STUDIES AND EXPERIMENTS IN THE*N86 - 30359

SOFTWARE ENGINEERING LAB (SEL)

BY
FRANK E. MCGARRY
NASA/GSFC
AND
DAVID N. CARD
COMPUTER SCIENCES CORPORATICN (CSC)

ABSTRACT

The Software Engineering Laboratory (SEL) is an organization
created nearly 10 years ago for the purpose of identifying,
measuring and applying quality software engineering techniques
in a production environment (Reference 1). The members of the
SEL include NASA/GSFC (the sponsor and organizer), University of
Maryland, and Computer Sciences Corporaticn. Since its inception
the SEL has conducted numerous experiments, and has evaluated a
wide range of software technologies. This paper describes
several of the more recent experiments as well as some of the
general conclusions to which the SEL has arrived.

1.0 Background (Chart 1)

Over the past 9 years, the SEL has conducted studies in 4 major
areas of software technology:

1. Software Tcols and Environments
2. Development Methods

3. Measures and Profiles

4, Software Models

Most of these studies have been conducted by utilizing specific

approaches, tools or models to production software problems within
the flight dynamics environment at Goddard. By extracting

detailed information pertaining to the problem, environment,

process and product, the SEL has been able to gain some insight

into the relative impact that the various technologies may have

on the quality of the software being developed.

More detailed descriptions of the overall measurement process as
well as the SEL studies may be fcund in References 1, 2, and 3.
This brief paper will describe some of the more recent, specific
experiments that have been conducted by/in the SEL and just what
types of insight may be provided in areas of:

Tools and Environments
Scftware Testing
Design Measures
General Trends

W N ~

*The work described in this paper has been extracted from reports and studies carried
out by members of the SEL.

F. McGarry
NASA/GSFC
1 of 37

%
a*
TR
? %
w
A
£

Cihant
&<
g

TYPE OF SCIENTIFIC, GROUND-BASED,
SOFTWARE: MODERATE RELIABILITY AND RESPONSE REQUIREMENTS

LANGUAGES: 85% FORTRAN,

COMPUTERS: IBM MAINFRAMES,

PROJECT CHARACTERISTICS:
DURATION (MONTHS)
EFFORT (STAFF-YEARS)

SIZE (1000 LOC)
DEVELOPED
DELIVERED

STAFF (FULL-TIME
EQUIVALENT)
AVERAGE
PEAK
INDIVUALS

APPLICATION EXPERIENCE
(YEARS)

MANAGERS

TECHNICAL STAFF

OVERALL EXPERIENCE
(YEARS)

MANAGERS
TECHNICAL STAFF

FIGURE 1.

15% ASSEMBLER MACROS

BATCH WITH TSO
AVERAGE HIGH
16 21
& 24
57 142
62 159
5 11
10 24
14 29
6 7
4 5
10 14
9 11

FLIGHT DYNAMICS SOFTWARE

INTERACTIVE GRAPHIC,

LOW

22
33

UR N

F. McGarry
NASA/GSFC
2 of 37

The F1ight Dynamics environment typically is a FORTRAN environ-
ment building software systems ranging in size from 10,000 to
150,000 1ines of code - (see Figure 1).

2.0 Software Tools/Environments* (Chart 2 and Reference 4)

One of the more interesting studies that was conducted within the
past several years, was one in which an attempt was made to
measure the impact of several development approaches (related to
environment support) on the quality of software within the flight
dynamics discipline.

The three points of study include:

1. Software Tools
2., Computer Support
3. Number of Terminals/Prcgrammer

The quality of the product was measured using 4 attributes
including:

1. Productivity - Number of developed 1lines of cocde per man
month,

2, Reliability - Number of errors reported per 1,000 1ines
of code.

3. Effort to Change - (Average number of man hours
required to make a software modification).

4, Effort to Repair (Average number of man hours required to
correct an identified error)

2.1 Experiment Description (Chart 3)

In carrying out the study, a review of all projects for which
detailed project history data was available and complete was
undertaken. From the completed 50 projects, 14 were selected
because of the quality and completeness of the relevant data and
more importantly because of the general similarity of
complexity of problems that the software was attempting to solve.

Fourteen projects ranging in size from 11,000 1ines of code to
136,000 1ines of code were selected. These projects had
information describing the environment under which they were
developed and additional information such as the number and
quality of automated tools utilized and the number of interactive
terminals available to the programming staff.

*Lead investigators of this work included F. McGarry and J. Valett of NASA/GSFC
and D. Hall of NASA/HQ.

F. McGarry
NASA/GSFC
3 of 37

The 14 projects selected all dealt with tasks in solving attitude
determination and control related problems. The projects were
completed between the years 1978 to 1984,

The projects alsc had detailed information as to manhours, size,
error history, and effort required to make all changes and
corrections to the software.

2.2 Project Variations (Chart 4)

In attempting to characterize each of the develcpment projects,

a ranking scheme was used for this particular study. It was
found that the availability of terminals ranged from a low of
less than 1 per 8 programmers to a high of better than 1 per 2
programmers,

There were a total of 21 tools considered in this study that
were applied by at least some of the projects studied. Such
tools as documentation aids, preprocessors, test generators and
program optimizers were among the toocls considered.

It was also found that the distribution of level of use for tools
rangec¢ froma low of only 1 or 2 automated tools being used, to a
high of more than € automated tools being used. These tools also
were rated as far as the actual usage by the particular project
and also there was a rating for each tool of the assessed
'quaiity' of the particular toel. Quality here was rated for
each tool on a scale of 1 to 5 and was a subjective rating
determined by the software manager.

There were a total of 11 characteristics that made up the
computer support measure. These 11 included:

o Terminal Accessibility o Offline Storage

© Turn around time o Interactive Availability

o Compiler Speed o Terminals/programmers

o System Reliability (2 measures) o Avg. CPU Utilization

oDirect Storage o Accessibility of all
resources

2.3 Study Results (Chart 5)

The results of this particular study were encouraging on the one
hand and quite perplexing on the other.

2.3.17 Tool usage results showed that as the number and quality

E. McGarry
NASA/GSFC
4 of 37

of automated tools increased, there were significant increases in
3 of the 4 quality measures used in this study:

1. Productivity increased as tool usage increased

2, Maintainability (effort to change/effort to repair)
improved as the number and quality of tools increased.

3. Reliability did not seem to be significantly impacted in
this one particular study.

2.3.2 Computer Environment

Although all of the experimenters felt that there would be
significant increases in all quality measures as the overall
quality of computer support increased, none of the measures
prcved to be significant for this one particular study. It could
not be shown that an improved computer support environment (at
leastas far as the way the SEL described support environment)
directly, favorably impacted the four quality measures used by
the SEL.

This particular study is still undergoing further analysis.
2.3.3 Terminal Usage

The most perplexing result of this experiment study was the
one in which the SEL attempted to assess the impact that
increased number of terminals would have on the four measures
described,

AlTthough the experimenters expected to observe an increase in
both productivity and software reliability as the number of
terminals made available increased, the study found just the
opposite. Both productivity and reliability of software
decreased as the ratio of terminals available increased. There
was no significance in the results for maintainability (effort tc
change/effort for repair).

Numerous suggestions have been put forth in attempting to explain
this phenomena. Some felt that the increased terminal usage
possibly was not properly accompanied with interactive support
tools in the particular environment.

Another idea was that the increased terminal availebility without
proper training for the programmers led to a less disciplined
approach by the programmers.

F. McGarry
NASA/GSFC
5 of 37

There are several other possible explanations of the results and
for that reason, this particular study has been continuing and
will be attempting to more thoroughly analyze this data as well
as the additional projects that have been completed in this
environment,

3.0 Software Testing

A second general set of studies that has been conducted over the

past several years within the SEL has been directed toward gaining
insight into approaches to testing software. Since this phase of

the development 1ife cycle had previously been determined teo

consume at least 30 percent of the development resources

(Reference 5), it was deemed as a critically important discipline

to study. Two major experiments were conducted during 1984 and

1985 in an attempt to:

1. Determine the overall coverage of software in the
typical testing scenario utilized in the flight dynamics
scftware development.

2. Investigate the relative merits of three standard
testing approaches:

o functional testing
o structural testing
o code reading

3.1 Test Coverage¥* (Chart 6 and Reference 6)

The first experiment on testing was designed to determine the
extent to which typical testing techniques within the flight
dynamics environment amply exercised the software that had been
built. This particular environment utilizes functional testing
during both the system test phase as well as the acceptance test
phase.

By instrumenting a major flight dynamics system, then by
executing the series of both system tests and acceptance tests -
experimenters could first determine the coverage attained in the
test phases. Next, the experimenters monitored the operaticnal
execution of this same scftware over a period of months to
determine the extent to which portions of the completed software
were utilized. Finally, the experimenters analyzed uncovered
errors in an attempt to determine if the errors occurred in
portions of the system that had not been exercised during the

*The lead investigator for this work was Jim Ramsey of Univ. of MD

F. McGarry
NASA/GSFC
6 of 37

test phase of development. The software studied was a major
subsystem of a mission planning tool &and consisted of 68 modules
(Fortran subroutines) with 10,000 1ines of code. There were 10
functional tests making up the acceptance test plan for the
subsystem and during the operational phase, the experimenters
monitored 60 operaticnal execution of the software.

3.1.1 Test Coverage Results (Chart 7)

The managers of the flight dynamics development systems noted

that the approach to testing had historically been quite good
(relatively few errors found in operations) and they expected
that the coverage found for this one experiment would be quite
high (few modules would be not executed). The results of the
experiment showed that for the 10 functional tests executed, only
75 percent of the 68 modules were executed and less than 60
percent of the total executable code was covered in the tests.

Additionally, the series of cperational executions showed that a
s1ightly higher percentage of both number of modules and 1ines of
code were executed for this series of 60 executions.

Finally, all of the error reports were reviewed to determine in
which portion of the system the errors had occurred. It was
found that 8 errors had been recorded during the extended
cperational phase of the software, but it was found that none of
the reported errors occurred in software that had not been
executed during the acceptance test phase.

This initial study seemed to indicate that the functional testing
approach was properly leading toc correct portions of the system
being executed and it also was very representative of the
operational usage of the software.

The results of this study indicated that further investigations
intoc the various approaches to testing may be worthwhile to
determine just which approaches were most effective in uncovering
errors in the software itself.

3.2 Software Testing Techniques*(Chart 8 and Reference 7)

Another study was conducted where three programs were seeded with
a number of faults and 32 professional programmers from NASA/GSFC
and from Computer Sciences Corporation (CSC) participated in an
experiment to determine which techniques were effective in
uncovering these faults.

The three testing approaches included:

*The lead investigator for this study was Rick Selby of Univ. of MD

F. McGarry
NASA/GSFC
7 of 37

o Functional Testing
o Structural Testing
o Code Reading

A11 programmers participated in applying each of the three
techniques.

When performing functional tests, the programmers were required
to use the functional requirements along with test results to
isolate faults - they were not to look at the source code itself
until after testing was completed.

Those programmers perfcrming structural testing used the source
code and test results but did not use the functional
requirements.

Code reading was carried out with no executions of the software.

Those performing code reading reviewec the requirements and also
looked at the source code.

3.2.1 Testing Technique Results (Charts 9 and 10)

The, results of this experiment indicated that code reading is the
most effective of the three testing techniques studied. This
technique uncovered an average of 61 percent of all seeded faults
while functional testing uncovered 51 percent and structural
testing uncovered 38 percent.

Before the test, most of the managers in the SEL felt that code
reading would prove to be a very effective testing technique,
although they also felt that it would probably be the most costly
in manhours to apply; but the results of the experiment indicated
that code reading also was the most cost effective technique (3.3
faults per marhour vs 1.8 faults per manhour for structural and
for functional testing). It was also noteworthy that, before the
experiment, less than 1 out of 4 persons participating in the
experiment predicted that code reading would be the most
effective approach.,

An additional observation that was made after the testing results

were compiled was that there seemed to be a difference in the

relative effectiveness of each of the testing approaches as the

size of the software being tested increased. For the smaller

program, code reading was by far the most effective technique,

but for the larger program, functional testing seemed to be quite

effective. This observation may indicate that there should be a
size 1imit on how much code is utilized in a code reading

exercise, Further tests are planned for these studies.

F. McGarry
NASA/GSFC
8 of 37

4.0 Software Measures

Over the past 6 to 8 years, the SEL has defined, studied, and
evaluated numerous measures applicable to software development
and management (References 8, 9, 10), Most of these measures
have focused on one phase of the software 1ife cycle - the code/

unit test phase. In an attempt to define and apply measures in
earlier phases of the 1ife cycle, the SEL has been reviewing
several approaches to qualifying or measuring aspects of the
software during the specifications phase and during the design
phase. Work on the specificaticn phase was reported at the Ninth
Software Engineering Workshopand may be foundinreference 11
and 12, One additional piece of work that has been conducted for
the design phase will be discussed here.

4.1 Software Design Measures* (Charts 11 and 12 Reference
13, 14)

In an attempt to qualify software designs, a study was conducted
to determine if module strength may be utilized as a guideline
for software modularizaticn. Although the definitions of
strength may be well understood, the parameter may not be easy te
determine based soclely on a structure chart or data flow diagram
which may be produced during the design phase of software
development.

For the purposes of this study, strength is defined as the
'singleness of purpose' that a software module inherently
contains, Singleness of purpose is a subjective parameter
assigned at design time by the developer/manager. From a list of
potential functionality that a component may have (e.g. computa-

tional, control, data processing, etc.) the programmer determines
which functicns that module contains., High strength would be
attributed to those components which have but a single function
to perform, medium to 2 and 1ow strength would have three of more
functions to perform.

The study examined 450 Fortran modules (from 4 systems) which
were built by approximately 20 different developers.

Typical SEL data, which includes detailed cost and error data for
all modules was alsoc available for all of the modules. The 450
modules used for this study had a feirly even distribution in
size as well as in design strength. Small modules (104 of the
450) were those with up to 31 executeble statements, medium (148
of 450) were those with up to 64 executable statements and there
were 151 1large modules which had more than 64 executable
statements.

*The lead investigators for this study were D. Card and G. Page of CSC and
F. McGarry of NASA/GSFC

F. McGarry
NASA/GSFC
9 of 37

The objective of the study was to determine if strength of
modules as determined at design time was related to the cost and
reliability of the completed product.

4.2 Results of the Study on Strength (Charts 13, 14, 15)

The results of the study in the SEL 1indicated that module
strength is indeed a reasonable criteria for defining software
modularization. When examining the reliability of the 450
modules, it was found that 50 percent of the high strength
modules had zero defects while for medium strength modules 36
percent had zero defects and low strength modules only 18 percent
of the modules had zero defects. Similar trends were found for
the modules of medium error proneness (up to 3 errors per 1000
lines of code) and for modules having a high error rate (over 3
errors per 1000 1ines of code).

The distribution of the 'buggy' modules (over 3 errors per 1000
Tines of code) was shown to tend more toward low strength as
opposed to high strength. Forty-four percent of the buggy
modules had Tow strength while only 20 percent of the buggy
modules were found to have high strength.

Several additional observations were made while conducting this
particular study. When the characteristics of the individual
programmers were reviewed, it was found that those programmers
who produced high quality software (low error rate and high
productivity) tended to design modules of high strength but they

also did not show a preference for writing modules of any
specific size., Good programmers generated modules of size that
seemed to best suit their design and they did not artificially
constrain themselves to writing small modules.

5.0 General Trends and Observations

Over the past several years, the SEL has conducted numerous
studies and experiments in an attempt to better understand the
impact that various software techniques may have on producing
improved software. In addition to the specific studies conducted
such as the ones briefly discussed in sections 2, 3, and 4, the
SEL has observed general trends in the develocpment and
measurement of software, The observations include such points as
trends in software reuse, trends in utilization of improved
software development technology, and the overall impact of
improved developed techniques in the cost and reliability of
software over a long period of observation time. Some of these
general observations are summarized here.

F. McGarry
NASA/GSFEC
10 of 37

5.1 Trends in Computer Use and Technology Application (Charts
16, 17)

From data that has been collected on nearly 60 projects over the
past 9 years, one trend that has been noted is the tendency to
make heavier and heavier usage of available computer support. 1In
1977 and 1978, computer use averaged approximately 100 runs per
1000 Tines of developed source code while in 1982 and 1983 the
average use increased to nearly 250 runs per 1000 1ines of
source. This trend continues to increase within the flight
dynamics environment being studied.

Simultaneously, it was noted that the use ocf more and more
structured development practices, improved management approaches
and overall higher quality software engineering has continually
increased. Each project has been rated on its application of
over 200 software techniques (see reference 15) in an attempt to
gquantify the overall level of development and management tech-
nology utilized for a project. The aggregate of the total set of
techniques applied results in a rating termed the Software Tech-
nology Index. From an average index of less than 100 in 1976 to
1978, it was found that the cverall development techniques have
increased to an average of cver 140 in the 1980's, This seems to
point to improved training, better discipline, improved access to
tools and possibly better informed management practices.

Although both parameters (computer use and software technology
index) seemed to generally increase over the past 7 or 8 years,
there is no observed correlation between these two factors.,

£.,2 Trends in Software Reuse (Chart 18)

Another general observation that was made from the detailed
development data collected by the SEL, was that the reuse of
software has shown general trends of increase. Typical software
systems in the years 1977 to 1979 averaged about 15 or 20 percent
reused code while in the 1982 to 1984 timeframe the average reuse
has increased to 30 to 35 percent.

Although this reuse is certainly tending in the right direction,
the SEL has not conducted detailed studies to determine what the
driving factors are in improving the percentage of reuse. The
trends are probably indicative of improvements 1in design
technique as well as numerous other factors, but studies have
just recently been initiated in the SEL to determine how the
trend can be improved at a even faster pace.

It has also been observed in the SEL data that there does not

F. McGarry
NASA/GSFC
11 of 37

seem to be a direct relationship between projects that are rated
as having a high software technology index and having a high rate
of software reuse. But this may not be a surprise since one
would expect that high technolocgy usage would lead to follow on
systems being able to pick up or reuse software produced by the
projects wusing disciplined approaches for development and
management.

5.3 Impact of Develcpment Technolcgies (Chart 19)

Probably the most basic goal that the SEL has, is to determine
the impact that specified software development/management
techrniques have on the cost and reljability of software. With
nearly 60 projects having been closely monitored over the past 8
or 9 years,the SEL attempted to Took at general trends inthe

relifability and cost of these projects as measured against the

software technology index computed for each of these projects.
The 200 parameters factored into this index represent everything
from structured techniques to disciplined management approaches

to configuration control procedures. It is one attempt to
characterize each of the projects with a single value.

This technology index correlates very well(r = .82)with
relijability of software in the SEL. Those projects with a higher
rating of good development practices were the projects with the
Tower fault rates of the product.

Unfortunately, the impact of this technology 1index on
productivity is quite unclear. The first general observation
that hes been made is that there is not a clear favorable impact
on development cost (cost per 1ine of code) with projects with
higher values of this technology index. Studies are continuing
in an attempt tc more objectively compute this technology rating
so that a more conclusive statement can be made. Some
researchers also have suggested that it is not to be unexpected
that the specific develcpment cost may not decrease but since
the reliability has improved and the overall software structure
has improved, the maintenance activity will be the beneficiary of
the overall ccst savings, not the development cost.

5.4 Can Software Technology be Measured? (Chart 20 and Reference
3)

Another major question that software engineers address is whether
or not sofivare technology can be measured at all., By utilizing
reliability as one major aspect of software quality, the SEL
attempted to determine to what extent software development/
management practices could be measured.

F. McGarry
NASA/GSFC
12 of 37

There are three levels of development practices which the SEL has
hoped and attempted to measure. First, there are individual
specific techniques such as the use of structured code or chief
programmer team or the use of PDL in design, etc.

Second, there is the usage of a software methodology which is a
combination of several methods into a single disciplined
approach., This could be the set of methods known as structured
techniques which reflect the use of 6 or 8 individual practices
such as top down development, structured cocde, code reading and
usage of Unit Development Folders (UDF).

Finally, the attempt has been made to measure the impact of the
total technology index which encompasses &1l disciplined
management/development practices. This signifies the level to
which the project has attempted to apply recommended software
development techniques.,

The results of this study indicated:

1. An individual technique cannot be effectively measured in
a production environment such as the one in which the SEL is
conducting studies. (r = .37 is a typical value found in
correlating PDL usage and reliability).

2. Disciplined methodologies (combining techniques into a
single disciplined approach) can be measured (r = .65 for one
particular study) and the approaches called Modern Programming
Practices (6 techniques) has a significant, measurable, favorable
impact on software reliability.

3. Total Software Technology can be measured (r = ,82 for
this one study) and higher levels of applied technology have a
marked favorable impact on the reliability of software.

The trends and observations noted here are based on approximately
8 years of data collection and experimentation within the SEL.
Approximately 55 projects have been studied and the research is
continuing and will continue in the future.

Many of the results are inclusive, but with each experience and
study, greater insight is provided into the overall
characteristics of the software development process.

F. McGarry
NASA/GSFC
13 of 37

REFERENCES

1. Software Engineering Laboratory, SEL 81-104, The Software

Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page, et.
al, February 1982,

2, SEL, 81-101, Guide to Data Collection, V. E. Church, D. N.
Card, F. E. McGarry, et. al, August 1982,

3. SEL, 86-002, Measuring and Evaluating Sofiware Technology,
D. N. Card, F. E. McGarry, J. Valett, to be published

4, McGarry,F.; Valett, J.; and Hal1, D., 'Measuring the Impact

of Computer Resource Quality on the Software Development Process
and Product's Proceedings of the Hawaiian International
Conference on Systems Sciences, January 1985

5. McGarry, F., 'What Have We Learned in 6 Years', Proceedings
of the Seventh Annual Software Engineering Workshop, December
1982

6. Ramsey, J., and V. R, Basi11i, 'Apalyzing the JTest Process
Using Siruciural Coverage'> Proceedings of the Eighth
International Conference on Software Engineering, August 1985

7. SEL 85-0001, Comparison of Sofiware VYerification Jechniques.
D. Card,R. Selby, F. McGarry, et. al, April 1985

8. SEL, 82-004, Collected Software Engineering Papers: Yolume 1,
July 1982

9, SEL 83-003, Collected Software Engineering Papers: Volume 11»
November 1983

10. SEL 85-003, Collected Sofiware Enpgineering Papers: VYolume
111, November 1985

11. SEL 84-003, Invesiigation of Specification Measures for ihe
Software Engineering Laboratory, W. Agresti, V., Church,
F. McGarry, December 1984

12.Agresti, W.; 'Ap Approach 1o Developing Specification
Megasures; Proceedings from the Ninth Annual Software
Engineering Workshop, November 1984

13. Card, D.; Page, G; McGarry, F.; 'Criteria for Sofiware
Modularization, Proceedings of the Eighth International
Conference on Software Engineering, August 1985

F. McGarry
NASA/GSFC
14 of 37

14, Agresti, W.; Card, D.; Church, V.; 'Status Repori on
Specification and Design Metirics Studies', CSC, December 1985

15. SEL 82-001, 'Evaluatiopn of Management Measures of Sofiware
Development', D, Card, G. Page, F. McGarry, September 1982

F. McGarry
NASA/GSFC
15 of 37

THE VIEWGRAPH MATERIALS
for the

F. McGARRY PRESENTATION FOLLOW

F. McGarry
NASA/GSFC
16 of 37

0 L1Y¥YHO

#0'€550V98

doys yJop Buniesuibug alem}jos |enuuy yjusa g
G861 ‘v JequadaQ

AHO1vHOAaV1 ONIHIINIONI IHVML10S
dH1 NI
SIN3INWIHIdX3 ANV S3IANLS

F. McGarry
NASA/GSFC

17 of 37

L LdVHD

G8 8 €8 c8 18 08 6l 8L YA
T T T T T T I T
Zm___wnﬂw___um S|OpO 99.N0SaY

suonenbg diysuoneay suonjenb3 diysuoljejay

SeINSEoN

sonsualorIRY) abuey) pue J0u3 soisuajoeIRY) dUlaseg

Sainseap
ubisag

sainseap Alxe|dwo) 91eMm}j0S

asnay
8/EM1J0S

spoyiapy luawdojdaaag painmonans

sayorosddy bunse

SjuowuonAuUg
Bunwwesboid

SUsWIO HAUT
Burwe 6014 sabenbue ubisag pue uonesyioadsg

5100} Juswebeuep $|00} uOlIBlUBWND0Q PUE uol Blusws|dw)

INITINIL HOHVYIS3Y 13S

£1°€G60v98

S|9pPOW

sajljoid pue
sainseap

SPOUIsiN
juawdo|anag

SJUSWUOIIAUT
pue S|00}

F. McGarry
NASA/GSFC

18 of 37

¢ LYVHI

L0'ESS0VI8
(si0443 neday 0} swi]) Jeday 0} 140443 e

(esem}jog abueyn o3 awi]) abuey) 0} 11043 e
(DO /s10113) Ajiqel|ay e
(yluo-ueiN /D0T) AlAnONpPoOId e

© NO

Jawweiboid /sjeuiwsa] J0 Joaqunp JO 1998}43 '€

(yoreg "SA aAl}oBIBIY|
‘awi] punoJeusn] ‘69) 1ioddng Jaindwon jjesaAQ Jo 10843 ‘2

(s1o01pny ‘siolp3 ‘spiy ubisaq ‘6a) s|00] 81eM}JOS JO 109443 |

INIJNJOTIAIA 3HVML40S NO
INIJWNOHIANT 40 S103443 3IHL ONIHNSVYIN

F. McGarry
NASA/GSFC
19 of 37

€ LdvH)

S9INSBAN
pue sBujjey ueemjag suolj a0l 10j paujwexy e

juswiuoiaug o Ajjenp Jo uoledipuj
Buiniy ‘sielaweled snolieA uo pajey sjoaloid e

901M 9€1 01 DO | | woi4 saitep 8zig 108/oid e

sjuswuoiAaug bulhiep
ut adA| |elauar) sweg o s}oaloid v e

IN3INWIH3dXd

60'€G50v98

F. McGarry
NASA/GSEC

20 of 37

aAljoRIBY| IV yaieg liv
Spuoda9g 6> Spuoddg 02<
SINOH 2> Aeq L <
ybiy A1ep moT AJap
ybiH Ao Mo A1ap
8 4
N\F w\F
Buney ybiH Buney mo

¥ LYVHD

8AIlOBIBIU| "SA yoleg
awl] asuodsay
awij punoJeusn]

Arenp j00)
abesn |00

S|00] }O JaqunN

lawwelboud /sjeuiwsa |

SNOILVIHVA LNIJWNOHIANI

0L°'ESS0V98

JUBWUOJIAUT
Jlaindwon

s|00]

F. McGarry
NASA/GSFC

21 of 37

G LdvHO

F. McGarry
NASA/GSFC

22 of 37

L0'EGS0VI8

uoIB|81100) ON = 0

uoe|elion) aAjebeN = -

awi| 10 s10413 Jamo] saydwy siy) - nedey o 11043
pue ‘abueyn o] 1104)3 ‘Aujiqelay 10} - UOHB|8II0D BAINISOd = +

Jawweuibouid 19d

0 0)) s|eulw.a |
JUBWIUOJIAUT
0 0 0 0 1eyndwon
| jioddng
+ + 0 + 1001
neday | ebueyp | Aunqgenay | Auanonpouid
O} 110443 | O1 104}4

S11NS3Y

9 1Y¥YHD

21'€550v98
sase) asn |euonesad 09 e
s1s9] aoueldeddy jeuoloung ol e
O01S X0t o
S3INPON 89 @
welboig soweuhAq wyby4 | e
Apmis 10} BieQ

puno4 sJ0JJ3 JO sejljoid -
paInoax3 sa|NPoW pue 8poY % -
abesn jeuonesadO YIM 811J01d 1591 8oueidadoy asedwo) e

painoax3 SaINPOW JO % -
pajnoex3 8pon) jJo % -
(Bunse | aouejdesdy) yuswuosnaug
auQ ui Buyisa] jeuoloung Jo solISII9IORIBYD BUILIBIaQ @
aAn2alqo

3OVHIAOD 1S3l

F. McGarry
NASA/GSFC

23 of 37

L LYYH)

20'€650v98

yoeoiddy pooxr) sj Buiysa] |euonound - juswuoliAug siyj 104 e
abesn [euonjesadQ Jo aAlejuasaiday A1ap 819 M SISaL aoue]daooy e

(sa|NPOW paisalun ul J0N) ouruajuiey Buung palsAodun sined g e

%L2 %Y (1se1 A1oA3) painoax3 soINPON %
%08 %GL (lero1) p@inoax3 SINPON %
%01 %81 (1se1 A18A3) paindex3 apod %
%G9 %9G (leloL) paindex3 apoYd %

asn |euonesadp 1s9] aoueidaddy

S17NS3d 3DVH3IAOD 1S3l

F. McGarry
NASA/GSFC
24 of 37

8 LdvHI
SOA SOA ON
SOA Buinse | SOA
vy
Bunse) SOA SOA
=244
Bunse) Bunse] Buipeey
jeanyonns jeuoijoung apoon

:sanbiuyda | UoiBOIJIBA
08L/LL XVA ‘LYEY NEI “mczmg aulluQ Jo} s1andwod
sjine4 Yylip pepeeg :sweiboud uenio4

I0lUN[‘9)BIPSWIdlU| ‘POOUBAPY :S|aA8T asiiiadx]

welboid aynoeax3y

apo)
99IN0S MBIA

uonesyvadg
welboid MaIA

M MO N M

(DSH pue D4SH) siawweibouid |euoissajoid 2€

S3ANDINHO31 ONI1LS3l
J4VML140S 40 S3IdNis

L1'€SS0VI8

F. McGarry
NASA/GSFC

25 of 37

6 LYVHD

91'€650v98

sjo08lgng Jolunp 10 8jeIpaWISIU} UBY L

je119g Bunse| jeimonig pue buipesy apo) pauiiojiad s108/gng pedueApY

anbiuyoe | 8A108})3 ISON 8y} ag

0] Buipeay apon paraleg sioaiqns 8yl 40 %ee AluQ Juswiiedx3 ay) oy Jold

14043 JO INOH 18d P81o8laQ Siined ay) pue pajosieq siined Jo

loquinN |B10] 8y} jo swia] ul enbiuyds) 1seg ayl eg o) peaoid Buipeey epod
Bbunsay Bunsaj Buipeey | Bunse} Bunse) Buipeey

[einjoniis jeuonoung epo) [eJnionns |euonoung 8pon
ee 19
10443 JO INOH Jod pajosjaQ siined Jo %

pejoe1eq sined Jo JequinN

S11NS3H ONILS3I1 FHVMLH40S

F. McGarry
NASA/GSFC
26 of 37

0L LyVvHI

0215 0} Buipiodoy pesepsO swesbo.id “.m.oz ¥1'€550v98
swesboid 1064e7 104 9A1109})3 a0 aq Aey Bunsa] jeuonoung
wesbouid
€ I (4
| | |
-~ 0¢
- OV
- 09
jeinionns m | // o
jeuonound v / -{ 08
Buipeay apoD @ ~
Aoy “e 7
00l

puno4 sjine4 jo jusdied

3Z1S NVHOO0Hd
'SA S3NOINHO3L ONILS3L

F. McGarry
NASA/GSFC

27 of 37

LL LY¥VHI

S0'eSS0VvI8

soawweiboid Aq paulwialaqg - 8|NPOWN Aq pawiojied suolound jo (ssequinpN pue) sedA] ,

awl] ubisaqg ie
siswweiboid Ag suonduosaq ubisaq pajieiag e

SS|NPOW |IY UO Ble(10113 pue }s0) pajieiag e
siadojoraq 1usisyig 02 Alerewnxoiddy e

S9|INPOW ue}lOo4 QG ©
Apnis 1o} ele(Q

uoljezue|NnpPop 9Jem}jos
10} BlI91ID Sk 8zIS pue ,yibuailg ajenjeA] e

aAo8lqo
S3IHNSVIN NDISIA IHYML40S

F. McGarry
NASA/GSFC

28 of 37

S1'€550v98

21S

¢l 1YYH)
ce0 8ION 10 S9 LG abieq
L€0 v9 01 2¢ 8Pl wnipay
L€0 LE O | yG1 llrews
juswaiels
a|qeINoexy SjuewWsa)els m:wuﬁm_.._‘ ozIS
lad suoisigoaqg a|geinoex3y 1O JOQUINN a|NpPON
ueap
uonnquisiq @
2€'0 8 /81 ybiH
2€0 09 9/l wnipay
620 Ll 06 MO
juswajels
ajqeInoaxy sjuswaajels SOINPON Emcm:m
lad suois198q 81qeinoex3 ueliiog 3|INPON
UBON uespy }O JequinN
W
uonnqguisiqg yibuans

S3IHNSVIW NODISIA IHVMLH0S

F. McGarry
NASA/GSFC
29 of 37

€L LdVHI
yibuang yibuans yibuans
MOT wnipai UbiH

%0¢

61°'€650V98

wnipa
%82
wnipap
%06
0197

H1HN3HLS 3TNAON 40
S3ISSV10 HO4 3LvH 11NV

F. McGarry
NASA/GSFC

30 of 37

Pl LUVHI
02'€SS0v9s

Bundnon 9zIS yibuans

uowwo) paxiN Jojeweled abieq7 wnpey jlews ybiH wnipey MO
%0¢
%0 %62 %L ‘96z
%9¢€

%0V g

SSB|D Ul S8[NPON 8uoid }ine4 Jo juadlad

SOILSIHILOVHVHOD NDIS3d

F. McGarry
NASA/GSFC

31 of 37

c-2

Sl LdVYHI

92IS 8|Npojy 0} paje|ay Aj30auig JON S| 8leY Ined e

SO9|NPON jlews uey] (juswalels ajgeindaxy
~1ad) ss871s0) sa|npoy abie ‘|jesoAQ e

sa|npoN yibuaans-mo ueyy
$S97 1S0D pue ajey jjne4{ JamoT Yy
aAeH sa|npoN Yyi1busaiis-ybiH ‘jle1enp e
9zIS 9INPO do1108dg Auy
10} 90ualajaid ON moys stawwelboid poor) e
sa|npo yibuasng
-ybiH a114M 01 pua] siawwelbold poor) e

AHVIANNNS SIHNSVYIWN NOISIA

80'€550v98

F. McGarry
NASA/GSFC

32 of 37

9L LYvHI

1els 108(oid Jo JeeA

6. 8. Ll 9.
08 ! _ _ _ 08

00L|- -1 02t
0cL -1 091
ovif V4 -1 002

xepu| ABojouyoe| v

asn 48indwon ¢

Koy
091 ove
xepu| ABojouydse | seul puesnoy] Jéd suny

SAN3HL JNIL

ADO0TONHO3L ANV 3SN H3LNdNOD

81'£550v98

F. McGarry
NASA/GSFC

33 of 37

L1 LYvHI

esn ABojouyse] pue osf 101ndwo) uesmieg uUoIB|81I0D SNOIAGO ON L2'6550vo8

xepuj Abojouyoe |

ovli oclt 001 08 09
] I I T |
® ° ° ®
°
¢ - ozt
®
°
°
- 091
®
- 002
®
- 0ve
L Y
08¢e

seulq puesnoyy Jed suny

3SN H31NdNOD
NO ADOTONHO31 40 103443

F. McGarry
NASA/GSFC

34 of 37

(10N 10) pesney 81em}os AUm pueisiepun LuUoQ M Ajuesin) e
$1404)3 pa10a4iq Inoylm Buiseasou) ueag seH asnay aiem}jos e
ABojouyoa |, e se |eluajod uedyiubig seH asnay aiemljos e

xapu| ABojouyoa] |eio})

ovi 0ct 00!} 08 09

[} | 1 1 I
] ® -

L

e ® 7
@ ﬂ ‘
® ‘o -
. —f
esney 8Jem}jos jO uonowo.d -

0¢

oy

09

08

00t

epoo pesney %

(SOILSIHILOVHVYHD HVYTINIS
40 S1923rodd St NO a3svg)
3SN34 IHVML40S NI SANIHL

81 1dvHI

v861

awi] JaaQ s1oafoid

&)
£
SO~
P
Mmu,m
22'€550v98 w2
2261

0S

apon pasnay %

2
6L LYYH) B
Q95
O <.
= ASn)
wZ &R
L1'€SS0V98
siojoe4 18410 Auep 00} 0} 8AnIsues sj AJiAI1ONPOId e
pejoeduy Ajqeioae eg ued Ajiqeley e
xapuj ABojouyosa] [er101 xapuj ABojouyoa} jeio]
ovi oct 001! 08 09 ovi oct 00l 08 09
o | r & | | | | |] |
® ® ® 280-=
° Uoe o - zo00
o0 | g¢ Y000
®
o -1 0% 8000
PY - S 8000
0'S] 0100
Alaionpoud ajey ine4

SAIDOTONHOIL
ININdO13A3A 40 S103443

G2 LYuYHD

£€2'eSS0v98
Amenp 10edw Ajqeloae4 saibojopoyio peieibalul e
einseep O 1iNdy4ig eiy senbiuydse) |enpialpu; e
si019e4 1y (2 (g) s1010e4 peiejoy (q 101084 8uQ (e
xepu| ABojouyde} (ejo} xepu| dd Xepuy 8p0) PeMINIS
ori o2t 001] 09 ’ £ 2 i
T T T 1 T z00'0 T T T T
28°0-=4 L£0- 4
2000 2000
¥00°0
$00°0 ¥00 0
9000
9000 9000
8000 8000 800°0
0100 0100 0100
ejey ney o)y 1IN 4 ajey jiney

ALIEGVvIT3d 3HVM1L40S
NO 3SN ADOTONHO31 40 103444

F. McGarry
NASA/GSFC

37 of 37

