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Two main areas of code development have been

undertaken. The first is the implementation of CASSCF and

SCF analytical first derivatives on the CRAY X-MP. Codes

for -performing geometry-optimization -using the analytical —

gradients have also been installed and interfaced to the

integral program and the wave function generation programs.

As a result it is possible to obtain equilibrium geometries

and saddle points with little input from the user beyond an

initial guess, and with greatly increased efficiency

relative to methods based on computing grids of energy

values.

The second major area of code development has

been the installation of the complete set of electronic

structure codes on the CRAY 2, an activity carried out in

collaboration with Dr C. W. Bauschlicher jr. Particular

effort was required to make the CASSCF and multireference

CI programs operational, as a result of numerous compiler

bugs and the incomplete version of FORTRAN offered. The

gradient program was much less troublesome. In addition, a

new scheme for performing Hartree-Fock calculations with

the integral list in memory has been implemented on the

CRAY 2. This has been used for calculations with 300 basis

functions locally and with basis sets of double this size

in Minneapolis. Finally, a proposed method for extending

the direct SCF approach to permit beyond-Hartree-Fock

calculations has been written up for publication.



In the area of application calculations the main

effort has been devoted to performing full CI calculations

using the CRAY 2 and using these results to benchmark

other methods. The main observation of this work has been

the generally excellent agreement between multireference

CI results and the full CI. The attached preprints

describe some of the systems studied, other work is

presently being written up for publication. In addition,

calculations on the recombination of H with OH have been

commenced, with particular emphasis at this stage on the

choice of active space for CASSCF and multireference CI

wave functions.
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Integral processing in beyond-Hartree-Fock calculations

Peter R. Taylor
ELORET Institute*

Sunnyvale, CA 94087

Abstract

The increasing rate at which improvements in processing capacity outstrip
improvements in input/output performance of large computers has led to recent at-
tempts to bypass generation of a disk-based integral file. The "direct" SCF method

of Almlof and co-workers represents a very successful implementation of this ap-
proach. -The present work is concerned with the extension of this general approach
to CI and MCSCF calculations. After a discussion of the particular types of MO
integrals for which — at least for most current generation machines — disk-based

storage seems unavoidable, it is shown how all the necessary integrals can be ob-
tained as matrix elements of Coulomb and exchange operators that can be calcu-
lated using a direct approach. Computational implementations of such a scheme
are discussed.

* Mailing address: NASA Ames Research Center, Moffett Field, CA 94035



I. Introduction

One of the most interesting recent developments in computational quantum

chemistry is the "direct SCF" approach of Almlof. Faegri and Korsell (AFK) [l].

Recognizing that in some circumstances it may not be feasible to generate a disk

file of two-electron integrals (or supermatrix elements) to be used repeatedly in

subsequent SCF iterations, AFK suggested that the two-electron integrals be re-

calculated in each SCF iteration. That is, the Fock matrix contributions from

each batch of integrals are computed and then each batch is discarded. There are

two distinct sets of circumstances where this strategy should prove advantageous.

Where computations are performed using an "in-house" minicomputer it will often

be the case that the available disk storage is inadequate for large basis sets (150

.- 200 CGT.Os. say), or that the performance of the input/output (IO) system is

too low for the integral file to be processed in an acceptable real time. Alterna-

tively, where computations are being done on a supercomputer (or even a large

conventional mainframe computer), the available disk system capacity and/or per-

formance may not be adequate for the size of basis set (300 or more CGTOs) for

which the integral generation time would be acceptable. (Even the arrival of large

primary memories, such as the 268 million words available on the CRAY 2, does

not provide a complete solution to the problem of storing the integrals). The direct

SCF method has proved its worth in both sets of circumstances: basis sets of over

300 CGTOs having been handled on NORD 500 and VAX 11/780 minicomputers

and over 500 CGTOs on an IBM 3033 [l]. Of course, AFK's implementation of the

direct SCF method incorporates a number of factors designed to improve overall

performance. The full symmetry of the nuclear framework is used to minimize the

number of distinct two-electron integrals which might have to be calculated, while

density matrix pre-screening techniques .are .used to avoid calculation of integrals

which contribute negligibly to the Fock matrix [1,2].

While it is very desirable to have a method of this type, there are, of course,

many chemical problems for which correlation effects play an important role. Conse-

quently, it seems appropriate to explore schemes whereby a similar general approach

— that is, recalculating integrals when they are required — could be taken for CI

and MCSCF methods. This work presents an approach in which it is assumed that

some integrals are required so frequently that it would be inefficient to recompute



them repeatedly, while other integrals can be recomputed as required. Clearly, there

is an operational difference between this approach and the philosophy behind direct

SCF, as in the latter it is assumed that all integrals are in the same class as far as

frequency of use is concerned.*

II. MO Integrals in Direct MR-CI(SD).

The various types of MO integrals appearing in single and double excitation

direct CI calculations have been discussed in detail by Siegbahn [3], Ahlrichs [4] and

Saunders and van Lenthe [5]. These treatments cover not only the cases of one or

several reference configurations, but also the case where the reference configuration

is "internally contracted" [4.6-8]. It is clear from these treatments that it is desirable

to have the integrals [ t j j f c / j , [z'yjAra], [z./|a6] and [zajy6] (where i,j... denote MOs

occupied in at least one reference configuration, and a,fe... the remaining MOs;

charge density notation has been used for the integrals) available in the MO basis:

these integrals contribute to many different terms in different ways. If Coulomb

operator matrices JtJ'. and exchange operator matrices Kt;± are defined via the

matrix elements

(1)

= \ ip \ j q\ + [ iq\ jp\ (2)

= \ ip\ jq] - \ iq \ jp] (3)

for p. q... arbitrary MOs. the above required integrals are all included in J1-7,

and K I J ~, i > j.

* A note on terminology may be appropriate here. The expression "direct CI" has an

accepted and widely understood meaning: it refers to a CI calculation in which the

Hamiltonian matrix is never computed explicitly and stored. It is not unreasonable

to use the term "direct SCF" for an SCF calculations in which the AO integral list

is not stored. The expression "direct MCSCF" is closer in meaning to direct CI:

the Hessian is not computed explicitly. It is difficult to combine these meanings to

cover the sort of method proposed in this work, and while this author has previously

used the term "direct direct CI" this is both ugly and confusing. No convenient

alternative readily presents itself, however.



The remaining possible integral types. [ta|6c] and ja6jcrf] , are not required in the

MO basis for direct CI calculations [4,5]. Their contribution to the residual vector

a — He can be written in terms of AO integrals for a suitable renormalization of c

[4,5,8]. This approach is discussed further in section V below.

It appears, therefore, that if a direct CI scheme is used for optimization of an

MR-CI(SD) wave function, the integrals which must be computed (and stored) in

the MO basis are just the 3l] and K t J ± for correlated MOs i > j. It should be noted

that while the term "CI" has been used here, all of the above remarks apply also to

methods based on the coupled-pair many-electron theory of Cizek [9]. This includes

both coupled-cluster methods and approximate CEPA-type schemes [10-13].

III. MO integrals in MCSCF calculations.

The question of which integral types need to be transformed into the MO basis

has been investigated in some detail by Almlof and Taylor [2]. Their conclusion is

that it is generally necessary to have matrix elements of Jtu and Ktu:t in the MO

basis: here t and u denote partially occupied (active) MOs in the MCSCF wave

function. The availability of operators Jz;, K1-731, 3lt and ~K l i± (here i,j... denote

doubly occupied (inactive) MOs) in the MO basis allows a very simple formulation of

the MCSCF orbital optimization problem (see e.g. refs 14 and 15), but in a "direct"

MCSCF formulation [14] it is always possible to rewrite the contributions of these

operators in terms of the AO integrals [2.16]. Elements of Jtu and K tu± are needed

for the CI step (or, in a full second-order treatment, the CI sub-block of the Hessian

and the CI gradient term) and for some Cl-orbital rotation coupling terms, and most

of these contributions are awkward to reformulate in terms of AO integrals. In this

way, each cycle of the MCSCF optimization requires construction of Jtu and K iu±

once, followed by contraction of a supermatrix with quantities similar to density

matrices. This contraction must be performed in every micro-iteration through the

MCSCF linear equation system if a full second-order optimization is performed —

for first-order schemes [15,17,18] intermediate Fock-type operator matrices can be

constructed with one such contraction step and then re-used within the given cycle.

Full details are given in ref 18.

For a second-order MCSCF scheme with the minimum number of integrals

stored on disk, therefore, it will be necessary to recompute the AO integrals in every



micro-iteration of every cycle. In individual cases it may be preferable to construct

ji] K1-7*, Jlt and Kz i± once in each cycle, and then to process all the integrals in

the MO basis: this would depend on the balance between the transformation labour

to obtain these operators (and how many there are) and the integral evaluation time.

For large extended systems it may be that sparseness in the integral list combined

with pre-screening of density matrices might make the completely direct MCSCF

approach favourable. Dynamic adjustment of the number of micro-iterations used

in a given cycle (solving the linear equations less accurately when far from overall

convergence) will also improve performance. In any event, for the purposes of the

present discussion it is clear that the problem of generating MO integrals for use in

an MCSCF calculation is equivalent to that of a CFcalculation: Jand K^ operators

over certain occupied MOs must be available.

IV. Construction of operator matrices.

Where the AO integral list is available, and disk capacity or performance is

adequate, the most efficient route to the required J and K^ matrices is via a limited

four-index transformation [4,5] (see also ref 19 and refs therein), performed as the

four quarter-transformations

[iv ACT] = 2 \ p , i / \ \ o \ C '^i (4a)

\\o\Cvj (46)

\ij\pa] = [u|ACT]CAp (4c)
X

~[ij\pq] = ^[ij\pa}Caq (4d)

for the element Jy . Here ^, ^, A and a denote AOs and C is the matrix of MO

coefficients. The most time-consuming of the four steps is (4a), which behaves as

nN4 operations for n active or correlated MOs and N AOs; (46 — d) behave as

n^N3. Similar behaviour is obtained for calculation of K1^ provided that the AO

integrals are sorted differently before the transformation.

A less efficient (in terms of floating-point operations) procedure essentially in-

volves combining the first two quarter-transformations into a single step, generating,



say,
" " ' \ f i - C ' • (^\j(~'Atl-><7.7 \&)

and then transforming fj, and u to the MO basis. Defining "density matrices" DIJ

via

D*i = C -C (6)

allows (5) to be viewed as contraction of integrals with a density matrix, analogous

to Fock matrix construction in an SCF calculation. (5) behaves as n27V4. that is,

some n times worse than (4). However, a scalar implementation of (5) requires no

sorting of the AO integrals, and there is no need to expand the integral list beyond

the normal canonical indexing // > v, A > o and (/xt/) > (Aa).

Consider now an approach in which AO integrals are computed, used in some

transformation process and then discarded, without being written to disk and re-

read. If the n2N4 process defined by (5) is used, it will be possible to hold simul-

taneously 2L/N(N + 1) operator arrays J or K± in L words of memory. As there

are some In2 operators in toto to be constructed, it will be necessary to generate

the integrals 3n2N2/4L times. For 200 AOs. 20 correlated or active MOs and 4

million words of memory some 3 passes would be required, however, a 50% increase

in n or TV results in a factor of 2 increase in the number of passes, as would a 50%

reduction in the memory available. The n~ and N2 scaling in the number of passes

is clearly a considerable disadvantage of the n2JV4 approach.

On the other hand, by defining a "test density" as

(7)
[*'/]

where the notation [ij] denotes all MO pairs whose operators are being processed in

the current pass, an effective pre-screening technique can be implemented to decide

whether a particular [/^i/jAtr] need be calculated. (This process is readily extended

to the case of calculating AO integrals in shells, as discussed below and in refs 1

and 2). Clearly, as n or TV increases, the number of operators generated in each

pass decreases. It may be expected that, in turn, the sparsity of J)test will increase

(certainly Dtes/ cannot become less sparse) which will decrease the number of AO

integrals to be calculated in each pass. This phenomenon will tend to offset the

effect of the n2 and TV2 scaling discussed above, and will play an important role

when localized MOs are used.



Completion of the transformation of the Ju. etc, is also simple in the case of

the n?N4 approach. Each operator matrix, once constructed in the AO basis, can

be transformed to the MO basis and then written to disk directly. No additional

sorting is required and the final operator matrices are in exactly the form required

for "matrix-formulated" direct CI [4,5,20]. Typical loop structures for constructing

various operators are discussed in section VI below.

In an implementation of the nN4 scheme different procedures must be followed

for the J and K cases. For J operators, it is necessary to compute blocks of integrals

[/zi/|Acr], for all /i > v and for as many \o(\ > a) pairs as will fit in L words of

memory. It is then possible to carry out the first two quarter-transformations (4a, 6)

for all ij (i > j) pairs. The resultant [0|Acr] must then be written to disk, so that

once all of the [0|A<r] are available they can be re-sorted to AO J matrices for the

final half-transformation. Note that in the AO integral generation it is not possible

to restrict consideration to the case (/if) > (^&} (the normal canonical ordering):

effectively, the integrals must be computed twice. For K~ integral blocks [/zi/|Acrj,

with all /zA and for as many va(y > a] as can be held in memory, are transformed

to [iV|jcr] ± [zcr|jV] for all i > j. Again, these half-transformed integrals must be

re-sorted for the final transformation. Clearly, this latter ordering of [/xflAcr] is

different from the J case and the n2N4 scheme. Indeed, it not only differs from the

conventional ordering used in integral programs, but it also involves some redundant

recomputation of integrals because of the need to have all yu.A pairs, not just //. > A.

Essentially, the AO integrals must be computed four times. There are thus not only

disk and IO overheads associated with the nN4 scheme, but also additional CPU

costs occasioned by recomputation of integrals. It will depend on the individual case

whether these additional overheads offset the much more .favourable floating-point

behaviour of the transformation step relative to the n'N4 scheme. It should be

noted that the disk space (and IO required) behave as n2A r2, which is usually very

much less than the N4 requirements for the initial sorting of a disk-based integral list

for a conventional transformation. A disadvantage of the suggested implementation

of the nN4 procedure is that it is not possible to make as much use of pre-screening

as in the n'2N4 case. This is because the first half-transformation is used to produce

[ij|Acr] for all ij from [//z/|Aa] for all [iv: the effective "test density" analogous to (6)

would involve all ij pairs and would thus be as dense as the worst possible case for

the n2N4 scheme. It is quite conceivable that in some cases, such as large extended

8



organic systems, the n2N4 approach with its effective pre-screening would be the

method of choice, while for relatively compact systems of heavier atoms, such as

polynuclear transition metal complexes, the nN4 approach would be preferable.

V. External Exchange Operators.

As was noted above, it has been pointed out by several authors [4.5.8] that the

direct CI contribution of the MO integrals [a6|cz] and [ab cd\ can be evaluated in

the AO basis using the operator matrices Kp with elements

K?b = (a \K p \b) = £ £(H#P ^}C^Cvbt (8)
Ai v

where

(M|#>) = ££[MAMV£, -.(9)
\ v

with

. p <? ,

The "CI coefficient" array c is obtained as follows. For doubly-excited CSFs which

differ only in virtual MO occupation (i.e. all have the same virtual MO spin-

coupling and the same (Ne — 2)-electron occupied MO part P (for Ne electrons

correlated)) the various CI coefficients cap are collected into the array Cp which is

then renormalized to give cp according to refs [4.5]. We then have

Q .

where Bia^d is a two-electron coupling coefficient and CQ is the CI coefficient of a

singly-excited CSF.

Clearly, the construction of Kp in the AO basis using (8 — 11) parallels the

construction of the Kt;? operators via the n2JV4 scheme outlined above in section

IV. Indeed, by explicitly recognizing that the two virtual MOs can be either singlet

or triplet coupled it is possible to proceed via Kp± operators obtained from sums

and differences of integrals as in eqns (2) and (3). Pre-screening via a test density

matrix can be used to reduce the number of AO integrals which must be calculated,

offsetting in part the n2N4 dependence of the Kp generation. However, the exter-

nal exchange operator construction must be performed in each CI iteration, which



(when the time taken to re-evaluate the integrals is included) is likely to lead to its

dominating the timing for calculations with large basis sets.

It is also possible to consider an alternative scheme for computing the contri-

bution from the external exchange operators which shares features with the nN4

scheme for JtJ and K t ;±. It is possible to form arrays Kcd according to

(12)

and then, without any intermediate IO, to combine these half-transformed integrals

with CI-coefficients as

The KpV would be written out to disk for re.-sorting. The strategy would be to hold

all \o values in memory (in (12)) for as many //,*/ values as possible. The floating-

point behaviour of (12) (assuming that in practice it would be performed as two

(Successive quarter-transformations) is (N — n)N4, while that of (13) is essentially

n2(N — n)2N2 . Of course, the same recomputation of integrals is required for (12)

as for the nN4 approach to construction of KI;± matrices discussed in the previous

section.

For the case of the "externally contracted" CI method of Siegbahn [7], integrals

such as [oc|6d] are used not simply to form K^b but rather to form Ap where

(14)

Here Cp6 is a CI coefficient in a wave function obtained in the lowest order of

perturbation theory. Ap need be constructed only once during the contracted CI

calculation, and thus there is a very considerable advantage over the normal CI

methods, since these require recalculation of the external exchange contribution in

each iteration.

VI. Treatment of symmetry

The direct SCF implementation of AFK benefits enormously from the exploita-

tion of symmetry. This is used to reduce the number of distinct integrals which must

be computed, and to reduce the dimensions of the various matrices which must

10



be processed. It is well known that the incorporation of symmetry considerably

improves the efficiency of conventional 4-index transformation and CI programs,

and it is certainly desirable to extend these improvements to the present approach

to beyond-Hartree-Fock methods. This is not difficult, although there are several

points worthy of note.

First, the operators J13 and K13± will not always transform according to the

totally symmetric irreducible representation of the molecular point group, G. Thus

(15)

where R 6 G, and D^^(R}' is an element of a representation matrix for a. which

may not be an irreducible representation. By choosing appropriate combinations of

ij and their partner MOs in degenerate irreducible representations, it is possible to

restrict attention to the case of a irreducible. In (15). therefore, Jl] would represent

a combination of J operators which transform according to row K of irreducible

representation a. In an SCF calculation, the Fock and density matrices transform

according to the case of a being the totally symmetric irreducible representation,

and for this case a straightforward scheme for using a list of symmetry-distinct AO

integrals to construct "skeleton" matrices which are later symmetrized to give the

full result has been derived by Dupuis and King [21 j. based on earlier work by Dacre

[22] and Elder [23]. The present author has extended the Dupuis and King scheme

to the case of non-totally symmetric operators [24]. The only difficulty that arises

in this extension is the need for full representation matrices (not merely characters)

in the symmetrization of the skeleton matrices. These can be calculated from the

characters of the group and a chain of subgroups by an ingenious method due to

Hurley [25].

It is thus possible, to use the technique of ref 24 to generate integrals over MOs

from a list of symmetry-distinct AO integrals. Use of the n27V4 scheme (5) for

the transformation step leads to very similar processing as in the SCF case, as for

(5) there is no need to order the integrals. Fig 1 shows the loop structure of an

integral routine designed to implement this scheme. The loop structure is greatly

simplified: most codes would feature double loops over centres and then shells on

those centres. Loops over shell components have not been shown explicitly. In the

figures, the stabilizer [24] of a shell or centre is that subgroup of G under which

the centre is invariant. Distinct integrals are generated in terms of double coset

11



representatives for various pairs of stabilizers: for full details the reader is referred
to Davidson [26]. As far as the overall loop structure of Fig 1 is concerned there is
essentially no change from the SCF case, for which the statements in the innermost

loop would simply add or subtract appropriate Fock matrix contributions.

It is also possible to handle symmetry in J operator construction by the nN4

scheme (4) straightforwardly and a possible loop structure is given in Fig 2. How-

ever, complications ensue for the K± operators. This is because integral evaluation
schemes are based on charge densities (products of basis functions) and determining
the symmetry-distinct AO integral list is also based on charge densities. Such an
approach naturally works for J operators, since what is required is a list of [jui/jAo"]
with fj.v fixed and all Xo, and this is simply all charge densities \o for the single
charge density \JLV. Symmetry-distinct integrals are obtained from [nRi>\T(\S0}},
where R, S and T are operators from the point group: the range of operators giv-

ing distinct integrals is determined by the symmetry transformation properties of
the points on which the AOs are centred. Again, it is simple to work in terms of

unique charge distributions iiRv and \Sa and their transforms, and to form all
T(XSo) for a fixed pRv. For K^ operators, however, what is needed from the list
\ltRv\T(\Sa}} are terms with pT\ fixed and all possible RisTSo. Not only is this
clearly not charge distribution based, but the range of T operators giving distinct
integrals cannot be determined until v,,i/.X.a.R and 5 are known. This compli-
cates the loop structure of the integral program, and, since it is usually desirable to

compute information about charge distributions in the outermost possible loop, it
will be necessary either to compute this information in inner loops or to compute
information about all possible charge distributions in the outer loops, performing

redundant work since some of these distributions will turn out to be non-unique.
A nN4 scheme loop structure for K± operators, incorporating symmetry, is given
in Fig 3, and the problems associated with K^ operators can be clearly seen by

comparing Fig 3 with Fig 2.

VII. Computational considerations

The need for repeated calculation of AO integrals, particularly in implementa-
tions of the n2N4 transformation procedure (5), suggests that a primary goal must

be an efficient integral evaluations scheme. This problem has received considerable

12



attention in the last fifteen years [27-29], and a number of very efficient schemes

have been devised. A key feature of these schemes is the use of shells of basis func-

tions, a shell being defined by a set of contracted Gaussian functions of the same L

value, located on the same centre, with the same exponents and contraction coeffi-

cients but differing in their angular behaviour. Integrals over four such shells — a

"shell block" of integrals — share many common factors, and avoiding redundant

recomputation of these factors results in a substantial increase in efficiency. Such

use of shells rather than individual basis functions is implicit in the loop structures

of Figs 1-3. The use of shells requires a modification of the pre-screening proce-

dure: clearly, as long as one integral in a shell block is required it will be necessary

to compute the entire block. It is therefore convenient to define test densities (7)

for shells rather than basis functions. Thus

Dj&% - max | C^i CU} \, p e M. v € N (16)
(01

for shells M and N,

Most AO integral evaluation schemes are rather readily vectorized [30]. Integral

evaluation is also a task which is suited to parallel architectures [30]. For the rest

of this section, therefore, we shall assume that the problem of efficient integral

evaluation has been solved and concentrate on the processing of the AO integrals

once they are available.

The nN4 transformation (4) is vectorizable in terms of successive matrix mul-

tiplications in which the innermost loop is of order N. For vector processors such as

the CRAY machines, multiplication of matrices of this order leads to performance

close to the theoretical maximum. For computers that require greater vector lengths

to achieve maximum performance it is possible to write (4) as a set of "vector =

vector + scalar*vector" (SAXPY [31]) operations of length n2 to N~ or even n2N

to N3 [2]. It is also possible to perform the first half-transformation (4a, 6) effi-

ciently on a parallel architecture, by generating and processing subsets of integrals

(such as [//i/|Aa], V A > o and fixed /j > v] on each processor. However, the re-

ordering and subsequent processing of the half-transformed integrals will require

considerable data movement between processors; and the overall efficiency will de-

pend critically on the speed of inter-processor communication [32]. For machines

with a large common memory or solid-state disk this will obviously be much less of

a problem than for polytope architectures, such as hypercubes, with relatively slow

13



data paths between nodes.

The n2N4 scheme (5) is straightforward to vectorize (in terms of SAXPYs)

on the number of operator matrices which can be held in memory simultaneously.

The maximum possible value is |n2, when all J, K+ and K~ operators can be

processed in one pass. For large basis sets the memory -requirements would usually

be prohibitive, and a subrange of operators would be processed in each pass. This

may lead to vector lengths too short for efficient processing. This scheme is very

easy to adapt to parallel architectures: each processor simply generates a subset of

the J1-7, etc. although this requires each processor to generate all the AO integrals

if inter-processor communication is to be avoided. Of course, for multi-processor

architectures with common memory, such as the CRAY X-MP or CRAY 2 the

latter problem does not arise.

It is clear that similar reasoning can be applied to the external exchange con-

tribution discussed in section V. Indeed, some additional steps which arise in this

case, such as (10) and (13), are also readily vectorized. It therefore seems that

processing of integrals along the lines described here can be made very efficient on

most current generation computing machinery.

Finally, it may be useful to give an example of the data storage and recalcula-

tion requirements in a large CI calculation using the schemes suggested here. We

consider a calculation on the molecule Fe(CO)s, similar to the largest calculations

reported by Liithi and co-workers [33], but using a larger basis. Assuming that an

[8s6p4dlf\ basis is used for Fe and a [4s2pld] basis for C and O. there will be 233

AOs (using spherical harmonics) and 39 occupied MOs at the Hartree-Fock level.

If only the Fe 3d and 4s and ligand a lone pair electrons are correlated there will

be 9 MOs correlated, if the ligand TT electrons are included there will be 19. We

assume that 4 million words of central memory are available. For 9 MOs correlated

there will be 126 J!J and Ki:i± operators, and using the n~N4 scheme all could be

computed in a single pass over the integrals, using (5). If density matrices (6) are

formed in advance, the storage for operator matrices is halved and two passes over

the integrals would be required. The final operator matrices would require less than

one million words of disk space, assuming that Czu symmetry is used. Use of the

full DSH symmetry would reduce this even further. If the nN4 scheme (4) is used,

one pass each for J and K operators would be required: this would be equivalent

to recomputing the integrals about six times. Re-sorting of the half- transformed

14



operators could be done in memory. For 19 MOs correlated the number of passes

for the nN4 scheme would not change, however, the n^N4 scheme would require

about six passes over the integrals using (5), or nine using (5) and (6). In either

case some 4 million words of disk space would be needed for the final operators. For

the n2N4 case these calculations would all vectorize with, a vector length greater

than 60, which would be very efficient on machines such as the CRAY 1 or CRAY

X-MP.

In each iteration of the direct CI it is most efficient to generate the contribution

from the external exchange operators first. For 9 MOs correlated there are 81

external exchange operators to be computed, these could be generated in two passes

using (9). For 19 MOs there are 361 operators, these would require five passes. Using

(12) one pass only would be required for either 9 or 19 MOs correlated, but again

this is equivalent to computing the integrals four times. The completed exchange

operators can be used as the first contributions to the vector a, which would be

of length about 350 000 words for 9 MOs correlated, assuming Czv symmetry, or

3 000 000 for 19 MOsfcorrelated. In the latter case it would be necessary to process

the CI coefficients from disk if all of a is to be held in memory. Calculations on this

scale would hardly be possible using a "conventional" disk-based transformation

and direct CI approach.

It is clear that the overall labour in such a calculation, while substantial, is

not unreasonably large for a modern supercomputer, or even a large mainframe. It

is also clear that if the only consideration is to minimize the number of times the

AO integrals are recomputed there is little to choose between the nN4 and n2N4

transformation schemes, at least for calculations of this size. :

VII. Conclusions

The present work is an attempt to outline some novel prospects for large basis

set electronic structure calculations that include electron correlation. In general,

the various approaches suggested are well suited to modern computer architectures

and share the overall philosophy of avoiding or minimizing the disk-based storage

and retrieval of integrals. Only certain MO integrals need be stored: no storage

of AO integrals is required and the method is thus a natural generalization of the

direct SCF method of Almlof and co-workers.
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Fig 1. Loop structure for n2N4 operator matrix generation

Loop on subranges of ij such that all matrices fit in memory

Loop on shells M, stabilizer is M

Loop on shells N (< M), stabilizer is M

Define R as generators for double cosets MGM V G €. 5

Loop on elements R of R generating shells RN

Define U as stabilizer of M.RN

Loop on shells A (< M), stabilizer is £

Loop on shells £ (< A, unless A = M, when £ < N), stabilizer is S

Define S as generators for £G S V G £ §

Loop on elements S of S generating shells SE

Define "V as stabilizer of A.ST

Define T as generators for UG~V V G 6 $

Loop on elements T of T generating T(ASS)

Compute \nRv\T(\Sa)\ V p e M, etc

Accumulate contributions into J ^TX TSo-

K1^ TSo. or whichever skeleton operator

matrices are being generated in this pass

End loop on T

End loop on 5

End loop on E

End loop on A

End loop on R

End loop on N

End loop on M

Symmetrize operator matrices, complete transformation

and write operators from this subrange to disk

End loop on subranges of ij
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Fig 2. Loop structure for nN4 J operator matrix generation

Loop on shells M, stabilizer is M

Loop on shells N (< M), stabilizer is M

Define R as generators for double cosets MGM V G 6 $

Loop on elements R of R, generating shells RN

Define U as stabilizer of M.RN

Loop on shells A, stabilizer is £

Loop on shells E (< A), stabilizer is S

Define S as generators for COS V G € 9

Loop on elements 5 of S. generating shells SS

Define "V as stabilizer of A.SS

Define T as generators for UGM V G € 9

Loop on elements T of T, generating J"(A SE)

Compute {fj,Rv\T(XSa)\ V // 6 M, etc

stored in memory, indexed by //, //. A, A, E. CT, 5 and T
i

End loop on T

End loop on 5

End loop on E

End loop on A

Form skeleton J^ ^for each ij,i >J and /u G M, f £ JV

symmetrize and write to disk

End loop on R

End loop on A;

End loop on M

(Read back, re-sort and transform — loop structure not given)
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Fig 3. Loop structure for nN4 K operator matrix generation

Loop on shells Af, stabilizer is M

Loop on shells N (< M), stabilizer is A/

Define H such that HM V H e H, are distinct left cosets of M

Loop on elements H of H, generating shells HN

Loop on shells A, stabilizer is £

Define R as generators for double cosets MG£ V G £ §

Loop on shells S, stabilizer is 5

Define S as generators for MGS V G G §

Loop on elements /2 of R. generating shells RA

Define U as stabilizer of M.RA.

Loop on elements S of S generating shells 5E

Define V as stabilizer of Ar.SE

Define T as generators for UG'V V G & §

If H 6 T then

Compute [/i.RA|ff(J/SCT)] V ̂  e Af, etc

stored in memory, indexed by ju,z/, A, A, E,cr. J?, 5 and .H"

Endif

End loop on 5

End loop on R

End loop on E

End loop on A

Form skeleton Kl^Hl/hr each ij, i > j and p, t M, v 6 AT

symmetrize and write to disk

End loop on H

End loop on A"

End loop on Af

(Read back, re-sort and transform — loop structure not given)
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Abstract

Full configuration-interaction calculations are reported, and compared to other

methods, for H2O at its equilibrium geometry and at two geometries with the H-

O bonds stretched. Since the percentage of the SCF reference in the FCI wave

function decreases greatly with the bond elongation, the accuracy of techniques

based on a single reference do not compare well with the FCI results. However,

the results from a CASSCF/MRCI treatment are in good agreement with the FCI.

Correlation effects in F compared to Ne are far more similar than for F~ compared

to Ne, despite F~ and Ne being isoelectronic. Since the importance of higher than

double excitations is more important for F~ than F, a very high percentage of

the correlation must be obtained to accurately compute the electron affinity. In a

CASSCF/MRCI treatment the higher than quadruple excitations contribute 0.02

eV to the EA, even for modest basis sets.
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I. Introduction

We have recently compared several different computational procedures to full

configuration-interaction (FCI) calculations for Ne atom [l], O atom and its neg-

ative ion O~ [2], HF and NH2 [3]. Unlike previous FCI calculations [4-5] and

subsequent tests of methods [6-8], double zeta plus polarization (DZP) or larger

basis sets were used. Our recent calculations were made possible by recent the-

oretical [9-10] and technological advances [ll]. The benchmark calculations [1-3]

showed that the quality of such approximations as the Davidson correction [12] or

the coupled-pair functional (CPF) method [13] varied with the basis set and with

the weight of the SCF reference in the CI expansion. While the dependence of the

accuracy of such approximations on the weight of the SCF reference is not unex-

pected, the dependence upon the basis set was a surprise..For example, in Ne atom

the Davidson correction underestimates the importance of quadruples for basis sets

without polarization functions, but overestimates their importance by 20% for a

basis set with two sets of polarization functions. The CPF approach shows the

opposite effect, improving as the basis set is expanded. '

Normally, it is not the absolute accuracy of the methods, but the relative

accuracy across a potential surface, that is more important. The HF and NH2 cal-

culations show that for large geometrical distortions, the SCF reference becomes

sufficiently poor that the above approximations are in general unreliable. Multi-

reference singles and doubles CI (MRSDCI) calculations based upon a complete

active space SCF (CASSCF) [14] wave function give potentials that far better par-

allel the FCI results. The inclusion of the multi-reference analog of the David-

son correction is found to either improve or leave unchanged the accuracy of the

CASSCF/MRCI treatment. "While the calculations on HF and NH2 lead to consid-

erable optimism as to the accuracy of the CASSCF/MRCI approach, calculations

on the electron affinity (EA) of O atom show that even this method has its limi-

tations; a very large CASSCF/MRCI treatment (308 reference configuration state

functions (CSF's) in D2h) is not able to account for all of the differential higher

excitation contributions to the EA.

The previous results have led us to consider H2O, F and F~. H2O has one

more electron than NH2, thus we are able to see if the accuracy of the different



approximations depends upon the number of electrons. The decomposition of the

correlation by excitation level shows F to be more similar to Ne, while F~ is different

from either F or Ne. It is this different character of the correlation which leads to

the problems associated with computing the EA.

II. Method of calculation

The O basis set is the Dunning [15] [4s2pj contraction of the Huzinaga [16J

(9s5p) primitive set augmented with a d polarization function with an exponent

of 1.2. The H basis set is the [2s] contraction of the (4s) primitive set scaled by

1.2 [15; and augmented with a set of p (a=0.8) polarization functions. For the F

and F~ calculations the (9s5p) primitive set is contracted to either [4s2p] following

Dunning [15], or to [5s3p] by freeing the outermost primitive in the contraction.

To adequately describe F~, the diffuse p set optimized by Dunning and Hay'[17] is

added, yielding a final valence basis sets of the form (9s6p)/[4s3p| and (9s6p)/[5s4p].

Since the bases sets are given to a different number of significant figures in references

15 and 17, to avoid confusion we tabulate the basis sets in Table I. A 3d polarization

function is optimized at the FCI level for F~. The optimal value was found to be

1.60. the same as that found by Ahlrichs et al. [18] in the optimization for HF

at the independent electron pair approximation (IEPA). Therefore, when two d

functions are added, the exponents are taken from Ahlrichs [18], a=4.5 and 1.3. In

all calculations the 3s components of the 3d orbitals are deleted.

For HjO we consider the equilibrium geometry (re), as defined in Table II, and

two configurations where the H-O-H angle is unchanged and the O-H bonds are

stretched to 1.5*re and 2*re. At these three geometries we consider several different

levels of treatment. Many correlation treatments are based on a single reference,

and for these the SCF orbitals are used. In order to reduce the dimension of the FCI

expansion, the Is electrons are not correlated in any of the calculations. The first

level of correlation includes single and double excitations from the SCF reference

(SDCI). We use both the Davidson correction [12] (denoted +Q) and the CPF [13]

(an essentially size-consistent reformulation of SDCI) to estimate the importance of

higher excitations. The importance of higher excitations is also treated via a multi-

reference SDCI calculation. These MRCI calculations are based upon a CASSCF



optimization of the orbitals and include all of the CSF's in the CASSCF as refer-

ences. Two different CASSCF calculations are performed. The first correlates the

two O-H bonds; the four bonding electrons are distributed within the two active

ai and two active b2 orbitals. Although this CASSCF gives proper dissociation,

the MRCI calculation shows important configurations (coefficient greater than 0.05

in the MRCI wave function) not included in the reference space. These additional

CSF's involve excitations out of the b! lone pair of oxygen. To account for this

additional important correlation effect, the two bi electrons and two bi orbitals

are added to the CASSCF active space. The MRCI(BIG) calculation based upon

the CASSCF (BIG) orbitals does not show any additional important CSF's. The

importance of the additional CSF's associated with the bi lone pair decreases as

the bond length is increased. As the H atoms donate charge to the oxygen, this

additional correlation reflects some O~ character near re which vanishes as HjO

dissociates. The MRCI(BIG) calculations contain only 31096 CSF's, as compared

to the FCI calculations which contain 6 740 280 CSF's, expanded into 28 233 466

determinants and 113 million intermediate states [9,10] in the Knowles and Handy

FCI procedure.

The calculations for F and F~ proceed along the same lines as for H2O. The Is

electrons are not correlated in any of the calculations. The CASSCF wave functions

have the 2p electrons and the 2p and 2p' orbitals as active. In addition to the

calculations performed for H2O, two additional single-reference procedures are used.

The first includes all single, double and triple excitations (SDT), while the second

includes in addition the quadruple excitations (SDTQ). For the largest basis set,

the SDTQ calculation leads to a CI expansion of 110679 CSF's, which is at about

the limit of our conventional CI program. This is far larger than the 19996 CSF's

in the MRCI expansion, but far smaller than the 6 574 356 CSF's (27 944 852

determinants and 224 million intermediate states) in the FCI wave function.

III. Results and discussion

The total energies of the HsO calculations are summarized in Table II, while

the correlation contributions are decomposed in Table III. The correlation energy,

relative to SCF, varies rapidly with R(O-H), increasing by a factor of 1.71 between re



and 2*re. The single and doubles correlation energy shows a much smaller change,

increasing by a factor of only 1.45. Thus the error in the SDCI calculation is

quite large. (The difference between the FCI potential and those at other levels is

illustrated by shifting the potential curves to bring them into agreement with the

FCI potential at re, see Table IV). The smaller increase in the correlation energy

with r for the SDCI relative to the FCI shows the differential importance of the

higher than double excitations with increasing r. The Davidson correction applied

to the SDCI and the CPF method both show the correct trend of increasing rapidly

with distance. However, the Davidson correction is too small everywhere, with the

error increasing with increasing r. The CPF estimate is also too small at re, but

becomes too large at 2*re- Thus, at each point, the CPF has about the same error

as the Davidson correction, but since the error changes sign, the error in the CPF

between 1.5*re and 2*re is larger.

The CASSCF treatments, when compared to the SCF, show an even larger

change in correlation energy with R(O-H) than does the FCI. This is to be expected,

since the CASSCF correctly dissociates to ground state atoms while the SCF does

not. Since there is more correlation in the molecule than in the atoms, when

compared to the FCI, the CASSCF's show a difference with the FCI with R(O-H)

which in the opposite direction from the SCF. However, the shape of the potential in

the CASSCF calculations is in better agreement with the FCI than either the SCF

or SDCI calculations. The inclusion of more extensive correlation reduces the error

further, but the differential correlation effect is much smaller than that at other

levels (for example E(MRCI)-E(CASSCF) changes by only a.factor 1.26, which

reduces to 1.12 with the larger CASSCF reference). The inclusion of the multi-

reference analog of the Davidson correction leads to an energy lower than that at

the FCI level. This overshoot for the MRCI-l-Q calculations was also found for NH2

[3]. The inclusion of this correction reduces the error in the calculation, but the

error is actually reduced further for the smaller reference space. Thus the increase

in the number of references improves the MRCI results, but the MRCI-i-Q results

do not show the same monotonic improvements with the number of references; this

is also true for NH2 [3j. However, the errors in either of the MRCI+Q calculations

are acceptable, and much smaller than the single reference based approaches.
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The ratio of the total correlation energy for the lAi state of H2O to the 2Bi

state of NHj decreases from 1.27 at re to 1.17 at 2*re. This is to be expected,

considering that I^O has one more electron than NH2. However, in spite of the

increase in the total correlation energy, the accuracy of the MRCI and MRCI+Q

potentials is very similar for H2O and NHj, that is, errors of no more than 1.2

kcal/mole in the potentials relative to re; in fact HoO has a slightly smaller relative1

error. Thus the accuracy of the MRCI approach does not appear to depend on the

number of electrons correlated for systems of this size.

The correlation contributions for F and F~ are decomposed in Table V, and

the results for the EA is summarized in Table VI. The previous Ne atom results are

also summarized in Table V for comparison. The total correlation energy of F~ is

1.09 times larger than for Ne, even though they have the same number of electrons.

For comparison F has only 83% of the correlation energy of Ne. The difference

in correlation energy between Ne and F~ arises from the increased (by about a

factor of two) importance of the triple (measured as E(SDT)-E(SD)), quadruple,
i

and higher than quadruple excitations. This is quite different from F, for which

the higher than double excitations contribution is 85% of that for Ne, that is, the

relative importance of the single and doubles and the higher excitations is about the

same for F and Ne. The greater importance of the higher excitations for F~ than F

makes the determination of the EA, which depends on obtaining all the differential

correlation energy, a difficult task, as compared, say to a potential curve where only

relative accuracy is needed. The importance of higher than double excitations is

illustrated in Table VI: for the smallest basis set used ([4s3pld]) the SCF EA is in

error by 2 eV, which is reduced by 1.37 eV with the inclusion of SD correlation,

but the FCI EA is still larger by 0.21 eV. Higher excitations comprise about 13%

of the correlation contribution to the EA. If the basis set is improved to [5s4p2di,

the contribution of the higher than double excitation increases to 15% of the total

correlation. If the Davidson correction or CPF approach is used to account for the

higher excitations the EA is improved over the SDCI, but is still not equal to the

FCI result. These corrections underestimate the importance of higher excitations

for both systems. It is well known [19] that the most important correlation effect

for F and F~ is the 2p to 2p' excitation. When this is included in the CASSCF



•il In"- -a. . tl

calculation, the EA is considerably improved over the SCF result, giving about 80%

of the difference between SCF and SDCI. Using this CASSCF reference leads to a,

MRCI EA which is better than either the CPF or SDCI+Q treatments, and in

good agreement with the FCI, being only 0.02eV smaller. If the estimate of higher

excitations is included, an energy lower than the FCI result is obtained for both

F and F~. However, this correction may overestimate the higher excitations in an

equivalent manner for both systems, since the results at this level are equal to those

at the FCI level.

At the FCI level, the 2s correlation was found to contribute significantly to the

EA of oxygen [2]. In Table VI. we also report the EA when only the 2p electrons

are correlated. While correlating only the 2p electrons increases the SDCI EA by

0.13 to 0.18 eV relative to correlating both the 2s and 2p electrons, at the FCI level

the EA is increased by only 0.08 to 0.12 eV. The negative contribution to the EA

of the 2s-2s and 2s-2p correlation decreases with the inclusion of higher excitations.

For O/O~, with a very large basis set the 2s contribution actually increases the

EA, but only when higher excitations are included. This is understandable in light

of the factor of two larger contribution from higher excitations in the negative ions.

TV. Conclusions

The MRCI potentials (and MRCI with the multi-reference analog of the David-

son correction) are found to be in excellent agreement with FCI calculations. The

error in the HjO calculations are very similar to that found for NH2. even though

the total correlation energy of HjO is about 1.2 times larger. The contribution of

higher than double and of higher than quadruple excitations is found to be a factor

of two larger for F~ than Ne, whereas the single and doubles correlation energy

differs by only 10%. For F, the single and doubles, and higher than doubles, are the

same percentage of the correlation as in Ne. Since the distribution of the correlation

energy by excitation level is different between F and F~, all of the correlation must

be computed to account for the difference in order to obtain accurate EA.
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Table I. The valence basis sets.

exponent
7817.0
1176.0
273.2
81.17
27.18
3.414
9.532

0.9398
0.2846

H
exponent
19.2384
2.89872

0.653472
0.177552

exponent
9994.79
1506.03
350.269
104.053
34.8432
4.3688

12.2164
1.2078
0.3634

s

coefficient
0.002031
0.015436
0.073771
0.247606
0.611832
0.241205
1.000000
1.000000
1.000000

(4s)/[2sj
coefficient
0.032828
0.231204
0.817226
1.000000

coefficient
0.002017
0.015295
0.073110
0.246420
0.612593
0.242489
1.000000
1.000000
1.000000

O (9sop)/[4s2pj
exponent

35.18
7.904
2.305

0.7171
0.2137

F (9s5p)/[4s2p]
exponent
44.3555
10.0820
2.9959
0.9383
0.2733

P

coefficient
0.019580
0.124200
0.394714
0.627375
1.000000

;

coefficient
0.020868
0.130092
0.396219
0.620368
1.000000
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Table II. Total energies (a.u.) for the H2O calculations.

Calculation

SCF
SDCI
FCI
CPF
SDCI-fQ
CAS
MRCI
MRCI-Q
CAS(BIG)
MRCI(BIG)
MRCI(BIG) + Q

re
-76.040542
-76.243772
-76.256624
-76.252504
-76.254549
-76.094713
-76.251643
-76.257983
-76.129876
-76.254108
-76.257805

geometry0

1.5*re

-75.800494
-76.040984
-76.071405
-76.064365
-76.067003
-75.924781
-76.066885
-76.072741
-75.953141
-76.069363
-76.072943

2*re

-75.582286
-75.876606
-75.952269
-75.956222
-75.942257
-75.823721
-75.948557
-75.952973
-75.839916
-75.950517
-75.953731 '

a The O is located at (0,0,0) and the H nuclear coordinates are: re (±1.494187, 0,
1.156923), 1.5*re (±2.241281, 0, 1.735385), and 2*re (±2.988374, 0, 2.313846).
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Table III. A decomposition of the correlation contributions for water, in a.u.

Calculation

E(SDCI)-E(SCF)
E(FCI)-E(SCF)
E(FCI)-E(SDCI)
E(CPF)-E(SDCI)
E(SDCI-t-Q)-E(SDCI)
E(CAS)-E(SCF)
E(MRCI)-E(CAS)
E(MRCI)-E(SDCI)
E(FCI)-E(MRCI)
E(MRCI+Q)-E(MRCI)
E(FCI)-E(MKCI+Q)
E(CAS(BIG))-E(SCF)
E(MRCI(BIG))-E(CAS(BIG))
E(MRCI(BIG))-E(SDCI)
E(FCI)-E(MRCI(BIG))
E(MRCI(BIG)H-Q)-E(MRCI(BIG))
E(FCI)-E(MRCI(BIG)-Q)

re
0.203230
0.216082
0.012852
0.008732
0.010777
0.054171
0.156930
0.007871
0.004981
0.006340
-0.001359
0.089334
0.124232
0.010336
0.002516
0.003697
-0.001181

geometry
1.5*re
0.240490
0.270911
0.030421
0.023381
0.026019
0.124287
0.142104
0.025901
0.004520
0.005856
-0.001336
0.152647
0.116222
0.028379
0.002042
0.003580
-0.001538

2*re
0.294320
0.369983
0.075663
0.079616
0.065651
0.241435
0.124836
0.071951
0.003712
0.004416
-0.000704
0.257630
0.110601
0.073911
0.001752

i

0.003214
-0.001462
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Table IV. A comparison of the potential curves for water, in a.u. All curves are
shifted in energy to bring the energies at re into agreement with that at the full CI
level. The difference energy between re and the other geometries is compared to"
the FCI potential.

Calculation
SCF
SDCI
CPF
SDCI+Q
CAS
MRCI
MRCI+Q
CAS(BIG)
MRCI(BIG)
MRCI(BIG) + Q

1.5*re-re

-0.05482900
-0.01756900
-0.00292000
-0.00232700
0.01528700
0.00046100

-0.00002300
0.00848400
0.00047400
0.00035700

2*re-re

-0.15390100
-0.06281100
0.00807300

-0.00793700
0.03336300
0.00126900

-0.00065500
0.01439500
0.00076400
0.00028100
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Table V. A comparison of the correlation contributions, in a.u, for F , F and Ne.

Basis
E(SCF)
E(SD)-E(SCF)
E(SDT)-E(SD)
E(SDTQ)-E(SDT)
E(FCI)-E(SDTQ)
E(FCI)-E(SD)
E(SD+Q)-E(SD)
E(CPF)-E(SD)
E(CASSCF)-E(SCFj
EJMRCI)-E(CASSCF)
E(MRCI)-E(SD)
E(MRCI+Q)-E(SD)

Basis
E(SCF)
E(SD)-E(SCF)
E(FCI)-E(SD)
E(CPF)-E(SD)
E(SD+Q)-E(SD)
E(FCI)-E(SCF)
E(CASSCF)-E(SCF)
E(MRCI)-E(SD)
E(MRCHQ)-E(SD)

Basis
E(SD)-E(SCF)
E(SDT)-E(SD)
E(SDTQ)-E(SDT)
E(FCI)-E(SD)
E(FCI)-E(SDTQ)
E(CPF)-E(SD)
E(SD+Q)-E(SD)

F ion
[4s3p] [4s3pld]

-99.442848 -99.442848
0.132219 0.197820
0.001913 0.003241
0.006558 0.008848
0.000486 0.000584
0.008957 0.012673
0.006106 0.009711
0.005043 0.008155

F atom
[4s3pld]

-99.394273
0.147416
0.004931

0.152347

Ne atoma

-

[4s3p2d]
-99.442848

0.220160
0.004297
0.009707
0.000664
0.014668

[4s3p2dj
-99.394273

0.165916
0.006294

0.172210

[5s4p2d]
-99.443696

0.245405
0.006369
0.010480
0.000740
0.017589
0.012071
0.010077
0.107265
0.152776
0.014636
0.01847~3

[5s4p2d]
-99.394684

0.192421,
0.007772
0.004741
0.006344
0.200193
0.061620
0.005684
0.008689

[5s3p2dj
0.235733
0.00.3258
0.005670
0.009131
0.000203
0.005276
0.006823

a Results are taken from Reference 1.
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Table VI. A comparison of the computed EAa for F, in eV.

Basis
SCF
SDCI
FCI
DVD
CPF
CAS
MRCI
MRCI+Q

Basis
SDCI
FCI

[4s3pld]
1.32
2.69
2.90

[4s3pldl
2.82
2.98

2s and 2p correlated
[4s3p2d]

1.32
2.79
3.03

2p correlated
[4s3p2d]

2.97
3.15

[5s4p2d]
1.33
2.78
3.04
2.93
2.92
2.58
3.02
3.04

[5s4p2d]
2.95
3.16

For comparison the experimental value is 3.399 eV, see Reference 20.
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Abstract

Full configuration-interaction (FCI) calculations are performed at selected ge-

ometries for the l£~*~ state of HF and the 2B] and 2Ai states of NHj using both DZ

and DZP gaussian basis sets. Higher excitations become more important when the

bonds are stretched and the SCF reference becomes a poorer zeroth-order descrip-

tion of the wave function. The CASSCF-MRCI procedure gives excellent agreement

with the FCI potentials, especially when corrected with a multi-reference analog of

the Davidson correction.
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I. Introduction

Recent improvements in method? for full configuration-interaction (FCI) cal-

culations [1-2] combined with the extensive memory (>256 million words) and ex-

cellent vector capabilites of the CRAY 2, permit FCI calculation with larger basis

sets than used in previous benchmark calculations [3-4]. Recently, we presented

FCI calculations for the JS state of Ne atom [5] to assess the reliability of methods

such as the Davidson correction [6] and the coupled pair functional (CPF) [7] for

estimating the energy contribution of higher excitations. An important observation

was that the accuracy of both the Davidson correction and the CPF approximation

depended on basis set quality. For example, the CPF accounted for only 40% of

the quadruples contribution for a DZ basis set, but 60% of the quadruples contri-

bution for a DZP basis set. However, the total contribution of higher excitations

was relatively small in Ne, which is well described by an SCF reference. To investi-

gate further the accuracy of approximate methods of including higher excitations,

we consider herein the l'E* state of the isoelectronic HF molecule and the 2Bi and
2Ai states of NHz using both DZ and DZP gaussian basis sets. To investigate struc-

tures where the SCF is not a good zeroth-order description we consider geometries

away from equilibrium.

II. Methods

For the nitrogen and fluorine atoms we used the Dunning 4s2p contraction [8] of

the Huzinaga 9s5p primitive basis sets [9]. For hydrogen we used the 2s contraction

[8] of the Huzinaga 4s primitive set scaled by a factor of 1.2. When polarization

functions are included, the exponents are: F(3d=1.6), N(3d=0.9), and H(2p=0.8).

The 3s component of the 3d functions is deleted in all calculations.

For HF the geometries considered are re (1.733 bohr), 1.5 times re (2.5995

bohr), and twice re (3.466 bohr). For NH2 we consider re, 1.5 times re and twice re,

as well as a fourth point with the H-H bond distance at the Hj equilibrium value

and the N-H distance at about twice the re for NH2- The NHj molecule is placed

in the xz plane, with the N at the origin. The coordinates actually used for NH2

are given explicitly in Table I.

In this study we have used both an SCF and a complete-active-space self-



consistent field (CASSCF) wave function [10] as the zeroth-order reference. The

SCF reference is used for the single-reference singles plus doubles configuration-

interaction calculation, SDCI, SDCI + triples (SDT), SDT -f quadruples (SDTQ),

the coupled pair functional (CPF) wave function and the Chong-Langhoff modifica-

tion [11] of CPF (MCPF). The SCF reference is also used for the FCI calculations,

which are found to be invariant to the orbital basis to within a few microhartrees.

The slight differences arise because the two core electrons on nitrogen and fluorine

are not correlated in any calculations since this restriction dramatically reduces the

length of the FCI expansion. For the ^^ state of HF the SCF reference config-

uration is l<T22a23cr2l7r4, and for the 2Bi state of NH2 it is \a\2a\Zallb\\bl at

all geometries. For the 2Ai state of NH2 the three geometries stretching the two

N-H bonds correspond to the Z&\ -*lbi excitation relative to the 2Bj configuration

whereas the fourth point denoted N- • -H-H corresponds to the Ibj —>4aj excitation.

The multi-reference CI calculations (MRCI) are based on CASSCF wave func-

tions. For HF, the hydrogen Is and fluorine 2pa orbitals and electrons are active.

The MRCI calculations consist of single and doubles from the two non-vanishing

configurations in the CASSCF wave function. For both states of NH2, the nitrogen

2s and 2p orbitals and electrons are active, as well as the two hydrogen Is orbitals

and electrons. The first set of MRCI calculations using these CASSCF optimized

orbitals include all references arising from all distributions of the nitrogen 2p and

hydrogen Is electrons among the active orbitals; hence the 2s electrons are cor-

related, but the 2s orbital is doubly occupied in all .reference configurations. In

the second set of MRCI calculations, denoted MRCI(BIG). all configurations in

the CASSCF are included as references. For the SDCI wave functions we also in-

clude the Davidson estimate for unlinked quadruple excitations, denoted +Q. For

the MRCI calculations we use a multi-reference analogue of this correction, namely

A £5 jo (l-^^Cjj), where A so is the difference between the energy of the reference

CSF's and the MRCI, and the CR are the coefficients of the reference configurations

in the MRCI wave function.

III. Results and discussion.

The total energies at the SCF and FCI level are summarized in Table I for



both HF and NH2- The molecular geometries used for the 2Bj and 2Ai states of

NH2 are given explicitly as well.

In Table II we have summarized the CI results for HF using both the DZ and

DZP basis sets at three geometries (re,1.5*re,2*re). It is interesting that although

the SDCI-SCF energy difference is considerably larger for the DZP basis, this dif-

ference increases more slowly with increasing R than for the DZ basis. The ratio of

this difference at 2*re compared to re is 1.21 with the DZP basis and 1.47 with the

DZ basis. Hence, the addition of the polarization function substantially improves

the description of the distortions taking place as the bond is broken, and less of

this effect shows up as electronic correlation. For the DZP basis the energy contri-

bution of the triples, quadruples and higher than quadruple excitations all increase

at about the same rate as the bond is broken (by about a factor of three between

2*re and re). The energy contribution of quadruple excitations at 2*re using the

DZP basis is about 0.5 eV, which is about 40 times greater than the combined

contribution of quintuple through octuple excitations.

The results in Table II show that the three configuration CASSCF calculation

followed by all single and double excitations from the two configurations (a2 and

cr*2) that have non-vanishing coefficients in the CASSCF, provide a much more

uniform description of the potential. Also, the multi-reference quadruples correction

is much more uniform as a function of bond distance.

The next three rows for each basis set in Table II give a measure of the re-

liability of CPF methods and the Davidson correction for estimating the energy

contribution of higher excitations. Note that at re these corrections all underesti-

mate the quadruples correction, but as the bond length is increased the corrections

become a substantial overestimate. In fact the SDCI+Q energies at 2*re are well

below the FCI energies. Note also that this overcorrection of SDCI+Q is much less

severe for the DZP basis than the DZ basis.

Since it is a rather stringent requirement of any method to reproduce the FCI

total energies, a better criterion for judging a method is how well the resulting

potentials parallel the FCI potential. In Table HI we report for HF the energy

difference between re and 1.5*re and 2*re at different levels of theory. That is,

all potentials are normalized at rt so that the energy differences in Table III reflect



directly deviations with the FCI potential. The SCF description becomes quite poor

as the bond is stretched, although somewhat less so for the DZP basis. The CASSCF

description is better, but overcorrect's because it overestimates the contribution'

of the dissociative configuration. The SDCI is a substantial improvement over

SCF, but still retains some of the bias of the SCF. The SDCI results are improved

by the Davidson correction, especially for the DZP basis, but overestimates the

effect of higher excitations. The coupled pair methods are generally more reliable

than SDCI-hQ, and the MCPF results for the DZP basis are in particularly good

agreement with the FCI results. Note that the results at the SDT level are still

inadequate since the energy contribution of quadruple excitations is both large and

rapidly increasing as the bond is broken. At the SDTQ level the error at 2*re in

the DZP basis is less than 0.02 eV. However, the SDTQ configuration expansions

are quite lengthy (48,963 CSFs-for the DZP basis), and hence do not represent

an optimal approach of including higher excitations. This is illustrated by the

results of the much smaller MRCI expansions (1015 CSFs), which are of comparable

quality. Most impressive, however, are the MRCI-l-Q results which agree with the

FCI potential to well within chemical accuracy in every case. The comparison of

the MRCI and MRCI+Q results in Table III provide strong support for the validity

of the multi-reference analog of the Davidson correction.

In addition to the dissociation of HF, where one chemical bond is being broken,

we consider for the 2Bi and 2Ai states of NH2 the simultaneous extension of both

N-H bonds. The energy difference between the FCI and various levels of theory

using both the DZ and DZP gaussian basis sets are summarized for the 2Bi and
2Aj states in Tables IV and V, respectively. Four geometries are considered -

equilibrium, both bonds stretched to 1.5 and 2.0 times re, and an N- • -H-H structure

with the H-H bond length that of the ground state of Hj and the N-H bond at about

2*re. Explicit coordinates are given in Table I. As for the HF molecule, the SCF

reference becomes an increasingly poorer zeroth-order description of the system as

the bond length is increased, particularly for the 2Bi ground state. Although the

SDCI accounts for a substantial portion of this difference, the difference with the

FCI and hence the contribution of higher excitations increases rapidly as the bonds

are stretched. In contrast, the difference between the FCI and CASSCF is more



constant and actually decreases slightly with increasing r; hence the errors in the

MRCI treatment are generally less at 2*re than at re. In general, the differences

with the FCI are further reduced wheti the multi-reference quadruples correction is

added, although in every case MRCI+Q is below the FCI energy. The coupled pair

functional methods and the SDCI+Q, which are based on the SCF reference, have

larger differences with the FCI, and these differences increase as the SCF reference

becomes a poorer representation of the wave function. These approximate methods

for incorporating higher excitations are substantially closer to the FCI energies

than are the SDCI energies. Generally they give energies that lie above the FCI for

the Te and 1.5*re geometries, but often overshoot (particularly CPF) the energy at

2*r.. The MCPF method, which uses somewhat more complex but more realistic

renormalization denominators, tends to overshoot less and thus has a larger domain

of applicability.

The theoretical potentials at various levels of theory are compared to the FCI

potentials for the 2Bi and 2Ai states in Tables VI and VII, respectively. These

results again illustrate how poor the SCF potential becomes as r increases. The

CASSCF overestimates the importance of the dissociative configurations and errs in

the opposite direction, although it is better than the SDCI potential, which retains

much of the bias of the SCF. However, the Davidson correction helps substantially

and the SDCI-i-Q potential is approaching chemical accuracy. The MRCI potentials

are substantially better. Again, the multi-reference Davidson correction generally

gives further improvements in the potentials.

The energy between the minimum in the 2Bj and 2Aj potentials of NHj (Te)

is given with respect to the FCI result at each level of correlation treatment for

the DZ and DZP basis sets in Table VIII. Since the SCF reference provides nearly

equivalent descriptions of both states, the differences with the FCI results are not

very large. Apart from the SCF and CASSCF results, the Te are within 0.05 eV

of the FCI result. Interestingly the multi-reference Davidson correction actually

makes the agreement worse, although the errors are in every case small.

IV. Conclusions

The CASSCF MRCI calculations are in excellent agreement with the FCI cal-

6



culations, especially after including a correction for quadruple excitations. This is

not surprising considering that the CASSCF potential parallels the FCI potential

better than does the SDCI potential. The inclusion of an estimate of higher excita-

tions, either by the Davidson correction or by CPF works reasonably well, except

for NH2 at 2*re, where the SCF reference is much poorer. The MCPF method

gives an improved description of the 2*re point, but does not significantly alter the

results at the other points, where the SCF is a better reference.

The accuracy of the different approximations are found to vary somewhat with

the quality of the basis set used. These results should supply a better test of

methods than the previous FCI calculations, most of which were restricted to a DZ

basis set.

Acknowledgements

The authors are grateful for early access to the CRAY 2 and helpful advice

from the NAS project.



REFERENCES

1. P. E. M. Siegbahn, Chem. Phys. Lett., 109, 417 (1984).
2. P. J. Knowles and N. C. Handy, Chem. Phys. Lett., Ill, 315 (1984).
3. P. Saxe, H. F. Schaefer, and N. C. Handy, Chem. Phys. Lett., 79, 202

(1981).
4. R. J. Harrison and N. C. Handy, Chem. Phys. Lett., 96, 386 (1983).
5. C. W. Bauschlicher, S. R. Langhoff, P. R. Taylor, and H. Partridge, submitted

to Chem. Phys. Lett.
6. S. R. Langhoff and E. R. Davidson, Int. J. Quant. Chem. , 8, 61 (1974).
7. R. Ahlrichs, P. Scharf and C. Ehrhardt, J. Chem. Phys., 82, 890 (1985).
8. T. H. Dunning, J. Chem. Phys. , 53, 2823 (1970).
9. S. Huzinaga, J. Chem. Phys. , 42, 1293 (1965).

10. P. E. M. Siegbahn. A. Heiberg, B. O. Roos, and B. Levy, Physica Scripta,
21. 323 (1980); B. 6. Roos, P. R. Taylor, P. E. M. Siegbahn, Chem. Phys,
48, 157 (1980); P. E. M. Siegbahn, J. Almlof, A. Heiberg, and B. O. Roos, J.
Chem. Phys., 74, 2381 (1981).

11. D. P. Chong, and S. R. Langhoff, submitted to J. Chem. Phys.

8



Table I. Total energies (a.u.) for the full CI(SCF) calculations.

re

1.5*re

2*re

re

1.5*re

2*re

N+H2

re

1.5*re

2*re

N+H2

DZ DZP
-100.147204 (-100.021973) -100.250969(-100.047087)
-100.079441 (-99.924625) -100.160393 (-99.933229)
-100.008676(-99.815206) -100.081108J-99.817572)

DZ
-55.646028 (-55.543825)
-55.534809(-55.373780)
-55.449427(-55.185112)
-55.472746(-55.38314l)

DZ
-55.603404 (-55.505424)
-55.449846(-55.311550)
-55.355766(-55.155112)
-55.4621 19J-55.364954)

NH2
 2Bj

DZP
-55.742620(-55.573008)
-55.605209(-55.387413)
-55.505524(-55.188719)
-55.544560(-55.388944)

NH2
 2Ai

DZP
-55.688762(-55.523192)

-55.517614(-55.32145)
-55.415133(-55.157046)
-55.536081(-55.370425)

geometry0

1.733
2.5995
3.466

geometry6 (x,z)
1.5186,1.1993

2.2779,1.79895
3.0372,2.3986
0.7006,3.8062

geo(x,z)
1J972,0.5840
2.6958,0.8760
3.5944,1.1680
0.7006,3.8062

a The H-F bond length in bohr.
b The x,z corridinates, where the molecule is placed in the xz plane with the N at
0,0,0, and the H atoms at x,0,z, and -x,0,z.



Table II. Energy differences (au) between different levels of correlation treatment
for the 1Z+ state of HF.

A. DZ BASIS

SDCI-SCF
SDT-SDCI
SDTQ-SDT
FCI-SDTQ

MRCI-CASSCF
MRCI+Q-MRCI

CPF-SDCI
SDCI+Q-SDCI
MCPF-SCCI

-0.11951300
-0.00106500
-0.00444400
-0.00020900

-0.09672100
-0.00251900

-0.00302000
-0.00391000
-0.00320500

1.5*re

-0.14499600
-0.00189500
-0.00756900
-0.00035600

-0.09518000
-0.00273100

-0.00637900
-0.00914200
-0.00712900

2*re

-0.17531200
-0.00491100
-0.01261700
-0.00063000

-0.08502900
-0.00228300

-0.01430100
-0.02510300
-0.01713700

B. DZP BASIS

SDCI-SCF
SDT-SDCI
SDTQ-SDT
FCI-SDTQ

MRCI-CASSCF
MRCI+Q-MRCI

CPF-SDCI
SDCI+Q-SDCI
MCPF-SDCI

-0.19450300
-0.00236800
-0.00672900
-0.00028200

-0.21229400
-0.00375300
-0.01062300
-0.00049400

-0.23596100
-0.00842200
-0.01823500
-0.00091800

-0.17409400
-0.00607600

-0.00613000
-0.00778300
-0.00640100

-0.16719100
-0.00615600

-0.01063900
-0.01345900
-0.01139400

-0.15418300
-0.00528000

-0.02227100
-0.02886600
-0.02466700
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Table III. Energy differences (au) between the FC1 and different levels of correlation
treatment for the 1E+ state of HF.

DZ Basis

Method

SCF
SDCI
SDCI-hQ
CPF
MCPF
SDT
SDTQ
CASSCF
MRCI
MRCI+Q

SCF
SDCI
SDCI+Q
CPF
MCPF
SDT
SDTQ
CASSCF
MRCI
MRCI+Q

1.5*re-re

0.029585
0.004102

-0.001130
0.000743
0.000178
0.003272
0.000147

-0.001289
, 0.000252
0.000040

DZP basis set

0.023282
0.005491

-0.000185
0.000982
0.000498
0.004106
0.000212

-0.006811
0.000092
0.000012

2*re-re

0.068239
0.012440
-0.008753
0.001159
-0.001492
0.008594
0.000421
-0.011865
-0.000173
0.000063

0.059654
0.018196
-0.002887
0.002055
-0.000070
0.012142
0.000636
-0.020667
-0.000756
0.000040
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Table IV. Energy differences (au) between the FCI and other levels of correlation
treatment for the 2Bi state of NH2-C

Method

SCF
SDCI
MCPF
CPF'6

CPF
SDCI+Q
CASSCF
MRCI
MRCI(BIG)
MRCI+Q
MRCI(BIG)+Q

SCF
SDCI
MCPF
CPF'fc

CPF
SDCI+Q
CASSCF
MRCI
MRCI(BIG)
MRCI+Q
MRCI(BIG)+Q

Te

0.102203
0.004609
0.001403
0.001489
0.001460
0.000447
0.051976
0.001172
0,001116

-0.000154
-0.000055

0.169612
0.009003
0.002365
0.002509
0.002480
0.000572
0.121869
0.003446
0.003202

-0.001271
-0.001239

i

DZ Basis

1.5*re

0.161029
0.016439
0.002836
0.002595
0.001868

-0.000890
0.045721
0.000714
0.000644

-0.000492
-0.000355

DZP Basis

0.217796
0.023472
0.004967
0.004707
0.004190
0.001584
0.107084
0.002279
0.001940

-0.002047
- -0.001980

2*re

0.264315
0.055109
0.009711

-0.005823
-0.023677
-0.004487
0.039039
0.000542
0.000509

-0.000264
-0.000219

0.316805
0.069157
0.015670
0.003116

-0.009212
0.009026
0.094456
0.001501
0.001338

-0.001735
-0.001741

N- • -H2

0.08960518
0.00621524
0.00032756
0.00082237
0.00078711
0.00075817
0.04644218
0.00114810
0.00098085

-0.00029528
-0.00007293

0.15561649
0.01329291
0.00200373
0.00178015
0.00169289
0.00244093
0.11400831
0.00337559
0.00292420

-0.00162566
-0.00146699

Negative entry indicates the energy is lower than the FCI.
6 The Chong-Langhoff implemention of CPF [11], which for open shell systems
differs from that of Ahlrichs et al. (7l.

12
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Table V. Energy differences (au) between the FCI and other levels of correlation
treatment for the *A\ state of NH2.°

Method

SCF
SDCI
MCPF
CPF'fr

CPF
SDCI+Q
CASSCF
MRCI
MRCI(BIG)
MRCI+Q
MRCI(BIG)+Q

SCF
SDCJ
MCPF
CPF/fc

CPF
SDCI+Q
CASSCF
MRCI
MRCI(BIG)
MRCI+Q
MRCI(BIG)+Q

re

0.097980
0.004336
0.001456
0.001532
0.001519
0.000616
0.058332
0.001251
0.001009

-0.001631
-0.000516

0.165570
0.008482
0.002290
0.002431
0.002413
0.000618
0.127696
0.003929
0.003228

-0.003106
. -0.001809

DZ Basis

1.5*re

0.138296
0.012032
0.003365
0.003347
0.003375
0.000893
0.058208
0.001572
0.001114'

-0.002968
-0.000610

DZP Basis

0.196167
0.018097
0.004900
0.004970
0.005022
0.002403
0.118050
0.003935
0.002836

-0.005010
-0.002219

2*re

0.200654
0.032600

-0.000088
-0.018390
-0.014174
-0.004761
0.043838
0.000811

, 0.000735
-0.000326
-0.000238

0.258087
0.048673
0.005865

-0.015832
-0.016182
0.006886
0.102355
0.002267
0.001803

-0.001670
-0.001918

N-.-H 2

0.09716511
0.01312506
0.00118610
0.00297603
0.00289667
0.00542632
0.04449573
0.00090852
0.00087816

-0.00005773
-0.00007346

0.16565612
0.02229559
0.00550461
0.00424528
0.00412679
0.00922251
0.11461881
0.00316584
0.00278544

-0.00117540
-0.00157857

MMegative entry indicates the energy is lower than the FCI.
6 The Chong-Langhoff implemention of CPF [11], which for open shell systems
differs from that of Ahlrichs et al. J7j .
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Table VI. Energy differences (au) between the FCI and different levels of correlation
treatment for the 2Bi state of NH2-

DZ Basis

Method

SCF
SDCI
MCPF
cpF/a

CPF
SDCI-fQ
CASSCF
MRCI
MRCI(BIG)
MRCI+Q
MRCI(BIG)+Q

SCF
SDCI
MCPF
CPF"3

CPF
SDCI+Q
CASSCF
MRCI
MRCI(BIG)
MRCI+Q
MRCI(BIG)+Q

1.5*re-re 2*re-re

DZP Basis

0.04818368
0.01446939
0.00260180
0.00219774
0.00171006
0.00101197

-0.01478520
-3.00116640
-0.00126231
-0.00077575
-0.00074106

0.14719287
0.06015405
0.01330525
0.00060737

-0.01169217
0.00845456

-0.02741322
-0.00194520
-0.00186384
-0.00046378
-0.00050181

N-.-H2-re

0.05882552
0.01183033
0.00143290
0.00110573
0.00040776
-0.00133646
-0.00625527
-0.00045866
-0.00047153
-0.00033712
-0.00029993

0.16211179
0.05050009
0.00830835
-0.00731251
-0.02513683
-0.00493371
-0.01293716
-0.00062996
-0.00060722
-0.00010991
-0.00016385

-0.01259813
0.00160673
-0.00107530
-0.00066686
-0.00067285
0.00031155
-0.00553361
-0.00002432
-0.00013494
-0.00014079
-0.00001821

-0.01399544
0.00428998

-0.00036150
-0.00072896
-0.00078678
0.00186908

-0.00786048
-0.00007021
-0.00027800
-0.00035453
-0.00022757

c The Chong-Langhoff implemention of CPF [11], which for open shell systems
differs from that of Ahlrichs et al. [7].
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Table VII. Energy differences (au) between the FCI and different levels of correlation
treatment for the 2Aj state of NHj.

DZ Basis

Method

SCF
SDCI
MCPF
CPF'Q

CPF
SDCI+Q
CASSCF
MRCI
MRCI(BIG)
MRCI-rQ
MRCI(BIG)+Q

SCF
SDCI
MCPF
CPF'Q

CPF
SDCI+Q
CASSCF
MRCI
MRCI(BIG)
MRCI+Q
MRCI(BIG)+Q

1.5*re-re 2*re-re

0.04031524
0.00769570
0.00190896
0.00181481
0.00185597
0.00027680
rO.00012341
0.00032109
0.00010478
-0.00133786
-0.00009474

0.10267371
0.02826419
-0.00154370
-0.01992232
-0.01569280
-0.00537750
-0.01449361
-0.00043952
-0.00027385
0.00130498
0.00027806

-0.00081533
0.00878918
-0.00026974
0.00144354
0.00137788
0.00480983
-0.01383588
-0.00034228
-0.00013077
0.00157288
0.00044224

DZP Basis

0.03059766
0.00961563
0.00261021
0.00253934
0.00260866
0.00178540

-0.00964579
0.00000590

-0.00039130
-0.00190407
-0.00041014

0.09251729
0.04019126
0.00357473

-0.01826289
-0.01859546
0.00626841

-0.02534059
-0.00166202
-0.00142503
0.00143620

-0.00010893

0.00008646
0.01381379
0.00321466
0.00181431
0.00171334
0.00860488

-0.01307699
-0.00076318
-0,00044209
0.00193059
0.00023031

a The Chong-Langhoff implemention of CPF [llj, which for open shell systems
differs from that of Ahlrichs et al. [7].
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Table VIII. Te's relative to the full CL

Method
SCF
SDCI
MCPF
Cpp/a

CPF
SDCI+Q
CASSCF
MRCI
MRCI(BIG)
MRCI+Q
MRCI(BIG)+Q
FCI*1

DZ
-0.004223
-0.000273
0.000053
0.000043
0.000059
0.000170
0.006356
0.000078

-0.000107
-0.001476
:0.000461
0.042624

DZP
-0.004042
-0.000521
-0.000075
-0.000078
-0.000066
0.000046
0.005827
0.000483
0.000025

-0.001835
-0.000569
0.053858

The Chong-Langhoff implemention of CPF [11], which for open shell systems
differs from that of Ahlrichs et al. [7].
6 Full CI Te-
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Abstract

The electron affinity of oxygen is computed to be 1.287 eV, using 2p electron

full CI wave functions expanded in a 6s5p3d2f Slater-type orbital basis. The best

CASSCF-MRCI result including only 2p correlation is 1.263 eV. However, inclusion

of 2s intrashell and 2s2p intershell correlation increases the computed EA to 1.290

at the CASSCF-MRCI level. At the full CI basis set limit, the 2s contribution to the

electron affinity is estimated to be as large as 0.1 eV. This study clearly establishes

the synergistic effect between the higher excitations and basis set completeness on

the electron affinity when the 2s electrons are correlated.

* Mailing address: NASA Ames Research Center, Moffett Field, CA 94035
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I. Introduction

The calculation of the electron affinity (EA) of the oxygen atom has proved to

be a challenging task [1-5]. A noteworthy study of atomic correlation and its effects

on calculated electron affinities is the work of Sasaki and Yoshimine [l] (SY). Using

extremely large Slater basis sets, they were able to estimate the SDCI basis limit

for the electron affinity of oxygen as 1.041 eV, which is substantially less than the

experimental value [6] of 1.462 eV. This work indicated that earlier pair-correlation

calculations [7-10] obtained electron affinities in fortuitously good agreement with

experiment owing to a cancellation between atomic basis set incompleteness and the

excess energy from neglected pair-pair interaction energies. By including selected

triple and quadruple excitations, SY obtained an electron affinity of 1.17 eV includ-

ing only L shell correlation. SY also showed that correlation of the Is electrons

makes a very small contribution to the EA.

The study of Botch and Dunning [2] (BD), demonstrates that the differen-

tial higher excitation contribution to the EA is more efficiently accounted for, by

an MCSCF multi-reference CI procedure, MRCI, than by using selected triple and

quadruple excitations from an SCF reference. Their MCSCF calculation was re-

stricted to double excitations out of the 2p into 2p' correlating orbitals, and yielded

an EA of 0.46 eV, about 1 eV improvement over the Hartree-Fock limit of-0.54 eV.

When all single and double excitations from this MCSCF reference were included,

they obtained an electron affinity of 1.09 eV. This value is less than that of SY

owing to the much smaller basis set employed, but indicates a considerably larger

contribution from higher excitations. The most important correlation contribution

was observed to arise from 2p—>2p' excitations.

The first systematic study of the EA of oxygen correlating only the 2p electrons

was given by Bauschlicher [3]. Using a large (6s6p3d2f) Slater-type orbital (STO)

basis that is within about 0.05 eV of the SDCI basis set limit value, a CASSCF

calculation with the 2p and 2p' orbitals in the active space was performed. This

CASSCF yields an EA of 0.59 eV which is similar to the EA from the MCSCF

calculation of Botch and Dunning [2]. More extensive correlation was included via

a second-order CI including only the 2p electrons. The second-order CI yields an



EA of 1.26 eV, which is larger than that of SY, but still in error by 0.2 eV. When

the MCSCF and MRCI reference spaces were expanded to include the 3d shell, the

EA increased to only 1.28 eV.

Recently, Feller and Davidson [4] (FD) calculated the EA of O using an

MCSCF-MRCI approach. Unlike Bauschlicher [3j, FD explicitly included the 2s

in both the MCSCF and multi-reference CI calculations. The gaussian type orbital

(GTO) basis used by FD is within 0.02 eV of the SY SDCI limit EA. The results

of FD parallel those of Bauschlicher, and their best EA is 1.29 eV, or 1.32 eV if an

estimate of higher excitations is made. This work suggests that 2s does not have a

differential correlation contribution to the EA, and therefore either the differential

contribution of higher excitations to the EA converges very slowly with basis set,

or else none of the MCSCF-MRCI studies to date have properly accounted for this

2s contribution. This latter possibility seems unlikely considering the stability of

the EA to further improvements in the treatment, e.g. including the 3d shell in the

active space. However, Raghavachari [5] finds with a comparable basis set that a

coupled cluster doubles (CCD) calculation with a correction for single and triple

excitations yields an EA of 1.41 or 1.36 eV, depending upon the approximation used

for the single and triple excitations.

It has recently become possible to perform very large full CI calculations which

can be analyzed to separate the effect of higher excitations from basis set incomplete-

ness. This is a result of: (i) Siegbahn's realization [11] that the full CI procedure

can be vectorized in terms of matrix multiplies, (ii) Knowles and Bandy's sugges-

tion [12] that the Siegbahn approach be changed to determinants from configuration

state functions, thus eliminating the IO bottleneck associated with the formula file,

and (iii) the delivery of the CRAY 2 which allows very large CI expansions because

of its extremely large memory.

In this work we report full CI calculations of the EA of O atom, and compare

these results to those obtained using an MCSCF-MRCI approach. One of the goals

of the present study is to decompose the remaining error in the EA into effects of ba-

sis set incompleteness, higher excitations not accounted for by the CASSCF-MRCI

treatment, and to contributions from correlating the 2s electrons. In addition, we

report on our initial attempts to compute the EA using Green's function Monte



Carlo methods [13]. This approach seems particularly relevant to the EA affinity

problem since it is potentially capable of accounting for all of the electronic correla-

tion energy. However, technical problems make such calculations difficult at present

for systems with this many electrons.

Section II contains a brief description of the methods and basis sets employed

in this study. Section III contains an analysis of the full CI and CASSCF-MRCI

calculations. Section IV contains a description of the Monte Carlo calculations.

The conclusions are given in Section V .

II. Methods

In our theoretical calculations we employ a 6s5p valence Slater-type orbital

set obtained by combining six s functions optimized for O, and five p functions

optimized for O~ [14j. The total SCF energy of the 6s5p basis is only 0.0001

Hartree above the numerical Hartree Fock (NHF) energy; this can be compared to,

for example, an uncontracted 12s7p GTO basis set [15] which has an error six times

larger. However, both O and O~ are affected similarly by basis set limitations, so

the EA is at the HF limit.

To the 6s5p valence basis we construct a small basis by adding one 3d function

with an exponent of 2.66 and a larger 3d2f polarization set with exponents of 4.0,

2.8284 and 2.0 for the three 3d functions and exponents of 4.06 and 2.87 for the

two 4f functions. The exponents were optimized by Bauschlicher [3], under an even-

tempered constraint, by minimizing the mean of the Q and O~ energies at the SDCI

level, with only the 2p electrons correlated. However, the optimal exponents are

not significantly different for O and O~ and hence little bias is expected for the

larger polarization set.

Several zeroth-order references are used. The simplest is the SCF, in which

symmetry and equivalence restrictions are imposed. For the MCSCF reference

spaces, we use the CASSCF approach. In the smaller CASSCF only the 2p elec-

trons are active, and are distributed in the 2p and 2p' orbitals; this CASSCF wave

function is denoted CASSCF(2p). Since the question of the correlation effect of the

O 2s is of interest, a second CASSCF wave function is also used, CASSCF(2s2p),



which includes the 2s as active and adds a 2s' correlating orbital.

In order to analyze the various correlation effects, more extensive correlation is.

added to the zeroth-order references in several ways. To separate the contribution
X

to the EA from the 2s and 2p electrons, only the 2p electrons are correlated in some

calculations, denoted CI(2p), while in others both the 2s and 2p are correlated,

denoted CI(2s2p). For the SCF reference, only single reference SDCI calculations, or

full CI calculations, FCI, are performed; the calculations are denoted CI(SCF,2s2p),

for a single reference CI calculation (using SCF orbitals) which correlated the 2s

and 2p electrons, or FCI(2p) for a full CI calculation which correlates only the 2p

electrons. For the single reference CI calculations, we use the Davidson correction

[16] (denoted +Q) to estimate the importance of quadruple excitations. For the

CASSCF optimized orbitals, all calculations consist of single and double excitations

from all of the configurations in the CASSCF calculation. For these calculations

the notation indicates the origin of the orbitals and which electrons are correlated.

Thus CI(CASSCF(2p),2s2p) denotes a calculation using orbitals optimized in a

CASSCF(2p) calculation, and which includes single and double excitations out of

the 2s and 2p orbitals in all configurations in the CASSCF(2p) wave function,

while CI(CASSCF(2p),2p) involves the same orbitals and same references, but the

2s electrons are not correlated.

III. Results and discussion

The improvement of the electron affinity with enhancements of the polarization

basis at the CI(SCF,2p) level is shown in Table I. These results using the 6s6p

valence basis [3] are essentially unchanged if the valence basis is replaced by the

6s5p set used this study. The three d functions contribute a substantial 0.338 eV at

this level, whereas the two f functions contribute 0.055 eV. For the 6s6p3d2f STO

basis, the CI(SCF,2s2p) EA is 0.993eV (0.991 eV, for the 6s5p3d2f STO basis). This

is about 0.05 eV less than the Sasaki and Yoshimine [l] CI(SCF,2s2p) EA of 1.041

eV, which should be near the basis set limit at this level. Feller and Davidson find

a very similar CI(SCF,2s2p) EA using a 4d2f GTO basis. They also add a single g

function, which is not optimized; this increases the CI(SCF,2s2p) EA by 0.037 eV,

but increases the CI(CASSCF(2s2p),2s2p) EA by only 0.019 eV. The optimization



[3] of the d and f polarization function shows that the O energy is more sensitive to

the choice of exponents than is O~. Thus any error in the choice of the polarization

function exponents tends to lead to too large an EA. Therefore we conclude that

the 0.037 eV g function contribution is too large, and that 0.02 eV is probably a

better estimate, with the saturation of the d and f spaces being of about the same

importance.

The EA at various levels of correlation treatment using the 6s5pld and 6s5p3d2f

STO bases are summarized in Table II. Consider first the 6s5pld basis set results

where we have been able to perform the FCI(2s2p) calculation. The difference of
/

0.13 eV between the CI(SCF,2p) and CI(SCF,2s2p) electron affinities suggests a

substantial reduction from 2s correlation. However, the reduction from including

2s correlation is only 0.085 eV if a correction is added for quadruple excitations. At

the full CI level this reduction is only 0.027 eV. Clearly the importance of including

the 2s changes markedly with increasing excitation level.

Since certain classes of higher excitation can be included efficiently using the

MCSCF-MRCI approach, we next considered calculations from a CASSCF refer-

ence. When only 2p correlation is included, the CI(CASSCF(2p),2p) EA is only

0.011 eV less than the FCI value. If the 2s correlation is included for this choice

of reference space, CI(CASSCF(2p),2s2p), the EA of 1.025eV is 0.034 eV less than

the FCI value. If the same orbitals are used, but the CI reference space is in-

creased to include all distributions of the 2s and 2p electrons in the 2s, 2p and

2p' orbitals, the EA is increased by only 0.003 eV. Thus to improve the computed

EA, more orbitals must be included in the CASSCF orbital space and CI reference

space. While the inclusion of the 2s electrons and the 2s' orbital in the CASSCF

improves the CASSCF(2s2p) EA by 0.157 eV, relative to the CASSCF(2p) EA, the

CI(CASSCF(2s2p),2s2p) EA is only 0.011 eV larger than the CI(CASSCF(2p),2s2p)

EA, and is thus still in error by 0.023 eV.

The importance of higher excitations is considerably enhanced for the larger

6s5p3d2f basis. Including 2s correlation in the SCF reference SDCI decreases the EA

by only 0.073 eV, and by only 0.017 eV when the Davidson correction for unlinked

quadruples is added. The same coupling of basis set effects and the importance of

higher excitations is illustrated by the difference between the CI(SCF,2p) and the



FCI(2p) electron affinities, which is 0.223 eV for the 6s5p3d2f STO basis and 0.183

eV for the 6s5pld STO basis. The difference between the CI(CASSCF(2p),2p)

and FCI(2p) EA also increases with the basis set improvement, being 0.024 eV for

the larger basis compared to 0.011 eV for the Id basis set. The difficulty of fully

accounting for the effect of higher excitations is much more pronounced when the 2s

electrons are correlated. For example, Feller and Davidson using a comparable basis

obtain essentially the same CI(SCF,2s2p) EA, but their selected-reference MRCI

calculation, based on CASSCF(2s2p) orbitals and correlating 2s and 2p, obtains

1.229 eV, compared to our CI(CASSCF(2s2p),2s2p) result of 1.290 eV. Thus the

FD selection of references compared to our use of all CASSCF configurations as CI

references has a substantial effect, even for a coefficient selection threshold of 0.01.

Note that the CI(CASSCF(2s2p),2s2p) calculation for O~ in the 6s5p3d2f basis

consists of all single and double excitations from 588 CSF's yielding a total 545,952

CSF's in DI/I symmetry. The motivation for reference selection is clearly evident,

but leads to ambiguities for further improvements in the CASSCF treatment. For

example, inclusion of the 3d orbital in the CASSCF treatment makes some selection

of the CI references mandatory to keep the computations tractable. The relatively

small affect of this extension is difficult to assess considering the effect of reducing

the CI reference space.

The positive contribution of the 2s correlation at the CASSCF-MRCI level

using the 6sop3d2f basis is consistent with the trends observed «t the CI(SCF)

and CI(SCF)-fQ levels as the basis set is improved. The"contribution of the 2s

correlation increases but is more difficult to account for as the basis set size is in-

creased. At present, we are unable to perform the FCI(2s2p) calculations for the

6s5p3d2f basis set, since this involves an expansion consisting of 488 million de-

terminants and about 4 billion intermediate states. However, the FCI(2s2p) EA

can be estimated assuming that the difference CI(CASSCF(2p),2s2p)-FCI(2s2p)

or CI(CASSCF(2s2p),2s2p)-FCI(2s2p) increases at the same rate as the dif-

ference CI(CASSCF(2p),2p)-FCI(2p) with basis set improvements. From the

CI(CASSCF(2p),2s2p) calculation, we estimate the EA to be 1.35 eV, and from

the CI(CASSCF(2s2p),2s2p) calculations we estimate 1.34 eV. These are probably

underestimates, because the importance of higher excitations increases faster for
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the FCI(2s2p) wave function than for FCI(2p) wave function. Thus, the FCI(2s2p)

EA in the 6s5p3d2f could easily be as large as 1.36 eV. The remaining error of 0.1

eV can be rationalized in terms of the synergistic effect of basis set incompleteness

and the contribution of higher excitations. That is, a basis set incompleteness error

of 0.05 eV at the SDCI level becomes twice as large at the FCI(2s2p) level. These

arguments also imply a relatively large positive differential contribution of the 2s

correlation at the FCI level of 0.07 eV in the 6s5p3d2f basis, and quite possibly 0.1

eV in a complete one-particle basis.

Our theoretical results are reasonably consistent with a recent study of the

EA of oxygen using Moller-Plesset perturbation theory by Raghavachari [5]. In

particular, the value of 1.36 eV obtained by performing coupled-cluster calculations

including all double substitutions, augmented by an estimate of the contributions

of single and triple substitutions from the CCD wave function, CCD+ST(CCD),

is in good agreement with our FCI(2s2p) result. When the ST contribution is

estimated from fourth-order Moller Plesset theory, CCD+ST(MP4), the value of

1.41 eV is probably too large. It would, however, be of considerable interest to, see

a more exact comparison of CCD calculations and the full CI results. This would

resolve whether the excitations neglected in CCD make only a small contribution

or whether the good agreement results from a cancellation of errors.

IV. Green's Function Monte Carlo

Although our full CI calculations give insight into what the computational re-

quirements are for computing an electron affinity of oxygen with chemical accuracy,

we presently cannot perform these calculations. Since the EA and the differential

correlation energy (of 2.0 eV), are not expected to converge more rapidly than the

total valence correlation energy, a calculation accounting for over 95% of the valence

correlation energy is required to produce an EA to within 0.1 eV. Therefore, meth-

ods such as released node Green's function Monte Carlo [13], that can in principle

account for all of the correlation energy, would seem to be especially appropriate

for this problem.

Using a vectorized implementation of Green's function Monte Carlo on the

Cyber-205, we describe here our initial attempts to compute the EA of oxygen

8



in collaboration with David Ceperley. The trial wavefunction used to guide the

random walk consisted of a Slater determinant times a pair correlation function

(Slater-Jastrow). The trial function only affects the statistical error of the energy,

and not its limiting value. The atomic orbitals were determined from an SCF

calculation using a 4s3p STO basis set. The EA computed at the fixed node level

is 1.137±0.063 eV. The nodal release procedure [17] employed, however, did not

converge. The calculation was still far from convergence (especially for oxygen)

after 42 generations [13,17]. It is impractical to continue the calculation further

as the expectation values would become increasingly noisy and the total number

of walks grows geometrically. This indicates that either a substantially better trial

function is required, that is, the nodes need to be more accurately positioned by

the trial function so that the relaxation to the correct nodes occurs more quickly,

or that a more efficient nodal release procedure is required. We conclude that it is

presently not feasible to compute an accurate EA for a system as heavy as oxygen

using released node Green's function Monte Carlo. We present this problem as a

challenge to future developments of the method.
i

Recently Barnett, Reynolds and Lester [18] reported a calculation of the EA of

fluorine using fixed-node Monte Carlo. They obtained over 90% of the correlation for

both the neutral and the anion, and an electron affinity of 3.45±0.11 eV in excellent

agreement with experiment. A single determinant, constructed with a double-zeta

basis set, multiplied by electron-electron and electron-nuclear Jastrow functions

were used as importance functions. These results contradict our experience with

oxygen and the concept that methods which obtain 90% of the total correlation

energy, such as CASSCF-MRCI, should yield 90% of the differential correlation

contribution to the EA, which should lead to an error of about 0.2 eV for the EA

of both O and F. Perhaps their trial function fortuitously places the nodes better

for F~, or some bias is introduced by the extrapolation to a zero time step.

V. Conclusions.

The CASSCF-MRCI and full CI calculations reported here show that higher

excitations become more important as the one-particle basis set is improved. At

high levels of correlation treatment, correlation of the 2s electrons makes a positive



contribution to the electron affinity of oxygen. In fact, we estimate that at the

full CI basis set limit the 2s contribution could be as large as 0.1 eV. Reduction

of the CASSCF reference space from which the MRCI is carried out is found to

significantly affect the electron affinity, even for a selection threshold of 0.01 on the

coefficients. Our attempts to compute a quantitative electron affinity for oxygen

using both fixed-node and released-node Monte Carlo was not very successful. It

is hoped that future developments in the released node procedure will significantly

improve the applicability of Monte Carlo methods to systems as heavy as oxygen.

10
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Table I. The computed EA as a function of the addition of polarization functions,
for the CI(SCF,2p) level, in eV, taken from Reference 3.

Basis EA
6s6p 0.676
Id 0.912
2d 0.996
3d 1.014
3dlf 1.047
3d2f 1.069

NHF -0.54
EXP 1.462a

a Reference 6.
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Table II. Summary of computed EA's, in eV.

Calculation EA
valence basis

NHF -0.54
SCF 6s5p -0.54

6s5pld
CI(SCF,2p) 0.903
CI(SCF,2p)+Q 1.042
CI(CASSCF(2p),2p) 1.075
FCI(2p) 1.086
CI(SCF,2s2p) 0.771
CI(SCF,2s2p)-fQ 0.956
CI(CASSCF(2p),2s2p) 1.025°
CI(CASSCF(2s2p),2s2p) 1.036
FCI(2s2p) 1.059

6s5p3d2f
CI(SCF,2p) 1.064
CI(SCF,2p)+Q 1.217
CI(CASSCF(2p),2p) 1.2636

FCI(2p) 1.287
CI(SCF,2s2p) 0.991
CI(SCF,2s2p)+Q 1.200
CI(CASSCF(2p),2s2p) 1.277
CI(CASSCF(2s2p),2s2p) - - 1.290

EXP 1.462C

a If the CI calculations are modified to include single and double excitations from all
possible distributions of the 2s and 2p electrons among the 2s, 2p and 2p' orbitals
the EA is increased to 1.028eV.
6 If the MCSCF and MRCI are expanded to include the 3d orbital as active, the
EA is increased by 0.017eV.
c Reference 6.
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Full CI calculations are performed for Ne atom using Gaussian basis sets of up to triple-zeta plus double polarization
quality. The total valence correlation energy through double, triple, quadruple and octuple excitations is compared for eight
different basis sets. These results are expected to be an important benchmark for calibrating methods for estimating the
importance of, higher excitations.

1. Introduction

In a configuration-interaction (CI) calculation, the
electronic correlation energy is obtained through a
double basis set expansion [1 ]. The one-particle mo-
lecular orbitals are first expanded in an atomic basis
set, and the w-particle basis set is then expanded in
determinants (or a spin and space symmetry adapted
linear combination of determinants, namely configu-
ration state functions, CSFs). Although one can ob-
tain the one-particle basis limit for uncorrelated self-
consistent-field, SCF, wavefunctions.it is impossible
to reach the basis set limit for full configuration-
interaction, FCI, wavefunctions. Presently, the most
common approach for including electron correlation
is to include all single and double (or perturbation
theory selected) excitations from a zeroth-order space
consisting of the most important configurations (see

1 Mailing address: NASA Ames Research Center, Moffett
Field, CA 94035, USA.
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refs. [1,2], and references therein). For such wave-
functions, it is now possible to use very large one-par-
ticle basis sets. Thus, the calculations are limited in
accuracy primarily by the truncation of higher exci-
tations from the n-particle space. Various methods
have been proposed to estimate the importance of
higher excitations both on the energy and on proper-
ties [3-5].

The factorial increase in the number of CSFs with
excitation level has limited CI calculations which ac-
count explicitly for higher than double excitations to
small one-particle basis sets. Of particular significance
are the FCI calculations of Handy and co-workers
[6,7]. These calculations have been useful in calibrat-
ing the effect of higher excitations, but the small atom-
ic basis sets employed have resulted in rather small to-
tal correlation energies. However, with the advent of
super computers such as the CRAY 2, with is combi-
nation of large memory and vectorized matrix multi-
ply capabilities, it is possible by exploiting recent de-
velopments in the FCI methodology to consider FCI

0 009-2614/86/S 03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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calculations in larger basis sets. The first such develop-
ment was Siegbahn's realization [8] that the FCI could
be vectorized in terms of matrix multiplies if the two-
electron coupling coefficients are expanded as prod-
ucts of one-electron matrix elements. Further, Knowles
and Handy showed [9] that of the FCI wavefunction
is expanded in determinants instead of CSFs, matrix
elements can be easily constructed as needed (with in-
creased memory requirements), thereby avoiding a for-
mula tape and greatly decreasing the input/output
(I/O) operations. This formulation of the FCI prob-
lem is ideal for the CRAY 2 which has extensive mem-
ory and a matrix multiply performance in excess of
the CRAY XMP. Thus by using an implementation of
the Knowles and Handy full CI procedure on the
Numerical Aerodynamic Simulation (NAS) Project
CRAY 2, we have performed benchmark FCI calcula-
tions on the Ne atom using Gaussian basis sets of up
to triple-zeta plus double polarization quality corre-

lating the eight valence electrons. The resulting corre-
lation energy is more than twice that of dduble-zeta
basis sets used in previous full CI calibration calcula-
tions. For comparison we have performed convention-
al CI calculations incorporating up through quadruple
excitations to assess the relative importance of differ-
ent excitation levels.

2. Methods

Three valence basis sets are used in this work. The
first two use the Huzinaga (9s5p) primitive set [10],
contracted to [4s2p] and [5s3p] following Dunning
[11]. The third basis is a [6s4p] contraction of van
Duijneveldt's (1 Is7p) primitive basis set [12]. Since
these calculations are intended for calibration, the
basis sets are given explicitly in table 1. To these va-
lence basis sets, one and two sets of d functions are

Table 1
The GTO basis sets a)

Function

9s5p/4s2p b)

1
2
3
4
5
6
7
8
9

s

12100.0000(0.001200)
1821.0000(0.009092)
432.8000(0.041305)
132.5000(0.137867)
43.7700(0.362433)

5.1270(0.130035)
14.9100(1.000000)

1.4910(1.000000)
0.4468(1.000000)

P

56.4500(0.020875)
12.9200(0.130032)

3.8650(0.395679)
1.2030(0.621450)
0.3444(1.000000)

Ils6p/6s4p

1
2
3
4
5
6
7

9
10
11

47479.00000(0.000219)
7066.93000(0.001708)
1603.00000(0.008936)
450.72400(0.036608)
146.13900(0".! 18542)
52.42280(0.285128)
20.26510(1.000000)
8.14482(1.000000)
2.41510(1.000000)
0.92900(1.000000)
0.33687(1.000000)

155.15100(0.003157)
36.45440(0.023920)
11.42280(0.098494)
4.11803(0.251086)
1.55464(1.000000)
0.57919(1.000000)
0.20612(1.000000)

a) The total SCF energies aie [4s2p] = -128.522354, [5s3p] =-128.524013, and [6s4p] = -128.543823 haitiee.
b) The 5s3p contraction is obtained by uncontracting s primitive number 6 and p primitive number 4.
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added. The exponents for the d functions are taken
from Ahlrichs et al. [13]; for the one d basis we used
a = 2.15, and for the 2d basis we used a = 4.5 and
1.3. The 3s component of the d functions is deleted
in all calculations.

The orbitals are optimized at the SCF level for the
1S state of Ne atom in D2n symmetry. The Is orbital
is frozen in all correlated wavefunctions. To estimate
the importance of different excitation levels, conven-
tional CI calculations are performed on the Cyber-
205 that include all CSFs through doubles (SD),
through triples (SDT) and through quadruples
(SDTQ). Recently, Ahlrichs and co-workers [5] have
proposed the coupled pair functional (CPF) method
to account for the importance of higher excitations,
and have reported [14,15] impressive results for se-
lected molecules containing first-row atoms. Hence,
we also include for comparison the CPF results as
well as the results of the frequently used Davidson
correction [3] for unlinked quadruple excitations.

We compute the importance of a given excitation
level from the difference between it and the next
lower level. For example, the importance of triples
is computed as the difference between CI(SDT) and
CI(SD). We do not decompose the difference between
the CI(SDTQ) and the CI(FCI), thus the quintuple
through octuple excitations are combined.

3. Results and discussion

The breakdown of the correlation contribution by

excitation level is summarized for the eight Gaussian
basis sets in table 2. Since the HF reference is a good
zeroth-order description of the ground state of Ne
atom, the correlation energy is dominated by the
double excitations, which account for over 96% of
the correlation energy. The contribution from the
triple excitations is significant varying from 45% to
60% of the quadruples contribution. The fractional
contribution from five-fold and higher excitations is
very small and tends to decrease with increasing basis
set quality. For example, the contribution of higher
than double excitations (3.7—3.8% of the total cor-
relation energy) is nearly identical for the [4s2p] and
[5s3p2d] basis set, but the percent contribution from
five-fold and higher excitations for the larger basis
(0.08%) is only about half that of the [4s2p] basis.

The correlation energies obtained at various exci-
tation levels are summarized for the Gaussian basis
sets in table 3. This table again illustrates how close
is the energy through quadruples to the full CI ener-
gy. Table 3 also compares the quadruples contribu-
tion to the correlation energy obtained using the
coupled pair functional (CPF) approach and the
Davidson correction for unlinked quadruple excita-
tions. The CPF approach accounts for only about
40% of the contribution from higher than double ex-
citations for the [4s2p] basis set. This underestima-
tion arises in part from the fact that the CPF approach
does not account for the sizable contribution from
triple excitations and also does not account fully for
the quadruple excitations. In contrast, the Davidson
correction is larger, accounting for about 90% of the

Table 2
Comparison of percent correlation energy contribution by excitation level

Basis

singles + doubles
triples
quadruples
quintuples -octuples

[4s2p] [5s3p]

[5s3pld] [6s4pld]

[6s4p]

[4s2p2d]

[4s2pld]

singles + doubles
triples
quadruples
quintuples-octuples

96.22
1.36
2.25
0.17

96.25
1.31
2.34
0.10

96.07
1.41
2.41
0.10

96.68
1.05
2.15
0.11

[5s3p2d]

96.60
1.03
2.30 .
0.07

96.41
1.12
2.38
0.08

96.46
1.25
2.18
0.11

96.27
1.33
2.32
0.08
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Table 3
Comparison of correlation energies and methods of estimating higher excitations

Basis [4s2p] [5s3p] [6s4p]

[5s3pld] [6s4pld] [4s2p2d]

a) Davidson's estimate of higher excitations, ref. [3].

[4s2pld]

£(SD)
£(SD) - £(SCF)
£(SDT) - £(SD)
£(SDTQ) - £XSD)
£(FCI) - £"(SD)

£(SDTQ) - tf(SDT)
E(CPF) - £(SD)
(̂DVD) a) - £-(SD)

-129.621884
0.099530
0.001406
0.003735
0.003907

0.002329
0.001617
0.002114

-128.658764
0.134751
0.001836
0.005112
0.005247

0.003276
0.002157
0.002808

-128.682712
0.138889
0.002041
0.005537
0.005687

0.003496
0.002400
0.003101

-128.696487
0.174133
0.001898
0.005779
0.005975

0.003881
0.003539
0.004675

[5s3p2d]

£XSD)
E(SD) - £XSCF)
F(SDT) - £(SD)
£•(50X0) - £XSD)
£XFC1) - £(SD)

£"(SDTQ) - £XSDT)
£-(CPF) - £(SD)
£-(DVD) - £(SD)

-128.735002
0.210989
0.002242
0.007266
0.007429

0.005024
0.004329
0.005606

-128.759855
0.216032
0.002518
0.007850
0.008034

0.005332
0.004670
0.006004

-128.719125
0.196771
0.002557
0.006996
0.007219

0.004402
0.004402
0.005728

-128.759746
0.235733
0.003258
0.008928
0.009131

0.005270
0.005276
0.006823

quadruples contribution for the [4s2p] basis. For the
larger basis sets including polarization functions, this
picture changes somewhat. The CPF now accounts
for about 60% of the correlation from higher than
double excitations, since it now accounts for the dom-
inant portion of the correlation contribution from
quadruple excitations. Also, for the larger basis sets
the Davidson correction considerably overestimates
the contribution from quadruple excitations.

The largest basis set considered in this study,
[5s3p2d], accounts for about 75% of the valence-
shell correlation energy. The difficulty in extending
the FCI technique to still larger basis sets is illustrated
by the following numbers. For the [5s3p2d] basis in
D2h symmetry, there are 462 CSFs through double
excitations, 6706 CSFs through triple excitations,
62234 CSFs through quadruple excitations, and
2360757 CSFs through octuple excitations. In addi-
tion, 2360757 CSFs result in 9805897 determinants
and 78411025 "intermediate states" [7,8], and the
addition of a single f basis function would increase
this to about 20 million CSFs. The 2.36 million SCF
calculation presently takes about 22.8 min per itera-
tion on the CRAY 2. The present rate limiting step

is matrix multiply (MXM) which is currently running
at more than 250 Mflops. Recently Calahan and co-
workers [16] have implemented an unrolled matrix
multiply which has achieved 385 Mflops on our sys-
tem, thus we expect improved performance in the
future.

4. Conclusions

Full CI calculations have been performed for *S
Ne atom using Gaussian basis sets of up to triple-zeta
plus double polarization quality. These calculations
should supplement existing full CI benchmark calcu-
lations in that they account for a significantly larger
amount of correlation energy. Presently we are per-
forming additional full CI calculations on such sys-
tems as H2O, HF, 0 and O~ using the NAS CRAY 2;
this should supply further insight into the magnitude
and nature of higher excitations.
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