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The concepts of transformation and canonical form have been used in

analyzing linear systems. In this article we extend these ideas to nonlinear

systems. A coordinate system and a corresponding canonical form are developed

for general nonlinear control systems. Their usefulness is demonstrated by

showing that every feedback linearizable system becomes a system with only

feedback paths in the canonical form. For control design involving a

nonlinear system, one approach is to put the system in its canonical form and

approximate by that part having only feedback paths.
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I. Introduction

It is well known that every linear system can be transformed by state

variable changes and state feedback to a canonical form consisting of multiple

series of integrators. The number of integrators involved in each series is

called a Kronecker index, and a linear system is completely characterized by

its Kronecker indices up to the feedback transformation. We extend this

result to a large class of nonlinear systems. In a setting of great

generality, the concept of nonlinear feedback equivalence can be defined as

follows. A system

x - f(x,u), x £ R", u e Rm (1)

is said to be feedback equivalent to another system

y - g(y,v), y e Rn, v e Rm (2)

if there exists a pair of mappings

T : Rn •* Rn . (3)

W : Rn x Rffl -> Rro (4)

such that (i) T is invertible on a neighborhood near the origin of R and W is

invertible with respect to the second variable in R , and (ii) for every

solution (x(t), u(t)) of equation (1), the induced pair of time functions

(T(x(t)), W(x(t), u(t))) is a solution of equation (2) by substituting T(t)

for y(t) and W(t) for v(t). The mappings T and W are of course the nonlinear

generalization of the state variable changes and the state feedback, respec-

tively, in linear theory.

According to a result obtained by the authors and G. Meyer [1] (also

independently by Jakubczyh and Respondeck [2]), a system of the form

m
x - f(x) +• £ g (x) u (5)



is feedback equivalent to a linear system

m
y - Ay + I b v (6)

i-1 x X

if and only if the following conditions are satisfied (with possible

re-numbering of g . ) :
K.-l K -I

(a) The set C - {g , [ f , g J ..... (ad f ,g ) ,g, , [ f ,g ] ..... (ad f,
1 • i f - 1 L i t

82) ' • • • »8 m . l f 'SmJ . • • • i (ad f '£m^ spans R ,

if -2
(b) The sets C. - {g , [ f , g ) , . . . , (ad J f ,g ) ,g, , [f ,g, ] , . . . ,

K.-2 J L i tr.-2 l £

(ad J f , g 0 ) ..... g , [ f , g ] ..... (ad J f,g )} are involutive for j -£ m m m

(c) The span of each C, is identical with the span of C. n C, and

(d) if, > ir0 2 ... > if .1 z m

where tf, ,tr0 ,...,< are Rronecker indices for the linear system (6).
i / m

Thus, the importance of Kronecker indices has been extended by this
• ' ' • ' ;

result to nonlinear systems. Here, however, they play a dual role. In

addition to controllability span, they also characterize the involutivity of a

nonlinear system, which has no counterpart in linear systems. '•

This result has not only generated a fair amount of interest in the

analytical problem of feedback linearization (see [1]), but also has been

applied to the design of nonlinear controllers [3]. A recent successful

flight test with the UH-1H helicopter by George Mayer at NASA Ames illustrates

the practicality of our results. In experimenting with such designs, we are

increasingly concerned with that part of a system's dynamics which is not

linearizable through feedback transformation. We feel that a measure of the

"gap" between a nonlinear system and a linear equivalent is needed for



robustness analysis of such designs.

In this article we report our recent progress in this direction. We

shall present a special coordinate system for the state space of a nonlinear

system, to be called the s-coordinate system. These coordinates are derived

on the basis of the intrinsic geometry of a system. In terms of them, a

canonical form of a nonlinear system is then established. The usual Taylor

series expansion is replaced by an expansion in terms of the important Lie

brackets. This form is especially useful for studying feedback lineariza-

bility. We illustrate this fact by showing that every feedback linearizable

system becomes a system with only feedback paths in s-coordinates. We

emphasize that the s-coordinates can be produced for a general class of

nonlinear control systems of which the feedback linearizable ones form a small

(but important) subclass.

II. s-Coordinate System.

\

Let X. ,X0,...,X be an arbitrary sequence of linearly independent vector
1 2 n

fields in a neighborhood UCR of the origin. In this section we describe a

local coordinate system for U which is based on the intrinsic geometry of X,.

We also assume throughout that the vector fields are analytic.

We first define our notation and make a simple geometric observation. For

each vector field X, , let <(>, : V -» R denote the one-parameter group action
k K K

generated by X, , where V is an open set in R x U and includes {0}xU; that
ic K.

is.

— * (t,P) - x
3t k

and



<*>k (o,p) - p

for (t,p)eV, . Given any point pel), the mapping <!>,(•,?) defines an integral

curve of X, . More generally, if S is an m-dimensional manifold in U with theK " m

property that X, (p) does not belong to the tangent space of S at p for all
K ' ID

peS , then the union of all the integral curves $, (-,p), peS , defines an
m k m

(m+1)-dimensional manifold S .. , and, obviously, X,(q) is a tangent vector of

S _,, at qeS _,, .
m+1 ^ m+1

Next we construct a sequence of manifolds associated with X, . We define

and S, - {<t>,(t,p)|(t,p)eV , peS, ,} D U
1C 1C K, JC™* 1

where k » - l , 2 , . . . , n . From the assumption that X, are linearly independent on

U and our previous observa t ion , it follows that each S, is a k-dimensional

manifold resulting from the union of the integral curves of X,. Moreover,
ic

these manifolds form an increasing sequence as

s c s. c ... c s c u.
o 1 n

We now show that, with the aid of S, , an n-tuple of numbers can be uniquely

assigned to every point peS which turns out to be a local coordinate system

for S . For a point peS , there is a unique integral curve of X passing
n . n n •

th rough p. Suppose this curve intersects S , at a point qeS ,. A unique
n-1 n-1

parameter s is thus determined by the equation <j> (s ,q)-p. Considering now

the point qeS .. , there is an integral curve of X . passing through q and
n—l n—i

intersection S 0 at a point reS «. Another unique parameter s is
n — Z n — 2.

determined by the equation $ .. (s ,r)-q. Continuing this process, we

finally reach the origin of R with the integral curve of X. at the n-th step.

The result is a set of n parameters (s ,s ,...,s ) which is uniquely associ-

ated with the starting point p and satisfies the equation

4'n(s
n,«>n_1(s

n"1,(...(4.1,(s
1,0))...) - p. (8)



It is not d i f f i c u l t to see that this mapping F : S -> Rn, p -» (s ..... s")

d e f i n e s an ana ly t ic coordinate sys tem for S . This is called the
n

s-coordinate sys,tem generated by the vector fields {X,
* L

In the following, we observe some useful properties of the s-coordinates .

Lemma 1 . In terms of the s-coordinates, the manifolds S, defined by (7) are
1C

simply linear subspaces of R :

Sk - ..... s") e Rn|sm-0, k + 1 < m < n} .

And on each S, , the vector field X takes the simple form
K K

a
" 7~k • •3s

or in the form of a column vector

/0\

0
1
0
•

H

*- 1 th !4- k place,

where X, | denotes the restriction of X, on S, .
k „ k K

(9)

, .

This result follows immediately from the definitions of s-coordinates and

For a detailed proof, the reader is referred to Spivak [4]. It must be

noted that the simple expression (9) does not hold for the points not on S, . A

complete expression for X, is given in the following Lemma.

Lemma 2. In terms of s-coordinates and S, , the vector f ie ld X, can be
k k

expressed as



X, " e.
k k

• « n (s j ) '

I I
i-1 j-k+1 i!

(10)

where k - 1 , 2 , . . . , n , and e, - ( 6 , . .
k Ik

delta.

fi ,) with 6 being the Kronecker

Proof. Let X, -

By a Taylor series expansion of X, (s) with respect to s , we have

Xk(s) -
1̂ . 1 n-1

S o
i • • • i °

« s 3"

i-1 i! a(s'
(11)

From Lemma 1 it is easy to see that the Lie bracket

[Xn'V

3X. 3X
_ k x _ _ £
-3s

nn .3s

3s

/ 0 \

0

1



/ x l \xk
r. I
3s

We set (ad°X .X. ) - X . , (ad*X .X.) - ( X ' . X , ] , (ad2X ,X. ) -n k k n k n k n K .

Xk)). etc.

The same computation leads to

3(a
nr

Using the notation of restriction, we rewrite (11) as

« (sV
i) - X'k

S . i-1 i!
n-1 'n-1

Similarly, X, can be further expanded with respect to s as

n-1

,
o> (s

n-Ki

n-1 n-2

continuing this process until we have

> on-2

i - voo (s )
(ad\-n'

n n

From Lemma 1, X, 1 • e, . Therefore, combining all the expressions, we obtain

n
{. (s) - e. +•
k k

i-1 j-k-H i!
,Xk) o



We have so far only assumed that the X are linearly independent on U.
K.

Additional assumption of involutiveness will further simplify the expression

(10). Recall that a set of vector fields is involutive if the Lie bracket of

any two vector fields is a linear combination of the elements in the set

with coefficients being scalar functions.

Lemma 3 . If the vector fields X, ,X, .,..., X are involutive, then X, assumes

k n T
the form X, - (0, . . .0,X_ , . . . ,XT) in the s-coordinates.

The proof of this statement is straightforward. We observe that for j -

k+1 ..... n

n~1
(ad.X. ) - a"(s)X + dn~(s)Xn ak(s)X.K. . ...K n n — i

f r o m the assumpt ion of involutiveness, where a(s) are scalar functions of s.

Restricting to S. ., we have

(adXX .X^)

'j-i
- ctnX

ane

+ ... + cj 1X. A + a
J'̂

,
n-1

* o
We can f u r t h e r apply Lemma 2 and expand the vector fields or X. _ _ , . . .

| to see that these ter

j-l
k-th place so as to have the form

a X | to see that these terms must also have vanishing entries above the



o \

0

*
-* k-th place (12)

We conclude that each (ad X.,X,)|_ has the form (12), and thus Lemma 3 is
3 k Sj-l

proved. o

If we assume a stronger condition that

lx.,xk]-o (13)

for j - k+1 n, then X - e . If (13) holds for all l<j,k<n, then a

classical result follows (see Spivak [4]): X,«e, , k-l,2,...,n.

In later developments, we also need an expression for a general vector

field Y on U in terms of the s-coordinate system generated by X1tX0,...,X .I / n

The general expression is given in the next Lemma without proof.

Lemma 4. Let Y be an arbitrary vector field on U. In the s-coordinates

generated by a sequence of vector fields X.,X_,...,X , Y can be expressed as

n
Y(s) - Y(0) (14)

'J-1

IV. Canonical Form

We now consider the problem of establishing a canonical form for non-

linear systems

m
+ I g . ( x ) u , xeR ,

•
(15)



where the vector fields f and g. are analytic.

We first construct a sequence of n linearly independent vector fields.

They in turn generate the s-coordinates on which our canonical form is based.

We assume that there exists a set of positive integers ir ,...,? such that

(i) the set C - {g^Cad f,g ),...,

g ,...,(ad m f,g )} spans R on a neighborhood U near the origin,

(ii) the span of C n C - the span of C., where C « {g ,(ad f.g..),

K -2 K" -2 *" -2
...,(ad j f,g ),g , . . . ,(ad j f,g ),...,g ,...,(ad j f,g )} and

i z 2. m m

j*l»2 , ... ,tn,

(iii) tr'>ir_>. . .>*• .
l /. ic

Notice that no assumption is made on the involutiveness of the system.

A crate of m columns is then formed with the vector fields in C as shown

in Figure 1.

(adf,g2)

m

Figure 1.

The first column is filled from top down with g, ,(ad f,g. ),...,

(ad'l f,g..), the second column with g2,(ad f, g_) , . . . , (ad 2 f,g2), and so on.

Now we arrange the vector fields into a sequence in the order from left to

right and from the bottom row to the top. Hence, we have

10



(ad*!

(adV2f,gl), if Kl>K2 (15)

K -1
(ad 2 f ,g) , if K- - K

(ad 3 f , g 3 > , i f K i m *2 m K 3

(ad 1 f , g , ) , if tr,-if _> '«•_

( ad k r 2~ 1 f ,g 2 ) , if i f j - i f 2 +l

UadV3f ,g l) , if K-^ifg+l

etc. This procedure can best be illustrated by the following example.

Suppose we have a system on R which forms a crate as shown in Figure 2.

Then the sequence X,,x.,...,X, is defined as in Figure 3.1 / o

81
<a^,gl,

(ad 2 f , g ] )

82

(ad 1f ,g 2)

0

83

0

0

\
X2

Xl

X5

X3

0.

X6

0

0

Figure 2. Figure 3.

Using this set of linearly independent vector fields, we can then

generate the s-coordinates. A straightforward application of Lemma 2 and

Lemma 4 shows the following theorem.

Theorem 1 . In the s-coordinates generated by the sequence of vector fields

previously defined, the system equation (15) assumes the form

11



oo n
(17)

Vl

» n vs ;
s - f (0 ) + 1 1 < a < T X . , f )

n

I I
k-n-in+1 i-1 j-k+1

I < - „ + Z I — r(ad1X.,Xk) W n+m
1 • S . , 1

where the X, are defined in (16).

We remark that there is an equivalent procedure for introducing the

1 O

s-(s , s ,...,s ) coordinates. We simply solve in order the following systems

of ordinary differential equations with indicated initial conditions.

dx(s1)

ds1
X (x1,...̂ ") , x<0) - 0 (18)

j / l 2^dx(s , s ) I n 1 1
- = - - X_(x ,...,x ) , x(s ,0) • x(s )

, , , 1 2 3 .
dx(s ,s ,s ) .

• _ ... , l nN / 1 i „.. , i
- - - - X._(x ,...,x ) , x(s ,s ,0) - x(s ,s

J 3 *3ds

j f 1 2 n^ , . 0 10 idx(s , s , . . . , s ; v / 1 n \ /12 o x , 12 n-1.
- X (x , . . . , x ), x(s s , . . . , 0 ) - x(s ,s , . . . , s )., n nds

If the vector fields X , , X 0 , . . . , X are linearly independent, we can solve
« O

for s ,s ,...,s by the inverse function theorem.

For our control system (15), the vector fields X.,X_,...,X are defined

in (16). Since the set C is assumed to span R , the s coordinates exist for

our control system.

12



IV. Pure Feedback Systems

As indicated in a previous discussion, the s coordinates exist under the

spanning assumptions (i), (ii) and (iii) of Section 3. These assumptions are

generic, in the sense that "almost all" control systems (15) satisfy them. If

we also add the involutive conditions mentioned in the introduction, we obtain

a nonlinear system which is feedback equivalent to a controllable linear

system. With this extra assumption on involutivity, the s coordinates force

the nonlinear system (15) into a special form, called a pure feedback system.

Meyer and Cicolani [5] called this block triangular in a special case and

showed that it is extremely easy to move from a block triangular system to a

linear system (the name technique can be used to move from a pure feedback

system to a linear system).

In the following definition, we consider system (15) under the spanning

assumptions (i), (ii) and (iii). We form a crate for the system as described

in Figure 1. Let n. be the number of elements in the (if.-i+l)-th row of the

crate, and &. "n. +n,+ ., .+n, , where i,k-l, 2 ,.. . ,tr. .
rC 1 ^- K J.

D e f i n i t i o n 1. The nonliner sys tem (15) is a pure feedback system if it is

of the form

•1 -lf 1 B2,
X - f (S , . . . ,X )

•2 ,2, 1 B2,
x • f (x , . . . ,x )

ff (x , . . . , x

•V1
 f

Bl + 1, 1 B3,x • f (x , . . . , x )

13



-V2
 fV

2, i
x - f ( x , . . . , x

• ,, .
X - f (X X )

• ,
x 1

,. r.,- , n,.
f 1 ( x , . . . , x )

• n—in ..n—m, 1 n,
x - f (x , . . . , x )

m
•n—m+1 j-H—m, 1 nN »- n—ro+1, 1 n..
x - f (x , . . . , x ) + £ _g. (x , . . . ,x )u,

i•n _n.. 1 nx .
x - f (x , . . . , x ) +

-in, 1 nNg , ( x . . . . . x )u.

We remark that B -n-m, B "n^..-4-n -n, and n < n < n <. . .<n . This
J T . ™ " J . K » A . T j > . £ J 1

definition is motivated by the following diagram.

1\
u

mu

1 '» /\ X /

Figure 4.



We note tha t there is no f e e d f o r w a r d signal f l ow other than the main

p a t h . Consider again a system with an associated crate as shown in Figure 2.

It is a pure feedback system if it is of the form

•1 r1/ x'X - f (X-pX-.X,)

•2 .2, 6v
X - f (X̂ ,̂ . • • ,X )

X - f (X,X, . . . ,X )

•4 4 1 6. A 4, 1 6,
X - f (X , . . . , X ) + I g (X ..... X >U.

i-1

•5 _5, 1 6, . 1 5, 1 6,
x - f (x , . . . , x ) + 2, g . ( x , . . . , x )u.

•6 f6, 1 6. . 6, 1 6,
x • f (x ..... x ) + £ £•(* «"-.x )u

. T 1 1

1-1

To the spanning assumptions (i), (ii) and (iii), we add
tc.-2

(iv) The sets C. - {g, .[f.g.]' ..... (adj f , g, ), g, ,[ f , g0 ],...,
K.-2 J l K.-2 l * *

(ad f, g_ ),..., g , ( f , g ],..., (ad f,gH are involutive for/ m m m '

u«l , 2 , . . . ,m.

Under this additional assumption (iv), system (15) is feedback lineariza-

ble [1]. We show that it takes a special form in the s-coordinates .

Theorem 2 . If the sets of vector fields C ,j-1,2,...,m are involutive, then

the nonlinear system (15) is a pure feedback system in the s-coordinates.

Proof. For our nonlinear system, the vector fields X.,X_,...,X are defined
I i n

from those elements in the set C by Equation (16). We take as before

15



n, - number of elements in C with ad superscript tr,-!,

n_ • number of elements in C with ad superscript K -2,

n - m » number of elements in C with ad superscript 0.

Also, we have B, • n1 +n_+.. .+n, ,l<k<tr1 with B - n. The canonical form
& 1 <t K I K*.

for the system in the s-coordinates generated by X, is
1C

s •> f(0) + (ad X.,f)
j-1 i-1 i!

(17)

I < e, + I I
k-n-m+1 I j-k+1 i-1 i!

^X, )
J K u

k-m+m

It has been shown in ' (1] that the involutivity of C.,j~l,2,...,m implies

that each of the sets of vector fields {X. +1 X Kk-1,2 nr.-l isv m
involutive.

In par t icu lar , when k-ic -1 , the set {Xn +1 , . . . ,X }' - {g, , . . . ,g } is
1 p, m i m

involutive. From Lemma 3, this implies that the control terms in (17) is of

the form

/ °
0
*

u
u. +1

' ° 1
0
*

•

\ * l

u + • • • +
2

° 1

0
*
.

*/

U
m (20)

where * means possibly nonvanishing functions of s.. , s_,. . . , s , and they begin

at (8 +l)-th entry.
K-j-1

The second summation is rewritten as

16



I I

j-1 i-1 . i!

(21)

(adV.f)

,+1 i-1 1 !

— (a<rx . , f )
J qj-1

Observe that as the index j runs from B _, +1 to B -n in the last term

of the summation (21), the vector fields (ad X.,f) are either simply

X. ,B 0+l<k<B , or linear dependents on X. ,B _+l<&<8 • Further, because
K tr.~t *M ~ ^ *^i ~ *^i

the set {X
0

V2
, . . • ,X -X } is involutive, it is easy to see that

(5 n

/ o \

(ac^X. ,f) -
•J

<- (B 7+D-th place
^

(22)

When res t r ic ted to S . , , the as te r i sks in ( 2 2 ) are func t ions of

s , . . . , s . As we sum up the series, we have

(ad^.f)
j-B +1 i-1 i!

1

o \

0

* <- (B _ + l ) - t h - place

* /

17



where * are functions of s , s , . . . , s .

C o n t i n u i n g the analysis wi th every term in summation ( 21 ) , it is seen

that

0\

*/

(B ,+l)-th placevk (23)

when the term with j running from B , +1 to B
1C .. ~ K JT.

where k-1 , 2 *r , , and &Q«0. In this case, s - _ i

«s'

is considered

is the manifold

characterized by s «s' -...«s «0. Thus, the asterisks in (23), when

restricted to S. ., are functions of s ,...,s . Summing up the

subseries, we have

i!
(acTX .f)

•J S.
J

o \

4- (B +l)-th place
\C _ ""1C

1 2
where * are functions of s ,s ,...,s

_, +!

, but is independent of s ,

This concludes our claim that the system is a pure feedback system, o

We remark that for this paper we have worked in a neighborhood of the

origin in R , but any point x_ in R where the system satisfies the spanning

conditions could have been considered.

18



V. Conclusions and Related Research

For a real analytic system of the form

m
x - f(x) 4- £ g..(x)ui , xeRn

we have introduced a coordinate system which reflects the intrinsic differen-

tial geometry of the system. The basic vectors of the s-coordinate systems

are generated by the vector fields in the set C, and the indices K.,K-,,..,K
I L m

correspond to Kronecker indices for a controllable linear system. Moreover,

we have introduced a "canonical expansion" of the nonlinear system in the

s-coordinates, and the usual Taylor series terms are replaced by a Lie bracket

expansion. Under involutive assumptions on subsets of the vector fields in C,

we show the nonlinear system is a pure feedback system in the s-coordinates.

In general, a "measure of how close" a nonlinear system is to a pure

feedback system should be indicated in its canonical expansion in the

s-coordinates. This is especially interesting since pure feedback systems are

feedback equivalent to controllable linear systems.

It is known that in the s-coordinates the usual Taylor series linear

approximation to a nonlinear system and a linear approximation generated by

certain Lie brackets agree [6]. Adding outputs to a nonlinear system allows

us to discuss Volterra series expansions. Since Volterra series kernels

involve Lie derivatives and Lie brackets [7], the s-coordinates may be natural

for such series. Moreover, the s-coordinates may prove advantageous for

nonlinear input-output systems realization.

19
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