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Abstract

The increasing rate at which improvements in processing capacity outstrip
improvements in input/output performance of large computers has led to recent at-
tempts to bypass generation of a disk-based integral file. The "direct" SCF method

of Almlof and co-workers represents a very successful implementation of this ap-
proach. -The present work is concerned with the extension of this general approach
to CI and MCSCF calculations. After a discussion of the particular types of MO
integrals for which — at least for most current generation machines — disk-based

storage seems unavoidable, it is shown how all the necessary integrals can be ob-
tained as matrix elements of Coulomb and exchange operators that can be calcu-
lated using a direct approach. Computational implementations of such a scheme
are discussed.

* Mailing address: NASA Ames Research Center, Moffett Field, CA 94035



I. Introduction

One of the most interesting recent developments in computational quantum

chemistry is the "direct SCF" approach of Almlof. Faegri and Korsell (AFK) [l].

Recognizing that in some circumstances it may not be feasible to generate a disk

file of two-electron integrals (or supermatrix elements) to be used repeatedly in

subsequent SCF iterations, AFK suggested that the two-electron integrals be re-

calculated in each SCF iteration. That is, the Fock matrix contributions from

each batch of integrals are computed and then each batch is discarded. There are

two distinct sets of circumstances where this strategy should prove advantageous.

Where computations are performed using an "in-house" minicomputer it will often

be the case that the available disk storage is inadequate for large basis sets (150

.- 200 CGT.Os. say), or that the performance of the input/output (IO) system is

too low for the integral file to be processed in an acceptable real time. Alterna-

tively, where computations are being done on a supercomputer (or even a large

conventional mainframe computer), the available disk system capacity and/or per-

formance may not be adequate for the size of basis set (300 or more CGTOs) for

which the integral generation time would be acceptable. (Even the arrival of large

primary memories, such as the 268 million words available on the CRAY 2, does

not provide a complete solution to the problem of storing the integrals). The direct

SCF method has proved its worth in both sets of circumstances: basis sets of over

300 CGTOs having been handled on NORD 500 and VAX 11/780 minicomputers

and over 500 CGTOs on an IBM 3033 [l]. Of course, AFK's implementation of the

direct SCF method incorporates a number of factors designed to improve overall

performance. The full symmetry of the nuclear framework is used to minimize the

number of distinct two-electron integrals which might have to be calculated, while

density matrix pre-screening techniques .are .used to avoid calculation of integrals

which contribute negligibly to the Fock matrix [1,2].

While it is very desirable to have a method of this type, there are, of course,

many chemical problems for which correlation effects play an important role. Conse-

quently, it seems appropriate to explore schemes whereby a similar general approach

— that is, recalculating integrals when they are required — could be taken for CI

and MCSCF methods. This work presents an approach in which it is assumed that

some integrals are required so frequently that it would be inefficient to recompute



them repeatedly, while other integrals can be recomputed as required. Clearly, there

is an operational difference between this approach and the philosophy behind direct

SCF, as in the latter it is assumed that all integrals are in the same class as far as

frequency of use is concerned.*

II. MO Integrals in Direct MR-CI(SD).

The various types of MO integrals appearing in single and double excitation

direct CI calculations have been discussed in detail by Siegbahn [3], Ahlrichs [4] and

Saunders and van Lenthe [5]. These treatments cover not only the cases of one or

several reference configurations, but also the case where the reference configuration

is "internally contracted" [4.6-8]. It is clear from these treatments that it is desirable

to have the integrals [ t j j f c / j , [z'yjAra], [z./|a6] and [zajy6] (where i,j... denote MOs

occupied in at least one reference configuration, and a,fe... the remaining MOs;

charge density notation has been used for the integrals) available in the MO basis:

these integrals contribute to many different terms in different ways. If Coulomb

operator matrices JtJ'. and exchange operator matrices Kt;± are defined via the

matrix elements

(1)

= \ ip \ j q\ + [ iq\ jp\ (2)

= \ ip\ jq] - \ iq \ jp] (3)

for p. q... arbitrary MOs. the above required integrals are all included in J1-7,

and K I J ~, i > j.

* A note on terminology may be appropriate here. The expression "direct CI" has an

accepted and widely understood meaning: it refers to a CI calculation in which the

Hamiltonian matrix is never computed explicitly and stored. It is not unreasonable

to use the term "direct SCF" for an SCF calculations in which the AO integral list

is not stored. The expression "direct MCSCF" is closer in meaning to direct CI:

the Hessian is not computed explicitly. It is difficult to combine these meanings to

cover the sort of method proposed in this work, and while this author has previously

used the term "direct direct CI" this is both ugly and confusing. No convenient

alternative readily presents itself, however.



The remaining possible integral types. [ta|6c] and ja6jcrf] , are not required in the

MO basis for direct CI calculations [4,5]. Their contribution to the residual vector

a — He can be written in terms of AO integrals for a suitable renormalization of c

[4,5,8]. This approach is discussed further in section V below.

It appears, therefore, that if a direct CI scheme is used for optimization of an

MR-CI(SD) wave function, the integrals which must be computed (and stored) in

the MO basis are just the 3l] and K t J ± for correlated MOs i > j. It should be noted

that while the term "CI" has been used here, all of the above remarks apply also to

methods based on the coupled-pair many-electron theory of Cizek [9]. This includes

both coupled-cluster methods and approximate CEPA-type schemes [10-13].

III. MO integrals in MCSCF calculations.

The question of which integral types need to be transformed into the MO basis

has been investigated in some detail by Almlof and Taylor [2]. Their conclusion is

that it is generally necessary to have matrix elements of Jtu and Ktu:t in the MO

basis: here t and u denote partially occupied (active) MOs in the MCSCF wave

function. The availability of operators Jz;, K1-731, 3lt and ~K l i± (here i,j... denote

doubly occupied (inactive) MOs) in the MO basis allows a very simple formulation of

the MCSCF orbital optimization problem (see e.g. refs 14 and 15), but in a "direct"

MCSCF formulation [14] it is always possible to rewrite the contributions of these

operators in terms of the AO integrals [2.16]. Elements of Jtu and K tu± are needed

for the CI step (or, in a full second-order treatment, the CI sub-block of the Hessian

and the CI gradient term) and for some Cl-orbital rotation coupling terms, and most

of these contributions are awkward to reformulate in terms of AO integrals. In this

way, each cycle of the MCSCF optimization requires construction of Jtu and K iu±

once, followed by contraction of a supermatrix with quantities similar to density

matrices. This contraction must be performed in every micro-iteration through the

MCSCF linear equation system if a full second-order optimization is performed —

for first-order schemes [15,17,18] intermediate Fock-type operator matrices can be

constructed with one such contraction step and then re-used within the given cycle.

Full details are given in ref 18.

For a second-order MCSCF scheme with the minimum number of integrals

stored on disk, therefore, it will be necessary to recompute the AO integrals in every



micro-iteration of every cycle. In individual cases it may be preferable to construct

ji] K1-7*, Jlt and Kz i± once in each cycle, and then to process all the integrals in

the MO basis: this would depend on the balance between the transformation labour

to obtain these operators (and how many there are) and the integral evaluation time.

For large extended systems it may be that sparseness in the integral list combined

with pre-screening of density matrices might make the completely direct MCSCF

approach favourable. Dynamic adjustment of the number of micro-iterations used

in a given cycle (solving the linear equations less accurately when far from overall

convergence) will also improve performance. In any event, for the purposes of the

present discussion it is clear that the problem of generating MO integrals for use in

an MCSCF calculation is equivalent to that of a CFcalculation: Jand K^ operators

over certain occupied MOs must be available.

IV. Construction of operator matrices.

Where the AO integral list is available, and disk capacity or performance is

adequate, the most efficient route to the required J and K^ matrices is via a limited

four-index transformation [4,5] (see also ref 19 and refs therein), performed as the

four quarter-transformations

[iv ACT] = 2 \ p , i / \ \ o \ C '^i (4a)

\\o\Cvj (46)

\ij\pa] = [u|ACT]CAp (4c)
X

~[ij\pq] = ^[ij\pa}Caq (4d)

for the element Jy . Here ^, ^, A and a denote AOs and C is the matrix of MO

coefficients. The most time-consuming of the four steps is (4a), which behaves as

nN4 operations for n active or correlated MOs and N AOs; (46 — d) behave as

n^N3. Similar behaviour is obtained for calculation of K1^ provided that the AO

integrals are sorted differently before the transformation.

A less efficient (in terms of floating-point operations) procedure essentially in-

volves combining the first two quarter-transformations into a single step, generating,



say,
" " ' \ f i - C ' • (^\j(~'Atl-><7.7 \&)

and then transforming fj, and u to the MO basis. Defining "density matrices" DIJ

via

D*i = C -C (6)

allows (5) to be viewed as contraction of integrals with a density matrix, analogous

to Fock matrix construction in an SCF calculation. (5) behaves as n27V4. that is,

some n times worse than (4). However, a scalar implementation of (5) requires no

sorting of the AO integrals, and there is no need to expand the integral list beyond

the normal canonical indexing // > v, A > o and (/xt/) > (Aa).

Consider now an approach in which AO integrals are computed, used in some

transformation process and then discarded, without being written to disk and re-

read. If the n2N4 process defined by (5) is used, it will be possible to hold simul-

taneously 2L/N(N + 1) operator arrays J or K± in L words of memory. As there

are some In2 operators in toto to be constructed, it will be necessary to generate

the integrals 3n2N2/4L times. For 200 AOs. 20 correlated or active MOs and 4

million words of memory some 3 passes would be required, however, a 50% increase

in n or TV results in a factor of 2 increase in the number of passes, as would a 50%

reduction in the memory available. The n~ and N2 scaling in the number of passes

is clearly a considerable disadvantage of the n2JV4 approach.

On the other hand, by defining a "test density" as

(7)
[*'/]

where the notation [ij] denotes all MO pairs whose operators are being processed in

the current pass, an effective pre-screening technique can be implemented to decide

whether a particular [/^i/jAtr] need be calculated. (This process is readily extended

to the case of calculating AO integrals in shells, as discussed below and in refs 1

and 2). Clearly, as n or TV increases, the number of operators generated in each

pass decreases. It may be expected that, in turn, the sparsity of J)test will increase

(certainly Dtes/ cannot become less sparse) which will decrease the number of AO

integrals to be calculated in each pass. This phenomenon will tend to offset the

effect of the n2 and TV2 scaling discussed above, and will play an important role

when localized MOs are used.



Completion of the transformation of the Ju. etc, is also simple in the case of

the n?N4 approach. Each operator matrix, once constructed in the AO basis, can

be transformed to the MO basis and then written to disk directly. No additional

sorting is required and the final operator matrices are in exactly the form required

for "matrix-formulated" direct CI [4,5,20]. Typical loop structures for constructing

various operators are discussed in section VI below.

In an implementation of the nN4 scheme different procedures must be followed

for the J and K cases. For J operators, it is necessary to compute blocks of integrals

[/zi/|Acr], for all /i > v and for as many \o(\ > a) pairs as will fit in L words of

memory. It is then possible to carry out the first two quarter-transformations (4a, 6)

for all ij (i > j) pairs. The resultant [0|Acr] must then be written to disk, so that

once all of the [0|A<r] are available they can be re-sorted to AO J matrices for the

final half-transformation. Note that in the AO integral generation it is not possible

to restrict consideration to the case (/if) > (^&} (the normal canonical ordering):

effectively, the integrals must be computed twice. For K~ integral blocks [/zi/|Acrj,

with all /zA and for as many va(y > a] as can be held in memory, are transformed

to [iV|jcr] ± [zcr|jV] for all i > j. Again, these half-transformed integrals must be

re-sorted for the final transformation. Clearly, this latter ordering of [/xflAcr] is

different from the J case and the n2N4 scheme. Indeed, it not only differs from the

conventional ordering used in integral programs, but it also involves some redundant

recomputation of integrals because of the need to have all yu.A pairs, not just //. > A.

Essentially, the AO integrals must be computed four times. There are thus not only

disk and IO overheads associated with the nN4 scheme, but also additional CPU

costs occasioned by recomputation of integrals. It will depend on the individual case

whether these additional overheads offset the much more .favourable floating-point

behaviour of the transformation step relative to the n'N4 scheme. It should be

noted that the disk space (and IO required) behave as n2A r2, which is usually very

much less than the N4 requirements for the initial sorting of a disk-based integral list

for a conventional transformation. A disadvantage of the suggested implementation

of the nN4 procedure is that it is not possible to make as much use of pre-screening

as in the n'2N4 case. This is because the first half-transformation is used to produce

[ij|Acr] for all ij from [//z/|Aa] for all [iv: the effective "test density" analogous to (6)

would involve all ij pairs and would thus be as dense as the worst possible case for

the n2N4 scheme. It is quite conceivable that in some cases, such as large extended
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organic systems, the n2N4 approach with its effective pre-screening would be the

method of choice, while for relatively compact systems of heavier atoms, such as

polynuclear transition metal complexes, the nN4 approach would be preferable.

V. External Exchange Operators.

As was noted above, it has been pointed out by several authors [4.5.8] that the

direct CI contribution of the MO integrals [a6|cz] and [ab cd\ can be evaluated in

the AO basis using the operator matrices Kp with elements

K?b = (a \K p \b) = £ £(H#P ^}C^Cvbt (8)
Ai v

where

(M|#>) = ££[MAMV£, -.(9)
\ v

with

. p <? ,

The "CI coefficient" array c is obtained as follows. For doubly-excited CSFs which

differ only in virtual MO occupation (i.e. all have the same virtual MO spin-

coupling and the same (Ne — 2)-electron occupied MO part P (for Ne electrons

correlated)) the various CI coefficients cap are collected into the array Cp which is

then renormalized to give cp according to refs [4.5]. We then have

Q .

where Bia^d is a two-electron coupling coefficient and CQ is the CI coefficient of a

singly-excited CSF.

Clearly, the construction of Kp in the AO basis using (8 — 11) parallels the

construction of the Kt;? operators via the n2JV4 scheme outlined above in section

IV. Indeed, by explicitly recognizing that the two virtual MOs can be either singlet

or triplet coupled it is possible to proceed via Kp± operators obtained from sums

and differences of integrals as in eqns (2) and (3). Pre-screening via a test density

matrix can be used to reduce the number of AO integrals which must be calculated,

offsetting in part the n2N4 dependence of the Kp generation. However, the exter-

nal exchange operator construction must be performed in each CI iteration, which



(when the time taken to re-evaluate the integrals is included) is likely to lead to its

dominating the timing for calculations with large basis sets.

It is also possible to consider an alternative scheme for computing the contri-

bution from the external exchange operators which shares features with the nN4

scheme for JtJ and K t ;±. It is possible to form arrays Kcd according to

(12)

and then, without any intermediate IO, to combine these half-transformed integrals

with CI-coefficients as

The KpV would be written out to disk for re.-sorting. The strategy would be to hold

all \o values in memory (in (12)) for as many //,*/ values as possible. The floating-

point behaviour of (12) (assuming that in practice it would be performed as two

(Successive quarter-transformations) is (N — n)N4, while that of (13) is essentially

n2(N — n)2N2 . Of course, the same recomputation of integrals is required for (12)

as for the nN4 approach to construction of KI;± matrices discussed in the previous

section.

For the case of the "externally contracted" CI method of Siegbahn [7], integrals

such as [oc|6d] are used not simply to form K^b but rather to form Ap where

(14)

Here Cp6 is a CI coefficient in a wave function obtained in the lowest order of

perturbation theory. Ap need be constructed only once during the contracted CI

calculation, and thus there is a very considerable advantage over the normal CI

methods, since these require recalculation of the external exchange contribution in

each iteration.

VI. Treatment of symmetry

The direct SCF implementation of AFK benefits enormously from the exploita-

tion of symmetry. This is used to reduce the number of distinct integrals which must

be computed, and to reduce the dimensions of the various matrices which must

10



be processed. It is well known that the incorporation of symmetry considerably

improves the efficiency of conventional 4-index transformation and CI programs,

and it is certainly desirable to extend these improvements to the present approach

to beyond-Hartree-Fock methods. This is not difficult, although there are several

points worthy of note.

First, the operators J13 and K13± will not always transform according to the

totally symmetric irreducible representation of the molecular point group, G. Thus

(15)

where R 6 G, and D^^(R}' is an element of a representation matrix for a. which

may not be an irreducible representation. By choosing appropriate combinations of

ij and their partner MOs in degenerate irreducible representations, it is possible to

restrict attention to the case of a irreducible. In (15). therefore, Jl] would represent

a combination of J operators which transform according to row K of irreducible

representation a. In an SCF calculation, the Fock and density matrices transform

according to the case of a being the totally symmetric irreducible representation,

and for this case a straightforward scheme for using a list of symmetry-distinct AO

integrals to construct "skeleton" matrices which are later symmetrized to give the

full result has been derived by Dupuis and King [21 j. based on earlier work by Dacre

[22] and Elder [23]. The present author has extended the Dupuis and King scheme

to the case of non-totally symmetric operators [24]. The only difficulty that arises

in this extension is the need for full representation matrices (not merely characters)

in the symmetrization of the skeleton matrices. These can be calculated from the

characters of the group and a chain of subgroups by an ingenious method due to

Hurley [25].

It is thus possible, to use the technique of ref 24 to generate integrals over MOs

from a list of symmetry-distinct AO integrals. Use of the n27V4 scheme (5) for

the transformation step leads to very similar processing as in the SCF case, as for

(5) there is no need to order the integrals. Fig 1 shows the loop structure of an

integral routine designed to implement this scheme. The loop structure is greatly

simplified: most codes would feature double loops over centres and then shells on

those centres. Loops over shell components have not been shown explicitly. In the

figures, the stabilizer [24] of a shell or centre is that subgroup of G under which

the centre is invariant. Distinct integrals are generated in terms of double coset

11



representatives for various pairs of stabilizers: for full details the reader is referred
to Davidson [26]. As far as the overall loop structure of Fig 1 is concerned there is
essentially no change from the SCF case, for which the statements in the innermost

loop would simply add or subtract appropriate Fock matrix contributions.

It is also possible to handle symmetry in J operator construction by the nN4

scheme (4) straightforwardly and a possible loop structure is given in Fig 2. How-

ever, complications ensue for the K± operators. This is because integral evaluation
schemes are based on charge densities (products of basis functions) and determining
the symmetry-distinct AO integral list is also based on charge densities. Such an
approach naturally works for J operators, since what is required is a list of [jui/jAo"]
with fj.v fixed and all Xo, and this is simply all charge densities \o for the single
charge density \JLV. Symmetry-distinct integrals are obtained from [nRi>\T(\S0}},
where R, S and T are operators from the point group: the range of operators giv-

ing distinct integrals is determined by the symmetry transformation properties of
the points on which the AOs are centred. Again, it is simple to work in terms of

unique charge distributions iiRv and \Sa and their transforms, and to form all
T(XSo) for a fixed pRv. For K^ operators, however, what is needed from the list
\ltRv\T(\Sa}} are terms with pT\ fixed and all possible RisTSo. Not only is this
clearly not charge distribution based, but the range of T operators giving distinct
integrals cannot be determined until v,,i/.X.a.R and 5 are known. This compli-
cates the loop structure of the integral program, and, since it is usually desirable to

compute information about charge distributions in the outermost possible loop, it
will be necessary either to compute this information in inner loops or to compute
information about all possible charge distributions in the outer loops, performing

redundant work since some of these distributions will turn out to be non-unique.
A nN4 scheme loop structure for K± operators, incorporating symmetry, is given
in Fig 3, and the problems associated with K^ operators can be clearly seen by

comparing Fig 3 with Fig 2.

VII. Computational considerations

The need for repeated calculation of AO integrals, particularly in implementa-
tions of the n2N4 transformation procedure (5), suggests that a primary goal must

be an efficient integral evaluations scheme. This problem has received considerable

12



attention in the last fifteen years [27-29], and a number of very efficient schemes

have been devised. A key feature of these schemes is the use of shells of basis func-

tions, a shell being defined by a set of contracted Gaussian functions of the same L

value, located on the same centre, with the same exponents and contraction coeffi-

cients but differing in their angular behaviour. Integrals over four such shells — a

"shell block" of integrals — share many common factors, and avoiding redundant

recomputation of these factors results in a substantial increase in efficiency. Such

use of shells rather than individual basis functions is implicit in the loop structures

of Figs 1-3. The use of shells requires a modification of the pre-screening proce-

dure: clearly, as long as one integral in a shell block is required it will be necessary

to compute the entire block. It is therefore convenient to define test densities (7)

for shells rather than basis functions. Thus

Dj&% - max | C^i CU} \, p e M. v € N (16)
(01

for shells M and N,

Most AO integral evaluation schemes are rather readily vectorized [30]. Integral

evaluation is also a task which is suited to parallel architectures [30]. For the rest

of this section, therefore, we shall assume that the problem of efficient integral

evaluation has been solved and concentrate on the processing of the AO integrals

once they are available.

The nN4 transformation (4) is vectorizable in terms of successive matrix mul-

tiplications in which the innermost loop is of order N. For vector processors such as

the CRAY machines, multiplication of matrices of this order leads to performance

close to the theoretical maximum. For computers that require greater vector lengths

to achieve maximum performance it is possible to write (4) as a set of "vector =

vector + scalar*vector" (SAXPY [31]) operations of length n2 to N~ or even n2N

to N3 [2]. It is also possible to perform the first half-transformation (4a, 6) effi-

ciently on a parallel architecture, by generating and processing subsets of integrals

(such as [//i/|Aa], V A > o and fixed /j > v] on each processor. However, the re-

ordering and subsequent processing of the half-transformed integrals will require

considerable data movement between processors; and the overall efficiency will de-

pend critically on the speed of inter-processor communication [32]. For machines

with a large common memory or solid-state disk this will obviously be much less of

a problem than for polytope architectures, such as hypercubes, with relatively slow

13



data paths between nodes.

The n2N4 scheme (5) is straightforward to vectorize (in terms of SAXPYs)

on the number of operator matrices which can be held in memory simultaneously.

The maximum possible value is |n2, when all J, K+ and K~ operators can be

processed in one pass. For large basis sets the memory -requirements would usually

be prohibitive, and a subrange of operators would be processed in each pass. This

may lead to vector lengths too short for efficient processing. This scheme is very

easy to adapt to parallel architectures: each processor simply generates a subset of

the J1-7, etc. although this requires each processor to generate all the AO integrals

if inter-processor communication is to be avoided. Of course, for multi-processor

architectures with common memory, such as the CRAY X-MP or CRAY 2 the

latter problem does not arise.

It is clear that similar reasoning can be applied to the external exchange con-

tribution discussed in section V. Indeed, some additional steps which arise in this

case, such as (10) and (13), are also readily vectorized. It therefore seems that

processing of integrals along the lines described here can be made very efficient on

most current generation computing machinery.

Finally, it may be useful to give an example of the data storage and recalcula-

tion requirements in a large CI calculation using the schemes suggested here. We

consider a calculation on the molecule Fe(CO)s, similar to the largest calculations

reported by Liithi and co-workers [33], but using a larger basis. Assuming that an

[8s6p4dlf\ basis is used for Fe and a [4s2pld] basis for C and O. there will be 233

AOs (using spherical harmonics) and 39 occupied MOs at the Hartree-Fock level.

If only the Fe 3d and 4s and ligand a lone pair electrons are correlated there will

be 9 MOs correlated, if the ligand TT electrons are included there will be 19. We

assume that 4 million words of central memory are available. For 9 MOs correlated

there will be 126 J!J and Ki:i± operators, and using the n~N4 scheme all could be

computed in a single pass over the integrals, using (5). If density matrices (6) are

formed in advance, the storage for operator matrices is halved and two passes over

the integrals would be required. The final operator matrices would require less than

one million words of disk space, assuming that Czu symmetry is used. Use of the

full DSH symmetry would reduce this even further. If the nN4 scheme (4) is used,

one pass each for J and K operators would be required: this would be equivalent

to recomputing the integrals about six times. Re-sorting of the half- transformed

14



operators could be done in memory. For 19 MOs correlated the number of passes

for the nN4 scheme would not change, however, the n^N4 scheme would require

about six passes over the integrals using (5), or nine using (5) and (6). In either

case some 4 million words of disk space would be needed for the final operators. For

the n2N4 case these calculations would all vectorize with, a vector length greater

than 60, which would be very efficient on machines such as the CRAY 1 or CRAY

X-MP.

In each iteration of the direct CI it is most efficient to generate the contribution

from the external exchange operators first. For 9 MOs correlated there are 81

external exchange operators to be computed, these could be generated in two passes

using (9). For 19 MOs there are 361 operators, these would require five passes. Using

(12) one pass only would be required for either 9 or 19 MOs correlated, but again

this is equivalent to computing the integrals four times. The completed exchange

operators can be used as the first contributions to the vector a, which would be

of length about 350 000 words for 9 MOs correlated, assuming Czv symmetry, or

3 000 000 for 19 MOsfcorrelated. In the latter case it would be necessary to process

the CI coefficients from disk if all of a is to be held in memory. Calculations on this

scale would hardly be possible using a "conventional" disk-based transformation

and direct CI approach.

It is clear that the overall labour in such a calculation, while substantial, is

not unreasonably large for a modern supercomputer, or even a large mainframe. It

is also clear that if the only consideration is to minimize the number of times the

AO integrals are recomputed there is little to choose between the nN4 and n2N4

transformation schemes, at least for calculations of this size. :

VII. Conclusions

The present work is an attempt to outline some novel prospects for large basis

set electronic structure calculations that include electron correlation. In general,

the various approaches suggested are well suited to modern computer architectures

and share the overall philosophy of avoiding or minimizing the disk-based storage

and retrieval of integrals. Only certain MO integrals need be stored: no storage

of AO integrals is required and the method is thus a natural generalization of the

direct SCF method of Almlof and co-workers.
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Fig 1. Loop structure for n2N4 operator matrix generation

Loop on subranges of ij such that all matrices fit in memory

Loop on shells M, stabilizer is M

Loop on shells N (< M), stabilizer is M

Define R as generators for double cosets MGM V G €. 5

Loop on elements R of R generating shells RN

Define U as stabilizer of M.RN

Loop on shells A (< M), stabilizer is £

Loop on shells £ (< A, unless A = M, when £ < N), stabilizer is S

Define S as generators for £G S V G £ §

Loop on elements S of S generating shells SE

Define "V as stabilizer of A.ST

Define T as generators for UG~V V G 6 $

Loop on elements T of T generating T(ASS)

Compute \nRv\T(\Sa)\ V p e M, etc

Accumulate contributions into J ^TX TSo-

K1^ TSo. or whichever skeleton operator

matrices are being generated in this pass

End loop on T

End loop on 5

End loop on E

End loop on A

End loop on R

End loop on N

End loop on M

Symmetrize operator matrices, complete transformation

and write operators from this subrange to disk

End loop on subranges of ij
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Fig 2. Loop structure for nN4 J operator matrix generation

Loop on shells M, stabilizer is M

Loop on shells N (< M), stabilizer is M

Define R as generators for double cosets MGM V G 6 $

Loop on elements R of R, generating shells RN

Define U as stabilizer of M.RN

Loop on shells A, stabilizer is £

Loop on shells E (< A), stabilizer is S

Define S as generators for COS V G € 9

Loop on elements 5 of S. generating shells SS

Define "V as stabilizer of A.SS

Define T as generators for UGM V G € 9

Loop on elements T of T, generating J"(A SE)

Compute {fj,Rv\T(XSa)\ V // 6 M, etc

stored in memory, indexed by //, //. A, A, E. CT, 5 and T
i

End loop on T

End loop on 5

End loop on E

End loop on A

Form skeleton J^ ^for each ij,i >J and /u G M, f £ JV

symmetrize and write to disk

End loop on R

End loop on A;

End loop on M

(Read back, re-sort and transform — loop structure not given)
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Fig 3. Loop structure for nN4 K operator matrix generation

Loop on shells Af, stabilizer is M

Loop on shells N (< M), stabilizer is A/

Define H such that HM V H e H, are distinct left cosets of M

Loop on elements H of H, generating shells HN

Loop on shells A, stabilizer is £

Define R as generators for double cosets MG£ V G £ §

Loop on shells S, stabilizer is 5

Define S as generators for MGS V G G §

Loop on elements /2 of R. generating shells RA

Define U as stabilizer of M.RA.

Loop on elements S of S generating shells 5E

Define V as stabilizer of Ar.SE

Define T as generators for UG'V V G & §

If H 6 T then

Compute [/i.RA|ff(J/SCT)] V ̂  e Af, etc

stored in memory, indexed by ju,z/, A, A, E,cr. J?, 5 and .H"

Endif

End loop on 5

End loop on R

End loop on E

End loop on A

Form skeleton Kl^Hl/hr each ij, i > j and p, t M, v 6 AT

symmetrize and write to disk

End loop on H

End loop on A"

End loop on Af

(Read back, re-sort and transform — loop structure not given)
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