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ABSTRACT

The Software Engineering Laboratory (SEL) is an organization
created nearly 10 years ago for the purpose of identifying,
measuring and applying quality software engineering techniques
in a production environment (Reference 1). The members of the
SEL include NASA/GSFC (the sponsor and organizer), University of
Maryland, and Computer Sciences Corporaticn. Since its inception
the SEL has conducted numerous experiments, and has evaluated a
wide range of software technologies. This paper describes
several of the more recent experiments as well as some of the
general conclusions to which the SEL has arrived.

1.0 Background (Chart 1)

Over the past 9 years, the SEL has conducted studies in 4 major
areas of software technology:

1. Software Tcols and Environments
2. Development Methods

3. Measures and Profiles

4, Software Models

Most of these studies have been conducted by utilizing specific

approaches, tools or models to production software problems within
the flight dynamics environment at Goddard. By extracting

detailed information pertaining to the problem, environment,

process and product, the SEL has been able to gain some insight

into the relative impact that the various technologies may have

on the quality of the software being developed.

More detailed descriptions of the overall measurement process as
well as the SEL studies may be fcund in References 1, 2, and 3.
This brief paper will describe some of the more recent, specific
experiments that have been conducted by/in the SEL and just what
types of insight may be provided in areas of:

Tools and Environments
Scftware Testing
Design Measures
General Trends

W N ~

*The work described in this paper has been extracted from reports and studies carried
out by members of the SEL.
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The F1ight Dynamics environment typically is a FORTRAN environ-
ment building software systems ranging in size from 10,000 to
150,000 1ines of code - (see Figure 1).

2.0 Software Tools/Environments* (Chart 2 and Reference 4)

One of the more interesting studies that was conducted within the
past several years, was one in which an attempt was made to
measure the impact of several development approaches (related to
environment support) on the quality of software within the flight
dynamics discipline.

The three points of study include:

1. Software Tools
2., Computer Support
3. Number of Terminals/Prcgrammer

The quality of the product was measured using 4 attributes
including:

1. Productivity - Number of developed 1lines of cocde per man
month,

2, Reliability - Number of errors reported per 1,000 1ines
of code.

3. Effort to Change - (Average number of man hours
required to make a software modification).

4, Effort to Repair (Average number of man hours required to
correct an identified error)

2.1 Experiment Description (Chart 3)

In carrying out the study, a review of all projects for which
detailed project history data was available and complete was
undertaken. From the completed 50 projects, 14 were selected
because of the quality and completeness of the relevant data and
more importantly because of the general similarity of
complexity of problems that the software was attempting to solve.

Fourteen projects ranging in size from 11,000 1ines of code to
136,000 1ines of code were selected. These projects had
information describing the environment under which they were
developed and additional information such as the number and
quality of automated tools utilized and the number of interactive
terminals available to the programming staff.

*Lead investigators of this work included F. McGarry and J. Valett of NASA/GSFC
and D. Hall of NASA/HQ.
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The 14 projects selected all dealt with tasks in solving attitude
determination and control related problems. The projects were
completed between the years 1978 to 1984,

The projects alsc had detailed information as to manhours, size,
error history, and effort required to make all changes and
corrections to the software.

2.2 Project Variations (Chart 4)

In attempting to characterize each of the develcpment projects,

a ranking scheme was used for this particular study. It was
found that the availability of terminals ranged from a low of
less than 1 per 8 programmers to a high of better than 1 per 2
programmers,

There were a total of 21 tools considered in this study that
were applied by at least some of the projects studied. Such
tools as documentation aids, preprocessors, test generators and
program optimizers were among the toocls considered.

It was also found that the distribution of level of use for tools
rangec¢ froma low of only 1 or 2 automated tools being used, to a
high of more than € automated tools being used. These tools also
were rated as far as the actual usage by the particular project
and also there was a rating for each tool of the assessed
'quaiity' of the particular toel. Quality here was rated for
each tool on a scale of 1 to 5 and was a subjective rating
determined by the software manager.

There were a total of 11 characteristics that made up the
computer support measure. These 11 included:

o Terminal Accessibility o Offline Storage

© Turn around time o Interactive Availability

o Compiler Speed o Terminals/programmers

o System Reliability (2 measures) o Avg. CPU Utilization

oDirect Storage o Accessibility of all
resources

2.3 Study Results (Chart 5)

The results of this particular study were encouraging on the one
hand and quite perplexing on the other.

2.3.17 Tool usage results showed that as the number and quality
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of automated tools increased, there were significant increases in
3 of the 4 quality measures used in this study:

1. Productivity increased as tool usage increased

2, Maintainability (effort to change/effort to repair)
improved as the number and quality of tools increased.

3. Reliability did not seem to be significantly impacted in
this one particular study.

2.3.2 Computer Environment

Although all of the experimenters felt that there would be
significant increases in all quality measures as the overall
quality of computer support increased, none of the measures
prcved to be significant for this one particular study. It could
not be shown that an improved computer support environment (at
leastas far as the way the SEL described support environment)
directly, favorably impacted the four quality measures used by
the SEL.

This particular study is still undergoing further analysis.
2.3.3 Terminal Usage

The most perplexing result of this experiment study was the
one in which the SEL attempted to assess the impact that
increased number of terminals would have on the four measures
described,

AlTthough the experimenters expected to observe an increase in
both productivity and software reliability as the number of
terminals made available increased, the study found just the
opposite. Both productivity and reliability of software
decreased as the ratio of terminals available increased. There
was no significance in the results for maintainability (effort tc
change/effort for repair).

Numerous suggestions have been put forth in attempting to explain
this phenomena. Some felt that the increased terminal usage
possibly was not properly accompanied with interactive support
tools in the particular environment.

Another idea was that the increased terminal availebility without
proper training for the programmers led to a less disciplined
approach by the programmers.

F. McGarry
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There are several other possible explanations of the results and
for that reason, this particular study has been continuing and
will be attempting to more thoroughly analyze this data as well
as the additional projects that have been completed in this
environment,

3.0 Software Testing

A second general set of studies that has been conducted over the

past several years within the SEL has been directed toward gaining
insight into approaches to testing software. Since this phase of

the development 1ife cycle had previously been determined teo

consume at least 30 percent of the development resources

(Reference 5), it was deemed as a critically important discipline

to study. Two major experiments were conducted during 1984 and

1985 in an attempt to:

1. Determine the overall coverage of software in the
typical testing scenario utilized in the flight dynamics
scftware development.

2. Investigate the relative merits of three standard
testing approaches:

o functional testing
o structural testing
o code reading

3.1 Test Coverage¥* (Chart 6 and Reference 6)

The first experiment on testing was designed to determine the
extent to which typical testing techniques within the flight
dynamics environment amply exercised the software that had been
built. This particular environment utilizes functional testing
during both the system test phase as well as the acceptance test
phase.

By instrumenting a major flight dynamics system, then by
executing the series of both system tests and acceptance tests -
experimenters could first determine the coverage attained in the
test phases. Next, the experimenters monitored the operaticnal
execution of this same scftware over a period of months to
determine the extent to which portions of the completed software
were utilized. Finally, the experimenters analyzed uncovered
errors in an attempt to determine if the errors occurred in
portions of the system that had not been exercised during the

*The lead investigator for this work was Jim Ramsey of Univ. of MD
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test phase of development. The software studied was a major
subsystem of a mission planning tool &and consisted of 68 modules
(Fortran subroutines) with 10,000 1ines of code. There were 10
functional tests making up the acceptance test plan for the
subsystem and during the operational phase, the experimenters
monitored 60 operaticnal execution of the software.

3.1.1 Test Coverage Results (Chart 7)

The managers of the flight dynamics development systems noted

that the approach to testing had historically been quite good
(relatively few errors found in operations) and they expected
that the coverage found for this one experiment would be quite
high (few modules would be not executed). The results of the
experiment showed that for the 10 functional tests executed, only
75 percent of the 68 modules were executed and less than 60
percent of the total executable code was covered in the tests.

Additionally, the series of cperational executions showed that a
s1ightly higher percentage of both number of modules and 1ines of
code were executed for this series of 60 executions.

Finally, all of the error reports were reviewed to determine in
which portion of the system the errors had occurred. It was
found that 8 errors had been recorded during the extended
cperational phase of the software, but it was found that none of
the reported errors occurred in software that had not been
executed during the acceptance test phase.

This initial study seemed to indicate that the functional testing
approach was properly leading toc correct portions of the system
being executed and it also was very representative of the
operational usage of the software.

The results of this study indicated that further investigations
intoc the various approaches to testing may be worthwhile to
determine just which approaches were most effective in uncovering
errors in the software itself.

3.2 Software Testing Techniques*(Chart 8 and Reference 7)

Another study was conducted where three programs were seeded with
a number of faults and 32 professional programmers from NASA/GSFC
and from Computer Sciences Corporation (CSC) participated in an
experiment to determine which techniques were effective in
uncovering these faults.

The three testing approaches included:

*The lead investigator for this study was Rick Selby of Univ. of MD
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o Functional Testing
o Structural Testing
o Code Reading

A11 programmers participated in applying each of the three
techniques.

When performing functional tests, the programmers were required
to use the functional requirements along with test results to
isolate faults - they were not to look at the source code itself
until after testing was completed.

Those programmers perfcrming structural testing used the source
code and test results but did not use the functional
requirements.

Code reading was carried out with no executions of the software.

Those performing code reading reviewec the requirements and also
looked at the source code.

3.2.1 Testing Technique Results (Charts 9 and 10)

The, results of this experiment indicated that code reading is the
most effective of the three testing techniques studied. This
technique uncovered an average of 61 percent of all seeded faults
while functional testing uncovered 51 percent and structural
testing uncovered 38 percent.

Before the test, most of the managers in the SEL felt that code
reading would prove to be a very effective testing technique,
although they also felt that it would probably be the most costly
in manhours to apply; but the results of the experiment indicated
that code reading also was the most cost effective technique (3.3
faults per marhour vs 1.8 faults per manhour for structural and
for functional testing). It was also noteworthy that, before the
experiment, less than 1 out of 4 persons participating in the
experiment predicted that code reading would be the most
effective approach.,

An additional observation that was made after the testing results

were compiled was that there seemed to be a difference in the

relative effectiveness of each of the testing approaches as the

size of the software being tested increased. For the smaller

program, code reading was by far the most effective technique,

but for the larger program, functional testing seemed to be quite

effective. This observation may indicate that there should be a
size 1imit on how much code is utilized in a code reading

exercise, Further tests are planned for these studies.
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4.0 Software Measures

Over the past 6 to 8 years, the SEL has defined, studied, and
evaluated numerous measures applicable to software development
and management (References 8, 9, 10), Most of these measures
have focused on one phase of the software 1ife cycle - the code/

unit test phase. In an attempt to define and apply measures in
earlier phases of the 1ife cycle, the SEL has been reviewing
several approaches to qualifying or measuring aspects of the
software during the specifications phase and during the design
phase. Work on the specificaticn phase was reported at the Ninth
Software Engineering Workshopand may be foundinreference 11
and 12, One additional piece of work that has been conducted for
the design phase will be discussed here.

4.1 Software Design Measures* (Charts 11 and 12 Reference
13, 14)

In an attempt to qualify software designs, a study was conducted
to determine if module strength may be utilized as a guideline
for software modularizaticn. Although the definitions of
strength may be well understood, the parameter may not be easy te
determine based soclely on a structure chart or data flow diagram
which may be produced during the design phase of software
development.

For the purposes of this study, strength is defined as the
'singleness of purpose' that a software module inherently
contains, Singleness of purpose is a subjective parameter
assigned at design time by the developer/manager. From a list of
potential functionality that a component may have (e.g. computa-

tional, control, data processing, etc.) the programmer determines
which functicns that module contains., High strength would be
attributed to those components which have but a single function
to perform, medium to 2 and 1ow strength would have three of more
functions to perform.

The study examined 450 Fortran modules (from 4 systems) which
were built by approximately 20 different developers.

Typical SEL data, which includes detailed cost and error data for
all modules was alsoc available for all of the modules. The 450
modules used for this study had a feirly even distribution in
size as well as in design strength. Small modules (104 of the
450) were those with up to 31 executeble statements, medium (148
of 450) were those with up to 64 executable statements and there
were 151 1large modules which had more than 64 executable
statements.

*The lead investigators for this study were D. Card and G. Page of CSC and
F. McGarry of NASA/GSFC

F. McGarry
NASA/GSFC
9 of 37



The objective of the study was to determine if strength of
modules as determined at design time was related to the cost and
reliability of the completed product.

4.2 Results of the Study on Strength (Charts 13, 14, 15)

The results of the study in the SEL 1indicated that module
strength is indeed a reasonable criteria for defining software
modularization. When examining the reliability of the 450
modules, it was found that 50 percent of the high strength
modules had zero defects while for medium strength modules 36
percent had zero defects and low strength modules only 18 percent
of the modules had zero defects. Similar trends were found for
the modules of medium error proneness (up to 3 errors per 1000
lines of code) and for modules having a high error rate (over 3
errors per 1000 1ines of code).

The distribution of the 'buggy' modules (over 3 errors per 1000
Tines of code) was shown to tend more toward low strength as
opposed to high strength. Forty-four percent of the buggy
modules had Tow strength while only 20 percent of the buggy
modules were found to have high strength.

Several additional observations were made while conducting this
particular study. When the characteristics of the individual
programmers were reviewed, it was found that those programmers
who produced high quality software (low error rate and high
productivity) tended to design modules of high strength but they

also did not show a preference for writing modules of any
specific size., Good programmers generated modules of size that
seemed to best suit their design and they did not artificially
constrain themselves to writing small modules.

5.0 General Trends and Observations

Over the past several years, the SEL has conducted numerous
studies and experiments in an attempt to better understand the
impact that various software techniques may have on producing
improved software. In addition to the specific studies conducted
such as the ones briefly discussed in sections 2, 3, and 4, the
SEL has observed general trends in the develocpment and
measurement of software, The observations include such points as
trends in software reuse, trends in utilization of improved
software development technology, and the overall impact of
improved developed techniques in the cost and reliability of
software over a long period of observation time. Some of these
general observations are summarized here.

F. McGarry
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5.1 Trends in Computer Use and Technology Application (Charts
16, 17)

From data that has been collected on nearly 60 projects over the
past 9 years, one trend that has been noted is the tendency to
make heavier and heavier usage of available computer support. 1In
1977 and 1978, computer use averaged approximately 100 runs per
1000 Tines of developed source code while in 1982 and 1983 the
average use increased to nearly 250 runs per 1000 1ines of
source. This trend continues to increase within the flight
dynamics environment being studied.

Simultaneously, it was noted that the use ocf more and more
structured development practices, improved management approaches
and overall higher quality software engineering has continually
increased. Each project has been rated on its application of
over 200 software techniques (see reference 15) in an attempt to
gquantify the overall level of development and management tech-
nology utilized for a project. The aggregate of the total set of
techniques applied results in a rating termed the Software Tech-
nology Index. From an average index of less than 100 in 1976 to
1978, it was found that the cverall development techniques have
increased to an average of cver 140 in the 1980's, This seems to
point to improved training, better discipline, improved access to
tools and possibly better informed management practices.

Although both parameters (computer use and software technology
index) seemed to generally increase over the past 7 or 8 years,
there is no observed correlation between these two factors.,

£.,2 Trends in Software Reuse (Chart 18)

Another general observation that was made from the detailed
development data collected by the SEL, was that the reuse of
software has shown general trends of increase. Typical software
systems in the years 1977 to 1979 averaged about 15 or 20 percent
reused code while in the 1982 to 1984 timeframe the average reuse
has increased to 30 to 35 percent.

Although this reuse is certainly tending in the right direction,
the SEL has not conducted detailed studies to determine what the
driving factors are in improving the percentage of reuse. The
trends are probably indicative of improvements 1in design
technique as well as numerous other factors, but studies have
just recently been initiated in the SEL to determine how the
trend can be improved at a even faster pace.

It has also been observed in the SEL data that there does not

F. McGarry
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seem to be a direct relationship between projects that are rated
as having a high software technology index and having a high rate
of software reuse. But this may not be a surprise since one
would expect that high technolocgy usage would lead to follow on
systems being able to pick up or reuse software produced by the
projects wusing disciplined approaches for development and
management.

5.3 Impact of Develcpment Technolcgies (Chart 19)

Probably the most basic goal that the SEL has, is to determine
the impact that specified software development/management
techrniques have on the cost and reljability of software. With
nearly 60 projects having been closely monitored over the past 8
or 9 years,the SEL attempted to Took at general trends inthe

relifability and cost of these projects as measured against the

software technology index computed for each of these projects.
The 200 parameters factored into this index represent everything
from structured techniques to disciplined management approaches

to configuration control procedures. It is one attempt to
characterize each of the projects with a single value.

This technology index correlates very well(r = .82)with
relijability of software in the SEL. Those projects with a higher
rating of good development practices were the projects with the
Tower fault rates of the product.

Unfortunately, the impact of this technology 1index on
productivity is quite unclear. The first general observation
that hes been made is that there is not a clear favorable impact
on development cost (cost per 1ine of code) with projects with
higher values of this technology index. Studies are continuing
in an attempt tc more objectively compute this technology rating
so that a more conclusive statement can be made. Some
researchers also have suggested that it is not to be unexpected
that the specific develcpment cost may not decrease but since
the reliability has improved and the overall software structure
has improved, the maintenance activity will be the beneficiary of
the overall ccst savings, not the development cost.

5.4 Can Software Technology be Measured? (Chart 20 and Reference
3)

Another major question that software engineers address is whether
or not sofivare technology can be measured at all., By utilizing
reliability as one major aspect of software quality, the SEL
attempted to determine to what extent software development/
management practices could be measured.

F. McGarry
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There are three levels of development practices which the SEL has
hoped and attempted to measure. First, there are individual
specific techniques such as the use of structured code or chief
programmer team or the use of PDL in design, etc.

Second, there is the usage of a software methodology which is a
combination of several methods into a single disciplined
approach., This could be the set of methods known as structured
techniques which reflect the use of 6 or 8 individual practices
such as top down development, structured cocde, code reading and
usage of Unit Development Folders (UDF).

Finally, the attempt has been made to measure the impact of the
total technology index which encompasses &1l disciplined
management/development practices. This signifies the level to
which the project has attempted to apply recommended software
development techniques.,

The results of this study indicated:

1. An individual technique cannot be effectively measured in
a production environment such as the one in which the SEL is
conducting studies. (r = .37 is a typical value found in
correlating PDL usage and reliability).

2. Disciplined methodologies (combining techniques into a
single disciplined approach) can be measured (r = .65 for one
particular study) and the approaches called Modern Programming
Practices (6 techniques) has a significant, measurable, favorable
impact on software reliability.

3. Total Software Technology can be measured (r = ,82 for
this one study) and higher levels of applied technology have a
marked favorable impact on the reliability of software.

The trends and observations noted here are based on approximately
8 years of data collection and experimentation within the SEL.
Approximately 55 projects have been studied and the research is
continuing and will continue in the future.

Many of the results are inclusive, but with each experience and
study, greater insight is provided into the overall
characteristics of the software development process.

F. McGarry
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