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ABSTRACT 

Let u(x, t) be . a weak solution of the Euler equations, governing the 

inviscid polytropic gas dynamics; in addition, u(x,t) is assumed to respect 

the usual entropy conditions connected with the conservative Euler 

equations. We show that such entropy solutions of the gas dynamics equations 

satisfy a minimum entropy principle, namely, that the spatial minimum of their 

specific entropy, Ess inf S(u(x,t»), is an increasing function of time. This 
x 

principle equally applies to discrete approximations of the Euler equations 

such as the Godunov-type and Lax-Friedrichs schemes. Our derivation of this 

minimum principle makes use of the fact that there is a family of generalized 

entropy functions connected with the conservative Euler equations. 
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1. INTRODUcrION 

Many phenomena in continuum mechanics are modeled by hyperbolic systems of 

conservation laws 

d 
au + I 
at k=1 

(1.1 ) 

where f(k):: f(k)(u) = (f~k) , ••• ,.~~k»)T are smooth nonlinear flux mappings 

of the N-vector of conservative variables 

Friedrichs and Lax [3] have observed that the hyperbolic nature of such models 

is revealed by the property of most of those systems being endowed with a 

generalized 

Entropy Function: A smooth convex mapping U(u) augumented with entropy flux 

mappings that the following 

compatibility relations hold 

uT f(k) = F(k)T 
u u· u ' 

k = 1,2,··· ,d. (1.2) 

Multiplying (1.1) by and employing ( 1 .2), one arri ves at an equivalent 

formulation of the compatibility relations (1.2), namely, that under the 

smooth regime we have on top of (1.1) the additional conservation of entropy 

= o. (1.3) 

Owing to the nonlinearity of the fluxes f(k) (u), solutions of (1.1) may 

develop singularities at a finite time after which one must admit weak 
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solutions, i.e., those derived directly from the underlying integral 

conservative equations. Considering (1.1) as a strong limit of the 

regularized problem, 

au + 
at 

d 

L 
k=l 

).I 1- 0, ( 1.4) 
).I 

then following Lax [9] and Krushkov [8], we postulate as an admissibility 

criterion for such limit solutions an entropy stability condition which 

manifests itself in terms of an 

Entropy Inequality: We have, in the sense of distributions, 

d 
au + L 
at k=l 

(1.5) 

Weak solutions of (1.1), which in addition satisfy the inequality (1.5) 

for all entropy pairs (U,F) connected with that system, are. called entropy 

solutions.(l) Raving a (we~kly) nonpositive quantity on the L.R.S. of (1.5) 

is thus a consequence of viewing these entropy solutions as limits of 

vanishing dissipativity mechanisms. In particular, the inequality (1.5) 

implies that the total entropy in the domain decreases in time (we assume 

entropy outflux through the boundaries) 

(1 ) Krus hkov [ 8 , 
solutions. 

p. 241] 

:t 1_ U(u(i,t»dx ~ o. (1.6) 
x 

has termed such solutions simply as generalized 
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In this paper, we consider entropy solutions, 

T 
u = (p ,.,E) (1.7 a) 

of the Euler equations. These equations govern the inviscid polytropic gas 

dynamics, asserting the conservation of the density p, the momentum 

Let m 
q = - denote the velocity field of 

p 

such motion. Then. expressed in terms of the pressure, p, 

y = adiabatic exponent, (1.7b) 

the corresponding fluxes in this case are given by(2) 

k = 1,2,3. (1.7c) 

The main result of this paper asserts that entropy solutions of Euler 

equations satisfy the follow~ng 

Minimum Principle: Let u = u(x, t) be an entropy solution of the gas 

dynamics equations (1.7) and let 

(2)With e(k) denoting the unit Cartesian vectors e(k) so ok'. . J 

(l.8) 
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denote the specific entropy of such solution. Then the following estimate 

holds 

Ess inf sex, t) ) Ess inf 
= 

sex, t = 0). (1.9) 

Ixl~R Ixl<R+t.q = max 

Here qmax stands for the maximal speed Iql in the domain. 

The proof of this·assertion is provided in Section 3 below. Prior to that 

we elaborate in Section 2 on the entropy inequality connected with the gas 

dynamics equations. In particular, Harten [5] has shown that there exists a 

whole family of entropy pairs associated with these equations, a fact which is 

essential in our derivation of the minimum principle. 

As an immediate consequence of the minimum principle, we conclude that 

Ess Inf_S(x,t) is an increasing function of t for every entropy solution of 
x 

(1.7). The following argument sheds additional light on this· conclusion in 

the case of a piecewise-smooth flow. To this end, an arbitrary particle 

currently located at (x, t) is traced backwards in time into its initial 

position at t = O. Since the specific entropy of such particle remains 

constant along the particle path--except for its decrease when crossing 

backwards shock waves, it follows that its value S(x,t) is greater or equal 

than that of the initial spatial minimum Ess inf_S(x,t = 0), as asserted. 
x 

In contrast to the above 'Lagrangian' argument, the derivation of the minimum 

principle outlined below, is purely an 'Eulerian' one. It enables us to relax 

the regularity assumption on the flow, and--since we do not follow the 

characteristics, it equally applies to discrete approximations of the Euler 

equations. 
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In Section 4 we consider approximate solutions of the Euler 

equations, w(x ,t), which respect 'the entropy decrease estimate (1.6), 
v 

L U(w(x ,t + ~t»~x ' < L U(w(x ,t»~x • v v v-v v v 
(1.10) 

We note that such approximate solutions are obtained by entropy stable 

schemes satisfying the cell entropy inequality 

U(w(X' , t 
v 

d 
+ ~t» < U(w(x ,t» + L _1_ [F(~)lf -

- v k=l ~x v 2 
v 

e.g., the Godunov-type and Lax-Friedrichs schemes [6]. We have 

(1.11) 

Minimum Principle: Let w(x, t) be an approximate solution of the gas 
v 

dynamics equations (1.8) and let 

Sex ,t) _ S(w(x ,t» = 1n(pp-r) 
v v 

(1.12) 

denote the specific entropy of such solution. Assume that its total entropy 

decreases in time, (1.10). Then the following estimate holds 

S(x,t + ~t) ~ Min[S(xv,t)]. 
v 

(1.13) 

In the case of entropy stable schemes, (1.11), a more precise estimate is 

obtained which takes into account the support of the schemes' stencil. 

The inequality (1.13) leads to an a'priori pointwise estimate on the 

approximate solution w(x,t). Such pointwise estimates play an essential role 
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with regard to question of the convergence. of entropy stable schemes. In 

particular, DiPerna [2, Section ·7] has recently shown that in certain cases, 

such (two-sided) estimates are sufficient in order to guarantee the 

convergence of such schemes. 

2. GENERALIZED ENTROPY FUNCTIONS OF THE EULER EQUATIONS 

We consider the Euler equations for polytropic gas 

;t[:] + I 
k=1 

E 

mk 

a q m + peek) 
aX

k 
k 

= o. 

qk(E + p) 

(2.1) 

It is well-known, e.g., [1], that for all smooth solutions of (2.1) the 

specific entropy(3) 

S (i', t) = 1 n (pp 4' ) , 

remains constant along streamlines, i.e., 

3 as I qk ax- a o. 
k=1 k 

(2.2a) 

Let h(S) be an arbitrary smooth function of S. Multiplying (2.2a) by 

ph'(S) --prime denoting S-differentiation, we find 

(3)After normalization, taking the specific heat constant to be Cv = 1. 
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3 
p ah(S) + L ~ ah(S) = o. 

at k=1 it aXk 

Adding this to the continuity equation which is premultiplied by h(S), 

~ h(S) + I a~ h(S) = 0, 
at k=l aXk 

(2.2b) 

we obtain after changing sign, a conservative entropy equation like (1.3) 

which reads [5] 

(2.3) 

In order to comply with the further requirement of being a generalized entropy 

function, U(u) .. -ph(S) has to be a convex function of the conservative 

variables T 
u = (p ,a,E) • A straightforward computation carried out by Harten 

[5, Section 2] in the two-dimensional case shows that the Hessian 

positive definite if and only if 

p[h'(S) - y.h"(S)] ) O. 

U 
uu 

is 

Excluding negative densities we may summarize that there exists a family of 

(generalized) entropy pairs (U,F) associated with Euler equations (2.1), 

U(U) .. -ph(S), F(k)(u)" ~h(S) k .. 1,2,3,. (2.4a) 

generated by the smooth increasing functions h(S) which satisfy 



-8-

(2.4b) 

3. A MINIMUM ENTROPY PRINCIPLE 

Let T 
u = (p ,.,E) be an entropy solution of the gas dynamics equations 

(2.1). Such a solution is characterized by the entropy inequality (1.7) 

..,u() 3 aF(k)(u) 
a u + \ _~;:....;... < ° 

at k=1 0'1c = 
(3.1) 

which holds for ~ entropy pairs (U,F) connected with the equations-. 

To derive a minimum principle, we shall make use of an argument due to Lax 

[9, Section 3]. ·We begin with 

Lemma 3.1: Let u be an entropy solution of the gas dynamics equations 

(2.1). Then for all nonpositive smooth increasing functions h(S) satisfying 

(3. 2b), we have 

f p (x, t). h( Sex, t) )dx ~ 

Ixl~R 

f p(x,O).h(S(x,O»dx. 

Ixl~R+t. ~ax 

Here qmax denotes the maximal speed Iql in the domain. 

(3.3) 

Proof: As in [10, Theorem 4.1] we integrate the entropy inequality (3.2a) 

over the truncated cone C = {Ixl ~ R + (t - T)·qmaxIO ~ T ~ t}; if we let 

(nO,n) denote the unit outward normal, then by Green's theorem 
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(3.4) 

The integrals over the top and bottom surfaces give us the difference between 

the left and right-hand sides in (3.3) and by (3.4) this difference is bounded 

from below by 

The result follows upon showing that the last quantity is nonnegative. 

Indeed, since by assumption -ph(S» 0, this is the same thing as 
= 

on the mantle we have 

and hence 

3 

I 
k=l 

as asserted. 

The discussion in Lemma 3.1 was restricted to smooth function h( S); by 

passing to the limit, its conclusion (3.3) follows for any nonpositive 

nondecreasing function h(S) satisfying (3.2b), whether smooth or not. 
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To derive the minimum entropy principle, we now make a special choice of 

such function, h(S), given by 

h(S) = Min[S - SO,O], So = Ess inf s(i,O). (3.5) 

Ixl <R+t.q = max 

The nonpositive function h(S) is a nondecreasing concave\ one, hence 

admissible by (3.2b), and consequently (3.3) applies 

J p(x,t)'Min[ S(x,t) - SO,O]dX .? 
liliR 

J p(x,O)'Min[S(x,O) - SO,O]dx. 

Ixl <R+t.q - max 

(3.6) 

Now, by the choice of SO, the integral on the right of (3.6) vanishes since 

Min[S(x,O)-So'O] does. The inequality (3.6) then tells us that the integral 

on the left is also nonnegative. But since the integrand on the left is by 

definition nonpositive, this can be the case provided this integrand vanishes 

almost everywhere; that is, ·we have for almost all x, Ixl ~ R 

and (1.9) follows. 

s(i, t) ~ So = Ess inf S(x, t=O) 

Ixl <R+t·q = max 

The minimum entropy principle was deduced from the entropy inequality 

(3.2), which in turn was postulated based on the formal regularization 

introduced in (1.4). In general, other regularizations equally apply; in 
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particular, Euler equations are usually sought as the vanishing viscosity 

limit of the" Navier-Stokes equations (here we take for simplicity the one

dimensional case)(4) 

~ t [:] + ~ x [ qm : p ] 
E q(E + p) 

0 

a !9. II .j. o. (3.7) = II ax ax 

aq 
q ax 

Do the (generalized) entropy inequalities (3.2) remain valid on the basis of 

such limit? To answer this question we first note that if U(u) is any 

entropy function, then thanks to its convexity the mapping u + v :: U is 
u 

one-to-one, and hence one can make the change of variables u = u(v). Harten 

[5] has shown that such change of variables by each member of the family of 

entropy functions (2.4) puts the viscosity terms on the right of (3.7) into a 

negative semidefinite form. This makes apparent the dissipative effect of 

these viscosity terms. Indeed, if T = c • E - liz • 1 q 12 
v 

denotes the absolute 

temperature, then direct manipulation of (3.7) yields, e.g., [1, Section 63], 

[12, Section 6.10], 

2 
a a qx at [ph(S)] + ax [mh(S)] = ll·h(S) y- (3.8) 

from which we recover the entropy inequality (3.2a) for all smooth increasing 

functions h(S). We note that the convexity condition was not assumed in this 

(4)With ~ combining the two viscosity coefficients in the general Navier
Stokes equations. 
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case. The merit of using the convexity condition, however, is that it enables 

us to deal with more general artificial viscosity terms, other than those 

appearing in the Navier-Stokes equations. Such artificial viscosity terms are 

frequently encountered in finite-difference approximations to the Euler 

equations; a specific example of this kind is studied in the next section. 

Finally we would like to remark on the previously mentioned Navier-Stokes 

equations. Our discussion above took into account only the viscosity 

contribution, neglecting heat conduction. Hughes, et al., [7] have shown that 

when the heat flux is also added, compare (3.7), 

0 0 
a aq + a 

0 (3.9) = l.l ax ax K -.ax 

aq aT 
q ax ax 

with K denoting the heat conductivity constant, then only the 'physical' 

entropy, U(u) = IPS survives as the one which puts the additional heat flux 

into a symmetric negative-definite form. We would like to note in this 

connection the difference limit behavior of the Navier-Stokes flows depending 

on the viscosity and heat conductivity; Gilbarg [4] has shown that as K + 0 

keeping l.l fixed, we are led to a continuous thermally nonconducting shock 

layer, whereas for l.l + 0 with K fixed the convergence is to a (generally) 

discontinuous nonviscous shock layer. Consequently, the viscosity rather than 

the heat flux should play the maj or rule in an appropriate regularization 

model for the Euler equations. 
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4. DISCRETE APPROXIMATIONS OF THE EULER EQUATIONS 

In this section we consider approximate solutions of the Euler 

equations, v(x ,t), whose total entropy decreases in time, compare (1.10) 

" 

L U(v(x ,t ,+ 6t»6x < L U(v(x ,t»6x • 
"" ,,-""" 

(4.1) 

Estimate (4.1) holds for all e~tropy functions U = -ph(s) in (2.4). By 

passing to the limit, this applies to our previous choice of the function 

h(s) in (3.5) 

h(s) = Min[S - SO,O], 

this time with a constant 50 which is taken to be 

50 = Min 5(v(x",t». 

" 

(4.2a) 

(4.2b) 

By our choice of 50' we have U (v(x ,t» = O. 

" 
The inequality (4.1) tells us 

that the left-hand side is ~herefore, nonnegative; consequently 

5(x,t + 6t) - 50 2 h(5(x,t + 6t» 2 0 

and (1.13) follows. 

Approximate solutions which fulfill the required estimate (4.1) can be 

obtained by entropy stable schemes satisfying the cell entropy inequality 

(1.11) 

U(v(x ,t + 6t» < U(v~ ,t» + I 1 [F(k) F(k)] 
" -" k=l 6X ' ,,+ 112 - ,,- 1/2 • 

(4.3) 

" 
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Examples of such entropy stable schemes include the Godunov-type and Lax-

Friedrichs schemes, e.g., [6]. A more precise minimum principle follows in 

these cases, taking into account the support of the schemes" stencil. In 

particular, the (one-dimensional) Godunov scheme results from averaging of two 

neighboring Riemann problems [6], each of which satisfies (1.9). C~nsequently 

we have the 

Minimum Principle (of the Godunov scheme): Let v(x, t) the Godunov 
v 

approximate solution to the Euler equations (2.1). Assume that the 

appropriate CFL condition is met. Then the following estimate holds 

S(v(x ,t + At») > Min S(v(x.,t»). 
v - J . v-1(j(v+1 

(4.4) 

Since the Lax-Friedrichs scheme coincides with a staggered Godunov"s solver, 

the same conclusion, (4.4), holds. Another way to see this is outlined below; 

it makes no reference to Riemann"s solution and can be generalized to the 

multidimensional problem. 

To this end, we approximate the (for simplicity--one-dimensional) Euler 

equations with the Lax-Friedrichs scheme 

At A _ 

(4.5) 

We remark that the Lax-Friedrichs scheme can be derived from center 

differencing of the regularization model (1.4) Ax. Lax has shown [9, Theorem 
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1.2] that if 
_ 6t 

A = 6x is sufficiently small, then solutions of this difference 

scheme satisfy the following cell entropy inequality 

< 
U(v(xv+l,t» + U(v(xv_1 ,t» 

U(v(x ,t + 6t» 
v = 2 

for al1 entropy pairs (U,F) = (-ph(S),-mh(S» in (2.4). by passing to the 

limit, this applies to our previous choice of the function h(S) in (3.5) 

h(S) ... Min[S - SO,O], (4.7a) 

this time, with a contant So which is taken to be 

(4.7b) 

The inequality (4.6) now reads 

, 
[

1 + Aq(X l,t) 
p(xv,t + 6t).h(S(xv ,t + t.t») ---.."../---- p(xv_1,t).h(S(xv_1,t») 

(4.8) 

By our choice of the funtionh(S) in (4.7), we have h(S(x
v
: 1 ,t» ... 0. The 

inequality (4.8) tells us that the left-hand side is therefore nonnegative; 

consequently 
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and the following minimum principle follows 

s(w(x ,t + At») > Min S(w(x l,t»). v v: 
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