a test apparatus to minimize these
effects. In addition, there appear to be differing
opinions in the literature on the response of the creep
rate immediately after unloading. "Jones, et al., conclude
that stress;drop testing should be performed with great
care.

In subsequent research in 1983, Jones and Rohde [97]
refer to a new technique to reduce stress-drop data which
alleviates the difficulties mentioned above, Rather than
attempting to measure a zero strain rate, this method [98]
uses a comparison of the instantaneous strain change and
the maximum strain change after unloading. This method
appears to simplify the calculations considerably and

merits further study.

General Theory
In their unified creep-plasticity model, Krieg,
Swearengen, and Rohde [88] state that inelastic deformation
can be caused by: 1) thermally-activated, stress-assisted
penetration of short-range obstacles to dislocation motion,
2) generation and immobilization of dislocations, leading
to increases in dislocation density, stored elastic energy,

and the flow stress, and 3) stress-assisted thermal
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rearrangement of dislocations to reduce long-range internal
stresses. Krieg, et al., note that strain hardening at 1low
to intermediate homologous temperatures (below O.STm, where
Tm is the absolute melting temperature) is both isotropic
and kinematic. Isotropic hardening, manifested by an
increase in the height of the reversed strain hysteresis
loop, has its microstructural origins in dislocation
obstacle interaction, while kinematic hardening, manifested
by the Bauschinger effect, has its origins in dislocation
pile-ups. Mathematical descriptions of this behavior
require two internal state variables.

Deformation kinetics resulting from thermally-activated
processes are usually described by Arrhenius or hyperbolic
sine functions; however, over a wide range of stresses, the
analytically simpler power law provides a good
approximation. This motivated Krieg, et al., to propose the
following flow rule in multiaxial form in deviatoric

stress-strain space:

et =, Ugl/m™ e/, (55)
where él is the inelastic strain rate vector, || is the

Euclidean vector norm, €, and m are temperature-dependent

0

material constants, and R is the drag stress, an internal

state variable which accounts for isotropic hardening. The
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effective stress g is given by
£t =8 - ¢, (56)

where a {38 the back stress, an internal state variable which
accounts for kinematic hardening; and s is the applied

stress. The 1increase in flow stress associated with an
increase in hardening is taken to be proportional to inelastic
strain. Recovery is associlated with dislocation éscape from.
glide planes by climb or cross-slip. In the absence of
external loads, this escape reduces the internal stresses
through annealing; in the presence of external 16ads, this
escape permits additional inelastic deformation through creep
or dynamic recovery. The evolution of o and R is given by

the difference betﬁeen hardening and recovery rates as

1R
[
g
m
1

o r, (a/lel) (57)

and

e
it
=]

I B (58)

where Aa and AR are the hardening functions, and ra and PR

are the recovery functions.

Krieg, et al., assume the hardening functions Aa and AR
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to be constant. The recovery rates are assumed to be
proportional to dislocation velocity of escape and
inversely proportional to the escape distance [99], where
the velocity and distance depend on the magnitude of the
back and drag stresses. Since annealing rate depends on
hardening mechanisms, one would expect the kinetics of
recovery for g and for R to be different. A unique
feature of this model is that it incorporates q1fferent
physically-based recovery kinetics for each internal
variable.

Dislocation processes associéted with the drag stress
are formations of dislocation tangles, or networks.
Temperature-dependent changes in the networks can be

described by the climb recovery model of Friedel [99]:

re = ~K, (RU/KT) exp(-U/kT), (59)
where K1 and n are material constants, k is the gas
constant, T is the absolute temperature, and U is the
activation energy associated with the particular
micromechanism of softening.

Disiocation processes associated with the back stress

are pile-ups or cell-wall bowing. Although both cross-slip
and climb are recovery mechanisms, only screw dislocations

can cross-slip and, consequently, the model's authors feel
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that recovery by climb is a more complete description. The

kKinetics of this process are again given by Friedel [99]):

r. o= oK, o’ [exp(K3a2/kT) - 13, (60)

where K2 and K3 are material constants.

By use of equations (60), in multiaxial form, and (59),

equations (57) and (58) become

. .I 2

@ = A e - laf X, [exp(K3|g | 7kT) - 1] (61)
and

. «1 n

R = Ang | - K1 [(R - RO) /T] exp(-U/KkT), (62)

where RO represents an isotropic annealed state.
For conditions of uniaxial stress and constant
temperature, equations (55), (61), and (62) reduce to

« 1
€

= ¢, |e/R|°? sgn(o), (63)

a = c3éI - cua2 [exp(csaz) - 1] sgn(a), (64)

and
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Ro=cgle’] - e, (R - RO, (65)

7

where 01, 02, 03, cu, 05, 06' c7, n, and R, are

0
temperature-dependent material constants, sgn () is the

signum function, and the effective stress g is
T = 0 = a. (66)

Krieg, et al., simplify the model further by assuming a
kinematic work-hardening material so that the isotropic
hardening varliable R will remain constant. Equation (65)
can then be omitted and the uniaxial isothermal form of the

model becomes
I
o = E (e - €7), ' (67)

where eI is given by

et = e )% senio), (68)
and

. o1 2 2

@ = Cje - e [exp(csa ) - 1] sgn(a), (69)
where c1, 02, 03, cu, and c5 are-temperature dependent
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material constants, and the effective stress ¢ is given by

equation (66).

Evaluation Of Material Constants

Krieg, et al., present an experimental test and data
reduction procedure which allows all constants, except the
elastic modulus E, to be determined from a set of
stress-drop tests, sometimes cailed strain transient dip
tests.

Before describing the procedure to evaluate the
material constants, it would be instructive to review the
somewhat controversial stress-drop test. High-temperature
creep can be characterized in terms of an internal stress
and an effective stress [100], where the internal (or back)
stress is the driving force for recovery, and the effective
stress (the difference between the applied and back stress)
is the driving force for dislocation glide. Conse%uently,
it is of interest to be able to determine the back stress.

Since the back stress is a result of the dynamic
balance between strain hardening and recovery, the back
stress begins to change when the applied stress is changed.
Therefore, the transient response examined should be of
short enough duration to ensure a structure which is still
reasonably representative of the steady-state structure;

i.e., a structure in which the value of the back stress has
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not changed appreciably from its steady-state value. A
technique described by Ahlquist and Nix [100,101] involves
the dynamic measurement of back stresses by rapidly
reducing the applied stress from the steady-state value o4
and measuring the strain rate immediately after the
reduction. For a small reduction in stress Ao¢, the strain
rate immediately after the reduction is positive as shown
in Flgure 6a. For a large reduction in stress Ao, the
straln rate is negative as shown in Figure 6b. For an
intermediate reduction in stress A;, the strain rate is
zero and the—new stress level o, describes the mean

2

internal (or back) stress g After a short time, recovery

i
events reduce the back stress, y{elding a positive strain
rate. As can be seen from Figure 7, it may be necessary to
load and unload a sample several times during a test before
finding the stress reduction that will give the back
stress.

This procedure for determining the back stres; applies
to thermally~activated\creep.. However, there dre different
hypotheses for creep deformation where the concept of a
back stress may become questionable. Consequently, these
hypotheses give differing predictions of the transient
response after a stress drop. Poirier [102] summarizes

these into four categories, as shown in Figure 8, where the

responses due to stress drops of different magnitudes have
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been superposed.

The athermal recovery-éontrolled creep case is

characterized by: 1) the absence of an effective stress,
2) creep proceeding only if the back stress is reduced to
the applied stress level by diffusion-controlled recovery,
and 3) stress reductions, regardless of magnitude, always
followed by a period of-zero creep rate (see Figure 8a).

- The thefmally*activated creep, jerky glide, case is
characterized by localized obstacles to dislocation
movement and, consequently, no negative creep rate after
the stress reduction. However, there may be a period of
zero creep or ﬁbsitive creep, depending on the magnitude of
‘the stress redqétion (see Figure 8b).

The thermally-activated creep, viscous glide, case is
characterized by "smeared"™ rather than localized obstacles.
Conseduently, there may be positive, zero, or negative
creep after the stress reduction (see Figure 8c).

Finally, the thermally-activated creép case with a
combination of jerky and viscous glide is characterized by
a combination of localized and smeared obstacles. The
response of this case is similar to that of the previous
two and depends on the magnitude of the stress reduction as
well as the applied stress level (see Figure 8d).

Poirier concludes that, while the concept of a back

stress cannot be rejected on experimental grounds,
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measurements of the back stress resulting from stress-drop
tests should be performed with great care and are valid
only for thermally-activated flow.

Similarly, Jones, et al. [96], conclude that due to
ambiguity involved 1in attempting to determine a zero creep
rafe or merely the absence of a resolvable creep rate after
unloading, the stress-drop test should be interpreted with
great care on the basis of a speéific deformation
hypothesis. With this in mind, one can now proceed to
evaluate the material constants c

c 03, cu, and c..

1 ~2° 5

01 and 02 |
Equation (68), which governs inelastic strain, can be

rewritten as
1n(él) = ln(c1) +c, iIn|z}, (70)

where lgl is the difference between the applied stress o
and the experimentally determined back stress a, and EI is
the creep rate immediately preceding the particular stress
reduction associated wiﬁh that value of a. The left hand
term of (70) must be linear in ln|g| if it is an adequate
representation of experimental data. A plot of data in the
form of (70) is shown in Figure 9. Graphical means or a

least-squares analysis of the data will give the values of
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Fig. 9 A qualitative graph of 1n(§1) v. ln|a-of for

determining c1 and c2
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c, and c¢c..

¢ and (03/cu)
During steady-state creep, the creep rate éI is

constant and, as a consequence of equation (68), ¢ must

also be constant. Since the applied stress o is constant

in a creep test, this implies that the back stress o is

also constant. With a = O, equation (69) reduces to:
(e /cy) = [a°/(e,|c]%2)] [explca®) - 1] (71)
377y 1 5 ’

where the fitted form cllglcz has been used for the term

éI to reduce experimental scatter. The experimental pairs

(51.a1) and (52’“2)' where the subscripts 1 and 2 refer to

the highest and lowest values of a, may be used in equation
(71) to give two nonlinear equations in tWwo unknowns.

These are then solved by iterative means to give the values

of ¢_ and the ratio (03/cu).

5

03 and cu

It now remains to determine either c¢ or c

3
their ratio 1is known at this point. In order to accomplish

y* since only

this, information from a point on the primary creep curve
(where @ is not zero) must be used since the available

steady-state information has been exhausted. Substituting
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equation (68) into (69), separating variables, and

integrating leads to

a (]
ct=f‘{c1|o]-a|2-

3 0

(cu/c3)u2 [exp(csaz) - 1]}<‘da. (72)

where o1 is the creep stress, a is the variable of

integration, a, and t are the back stress and time,

1

respectively, at which the primary creep rate EI is still

1

twice the eventual steady-state value. The value for a, at

thig data point can be determined by inverting equation
(68):
I

a. = o0, - (e /c,)

17¢4 (73)

1/02.
Since all the quantities inside the integral now have known
values, equation (72) can be integrated numerically to give
a value for c3t. Since t 1is known, c3 and, consequently,
cu ¢an be calculated easily. Although not explained by
Krieg, et al., a primary-to-steady-state creep rate ratio
of twoO appears to represent a transition point between the
region of rapidly decreasing primary creep rate and the

region in which the creep rate slowly approaches its

steady—-state value, as shown in Figure 10.
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In summary, the Krieg, Swearengen, and Rohde theory
requires a constant strain rate test (for the elastic
modulus E), several stress-drop tests in the steady-state
creep region (constants c1, Cso CS' and the ratio c3/cu)
and a creep curve complete with primary and secondary
regions (constants 03 and cu). This concludes the

determination of the material constants for the Krieg,

Swearengen, and Rohde model.
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BODNER AND PARTOM'S MODEL

Chronological Development

In 1975, Bodner and Partom [50] expanded an earlier
model, capable of modelling elastic-perfectly plastic
behavior only [103], to include strain-hardening by
introducing plastic work as the measure of the hardened
state. The formulation of the inelastic stréin rate
equationlis based on a generalization of the flow rule of
classical plasticity and is motivated partly by dislocation
dynamics. The inelastic strain rate is proposed as an
exponential function of stress and an internal state
variable'represénting hardness, where the hardness
parameter is an exponential function of plastic work. The
proposed formulation corresponds to isotropic hardening and
therefore would not characterize the Bauschinger effect.
Bodner and Partom found good agreement of their theory with
experimental results for commercially pure aluminunmn.

In noting that most constitutive theories consider
isotropic and directional hardening effects as completely
separable and thereby controlled by different internal
state variables, Bodner and his colleagues [104] extended
their isotropic theory in 1979 to model uniaxial cyclic

loading by proposing an alternative approach. This



approach uses separate values of the hardening parameter in
order to account for the directiqnal character of hardening
during cyclic loading; one value corresponds to tensile
loading, the other corresponds to compressive loading.
Bodner, et al., found.good agreement with uniaxial
experimental data for OFHC copper and commercially pure
titanium and aluminum at room temperature in modelling
phenomena such as cyclic strain hardening and softening.

The Bodner-Partom theory subsequently was generalized
to a framework for the multidimensional stress case by
using a general anisotropic form of the flow law [105].

In another development of the theory [106], an
additional term was introduced to the constitutive
equations in order to account for the thermal recovery of
hardening, a term essential for modelling secondary creep.
fhis development was used to model the superalloy Rene 95
at high temperatures.

A parameter to account for damage was introduced in
1980 [71]. Bodner examined the isotropic case first and
then generalized the damage parameter to the anisotropic
case in a manner similar to his earlier treatment of
anisotropic hardening [105].

A preliminary method to determine the material
constants of the uniaxial constitutive equations directly

from experimental data rather than from trial-and-error
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curve-fitting was presented in 1981 in a study of Rene 95
at high temperatures [69]. This was further developed into
a detaliled systematic method and applied to IN100 at
elevated temperatures [107] for the case of isotropic
hardening with thermal recovgry and no damage.

In an earlier paper [105], anisotropy was introduced in
a manner not automatically leading to plastic
incompressibility. Bodner and Stouffer revised the theory
in 1983 [108] to enforce plastic incompressibility in order
to make the theory consistent with stability and
thermodynamic principles. Results from the revised theory
are essentially unchanged from the original work except
that plastié volume éhanges become zero. |

Aq incrementally isotropic form of the flow law has
been proposed [109] in.order to alleviate some of the
computational difficulties encountered in using the full
anisotropic form. In this formulation, the scalar
hardening variable is taken to be the sum of the isotropic
component and a scalar effective value of the directional
component. Evolutionary equations are given for both
components, including thermai recovery terms, as well as
for isotropic damage. It is suggested that anisotropic
damage can be treated in a manner similar to anisotropic
hardening.

Recent work on the Bodner-Partom theory includes
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research into modelling transient temperatures [91,94], a
complete detailed review of the present constitutive theory
£110], and development of a systematic method for the
determination of material constants for the model in its

complete anisotropic form with damage [111].

General Theory

The unified creep-plasticity model of Bodner and his
colleagues [107] is motivated in part by work done in
dislocation dynamics in which the total deformation can be
separated into elastic and plastic components which are
generally non-zero at all stages of loading. A yield
criterion or loading and unlcading conditions are therefore
not required.

The total strain rate is given by

Eij = Eij + ey : (74)

where the elastic strain rate é?j

derivative of Hooke's Law and the inelastic strain rate

is given by the time

éij is given by the flow rule of c¢lassical plasticity:
- _ .1 '
t'!'.j = eij = 2 oi.j’ (75)

where eij and °{j are the deviatoric components of the
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inelastic strain rate and applied stress tensors,
respectively, and A is a scalar materlal function.
Squaring both sides of (75) gives

2 P
AS = 02/J2, (76)

where Dg is the second invariant of the inelastic strain

rate deviator

(77)

and J2 is the second invariant of the stress deviator

1

2 3 (78)

' 1]
%1%
A fundamental assumption of the Bodner-Partom theory 1is
that all inelastic deformations are governed by the kinetic
equation
P

D, = f(J2,T,Z

> ) (79)

K

where T is the absolute temperature and Zk are a set of
internal state variables. Extensive work in the field of
dislocation dynamics [112-114] has shown that dislocation

velocity and, therefore, inelastic strain rate can be
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represented as a power function or an exponentital function
of stress.

Bodner and Partom note that in order to represent
material behavior Dg should vary inversely with the
measure of strain hardening, have a limiting value for
large J2, and be almost zero for low stresses. Whereas
several mathematical functions may fulfill these
requirements, the function chosen by Bodner and Partom is

P 2 2 n
D, = DO ex.p[—(z /3J2) 1, (80)

where Do is the limiting strain rate in shear, n is a
temperature dependent material constant, and Z is
interpreted as an internal state variable representing
nhardness, It should be noted thét, in subsequent
devélppments of the theory, an internal state variable

representing damage was introduced in the following manner

{71,109,110]:

Db = b2 expi-[2°(1 - w)?/34,1"), (81)
where w represents damage in the material.
Equations (75),(76), and (80) can then'be combined to

glve an expression for the inelastic strain rate:
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2 n 172
13 o exp[-(2Z /3J2) ]/J2} o! .. ‘ (82)

1

The work-hardened state, that is, the resistance to
plastic flow, is assumed to be represented by a Single
variable Z which depends on the plastic work wp, where de
is odeI. The plastic work rate was chosen by Bodner and
Partom as the measure of hardening over the more common
choice of the inelastic strain rate because Z is directly
related to the stored energy of cold work and this choice
leads to relative simplicity of the resulting equations
[110].

It is postulated that the evolution of Z is governed by
the current values of stress,.hardness, and the absolute

temperature:
Z = F(J,,2,T), (83)

where the particular form chosen by Bodner and his

colleagues is

- zywh - Az, [z - z,)/2,17, (84)

Z =m (2 1

1

where m, Z1, 22, A, and r are tenmperature-dependent

material constants and the constant Z0 is designated as the

initial value of Z. The constants Z1 and ZQ correspond to
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the maximum value of Z and the minimum recoverable value of
Z, respectively.

The first term in equation (84) is the hardening term,
where the negative part can be interpreted as dynamic
recovery, and the second term is the thermal recovery term, .
designed to be'negligible during rapid loéding histories.

This representation, equation (84), corresponds to
isotropic hardening and, as a result does not predict the
Bauschinger effect. The Bodner-Partom theory was later
modified [109] to include directional hardening by taking
the scalar hardening variable Z in the inelastic strain
rate equation (82) as the sum of the scalar 1isotropic
hardening variable ZI and a scalar effective directional

hardening variable ZA:

Z = Z° + 7, (85)

where ZI is now given by (84) and the evolution equation

A has the general form of (84) but is tensorial in

for Z
character.

For the purposes of this research, the isotropic
hardening model with no damage [107], equations (82) and
(84), is considered.

For uniaxial stress and constant temperature, equation

(B2) reduces to
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<1

.2 1 -2n.
£ =73 Dy expl 2(9/2)

1 sgn(o) (86)

and equation (84) remains unchanged due to its scalar

nature:

s '— .P_ _ r
Z = m (Z1 Z) W A Z1 [(? 22)/21] . (84)

The material constants to be determined are D n, m, 2

0’

A, 22, r, and ZO’ the initial value of Z.

Evaluation of Material Parameters

The quantity DO

shear and has its physical basis in the upper bound of the

is the maximum value of strain rate in

dislocation velocity. The value of D. can be set as

0
8 -1 I 3 6 -1 1

10° sec for €->10 , 107 sec for 10.<éI<1O3, and

10u sec—1 for éI<101.

Z1 and n

The first step in the evaluation of material constants
is to determine the strain rate sensitivity parameter n and

the maximum value of the hardness, Z from tensile data.

1 1}
For material behavior as shown by curve (a) in Figure 11
where the .stress saturates to a maximum value, in the

region where both the stress and strain rate are constant 2Z



(b) stress is not
saturated :

(a) stress is
saturated

Fig. 11 A qualitative comparison of a saturated stress

curve and a non-saturated stress curve



must also be constant in order to satisfy equation (86).
For short duration tests with no recovery, the material
must be in a fully work-hardened state to obtain the
maximum value of stress; that 13, Z must have its maximum
value Zl' Rewriting equation (86) for this steady flow

condition gives

1n[-1n(£%éI/DO)J =

—2nln(o) + [2nln(zZ,) + 1n(é)]. (87)

The left hand term of (87) must be linear in 1ln (o) if it
is an adequate representation of experimental data. A pl
of data in the form of equation (87) is shown in Figure 1
Graphical means or a least-squares analysis of the data

will give the values for n and 21.
Héwever, if the tensile curves are not quite saturate

as shown by curve (b) in Figure 11, simply using the

largest value of stress attained may give incorrect value
for Z1 and n. In this case, equation (86) is solved for
to give

o = K.Z, (88)

where

o4

ot

2.

d,

S

0



1n[—1n(£§é1/oo)]

Constant strain rate
tensile data
Best fit line
through data

{21n(z )+
In(1/2)}

In(o)

Fig. 12 A qualitative graph of constant strain rate

tensile data for determining n and Z1
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2 . -1/2n
K, = [21n(7§00/c Y] . (89)

In the absence of hardening recovery, the hardening
evolution equation (84) becomes the first order 1linear

differential equation
- P
dZ = m (2, - Z) dW , . (90)

which can be combined with the differential of equation

(88) to give

do = K, m (z, - z) aw’. (91)

1 1

By defining a new parameter Y as
P
Y = do/dW , (92)

and substituting equation (88) for Z, equation (91) can be

rewritten as
Y =K, mZ, - m o. (93)
In order to be an adequate representation of experimental

data, Y must be linear in o0, as shown in Figure 13. The

saturation stress is given by the stress level where Y=0.
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B8 Test 1
® Test 2

Best fit line through
data points

g
saturation stress saturation stress
(test 1) (test 2)

Fig, 13 A qualitative graph of Y v. o for determining the

saturated stress level
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With this value of the saturation stress, one can now

return to the method outlined above to détermine n and 21.

Z0 and m
The value of the hardening variable Z can be calculated
for corresponding values of stress and inelastic strain

rate by inverting equation (86):
2 -1 1/2n
Z = o [21n(7§D0/€I )] . (94)

Equation (90), the hardening evolution equation with no
recovery, can be integrated to give

In(z, - 2) = 1n(z, - Z.) - mw’, (95)

where ZO is the initial value of Z. Several values of Z
can be calculated for each test by using equation (94) at
different stress 1eyels and their corresponding values of
EI taken from the region in the ¢-¢ graph where recovery
is minimal., In this manner a plot of ln(Z1 —.Z) against WP
can be made for several constant strain rate tensile tests.
Since this plot must be linear in order to represent

material behavior adequately, as shown in Figure 14, the

constants m and Z.

0 can be calculated easily either by

graphical means or by a least-squares analysis.
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ln(Zl—Z)

& Test 1
5 _ +.
In(Z,-2) r\ © Test 2

Best fit line through
data points

Fig. 14 A qualitative graph of ln(Z1-Z) V. WP for

determining m and Z0
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Alternatively, if a Y-o gruaph was used in the earltier

determination of n and 2 then the average of the slopes

1 ?
of the linear curve-fits of the Y-o data will be -m. ZO is
then given by calculating values of Z in the immediate
post-yield (i.e., post-elastic limit) region of a

stress-strain curve.

During secondary creep, since stress and inelastic
strain rate are constant, the value of Z must also be
constant in order to satisfy equation (86). These
’stationary values of Z can be determined from equaﬁion (94)
for several creep tests. The lowest calculated stationary

value of Z can be used for the value of 2 the minimum

2!

value of Z, although Bodner states that 2 for many

229
applications since the initial condition (ZO) is the fully

recovered state (22) [110].

A and r
Since Z =0 during secondary creep, the hardening
evolution equation becomes
- P

_ _ . r
m (Z1 - Z) W = A Z1 [(z ZZ)/Z1J . (96)

The values of o, EI, and 7 used in the determination of Z2
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above may be used in a plot of 1lnim (Z1 - 2Z) WP] against
In((Z - ZZ)/ZIJ' The constants A and r can be calculated
from these data by assuming a linear representation,
although a bilinear representation may also be possible in
some cases [107].

In summary, the Bodner-Partom theory requires several

constant strain rate tensfile tests (constants E, n, Z m,

1 ’
and ZO) and several creep tests (constants Z2' A, and r),
Wwhere the actual number of tests is dependent on the amount
of data deemed necessary for accurate evaluation of the

constants. This concludes the determination of material

constants for the Bodner-Partom theory.
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MILLER'S MODEL

Chronological Development

Miller's model [90], introduced in 1976, is based on a
combination of creeb phenomenology and microstructural
considerations. In stressing the need to model
steady-state creep rates accurately, Miller proposes to use
the Garofalo hyperbolic sine relation for steady-state
¢creep as a basis for his constitutive equations.
Representing isotropic and kinematic hardening,
respectively, a drag stress variable and a back stress
variable are introduced to describe non-steady-state
inelastic responses. The growth laws for the back stress
and the drag stress follow the standard Bailey-Orowan
format of competing hardening and recovery rates. Miller's
- growth laws feature. a constant kinematic work-hardening
coefficient but a variable isotropic work-hardening
coefficient. A procedure for evaluation of the material
constants, based partly on trial-and-error curve-fitting,
is also provided. Miller found reasonably good agreement
of his theory with experimenﬁal results for type 304
stainless steel at room temperature.

This model contains both kinematic and isotropic
hardening terms, an arrangement which leads, in Miller'sk

view, to a rather complex set of equations. Miller and
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Sherby [115] simplified this in 1978 by eliminating
kinematic hardening and allowing only isotropic hardening
ﬁo be modelled. While this representation gave fairly
realistic simulations for pure aluminum, it became apparent
that an additional strengthening term was needed for
modellipg of solute-strengthened materials., The solute
strengthening term, which is not an internal state
variable, was added to the drag stress in the inelastic
strain rate equation.

In 1980, Miller noted that several existing unified
constitutive.theoﬁies, including his own, predict
"over-square" hysteresis loops with-respect to
experimentally observed behavior [116]. To eliminate this
discrepancy in Miller's model, the work-hardening
coefficient in the‘back stress growth law, previously a
constant, 1is made an exponential function of the back
stress and the direction of the effective stress. The
predicted. hysteresis loops using the improved equations
compare more favorably with experimental results.

Schmidt and Miller further improved the model by
introducing an additional solute strengthening term
[117,118]. This interactive term is multiplied by the drag
stress to accompany the already present non-interactive
solute strengthening term (see reference [115]) which is

added to this product. The non-interactive term models the
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influence of solutes on yield strength while the
interactive term models the influence of solutes on strain
hardening. These improvements allow the model to be used
over a broader range of loadings where solute effects are
significant.

Miller and his colleagues have devoted much effort tb
research in microstructural topics which have led to the
particular formulation and features‘of the model: the
mechanisms of solutes and their effects on the yield
strength and strain hardening behavior of a wide variety of
alloys [119], the physical factors governing power law
creep as a basis fdr the form of the inelastic strain rate
equation [120], and experimental cyclic torsion data for
support of many assumptions and predictions of the model
with respect to steady-state back stresses and cyclic
strain hardening/sbftening [121].

Recent work 1ncludés extending the theory to multiaxial
form by Miller [122], and in a different manner by Kagawa
and Asada [123]. 1In addition, it has been reported [91]
that the latest form of Miller's theory contains four
internal state variables in order to model the long range
and short range components of the drag stress and the back
stress. This form of the model may.be useful in modelling

transient temperature response [91].
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General Theory
In attempting to model a broad spectrum of deformation
phenomena, Miller uses a combination of micromechanics and
creep phenomenology to derive the constitutive equations of
his model [90]. If is postulated that all inelastic
deformation can be characterized adequately by .

el - fl(o - R)/D], (97)

where EI is‘the inelastic strain rate, f is the inelastic
strain rate function, R is the "rest stress" (or back
stress), and D is the drag stress. To complete the model,
it remains to determine the best possible specific function
for equation (97) and the evolution equations for R and D.
In stressing the need to model steady—spate_creep rates
accurately, Miller uses the Garofalo hyperbolic siné
relation for steady-state creep as a basis for deriving the

inelastic strain rate function:

B [sinh(Aoss)]n, | (98)

where the subscripts "ss" refer to the steady-state
condition, B' is a temperature dependent parameter, and A
and n are temperature-independent constants.

Since equation (97) must reduce to (98) for the special



76

case of steady-state creep, there must exist a function t‘1

which causes the argument (g - R__)/D to reduce to o__,
ss ss ss ss
i.e.
f.l[(oSs - RSS)/DSSJ = 0 g- (99)

When this is true, equation (99) can be substituted for Oy

in eqﬁation (98) to give eis as a function not only of

but also of Rs and D . -Since steady-state creep is

Oss’ s ss

only a special case, the subscripts "ss" can be dropped to

give -

I .o (stnh{af [(o - R)/DID". (100)

By examination of warm-working data for several metals, the

function fi is determined to be

f.o= L[ - rR)/D] 2. : (101)

1
1A

Substituting this into equation (100) will result in the

explicit equation governing the inelastic strain rate:
¢l - B' (sinn{l(o - R)/D1' 7", (102)

The entire temperature dependence of the model lies in
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the constant B', which Is related to the activation energy
for plastic flow. Below 0.6Tm, where 'I‘m is the absolute’
melting temperature, the activation energy decreases

linearly with temperature and B' is given as
B' = B exp{[’Q/0.6kTm] [ln(0.6Tm/T) + 11}, (103)

where B is a material constant, k is the gas constant, Q is
the activation energy for plastic flow, and T is the
. absolute temperature. Above 0.6Tm, the activation energy

is approximately constant and B' is given as
B* = B e#p(-Q/kT). (104)
In'either case, the expression for Bf can be abbreviated as
B' = B g', : (105)

where 8' is the desired temperature-dependent factor.
The evolution equations for R and D are given in the

standard work-hardening/recovery format as

-1

Hyeo - £,(R,T) (106)

ZOs
I

and
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D = Hye™ - f3(D,T), (107)

where H1 and Hé are constants, and f2 and f3 are recovery

functions.

In order to determine the recovery functions fz'and f3,

Miller applies equations (106) and (107) to the special case

of steady-state creep (where R=D=0) and substitutes

equation (98) for é;s to obtain

oI , n
fz(Rss,T) = H1ess = H1 B [sinh(Aoss)] _ (108)
and
o '.I — L ] n
f3(Dss,T) = Hzess = H2 B [sinh(Aoss)] . .(109)

In a manner similar to the derivation of the inelastic
strain rate expression, equations (97) to (100), the

evolution equations become

e
]

=+

[y]

- #, B o' [stnn(a,R)]" ' (110)

and

B o' [sinh(A2D3)]n, (111)

(e 1}
1]
=
N -
Me
1
=~
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where A1 and A2 are material constants.

For the purposes of this research, a simplified version
of this model will be used. Miller and Sherby [115]
simplified the model by eliminating all kinematic hardening
terms, allowing only 1isotropic hardening to be modelled,
and incorporating’a solute strengthening term:

+ 1 17241,
€

= B 8' (sinh{[(o/E)/(D + Foor) @ -] SH®,  (112)

ol
where the modulus-compensated stress o¢/E has replaced the
stress ¢ from the earlier equations for mathematical
convenience, Fs {3 the solute strengthening parameter,

ol

and D and Fs are placed under the square-root sign to

ol
produce parabolic Hardening, since ‘parabolic hardening is a
better approximation for many materials than the linear

hardening of the earlier equations. The evolution equation

for D becomes
b = Hjel] - B B o' [sinn(a3p'*?)1", (113)

where H and A are material constants.

It should be noted that a slight modification has been
introduced by this author to equation (113). 1In order to
be able to simulate cyclic loading, the inelastic strain

rate term in equation (113) has been placed in absolute
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value signs. This follows the practice introduced by
Miller, et al., in later works [90,116-1181].

The variable F is introduced into the equations in

sol
order to characterize the effects of solute strengthening
on material behavior that are found in many solute
strengthened alloys. These effects include plateaus in the
yield strength versus temperature curve, local maxima and
minima in the strain rate sensitivity versus temperature
curve, and peaks in the apparent activation energy. By
judicious selection of the functional depen@ence of Fsol
upon the'othef variables, one can ensure that the resulting
equations simulate these effects.

At low temperatures, solute atoms are so immobile that
they cannot keep up with the moving dislocations and hence
cannot exert any particularly Strong drag force. At high
temperatures, the solute atoms are so mobile that they can
move easily with the dislocations and are again unable to
exert a strong drag force. At intermediate temperatureé,
however, the average velocities of solute atoms and
dislocations are approximately equal, and the two can
interact strongly, producing a maximum strengthening
effect. From these physical considerations, one can deduce

that Fs should have a low value at low temperatures,

ol

should increase with temperature and pass through a

maximum, and should fall to a low value at high



81

temperatures.

Furthermore, experimental evidence indicates that
strain rate sensitivity occurs in a fashion similar to
temperature sensitivity.

The particular statistical function which satisfies the

mathematical requirements is

‘ . ' 2
Fsol'= Fsol,max exp(-{[log10(Z) - 10310(zmax)]/2} )

+ 1(10)'-7 exp(-{[log10(Z) - 30]/10}2), (114)

where Z 1is |éI|/e'. F and Zmax are constants, and

sol,max

the second term on the right hand side of the equation is
included to ensure a non-zero value of FSol for conditions
when Z>>>Z .
max
Finally, the material constants to be determined are A,
B, n, H, F , and 2 . In addition, T and Q must be
sol,max max m

determined for the temperature-dependent factor 6'.
Evaluation of Material Constants

Q and Tm
The values of the absolute melting temperature Tm and
the activation energy for plastic flow for the material of

interest may be determined from various sources in the
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literature. With these values and by use of equation (103)
or (104), the temperature-dependent factor 8' may bé

calculated for a given absolute temperature T.

In order to derive the relation between.the constants
A, B, and n and steady-stateAcréep rates, oﬁe returns to
"the observation that, for ihe spécial case df steady-state
creep, thé inelastic strélh rate equation (112) reduces to

the Garofalo equation (see equation (98)):

s I . o n '
€gq = B O Lsinh(Aoss/g)] ' . (115)
where éis is the steady—staté creep rate and °ss/E has

"replaced o__. Equation (115) may be rewritten as
ss ol _

o1

10310(588/6') = log1O(B)v+

nlog1o[sinh(AoSS/E)]. (116)

If this equation is an adequate representation of

experimental data, then the constant A can be chosen such
-1 " :

that 10810(535/6 ) is linear in log1o[sinh(Aoss/E)J. as

shown in Figure 15,
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LI '
loglo(ess/e ) Value of A is too small;

curve is concave
©/ upward.

1og10[sinh(Aoss/E)]

I
Logp(Ege/®")

Value of A is too
® large; curve is
concave downward.

1og10[sinh(Aosle)]

.I
log. (¢~ /8")
- 1 .
0" "ss Value of A is
correct; curve is
linear.

loglo(B)-

lOgIO[Sinh(AOSS/E)]

Fig. 15 The effect of A on log1o(éis/6') V.

log1o[sinh(Aogs/E)] data
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B and n
Since the value of A is now known, one can easily
determine the constants B and n from equation (116), either

by graphical means or by a least-squares analysis.

F and Z
sol,max max

The maximum value for Fsol 1s assigned arbitrarily and
is based on an intuitive analysis of the problem of
interest. Z {s set by Miller as Z - 1(10)10 for his

max . max

choice of function for F . i
. sol

Finaily. the value of the work-hardening coefficient H
is determined on a trial-and-error basis by a best fit of
the-model through several experimental constanf strain-rate
stress-strain curves.

In summary, Miller's theory requires some information
about the material of interest (for Tm and Q), several
creep tests (constants A, B, and n), and several constant
strain rate tensile tests (for e and H). This concludes

the evaluation of material constants for Miller's model.
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DETERMINATION OF MATERIAL CONSTANTS

Each theory 1is evaluated and compared to experiment by
its authors for a particular material under particular
temperature conditions. In general, the choice of material
and conditions varies from theory to theory. One of the
objectives of the current research is to create a common
experimental data base for one material at one temperature
in order to characterize the mathematical representations
and to compafe to experiment the numerical predictions of
eaéh theory.

Many of the phenomena associated with inelastic
deformation such as rate sensitivity, the Bauschinger
effect, and creep become significant in crystalline
structures at elevated temperatures, that is, above three
tenths of the absolute melting temperature. At the start
of this research it was intended to perform testing on the
nickel-based superalloy INT18 at 1350°F. Testing was
restricted to room temperature conditions, however, since
extensive difficulties were encountered with the available
equipment with testing at high temperatures. This
réstriction led to the choice of the aluminum alloy 5086 as
the candidate material. This alloy displays many of the

phenomena of inelastic deformation and is already above
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three tenths of its melting temperature at room
temperature. Its composition and some properties are
listed in Table 1.

A review of the material test requirements of each
theory 1s shown in Table 2. It should be noted that the
stress-drop tests are performed during steady-state creep
and, as such, can be combined with the creep tests. The
constant strain rate tensile tests were performed on an MTS
810 hydraulic material testing system; the creep tests and
'the stress-drop tests were performed on a constant-load
creep frame which was desigﬁed and constructed at Texas -A&M
University. Data acquisition in both cases was by
graphical means, although a digital system was also
available for the creep frame. It was decided to use a
constant-load creep frame rather than a constant-stress
creep frame due to difficulties associated with accurately
deterﬁining the applied stress when using the latter
system., As can be seen by the creep response below, the
effects of this choice on the results are negligible.

The results of the constant strain rate tensile tests
can be seen in Figure 16 for four applied strain rates
ranging from 14(10)“7 sec—1 to 4(10)-u sec~1. It can be
seen that the material exhibits some strain rate

sensitivity and considerable work-hardening.
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Table 1

Composition and Material Properties of Al 5086

Material: Al 5086 H111

Composition: 0.15%Cr, O.HQ% Mn, 4.0% Mg, remainder Al

Meiting temperature Tm: 858K

Elastic modulus E: 10.313(10)3 ksi

Ultimate stress 0,° 40 ksi

Activation energy for piastic flow Q (at room temp.):
27,500 cal/mole

Férm of specimens: uniaxial bar with %—1nch diameter

gauge section and threaded ends.



Table 2

Review of Material Test Requirements

88

Type of test Krieg Bodner Miller Total
Constant strain rate

tensile test 1 3-4 3-4 3-4
Creep 1 3-4 3-4 3-4
Stress-drop 3-4 - - 3-4
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Tne results of the constant-load creep tests can be
seen In Figure 17 for five applied stresses ranging from
32.725 ksi to 38.850 ksi. Pertinent results of the
constant strain rate tensile tests and the creep tests, as

well as the stress-drop tests, are summarized in Table 3.

Material Constants for Krieg, et al.

In determining the material constants for this and the
other theories hnder consideration, the procedures
discussed in a previous section are followed. The reader
may consult that section for greater detail.

The v;lues of c1 and 02 are found by applying a linear
curve~flt to a graph of ln(él) V. 1n|o - a] data, where
éI is the strain rate immediately preceding the
stress—drép, o is the applied stress, and a is the back
stress. This 1is shown 15 Figure 18; the slope of the
linear fit is c, and the vertical intercept 1is ln(c1). in
this manner, ci is calculated to be 7.177 and c, is
1.459(10)77.

Under steady-state creep, the growth law fér the back
stress becbmes (equation (71) repeated)

(cy/e,) = La®/Ce [2|®)] [explega®) = 11. (71)

3

Applying this equation to two experimental cases results in
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Pertinent Results of Experimental Tests

Constant strain rate tensile tests
Elastic modulus = 10.313(10)3 ksi
Elastic limit = 28.000 ksi

0.2% offset yield stress = 30.250

4 -1

ksi for 4(10) = sec

30.000 ksi
29.750 ksi
29.500 ksi
Creep tests
Steady~-state creep rate =
1.205(10)78 sec”
4.167(10)78 sec™!
3.125(10)7 8 sec™!
4.435(10) 8 see™!
5.546(10)"% sec”!
Stress—-drop tests
Strain rate before applied stress
stress drop
0.1000(10)" 7 sec”! 34.402 ksi
0.4243(10)" 7 sec ! 35.433 ksi
2.658(10)° 7 ‘sec”! 36.705 ksi

14(10)'-5 sec:"1

!4(10)'-6 sec—1

M(10)_7 sec

for 32.725 ksi
35.433 ksi
36.437 ksi
36.705 ksi

38.850 ksi

back stress

33.107 ksi

33.804 ksi

34.659 ksi.
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two nonlinear equations in two unknowns which can be solved

for (c /cu) and c_.. by iteration. Solving for the cases

3 5
with the highest and lowest values of a (see Table 3)
ylelds (cy/c,) = 3.255(10)2° kst’sec and ¢s = 0.03030
ksi—z.

To determine c¢ a point is chosen on the primary creep

3 1
curve where the creep rate is still twice the eventual

steady-state rate. The effective stress ¢ at this point 1is
calculated by inverting the inelastic strain rate equation

(68) (equation (73) repeated here):

(el/ey

/¢,
1 .

(73)

g

The value of the back stress 1is then given by a = ¢ - g.
Using the creep test with o = 35.433 ksi gives the

following information:

o, = 35.433 ksi,
¢l - 8.333010)7°° sec”’,
t, = 450 sec.
This gives &y = 1.717 ksi and a, = 33.716 ksi, where the

subscript 1 refers to the point on the primary creep curve.
The growth law for a, equation (69), can be integrated
numerically by separating variables (equation (72)

repeated):
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a,

0

C, _

c.t, = [ {c

371

loy = @l

1 1

1

(¢y/ey)a® Lexplega®) - 11} ' da. (72)

3

-

With a, and 9,

sec. From this, c, = 5.185(10)“ ksi and

3

Cy = 1.593(10)—21 ksi—Isec’1.

known, c3t is calculated as 2.126(10)8 ksi

This concludes the material parameter determination for’

the theory of Krieg, et al.

Material Constants for Bodner, et al.

For the present strain rate range of interest, D0 is
-1

set as 1(10)“ sec .

To determine n and Z1, a saturation stress must be
determined analytically since the experimental
stress-strain curves are not saturated (see Figure 16).
This is accomplished by extrapolating to the poin;'of zero

Y on the Y v. o graph, where Y=do/dwP and is given by

differentiating a curve-fit of wP = wp(o). It is found

that quadratics provide the best curve-fit for WP = Wp(o):

WP = 4.679 - 0.36790 *+ 0.7462(10) 2¢° (117)

for ¢ = !4(1'0)—7 sec—1, and
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Values of LI are calculated from éI =

99

140
(1 EAe)

and the resulting values of Z are shown in Table 4 below.

Table 4. Calculated Values of Z used

in the Determination of 2Z

0
€ (sec—?) o (ksi) el (secﬂ?) Z (ksi)
y(10)”7 28.250 ¢ 3.6474(10) " 34.102
4(10)7° '28.375  3.5152(10)°° 34,090
4(10)"° 28.500 3.3536(10)°  34.060
y(10)” " 28.688 3.2243(10)" " 34.081
An average value of 34.00 ksi is taken for Z_..

The value of 2 the minimum value

2'
the lowest value of Z for steady-state

may simply set Z_, = Z

> 0" The latter 1is

22 = 33,50 ksi.

0
of 2, is taken to be

creep, although one

chosen, giving

The values of the recovery coefficient A and the

recovery exponent r are determined by calculating a value

of Z for the steady-state region of each creep test by

using equation (94) (see above). Calculated values of Z

are shown in Table 5 below.
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Table 5. Calculated Values of Z used

in the Determination of A and r

04s i Z 1nlam (21—z)v':'P] In[(2-2,)/2,]
(ksi) (sec—') (ksi) |
32.725 1.205(10)’8, 39.758 -2.091 -12.38
36.437 3.125(10')‘8 44,192 -1.520 -12.37
136.705 4.435(10)78 44,489 -1.1491 12,14

These values of Z are then used to construct a

1n[{m (Z1 - Z) QP] v. Inf{(z - ZZ)/ZIJ graph, aé shown in
Figure 21, The slope of a linear curve-fit for this graph
is r; the vertical intercept is 1n(AZ1). In this manner, A
is calculated to be 1.14147(10)'-7.3ec'-1 and r is 0.2290.

This concludes the material constant determination for

the theory of Bodner, et al.
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Material Constants for Miller, et al.

The values of the activaiion energy for plastic flow Q
and the melting temperature Tm can be found in a m;terials
handbook. For Al 5086 at room temperature, Q is 27500
cal/mole and T 1is 858K.

Since room temperature is less than‘0.6Tm for Al 5086,
equation (103), repeated below, 1s used to calculate the

temperature-dependent factor 6': -
' = exp{[-Q/0.6xT 3 [1n(0.6T _/T) + 11}, (103)

where T and Tm are absolute temperatures. This gives

8' as 8;7H(10)’19.

The value of A i3 chosen such that a graph of

1og10(éi

' -
S/e ) vf log1n[sinh(AoSS/E)] for steady-state
creep data is linear. This is shown below in Table 6 and

in graphical form Figure 22 for several values of A.
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Table 6. Calculations for Various Values of A

é;s 1og1o(é;s/e') 0gq log,  [sinh(Ao  /E)]

(sec” ') ' (ksi) A=50  A=200 A=1000
1.205(10)"8 10.14 32.725 -0.7977 -0.1687 1.076
4.167(10)"8 10.68 35.443 -0.7628 -0.1292 1.191
3.125(10)78 10.55 36.437 -0.7506 -0.1153 1.233
4.435¢(10)"8 10.71 36.705 -0.74T4 -0.1116 1.244
4.546(10)"8 10.72 38.850 -0.7225 -0.0826 1.335

As can be seen in Figure 22, t:: CUrve ‘is meardy iinear for

A = 50, with no significant improvement for A < 50.

With this value of A, the values of B and n can be
determined by constructing a linear curve-fit for the data
in Figure 22. The‘slope of the curve-fit is n; the
vertical intercept is 1og10(B). In this manner, n is
calculated ﬁo be 7.701 and B is 2.1410(10)16 sec’1.

The maximum value of FS is set arbitrarily as

ol
F = 1(10)—7. Simulations of experimental tests have
sol,max
shown that the choice of this value does not influence the
results significantly.

The work—-hardening coefficient H is set arbitrarily to
give the best fit of simulations of constant strain rate
tensile tests to éxperimental data. This value is set as

7.5¢10) % ksi.
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Finally, the initial value of the drag stress, Dinit'

is calculated by inverting the inelastic strain rate
equation (112) and using values of EI and ¢ at yield. In
this manner, Dinit is calculated to be 3.386(10)_5.

This concludes the materlal constant determination for
the theory of Miller, et al.

A suy .ary of the material constants for each theorv is

given in Table 7.
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Table 7. Summary of Material Constants for all Models

Krieg, et al. E = 10.313(10)3 ksi
e = TaTT |
c, = 1.459(10)77
c3 = 5.185(1054 ksi
Cy = 1.593(10)—21 kst 'sec”!
¢ = 0.03030 ksi?@
Bodner, et al. E = 10.313(10)3 ksi
n = 10.30

Z, = 46.59 ksi

m = 1.558 ksi |

Z0 = 34,00 ksi
Z, = 33.50 ksi
A= 1.447(10)77 sec”!
r = 0.2290
Miller, et al. E = 10.313(10)3 «ksi
o' = 8.74(10)7 17
A = 50
n = 7.701
"B - 2.410010)'6 sec”!
Fsol.max - 1(10)—7

H=7.5(10)"" ksi

_ -5
Dinit = 3.386(10)
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COMPARISON. . OF THEORY TO EXPERIMENT

The third aﬁd fihal‘bbjective of this research is to
compare the numerical predictions of. each theory to
experiment by integrating the constitutive equations
subject to specific load histories. Before proceeding to
the quantitative comparisons, however, there follows a
brief qualitative review of the predictive capabilities of

each theory.

Qualitative Review of Predictive Capabilities

All the theories under consideration are similar in
that they ére unified theories; that is, the rate-dependent
creep and the rate-independent plaéticity components have
béen combined into one ineiastic strain term. Each theory,
in the fobm under consideration, is.isothermal in that it
is not able to model transient temperature response.
Furthermore, each model is able to exhibit strain rate
sensitivity through the expongnt in the inelastic strain
rate equation.

The theory of Krieg, et al;, contains two internal
state variables: the inelastic strain and the back stress.
The back stress represents kinematic hardening, which

allows the Bauschinger effect to be modelled. Krieg,
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et al., have assumed the hardening function in the back
stress growth iag to be constant, which may cause
"over-square" hysteresis loops. This may be alleviated by
introducing a aependence of the hardening functiqn on the‘
current value'of the stress or back stress. Due to the
lack of a representation for isotropic hardening (the drag'
stress), this theory may not be able to model cyclic straiﬁ
hardening. Finally, it can be seen»that anelasticity
(strain recdvery at zero load) can be predicted by this
theory by setting o = 0 in the inelastic strain rate
equation (68); relaxation is predicted by setting € = 0;
and creep is predicted by setting 0 = 0.

The theo}y of Boﬁneb, et al., also contains two
internal sﬁate varfiables: the 1nela§t1c strain and a term
representing isotropic hardening. The isotropic hardening
growth law contains dynamic as well as thermal recovery.
The presence of isotropic hardening allows cyclic strain
hardening to be m&delled, although the absence of kinematic
hardeniﬁg may preclude the ability to model the Bauschinger
effect. Finally, it can be seen that anelasticity cannotA
be modelled since ;I is zero when setting o = 0 in the
inelastic strain rate equation (86); creep and relaxation
gan be predicted, however, by setting 0 = 0 and ¢ = 0;
respectively.

The theory of Miller, et. al., contains two internal
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state variables: the inelastic strain and the drag stress.
The drag stress represents isotropic hardening, which
allows cyclic strain hardening to be modelled. This model
is similar to tﬁat of Krieg, et al., in that the hardening
function in the drag stress growth law is assumed to be
constant, which produces "over—square" hysteresis loops.
The model is similar to that of Bodner, et al., in that the
lack of a back stress may preclude the ability to model the
Bauschinger effect as well as anelasticity. Finally, creep
and relaxation are modelled in a manner similar to that of

the other two theories.

Review of Integration Technique

Each theory is represented mathematically by a set of
differential equations. Since these differential equations
are numerically "stiff", causing higher-order integration
schemes to become unstable [124],'a first-order forward
integration scheme with small, variable time steps was
used. For example, Krieg's inelastic strain rate equation
((68) repeated here)

e =c o - a|®? sgn(o - a) (68)

becomes



ef(t + at) = e [oCt) - a(t)[®2at + el(e) (119)

where t represents an initial state and t + At represents
the incremented state. Similarly, the growth law for the
back stress (equation (69)) becomes

~N

alt + 8t) = f{c. [(ef(t + at) - el(t))/at] -

3

c,a’(t)lexp(c a®(t)) - 11sgnlalt))}at + a(t).(120)
Finally, the stress is updated by

ot + at) = E (& - [(elt + at) - el(e))satliat +

a(t). (121)

This concludes the review of the integration technique used

in this research.

Comparison of Numerical Predictions to Experiment
In this section, the ability of each model to predict
the response to a specific load history is analyzed. The
first experimental test to be modelled is a constant strain
-1

rate tensile test with ¢ = ‘4(10)—5 sec ', shown in

Figure 23.
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Krieg, et al.: Constant Stfaln Rate Tensile Test
It can be seen from Figure 24 that this theory does not
compare favorably with experiment for this constant strain
rate tensile test. It is belleved by this author that this
is due largely to the method of determining the material .-
.constants. As discussed in an earlier section, the ability
td détermine a zero creep rate or merely the absence of'a
resolvable creep rate in a stress-drop test depends greatly
on the resolution of the data acquisition equipment and is
-extremely difficult and time consuming at best., A
parameter vafiation study showed slight improvements in the..
st;ess—strain curve in Figure 24 but 1ed_to computational
difficulties in simulating cyclic load histories and
complex load histories. It can be concluded from this that
improvements in the measurement of back stresses are
required. For example, the methods of Blum and Finkel
[98], in which the instantaneous strain change and the
maximum strain change after unloadihg‘are compared, éhd of
Wwalker [58], in which one applies hold times on the
uﬁloading side of a saturated hysteresis loop and
e#trapolates to the point of zero relaxation, merit furtﬁér

study.

Bodner, et al.: Constant Strain Rate Tensile Test

The theory of Bodner, et al., compares favorably to
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experiment, as can be seen in Figure 25. Work-hardening is
predicted well although the elastic-inelastic behavior
transition is too sharp. It is found that this is due to
the theory prediéﬁing vélues of Z that are too high at low
stresses, possibly reduiring a modification of the

hardening term in the growth law for Z.

Miller, et al:: Constant Strain Rate Tensile Test

In determining the material constants for this theory,
the strain rate exponent n was calculated to be 7.7,
resulting iﬂ the response shown in Figure 26. A parameter
variation study indicated that a value of n = 6 appeared to
fit the experimental data much better. This indicates a
problem inherent in many constitutive theories: the
determination of material constants is not rigorous and the
difficulties are compounded by the fact that many constants
are interdependent and, in fact, may be assiéned arbitrary
values. In the interests of further numerical comparisons,
a value of n = 6 is chosen for this model. With this
cholice, this‘theory predicts the yield point and
work-hardening fairly well.

Finally, a comparison of all thé models for a constant

strain rate tensile test can be seen in Figure 27.
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Many theories Qse cﬁeep.tests or constant strain rate
tensile tests as information for the material parameter
determination; consequgntiy. one would expect fairly
accurate simuiatiéns.of.these types of load histories. A
more rigorous comparison, however is a cyclic load history,
as shown in Figure 28 with e = 11(10)-4 sec~1 for cyclés
1-10. The experimental data exhibit a pronounced
Bauschinger effect énd considerable cyclic strain

hardening, although it appears that the hysteresis loop

saturates fairly quickly.

Krieg, et al.: Cyclic Loading Test

The cyclig response of the theory of Krieg, et al., is
shown in Figure 29 for cycle 1. It can be seen that the
theory does indeed predict a Bauschinger effect, although
it is not as pronounced as the experimental data. The
model predicts a harder material than is the actual case,
resulting in the very thin and, as expected, "over-square"
hysteresis loop. This may be due to the ratio 03/04
(calculated from stress-drop data) being too large.

A comparison of the prediction for cycles 1 and 10 can
be seen in Figure 30, where, as expected, the model does
not display significant cyclic strain hardening. However,

since the material exhibits cyclic strain hardening, the

difference between the saturated experimental and
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predicted loops diminishes somewhat, as shown in Figure 31.
Bodner, et al.:‘Cyclic Loading Test‘

Figure 32 shows that this theory models cycle 1 falirly
well, although the elastia—inelastic behavior transition is
too sharp (as noted in earlier tensile data also). The
absence of the Bauschinger effect suggests that a
directional hardening term is necessary. This can also be
seen when examining the Y v. ¢ graph used earlier in
calculating some of the material constants. Although the
theory assumes a linéarlrelationship between Y and o, the
experimental data suggest a bilinear relationship. This ;s
examined in greater detail by Bodner, et al., in recent
work [109-111]. The upper slope in this bilinear
"relationship governs directional hardening and the lower
slope governs isotropic hardening. It can be seen easily
that including such a directional hardening term could
provide the Bauschinger effect and also decrease the height
of the hysteresis loop. |

The gforementioned observations can also be seen in
Figures 33 and 34, which compare prediction for cycle 1 to
prediction for cycle 10 and prediction to experiment for

cycle 10, respectively.
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Miller, et al.: Cyclic Loading Test

The similarities between this model and that of Bodner,
et al., can be seen in Figure 35 in that the theory does
not model the Bauschinger effect due to the absence of a
directional hardening term. It can also be seen that the
assumpﬁion of a constant hardening function for the'drag
stress causes an "over-square" loop, although this 1is not
as pronounced here as with the otﬁer two models.

Comparing the predictions of cycle 10 and cycle 1 shows
extensive cyclic strain hardening (see Figure 36). This is
much more apparent in the theory-to-experiment comparison
for cycle 10, as shown in Figure 37, and suggests.a need
for a revisién of the hardening function.

Finaily, a comparison of all models for cycles 1 and 10

is shown for completion in Figures 38 and 39, respectively.
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Fig. 35 Cyclic loading test: cycle 1. Comparison of

theory of Miller, et al., to experiment.
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Fig. 36 Cyclic loading test: cycles 1 and 10. Prediction

of theory of Miller, et al.
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Fig. 37 Cyclic loading test: cycle 10. Comparison of

theory of Miller, et al., to experiment.
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Fig. 38 Cyclic loading test: cycle 1. Comparison of all

theories to experiment.
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theories to experiment.
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The final set of comparisons involves the prediction of
the respoﬁse to a complex loading history. Many models are
designed specifically for creep response or cyclic response
with somewhat limited capability for a general, complex
response. The loading history is shown in Figure 40; the

experimental response is shown in Figure U41.

Krieg, et al.: Complex Loading History

Figure 42 shows that this modei over-predicts the
stress, indicating ﬁhat the inelastic strain is growing too
slowly. This implies that the back‘stress is growing too
-quickly and that the hardehing/recovery ratio is too largé.
Further evidence of this is demonstrated by'the
considerable amount of relaxation in compression. As
before, this discrepancy may be due to the method of

material constant determination.

Bodner, et al.: Complex Loading History

Figure 43 shows that this theory predicts the complex
loading response very well. The model appears to predict a
harder material with less relaxation than the experiment,
again suggesting that the hardness Z is too large. A large
Z causes a large é, leading to an over-prediction of
stress. Similarly, during relaxation (when é = 0), a

large 2 causes a small 6, leading to little relaxation;



134

”~~
(=] 8]
O @
—t wn
S
()]
g
Cal
(=2
4N
—
-~
N~
10
wn
+O
~r
40
o
40O
N
]
t .
3]
-~
=] 4O
o —
o~
o
U]
n Q
v
sl [/)]
w/._w + + + -t~ t
—~ O o o ~r O @ o
[« ] | ] ] [ —
Q. 1
< -

Fig. 40 Experimental complex loading history



‘814

Lh

asuodsau Surbeot xat1dwood TejuawyrJadxy

8. 00
i

-8.00
i

1

Stress ((KSD

-24.00
I

O EXP)» STRAIN RATE = COMPLEX

10.00

L4
30.00

{

T
S0, 00

T

i
70.00

T

T T T
60. 00 110.00 -

Time. (sec)

T
130.00

1

T
150. 00

T
170.00

T
160. 00

GE 1



fatuay
*B14

Zh

"Ie qa

1

8.00

*quawtJdadxs 01
‘1893 Buyrpeol xa1dwo)

-?.m

Stress - (KSID)

@ KRIEGs STRAIN RATE = COMPLEX
@ EXPy STRAIN RATE = COMPLEX

\;

Jo Kuaosvyql 30 uostdeduwo)

T T T T T T T T T Y T T T T T T T
30. 00 50. 00 70.00 80. 00 110. 00 130,00 150. 00 170.00 190. 00

Time (sec)

T T
10.CO

9¢ 1



g
-8
8
I
Wm

p "
. K 8
p e - 8
g 2 -

zE

< 0 ™
4 m ) ﬁm
i § :

_ 8 e -
8
1 d
B
_ 8
i

! R
8
- g
8
8 G

/ i
\\ 8
o -4
g
-2

1 1 q. j AN 1 T L BN 1 ] 1 1
00 %S 0o TV o0 ve 008 00 8- 00 ‘ve- oD ov- 0D 8-
(ISM) ss3435

Fig. 43 Complex Howawsw test. Comparison of theory of

Bodner,

et al.,

to experiment.

Time (sec)

137



138

Miller, et al.: Complex Loading History

Figure 44 shows that this model over-predicts the stress
during loading and_unloading. Thlis may be due to the fact
that the hardening constant was set arbitrarily by fitting
theory to experiment for a given strain rate, whereas the
complex loading test involves strain rates upto two orders
of magnitude higher. The large amount of relaxation is
then brought on by the large value of stress.

Furthermore, it should be noted that, at approximately

40 seconds, the model experiences a negative sﬁress rate
immediately after the applied total strain rate 1is reddced.
Again, this is due to the large value of stress causing the
inelastic strain rate momentariiy to be larger than the

total strain rate. This decreases ¢ until éI

is less than
é, at which point the response returns to normal.

A solution to this could be an improved method for
determining H, as well as a more complex hardening law for
the drag stress.

Finally, a.comparison of all theories to experiment for

the complex loading history is shown in Figure 45 for

" completion.
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SUMMARY AND CONCLUSIONS

The objective of the research in this thesis has been
to review and implement three theories for the prediction
of inelastic deformation in crystalline structures. These
theories are based on considerations of the microstructural
behavior of the material and are the theories of Krieg,
et al., Bodner, et ai., and Miller, et al.

The thesis opehs with a review of the mechanics of
continua with internal state variables and a review of the
historical development of constitutive modelling. It was
shown that the concept of internal state variables is a
suitable fra&ework'for comparison of all the models
discussed herein and that the primafy differences in these
models are only in the number of internalAstate variables
chosen and the growth laws used to obtain these variables.

A detailed 61scpssion of each model chosen for
comparison follows, in which the chronological development
of the model is given and thé theory on which the model is
based is reviewed. This section closes with a description
of the method of determination of material parameters and
an assessment of the materjial test requirements of each
model.

In order to perform a numerical comparison of the
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models, the aluminum alloy Al 5086 was chosen as the
candidate material. An experimental data base was
established, from which the material constants for each
model were calculated.

Finally,'the uniaxial mathematical representations of
each model have been encoded and implemented in computer
programs in order to simulate various load histories.
These simulations are compared to experimental data and
comments are made on thelr accuracy.

In conclusion, it has been demonstrated that the
theofies discussed herein'are suitable models for the
prediction of inelastic deformation in crystalline
solids. It is also apparent, hpwever, that further
research 1is neééssary in several areas in the development
of these theories.

For eXample, the theories lack, to varying degrees,
clear, concise, and riéorous methods to Qetermine Amaterial
constants from simple experiments. The theory of Krieg,
et al., uses the somewhat controversial and difficult to
implement stress-drop test, although the calculation of
constants is simp;e; This dependence on stress-drop test
resulps may adversely affectlthe performance of this model.
The theory of Miller, eﬁ'alf, uses standard creep tests,
but values of several constants are set arbitrarily to

obtain an optimum curve-fit. Although this 1s also true to
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a lesser degree for the theory of Bodner, et él., it is
found that this theory provides the best balance between
ease of testing anq determination of material constants for
thé theories discussed herein. In addition, it is found
that all three theories exhibit substantial material
parameter sensitivity to small variations in input.

It can be seen in the previous section that the models
in general compare favorably to experiment. However, it is
clear that the full representations of the models,
incorporating both 1sotropic and directional hardéning
terms, may be more appropriate for modelling phenomena such_
as tﬁe Bauschinger effect and cyclic strain hardening than
the simplified versions examined herein. In addition,
these theories are proposed mainly for intermediate to high
temperature conditions and may have failed to model fully
the phenomena at the temperature used in this research
(0.3Tm).

Another area of improvement is in the use of internal
state variables. Many hardening functions are taken to be
constants, whereas functions of the current stress level or
back stress level may be warranted to prevent an
overprediction of stress and an "over-square" transition
from elastic to inelastic behavior.

Based on these assessménts, it is felt that the theory

of Bodner, et al., provides the best balance between ease
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of implementation and accuracy of results for the material
and test conditions pf interest for this research. The
theory of Krieg, et al., is affected adversely by the
complexity of the required material tests, while the theory
of Miller, et al., is affected adversely by the lack of
rigor in calculating constants.

As a result of this research, it 1is the experience of
this reéearcher that data acquisitiqn and control equipmen£
of the highest resolution and accuracy is an absolute
necessity to ensure credible experimental resulﬁs,
particularly in specialized tests such as the stress-drop
test.

Finally, it is hoped that the research presented in
this thesis may answer questions relating to the modelling
of inelastic deformation in crystalline solids and lead to

further research in this field.
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