N86-30367

PANEL #4
EXPERIMENTS WITH ADA
D. Roy, Century Computing Inc.

M. McClimens, Mitre Corporation
W. Agresti, Computer Sciences Corporation

SEL Workshop 86 paper

Daniel M Roy
Century Computing, Inc.

Abstract

A 1200 line Ada source code project simulating the
most basic functions of an operations control center
was developed for code 511. We selected George
Cherry’s Process Abstraction Methodology for Embedded
Large Applications (PAMELA) and DEC’s Ada Compilation
System (ACS) under VAX/VMS to build the software from
requirements to acceptance test. The system runs
faster than its FORTRAN implementation and was
produced on schedule and under budget with an overall
productivity in excess of 30 lines of Ada source code
per day.

Author current address:
Century Computing Incorporated,
8101 Sandy Spring Rd.
Laurel, Md. 20707
(301) 953 3330

Trademarks:
ALS is a trademark of Softech Corp.
Ada is a trademark of the Department of Defense.
PAMELA and PAM are trademarks of George W. Cherry.
ACS, VAX, VMS are trademarks of Digital Equipment Corp.
D. Roy

Century Computing, Inc.
1 of 41

SEL Workshop 86 paper
BACKGROUND

1 BACKGROUND

The Multi-satellite Operations Control Center branch (MSOCC), code
511, has embarked on an effort to improve productivity in the
development and maintenance of Operations Control Center (OCC)
systems. This productivity effort is addressing a range of issues
from equipment and facilities 4improvements to the development and
acquisition of tools and the training of personnel.

Century Computing’s previous work on MSOCC’s productivity improvement
program, identified the Ada language as a promising technology, and
recommended evaluating Ada on a small “pilot project" related to MSOCC
applications [Century-84].

2 PURPOSE OF THE STUDY

The objective of the study was to evaluate the applicability of Ada
and its development environment for MSOCC. Metrics were identified
for this evaluation, along with an approach to collecting the data
required for these metrics. The evaluation was based on using Ada to
re-~develop from scratch a small scale, real-time project related to
MSOCC applications: an Application Processor (AP) benchmark system.

3 DESCRIPTION OF THE AP BENCHMARK SYSTEM

An AP is a computer that performs the functions required by a
satellite operations control center. The AP Benchmark system was
previously developed to simulate the characteristics of a typical
MSOCC’s AP software system [CSC/SD-83]. Like most AP software, the
Benchmark was developed 1in FORTRAN with some supporting assembly
language.

The AP Benchmark software simulates the following AP functions:

o0 Reads a telemetry data stream from tape - meters the
frequency of tape reads to simulate various data rates.

o Decommutates the telemetry data.

o Performs some limit checking on the data.

o Displays some of the telemetry data on CRT screens.

o Simulates the history and attitude data recording processes.
o0 Simulates strip chart recorders and associated functions.

o Gathers statistics on the above process and generates
reports.

D. Roy

Century Computing, Inc.
2 of 41

SEL Workshop 86 paper
DESCRIPTION OF THE ADA PILOT PROJECT

4 DESCRIPTION OF THE ADA PILOT PROJECT

The pilot project began with a reverse engineering phase to construct
requirements from the existing FORTRAN code. Then, a staged approach
was used to develop the software, using Ada for all project phases:

o We used Ada as a Data Definition Language to produce a data
dictionary during the requirements analysis phase. A special
package, the "TBD" package (fig. 1) helped in the top down
design of the data structure.

0 We used Ada as a Program Specification Language very early in
the project and easily prototyped the data flow. The Process
Abstraction Methodology tools [Cherry-84] (see appendix B)
produced a tasking model that worked at first try (fig. 2a
and b). The preliminary and detailed design templates we
created (fig. 3a and b) proved to be very useful for
enforcing good practices.

o We used Ada as a Program Design Language [IEEE-990] (fig. &)
and refined the PDL into detailed Ada code in the usual
staged manner. The DCL tools and templates for Ada
construct, developed at the onset of the project, had a
dramatic impact on productivity and code consistency.

o We enjoyed the elegance of Ada as an implementation language
and used most of its features (attributes, generics,
exception handlers, etc.)

o Full assessment of the DEC ACS tools was beyond the scope of
this study, but we appreciated the built-in configuration
control tool, the automatic recompilation system and the
symbolic debugger [DEC-85].

The total re-development approach we followed (from requirements to
final tests) led us to believe that we could produce a still more
efficient design. Actually, the PAMELA methodology design rules
detected several extraneous tasks in the current AP benchmark model,
but we decided to respect the existing global structure as the model
was built to represent the typical CPU load of an actual OCC.

D. Roy
Century Computing, Inc.
3 of 41

SEL Workshop 86 paper
DESCRIPTION OF THE ADA PILOT PROJECT

Package TBD is --| Decision deferral package ——*

-=-1 Raises:

- None

—| Overview: =-| Purpose:

- This is an improvement over Intermetrics’ TBD package and IEEE 990
- recommendations about decision deferral techniques.

—~| Effects: —| Description:

—-— The distinction is clarified between types, variables and values.
- The naming is more consistent (enum i, component i ...) and more
— readable (scalar_variable intead of scalarValue)

- There are more definitions (enum type, record type)

- Better compatibility with BYRON (or search utility processing)

-—| Requires: ~——| Assumptions:

- Please only "WITH" this package. By systematically specifying
- "TBD.x" items, it is easier to assess the stage of development of
- a compilation unit.

——] Notes:
- Change log:
— | Daniel Roy 9-AUG-1985 Baseline

subtype scalar _type is integer range integer’first .. integer’last; —-
scalar _variable : scalar_type; —

type access_type is access integer; -
access_variable : access_type; -

type record type is record
component 1 : integer
component_2 : integer
component i : integer
component p : integer
component n : integer

end record; -

record_variable : record_type; -

QOOOO
e We WE wue Ve
{

i

e e

- Inspired by IBM PDL stuff
Condition,CD : Boolean := true; -

- Queues services
type queue_type is array (array_index type) of integer; -
type queue ptr_type is access queue_type; -—

end TBD; —] %

Fig. 1: Excerpt from the TBD package

D. Roy
Century Computing, Inc.
4 of 41

MHS0CC Ade

Validate_

Time | Pilst projsct

Operator Clock
PAM Level |

Time

: ?
™ TLM_stream.. oCC.. Report_
tape ? multibuf ? simulator ? generator 3—5-@3, Printer
report :
4,5 M L 14 | s |

1
T
Display

TLM_displays._. History_and_
muitibuf attitude_Xbuf
16 | S) 16 | S) 16 | S)
! { [
T History_
Strip_chart Displays Atth tude
Sync Async History
lines lines Attitude
tape
Figure 2a: PAM decomposition level 1
D. Roy

Century Computing, Inc.
5 of 41

'
Start4stop NASCOm_block

(Context NASCOM Idle time
switch block
counter
load server
L AD

History
data

Decommutator Equation

extractor
' T |
Histqy_data Stripehart S)
HEOEC Ada
Attitude CRT Limit
data data
Pilot @TOJOG& extractor extractor checker
S S l S S I l AD s |
PAM level 2 T 1
Attitude
da}a digplay

Figure 2b: PAM decomposition level 2

D. Roy
Century Computing, Inc.
6 of 41

SEL Workshop 86 paper
DESCRIPTION OF THE ADA PILOT PROJECT

procedure P (—~| synopsis —-*
param_l : IN some_type := some_constant ; ——| description ——%*
param_n : OUT some_type —-I description ——%
) et i

Fig. 3a: Preliminary design template for procedure (proc spec)

separate () -] ——%

procedure body P (--| Short synopsis. Must be the same as in body. —*
param_1 : IN some_type := some constant ; --| description —*
param n : OUT some type ——| description ——*
) is -] —*

—— *%%%%% Cut and paste from specification. Use Gold D for rest of DOC.

-— Packages
-= types

-= subtypes
- records
— variables
— functions
—— procedures

-— separate clauses

begin —] -
null;
end P ; -] -—*

Fig. 3b: Detailed design template for a procedure (proc body)

D. Roy

kkkkkk

Century Computing, Inc.

7 of 41

SEL Workshop 86 paper
DESCRIPTION OF THE ADA PILOT PROJECT

package body user_interface is --| Isolate user interface -—%*
function inquire int (——| Emulate DCL verb for integers —%
prompt : string -] %
) return inquired_var_type is -] -
inquired var : inquired var_type ; --* The variable we’ll return
begin --| inquire_int --*
--* Displays "prompt (min..max): "
for try in l.. max nr_errors loop —%* until good value or else
begin —=% {<exception block>>

--%* Get unconstrained value
~—% Validate and translate unconstrained value
return inquired_var ; —| —-*

exception —--* recoverable exception when invalid input
when data_error | constraint error => ~=*
—-* display "try again" message
-] end exception --%

end ; ==% {<Lexception_block>>
end loop; ~—% until good value or else
exception -=% catch all handler

U

when others => . —=%
raise; -——%
end inquire int ; -] --%

Fig. 4: PDL extracted from code by PDL tool

D. Roy
Century Computing, Inc.
8 of 41

SEL Workshop 86 paper
RESULTS SUMMARY

5 RESULTS SUMMARY

Some of the objectives of the evaluation were to determine what 1is
required to train software engineers to use Ada, to define adequate
metrics to measure productivity and quality gains and to assess the
current Ada development environment.

5.1 Training

We found that Ada is sufficiently complex that we kept 1learning
throughout the pilot project, and even beyond. We also found that
none of the standard training devices (seminars, books, computer aided
instruction) could alone address the broad range of issues that really
are at the heart of the problem:

In the Ada era, a comprehensive education in the software engineering
principles that form the basis of the Ada culture must replace ad-hoc
training in the syntactic recipes of a language. '

That is why we recommend a variety of continuous education measures in
our report: Assuming adequate familiarization with modern software
engineering practices, at least 4 person-week is the minimum minimorum
training time. This time includes teaching a methodology adapted to
Ada and 50% hands on experiments under the supervision of an expert.

5.2 Metrics And Data Collection Approach

After a review of established research in the areas of metriecs and
data collection, a brief paper outlining the metrics approach was
issued. The metrics work of the NASA Software Engineering Laboratory
was the key input [McGarry-82].

Simple DCL tools were built to gather the metrics data and
comprehensive logs of errors, problems and interesting solutions were
maintained on-line and are part of the deliverables.

5.3 Productivity

Our productivity during the seven weeks coding period averaged 32
lines of Ada source code (LOC) per day and nearly 130 lines of text
(LOT) per day (includes embedded documentation, comments and blank
lines). We experienced a low point of 10 LOC per day at the beginning
of the coding phase, and reached a peak of 90 LOC and 370 LOT per day
during the final week (fig. 5). Averaged over the whole 18 weeks of
development (including reverse engineering with DeMarco before PAM,
tools development, two seminars, compilers installation, etc.)
productivity still remains above 13 LOC and 50 LOT per day.

D. Roy
Century Computing, Inc.
9 of 41

SEL Workshop 86 paper
RESULTS SUMMARY

Although formal verification techniques were not employed, intense
validation testing discovered two errors, both due to subtle
differences between our implementation and its FORTRAN precursor. A
detailed log of all the problems we had at various phases of the
implementation was kept on-line.

Those productivity and quality results are interesting data points,
but they must be taken with the following caveat:

0 We were re-implementing a working system.

0 Our deliverables did not include all standard documentation.
o0 We did not produce a performance prediction study.

o We did not perform a deadlock avoidance study.

o0 Unit testing was not up to the standards we would have
applied to an operational system.

o We sometimes abandoned early our search for better solutionms.
o When a problem arose we did not always research why.
o More than 90% of the code was written by a single individual.

On the other hand, we wrote much more scaffolding and experimental
("throw away") software than a normal project would require.

D. Roy
Century Computing, Inc.
10 of 41

G 2an81a

(101 00SP ‘201 00Z1)

3002 32UNO0S 30 S3NIT 1LJ3rodd 101id vay

001
00¢
00
oo¥

00S
009

00L
008
006
0001
0011

00c1
J01

D. Roy

Century Computing, Inc.

12 of 41

SEL Workshop 86 paper
RESULTS SUMMARY

5.4 Compilers Experience

We first used Century’s NYU Courant Institute Ada interpreter on our
VAX 11/750 for training and tools development. We quickly became
frustrated with this system.

Thanks to NASA’s cooperation, we got some exposure to the Telesoft
compilers and the DEC Ada Compilation System (ACS).

We then installed Softech’s Ada Language System (ALS) on another NASA
VAX. Our conclusion was that the current performance problems of the
ALS made it unsuitable in light of our schedule constraints.

In the end we were granted access to code 520°’s test version of DEC’s
Ada Complilation System (ACS) under VMS 4.1 which we used to develop
most of the pilot project. It is clear to us that the ACS made the
timely completion of our project possible and that, in general, the
quality of the development environment significantly impacts software
development productivity.

As delivered, the Ada pilot project features about the same number of
statements as its FORTRAN precursor (about 1200) but is larger in the
number of lines of text (4,500 vs 2,000). Image sizes are comparable
(about 170 kbytes for Ada vs about 200 kbytes for FORTRAN).

Even though it is difficult to compare run time performance on the
very different computer environments we used, our preliminary results
seem to indicate that the Ada code runs faster than 1its FORTRAN
counterpart. We suspect that our good results may be due to the fact
that some data elements could be directly addressed in Ada and not in
FORTRAN. Nevertheless, this is a completely unexpected result that is
even contrary to popular belief. We think it speaks for the high
quality of DEC’s ACS and the adequacy of the chosen methodology (the
Process Abstraction Methodology for Embedded Large Applications).

6 CONCLUSIONS

Ada is clearly a step forward in the software industry’s search for a
better programming 1language for real-time and embedded systems. Ada
also represents significant advancements in the field of practical
programming language development.

Furtherﬁore, the Ada Programming Support Environment (APSE) and the
Software Technology for Adaptable Reliable Systems (STARS) initiative
will support the language with an impressive set of evolving tools.

But even with these features, it is possible to develop poor software

in Ada. 1In fact, packaging, generics, multitasking and, above all,

representation clauses (that allow direct access to the hardware!)

will have to be closely controlled by competent project managers

because these features are powerful, hence dangerous. Moreover, those

powerful features provide another dimension of design decision. We
D. Roy

Century Computing, Inc.
13 of 41

SEL Workshop 86 paper
CONCLUSIONS

feel that a methodology that helps the software engineer allocate
function and data structures to packages and tasks is necessary.

Ada should prove to be an excellent tool in the hands of competent and
properly trained software developers. It will not be a panacea,
compensating for inadequate methods or training, but it will be
beneficial if properly applied.

In that context, we make the following predictions relative to the
future of Ada:

1. The momentum of the Department of Defense will make Ada a
reality. The last time that DoD backed a language (COBOL),
the language became, and still is, the most popular in the
world.

2. There will be major false starts in the use of Ada,
especially when the aerospace contractors tackle large
projects with newly trained programmers. Ada 1itself will
become the focus of these projects, leaving the target
application in second place.

3. The "reality" of Ada will be delayed due to the immaturity of
the compiler technology, expense of computer resources, and
the training problem.

4. There will be major difficulties at both ends of the
programmer .competency scale. Many of the brightest
programmers will tend to produce overly complex designs,
using every possible feature of the language; the application
itself becoming a side issue. Many of the less competent
programmers will never really understand the Ada technology.

5. Programmer productivity will decrease (relative to
conventional languages) before it eventually increases.

6. Universities will eventually produce proficient Ada software
engineers, using the language as a basis for teaching all the
traditional computer science courses. (This day is getting
near. We recently polled area universities and found Ada
present in every computer science curriculum.)

7 A FINAL NOTE

In July 1985, following the recommendation of the APSE Beta Test Site
Team headed by Dr. McKay (University of Houston at Clear Lake), NASA
officially adopted Ada as the 1language of choice for all flight
software of the space station program.

D. Roy
Century Computing, Inc.
14 of 41

APPENDIX A

BIBLIOGRAPHY

[Century-84] Century Computing Inc., “"Software Tools and Methodology
Study for NASA MSOCC", Laurel, Md., June 1984.

[Cherry-84] George W. Cherry, "Advanced Software Engineering with
Ada", Seminar notes , 1984,

[Cherry-85] George W. Cherry, "The PAMELA (TM) Methodology, A
Process—oriented Software Development Method for Ada.", To be
published.

[cSC/SD-83] Computer Science Corporation, "Gamma Ray Observatory Era
Application Processor Benchmark User’s Guide", Update 1, Doc. No.
CSC/SD-83/6101UDI, January 1984.

[DEC-85] Digital Equipment Corporation, "Developing Ada Programs On
VAX VMS", February 1985.

[IEEE-990] IEEE working group on Ada PDL (990), "Ada PDL draft
recommended practice", 5 March 1985.

D. Roy
Century Computing, Inc.
15 of 41

BIBLIOGRAPHY

[McGarry-82] Frank McGarry et al., "Guide to Data Collection",
SEL-81-101, NASA GSFC, August 1982,

[Methodman—-82] Peter Freeman, Anthony Wasserman, "Software Development

Methodologies and Ada", National Technical Information Service, ADA
123-710, November 1982.

D. Roy

Century Computing, Inc.
16 of 41

APPENDIX B

THE PROCESS ABSTRACTION METHODOLOGY

"The Process Abstraction Methodology for Embedded Large Applications
(PAMELA or PAM for short) is a real-time software development method
which takes full advantage of Ada‘’s features of type abstraction,
process abstraction, exception handling, top—down separate
compilation, and bottom-up separate compilation.

Because the PAMELA method recognizes that abstract processes as well
as abstract data types are ideal modules for programming in the large,
the method is process-oriented as well as object-oriented.

The method is primarily a top—-down, outside-in method; but it allows
and encourages the bottom—up generation or incorporation of software
components (library units).

The PAMELA method contains guidelines to ensure that program units are
reusable or portable or both reusable and portable. It also contains
guidelines to ensure superior real-time performance (for example,

guidelines to ensure that the minimum number of necessary tasks are
defined)." [Cherry-85]

"The process abstraction methodology (PAM) is based on the concept of
a hierarchical structure of processes. The process as a data
transforming element and data flow as a connection 1link between
processes are central concepts in this method." [Cherry-84]

At first glance, the PAMELA methodology '"process graphs" (fig. 2a and
2b) 1look very much 1like DeMarco’s Data Flow Diagrams. The major
difference however, is that in any data driven methodology, there is
no apparent synchronization between the processes nor any explicit
representation of the synchronization between the flow of data and the
processes. In a process graph, the processes communicate by the Ada
rendez—-vous mechanism. Because the concepts of data flow and task to
task synchronization are part of the semantics of the Ada rendez-vous,
PAM’s process graphs overcome one of the major limitations of data
flow diagrams for real-time applications. This makes PAMELA
applicable to the requirements analysis phase. Most importantly,
PAMELA defines a limited number of "process idioms" and provides rules
for their use. These rules guide the analyst in a very smooth
transition between requirements analysis and preliminary design. It
is this author’s personal style to indicate the applied rules by their
D. Roy

Century Computing, Inc.
17 of 41

THE PROCESS ABSTRACTION METHODOLOGY

number on the process graph. For instance, the symbols [1,6 | S] at
the bottom of the TLM stream multibuf box in fig. 2a, indicate that
this Single thread process (S), results from a user’s requirement to
provide an asynchronous interface (rule 1) of an application
independent and hardware dependent nature (rule 6). The "?" and "I"
show which process requested or originated the data flow, a control
information wvital to real-time applications (but specifically
forbidden on DeMarco’s DFDs).

During the preliminary design phase, the hierarchy of process graphs
is mapped to Ada constructs such as abstract data types (type
definition, procedures and functions), packages and tasks
specification objects by a small set of simple rules. These rules
encourage the re-use of library units. To simplify, multiple thread
processes are mapped to packages. These packages encapsulate the
single thread processes mapped to Ada tasks. 'The leaves of the tree
of this hierarchical structure are the procedures and functions
invoked by the single thread processes." [Cherry-85]

In the detailed design phase, Ada PDL is entered in the preliminary
design object bodies. This PDL is then refined into Ada code.

We found that PAMELA builds on proven modern software engineering
techniques (DeMarco, Parnas, Hoare, Myers) to provide a very smooth
transition between all software development phases; a quality deemed
fundamental in the methodman document {Methodman-82]. Furthermore,
"PAMELA uses all of Ada‘’s advanced features (generics, packages,
tasks, exceptions, and both forms of separate compilation) wisely and
effectively. PAM adds a welcome limitation, form, and rationale to
the use of Ada’s many features which, without a suitable design and
programming discipline, can and 1likely will be wused in bizarre,
ineffective, and inefficient ways." [Cherry-84]

D. Roy
Century Computing, Inc.
18 of 41

THE VIEWGRAPH MATERIALS
of the
D. ROY PRESENTATION FOLLOW

0££6-£56
(3LVHOJYOINT “INTLNWOD AUNINID

A0Y¥ TIINV

JJ0SW Y04
vav 40 NOILVNTVAT

supndwo

Ezaccw

D. Roy
Century Computing, Inc.

19 of 41

133r0Y¥d 1071d TIWWS V NO 350 SLI JLVYISNOWID -

J9YNONYT ¥av 3JHL SSASSY -

JJ0SW ¥0dJ VOV 3LYNTWA3 0L Q3N ©

AS0TIONHO3L ONISIWOYd ¥ SV Q3I41IN3AI vdy O

#86T NI JJ0SW 404

AONLS »A90T0QOHL3W ONY STI00L FWYML40S. S, A¥NINGD O

Bunndwo
AONJS vav s,TTS 3000 30 SNI9NYO Ainjue

Century Computing, Inc.

D. Roy
20 of 41

REQUIREMENTS ANALYSIS

D. Roy
Century Computing, Inc.
21 of 41

SNOTLVOITddY FWILTVIY HLIM WS 40 SWIT40Y¥d JHL QIINIWNIOQ M

SNOTLIWIIZ123dS INIW TW -
AYUNOILIIQ vivd 1Nd V¥ -
a32nQ0¥d 3IM “S700L 3HL ONISH

(103 ‘J40NNY “HOYY3S) STI00L SWA ONILSIX3 ANV -
SALVIdW3l Y¥0LIQ3 IX3L ONISA -

ISYI4 SISATUNY AFYNLONYLS QUVANVLS ¥ Q3WH04¥3d M

0

0

0

SISATUNY SINIWIYINOIY :1J3royd 1071d

Century Computing, Inc.

D. Roy
22 of 41

OPCON

OPCON is the benchmark software’s operator interface

(>0PCON-val-op-int). It also controls the initial activation and the
shutdown of the system”s other tasks.

SPECIFICATIOR

Level-l-gingle-tasks is (EVEPRT, — Events prianter
TIMLOD) -~ CPU time loader

Begin

1. Prompt operator for Run—params
2. Activate OCC simulator == >0PCON-ver—-0CC-act
3., for task in Level-l-single-tasks

1. Activate task -~ D0PCON-ver-st-act

4., end loop

S. for i = 1 to IDLE-number-tasks

1. Activate IDLE-1 -— >0PCON-ver-idle-act
6. end loop
7. delay req-run—time ~= J0PCON-ver-run—-time

8. Shutdown all activated tasks
9. delay 1 second == See note 2 >0PCON-ver-shut-time
10. Print stat-report (PRTRPT) — >0PCON-val-stat-rep

end

Fig 4-3: Minispec example built with the tools

D. Roy
Century Computing, Inc.
23 of 41

(WYd ¥0 VT13WVd)
SNOILIWIITddv 39¥Y7 (300393 ¥od

AS071000HLIH NOTIIVYISEY SSIJ0¥d 3HL

Bunndwo
Ainue

mputing, Inc.

D. Roy
Century Co
24 of 41

ade)
apnINY
AJ01SIH

apnN1 Y

~AJOSIH
i

v

(s

o'l

JngxTepnipyle

.

~pue—AJoiS|H

el

Jajuld

1JodaJ

\

S bl

st

18IS

G

JojeJauab b2

~3oday

o ,

Uil

| 19427 WYd
12efedd Jo1id

BPY 0SH

NIV

saui| Saul|
Juhsy Judg .
E
séelgsia 1eyd—q1ns £
po— |— . w..
1] 1 ! m
I }
s | 91) s | 91) e
& 2%
~Jnqpinw Jnax RO
—sAe(ds|p~1L —)Jeyd
\ / —diJ
sdeidsiqg
“UNL
_ 4
v]
W | s s | 9)
.| Ad0lq . ade)
Joreinwys &{To5%eN nginw 4 WL
—3JJ0 ~wesJisTillL
_ 2 Y,
swieJed
SWil ~uny | Maels
i 1
| 4 S V-— N
weJed
%9019 - ; sweJed w&:ml,_sm._oao
SWHL ~a1epiieA
_ J

(s av

j

Jaxyoayo
Huf

S

S)\

N

5J0S53204d
uojienb3

.
g
N

\.

S avy

)

Jajunod
alwli} 3P|

(.

/

QOMmMWLm“m
!

Ae|dsip elep g
WL apnyiily mo
i i Z 19A3] WYd E
~ ' ™ £
(s | s (s | s 5
._Sommﬁxm J019BJ1%8 ﬁ@@q@&a 91015 Rm,mm
el eiep - 5o
142) PMPY) Aes
N EPY JI0SH
ng 5
. tmcuT.r;m Smun%?m_r
1 : i i
&3 avy 'S S) 'S S
J0loeJ}Xa J0loBJlXa
J03BINWWO023Q e12p BEp
43S AJ03SIH
L WL y 9 y L y
™~
S S S ay
JOAIIS peo|
22019 YIIIMS
WOISYN
9) y _ a”.mucou J
%2%&8@42 asmm\ HEIS

NOIS3A AYWNIWITIUd

Bunndwo
Ainjue

puting, Inc.

Century Com

D. Roy
27 of 41

DEVELOPMENT EFFORT DESCRIPTION

BARON preliminary design help

GOLB B => BARON TBD package GOLD C => -—I (doc), --* (PDL)
GOLD D => Bring in DOC template GOLD E => Task entry

GOLD F => Function GOLD H => This text

GOLD P =)> Package GOLD S => Procedure

GOLD T => Task GOLD W => Bring WITH$EBP file in
GOLD X =)> Exception

GOLD > => half tab adjust right (%) GOLD < => half tab adjust left (*)
GOLD TAB => half tadb GOLD DEL => delete half tab (*%)

(*) Must select range first like you would for tab adjust (control T)
(**) Careful, really does "delete" 4 times.

BE SHORT IN PRELIMINARY DESIGN DOCUMENTATION

Algorithm:
Can be ref to textbook and other biblio.
Effects: --| mini-spec:
Describes module functional requirements (more detailed than overview).
Errors:
Describes error messages issued by module.
Modifies: -~| side effects:
Lists non-local variables modified (x.all. Access values, Global var).

Notes:
User oriented description of dependencies, limitations, version
number, status (prel des, code, etc.). Limit change log to
package level.

Overview: —| Purpose:
Describes module usage in very general terms.

Raises:

Lists the exceptions that can be raised and not handled by module.
Requires: ~-| Assumptions:

Warns designer and user about limitations of implementation.
Synchronization:

Describes synchronization requirements, tasks termination conditionms,

rendezvous time-outs, deadlocks prevention and other tasking reqs.
Tuning: —| Performances:

Specify timing and performance requirements, Addresses performance

issues that user can control.

Fig. 4-10: Preliminary design tool help

D. Roy
Century Computing, Inc.
28 of 41

Package TBD is --| Decision deferral package —*

-=] Raises:

- None

--| Overview: —| Purpose:

- This is an improvement over Intermetrics’ TBD package and IEEE 990

- recommendations about decision deferral techniques.

--| Effects: --| Description:

- The distinction is clarified between types, variables and values.

- The naming is more consistent (enum i, component i ...) and more

- readable (scalar_variable intead of scalarValue)

- There are more definitions (enum_type, record_type)

- Better compatibility with BYRON (or search utility processing)

--] Requires: ~——| Assumptions:

- Please only "WITH" this package. By systematically specifying

-— "TBD.x" items, it is easier to assess the stage of development of

- a compilation unit.

—=| Notes:

- Change log:

~—| Daniel Roy 9-AUG-1985 Baseline |

- Constants
some_constant : constant := 1; -
positive constant : constant := 10; -
negative constant : constant := -10; -
real constant : constant := 1.0; -

- Defer decision about type (real),(discrete(enum,integer)), subtype

- (natural,defined subtypes), range etc... that belong to detail design

subtype some_type is integer range integer’first .. integer’last; bl
subtype scalar type is integer range integer‘first .. integer’last; --

-— . Distinguishes between type, variable and value (enum_;).

- By convention (consistent with math notation) n is last.

- Should be Enumeration_ ... all over for consistency.

- But this is so much more comfortable.
type enum_type is (enum 1, enum 2, enum i, enum p, enum n); -
enum variable : enum_type := enum 1; -

- Keep consistency with enum_type
type record type is record -
component 1 : integer
component_2 : integer
component i : integer :
component p : integer
component n : integer :
end record; -
record variable : record_type; -

QOO0 OO0
e Ve Ve Ve ue
|
|

- Inspired by IBM PDL stuff
Condition,CD : Boolean := true; -

- Queues services
type queue_type is array (array_index type) of integer; -
type queue ptr type is access queue_type; -

end TBD; —-! -

D. Roy
Century Computing, Inc.
29 of 41

NOIS3a d311v13a

Bupndwo

Ainjue

3

Century Computing, Inc.

D. Roy
30 of 41

procedure P (—| synopsis —*

param_l : IN OUT some_type :=
param n : IN OUT some_type
) s

Fig. 4-7: Preliminary design

some_constant ; -—| description ——*

| --| description —*
—] %

template for procedure (proc spec)

separate () -] -—%*
procedure body P (--| synopsis.
param_l : IN OUT some_type :=
param_n : IN OUT some_type
) is

Must be the same as in body. —%*
some_constant ; --| description ——*

| --] description —-*
—] %

— *%k%*k* Cut and paste from specification. Use Gold D for rest of DOC., *&&kk%

Packages
types
subtypes
constants
records
variables
functions
procedures

separate clauses

begin -] —-*
null;
end P ; -] —-%

Fig. 4-8: Detailed design template for a procedure (proc body)

D. Roy
Century Computing, Inc.
31 of 41

separate (mbuf) --| --%
task body P 18 -—| processing task —*

procedure process_block (=~| Do something useful ~-#
inp_ptr : IN data_ptr_type: --} for imput blocks —*
outp_ptr : IN data ptr_type -=| for output block —-*

. - “*
v

procedure put_blocks (=={ Dump block queue —*
Queue : IN out_Q _type ~-| Where all output blocks are queued —*
) s -] -

begin | P —*

{{exception_block>> —%
begin --% for recoverable exceptions

<< till_EOF > -~| loop until all input tasks are terminated —¢*
while TBD.CD loop —& Verification:
<< build_out_Q > =-| loop until EOF or output queue full —#
while TBD.condition loop -—¢ Verification:
--% get in _ptr (RV with I tasks)
process_block (in_ptr, out_ptr); —
-=~% build queue
end loop; ~—“* build out Q

put_blocks (out_queue); ——* watch EOF case
end loop; —=* till EOF
exception | --%
vhen others = —] —t
—| end exception; -—*
end ; =% <{<exception_blockd>
exception =--| --%
when others => -] -
—| end exception; -

end P ; —=| —=*

D. Roy

Century Computing, Inc.
32 of 41

1S31 ONV 3000

Bupndwo

E:u:ow

Century Computing, Inc.

D. Roy
33 of 41

DEVELOPMENT EFFORT DESCRIPTION

BARON code help

Gold A Access type Gold M Modulo statement

Gold B Block statement (range,rename) Gold N NEW (instantiations/access/tasks)
Gold C Case statement Gold P Package use examples

Gold D Bring in doc template Gold R Record (variable clause)

Gold E Entry statement Gold S Procedure (declaration and code)
Gold F Function (declaration and code) Gold T Tasks (select,terminate)

Gold G Generics (overloading) Gold U Predefined attributes

Gold H This HELP menu Gold W ?

Gold 1 IF-THEN~ELSE statement Gold X Exception (raise)

Gold L Loop statements

GOLD > => half tab adjust right (*) GOLD < => half tab adjust left (*)
GOLD TAB => half tab GOLD DEL => delete half tab (**)

(*) Must select range first like you would for tab adjust (control T)
(**) Careful, really does "delete" 4 times.

Fig. 4-15: Code and unit test tools built-in help

D. Roy
Century Computing, Inc.
34 of 41

<<{labeld> -k
select —-—%

--% task.entry (params);
or | else --*

~-% delay (time out) | any_other statement
end select; -—* <{{labeld>

Fig. 4-20a: Entry call template copied in program

Selective entry call (no more that 2 alternatives !)

<TLM_in>> -=-* calls TLM stream multibuf.do_you_have a block ?
select =k

TLM stream multibuf.do you_have a block (nascom_block Xbuff);
else -—%

--% increment TLM stream multibuf overrun
TLM stream 1 multibuf stat.increment (overrun);
end select; ——% <<TLM in>>

Selective WAIT (any number of alternatives)

<{<scr_loop>> ——%* Accept and send block
loop ——%
select ~—%
accept here_is_a block (--| Accept NASCOM block —#*
nascom blo?k Xbuff : IN nascom block Xbuff type --| —*
) do -] —*
local block := nascom_block_}buff H
end here_is_a block ; -]t

--*% calls sttip chart _multibuf.here_is_a set !
put_line ("SCR data extractor saw a “block™);

or Tk
terminate; =- could be delay for time-out
end select; —%
end loop; --* scr_loop

Fig. 4-20b: The examples buffer for task entries

D. Roy

Century Computing, Inc.
35 of 41

entury
omputi

D€

METRICS

D. Roy
Century Computing, Inc.
36 of 41

(¥371dW0D ONY 39YNONVT JHL JO S3YNLvad DIN ¥04) vaY'IVR9 -
(***213 *SIT" SINIWWOI ONIGNTINI) YAY'SWITd0¥d -
S1¥0d3¥ ADIIIM -

130443 ¥N0 ONIINIWNIOA SIT14 TYY3AZS INIT NO Ld3

SEM @3NI43¥ ¥ 034013A3

(¥3INNOJ 207 “¥39907) 2@ NI S7001 ITdWIS d340T3A3M

140443
SITYLIW ¥N0 40 SISWE FHL LV SYM YHOM A¥OLYYOEY1 ONIYIINIONI 3YYML40S

Bunndwo
SIIYLI Ainjue

Century Computing, Inc.

D. Roy
37 of 41

ing

entury
omputi

D¢

RESULTS

D. Roy
Century Computing, Inc.
38 of 41

DEVELOPMENT EFFORT DESCRIPTION

Hours | 4
Training 253 22,9
Requirements 105 9.5
Design 93 8.4
Code/test 335 30.3
Tools dev 319 28.9
Fig. 4-17: Development data

D. Roy
Century Computing, Inc.
39 of 41

1-Z 3an8T14

ve
M —

Qo ©
e O
N e

00¢
ooF
00S
009

SUMMARY

0oL
008
006
0001
001 |

00c1
(101 00S¥ ‘201 0021) 7201

3002 32YNO0S 40 SINIT 1J3rodd 101id vay

Century Computing, Inc.

D. Roy
40 of 41

NOILVINIW3T4WI 9¥3dNS Vv SI SOV 230

(N91S30 LN3IJ1443 G3INA0¥4) SN W04 T173M AYIA GINYOM VIINWVL
(AIN3YYNINOI O/1 °S3dAL NSVL) SN ¥O4 173IM QINYOM ONINSYL
(3¥nSS3¥d 37NA3IHIS ON) 09 OL AVM 3HL SI 1930r0Yd 10114
(ONOD3S VOV “1S¥IJ 3S) MON ONINIVYL L¥VLS

(s100L GNV AS07000KHLI3N V Y03 G33IN) ALIXITdHOI VAV

(11 *104 *100 *1Sd) ALITILVSYIA VOV

Bupndwo

SNOISNTINGY AImue

Century Computing, Inc.

D. Roy
41 of 41

