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ABSTRACT 

The purpose of this paper is to extend the results of [4] in order to 

achieve more versatile, convenient stability criteria for a wide class of 

-finite-difference approximations to initial boundary value problems associated 

with the hyperbolic system ut = Allx + Bu + f in the quarter-plane 

x ~ 0, t ~ O. With these criteria, stability is easily established for a 

large number of examples, thus incorporating and generalizing many of the 

cases studied in recent literature. 
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O. Introduction. 

In this paper we sharpen and extend the results oC [4] in order to achieve more ver­

satile, convenient, sufficient stability criterion Cor a large class oC approximations to the 

initial-boundary value problem associated with the hyperbolic system 

u t = Au z + Bu + r in the quarter plane x > 0, t > o. Our difference approxima­

tion consists oC a general difference scheme -- explicit or implicit, dissipative or not, 

two-level or multi-level -- and boundary conditions oC quite a wider type than discussed 

III [4]. 

As in [4], we restrict attention to the case where the outflow components oC the 

principal part oC the boundary conditions are translatory; i.e., determined at all boun­

dary points by the same coefficients. Such boundary conditions are commonly used in 

practice; and in particular, when the boundary consists oC a single point, the boundary 

conditions are translatory by definition. 

Throughout the paper we assume that the basic scheme is stable Cor the pure Cau­

chy problem, and that the other assumptions which guarantee the validity of the 

GustaCsson-Kreiss-Sundstrom stability theory in [5], hold Cor our case. With this, we 

raise the question oC stability Cor our approximation in the sense oC Definition 3.3 in [51. 

Our stability analysis begins in Section 2 where we show (Theorem 2.1) that our 

entire approximation is stable iC and only iC the scalar outflow components of its princi­

pal part are stable. Thus, our global stability question is reduced to that 0/ a scalar, 

homogeneous, outflow problem which, as in [4], is the main subject oC this paper. 

We state our stability criteria Cor the reduced problem in Theorems 3.1 and 3.2 of 

section 3. These criteria depend both on the basic scheme and the boundary condi-



tions, but very little on the intricate interaction between the two. It follows that our 

criteria provide in many cases a convenient, easily-checkable alternative to the welI­

known Gustafsson-Kreiss-Sundstrom criterion in [5]. 

We proceed in Section 3 to use our stability criteria in Theorems 3.1 and 3.2 

together with Lemmas 3.1 and 3.2 in order to establish all our previous examples in [4] 

as well as new ones. This includes a host of dissipative and nondissipative examples 

that incorporate and generalize many of the cases studied in recent literature; e.g. [1]-

[10], [12]-[15]. 

As in [4] we point out that there is no difficulty in extending our stability criteria 

to two-boundary problems, since if the corresponding left and right quarter-plane prob­

lems are stable then, by Theorem 5.4 of [5], the original problem is stable as well. 

We also remark that there are no essential obstacles in extending our results to 

initia.l-boundary value problems wit.h variable coefficient.s. 
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1. The Differential Problem aD:d the Difference Approximation. 

Consider the first-order hyperbolic system of partial differential equations 

(1.1a) au(x,t)/at = Aau(x,t)/ax + Bu(x,t) = f(x,t), x >0, t > 0, 

where u (x, t) = (u(I)( x, t),···, u(n)( x, t))' is the unknown vector (prime denoting the 

transpose), f(x,t) = (J(l)(x,t),···, pn)(x,t))' a given n-vector, and A and B fixed 

n X n matrices such that A is symmetric and nonsingular. Without restriction we 

may assume that the system is given in characteristic variables, namely A is diagonal 

of the form 

(1.2) (
AI 0) 

A = ° AD , 

where AI and AD are of orders e X e and (n - e) x (n - e), respectively. 

The solution of (l.Ia) is uniquely determined if we prescribe initial values 

(LIb) u(x,O) = ~(x), x > ° , 
and boundary conditions 

(1.Ic) .uD(O,t) = Sul(O,t) + g(l), I > 0, 

where S is a fixed (n - e) x e coupling matrix, g(l) a given (n-t)-vector, and 

(1.3) 

a partition of u into its outflow and inflow components, respectively, corresponding 

to the partition of A in (1.2). 
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Introducing a mesh size Ax > 0, At > 0, such that X = At/Ax = constant, 

and using the notation v,,(t) = v(vAx,t), we approximate (l.la) by a general, con­

sistent, two-sided, solvable basic scheme of the form 

(1.4) 

, 
Q_lv ,,( t + At) = E QO'v,,(t - O'At) + Atb ,,(t) , v=r r+l··· , " 

0'=0 

QO' = t AjO'Ej, Ev" = V ,,+11 
j=-r 

0' = -1,···,8, 

where the n X n coefficient matrices AjO' are polynomials in XA and AtB, and the 

n-vectors b ,,(t) depend on r (x, t) and its derivatives. 

The difference equations in (1.4a) have a unique solution v ,,( t + At) if we pro-

vide initial values 

( 1.5) 
o 

v"(,,At) = v"(,,Ai), ,,= 0,···,8, V = 0,1,2,··· , 

and specify, at each time level t = "At, " = 8, 8 + 1, ... , boundary values 

v,,(t + At), v = 0,· .. , r - 1. These boundary values will be determined by boundary 

conditions of the form 

T~) v,,(t + At) = t T!:) v ,,( t - O'At) + Aid ,,( i), v = 0,···, r - 1, 
0'=0 

( 1.6a) 

T!:) = E CJ~) Ei, 0' = -1,· .. , q, 
i=O 

where the n X n matrices CJ~) depend on A, 6.iB and S; and the n-vectors 

d ,,(t) are functions of r (x, i), g (i), and their derivatives. 

We shall assume that the leading coefficients Cb(21) are nonsingular, thus assuring 
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that the boundary conditions (1.6a) can be solved for the required boundary values 

v v(t + ~t), v = r -1,···,0, in terms of neighboring values of v V. 

We shall further assume that the matrices C}~) depend weakly on B, in that B 

introduces a mere O(~t) perturbation in these matrices. This assumption holds for 

all practical boundary conditions where the elements of C}~) are polynomials in the 

entries of ~tB. 

Finally we assume that in accordance with the partition of A in (1.2), the C}~) 

can be written as 

(1.6b) 

where 

( 1.6c) 

(1.6d) 

( 1.6e) 

and 

( 1.6f) 

Let us now set 

(1.7a) 

the 

the 

the 

C~I 
}U 

C~I 
}U 

C~II(v) 1 1U 

C~III(v) , 
1U 

are independent of v, 

are diagonal when B=O, 

C~ lI(v) = 0 
1U . 

when B=O, 

C]~II(v) = 0 for v > r - j when B = 0 . 
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according to the partition of u in (1.3); so that the boundary conditions (1.6a,b) split 

into two groups: 

(1. 7b) = t IT~Iv~(t -O"~t) + T~II(II)v~(t -O"~t)1 + ~td~(t), 
17=0 

T Ill (II) = ~ C~II(II) Ej 0" = -1"· q v - 0 ... r - 1· 
17 L.J 117' ", -" , 

j=O 

and 

(1.7c) = t IT~I(II)v~(t -O"~t) + T~II(II)v.~I(t -O"~t)1 + ~td~(t), 
11=0 

TIl 0(11) - ~ C~o(lI) Ej a - I II 0" - -1 .. q v - 0 ... r _ 1 17 - L.J 117 , -" - , , , -, , - , 
j=O 

which we refer to as the outflow and inflow boundary conditions, respectively. With 

this formulation it is a simple matter to verify that the boundary conditions in our pre­

vious papers 13,41 constitute a special case of the present ones. Hence, the argument 

concluding Section 1 of 131 implies that boundary conditions of the form (1.6) can be 

constructed to any degree of accuracy. 

It should be pointed out that the outflow boundary conditions in (1.7b) are quite 

general despite the apparent restrictions in (1.6c)-(1.6e). Indeed, (1.6c) is not much of -

a restriction since in practice the outflow boundary conditions are often translatory, 

i.e., determined at all boundary.points by the same coefficients. In particular, if the 
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numerical boundary consists of a single point, then the boundary conditions are trans-

latory by definition, so (1.6c) holds automatically. The restrictions in (1.6d)-( 1.6e) pose 

no great difficulties either, since they are satisfied by all reasonable boundary condi­

tions, where for B = 0 the C}~ usually reduce to polynomials in the diagonal block 

AI, and the C}JI(v) vanish. 

We realize that in view of the restriction in (1.6f), the inflow boundary conditions 

(1.7c) are not quite as general as the outflow ones. If, however, the boundary consists 

of a single point then such conditions can be achieved in a trivial manner, simply by 

duplicating the analytic condition (1.Ic) which gives 

vAI(t + ~t) = SvA(t + ~t) + g(t + ~t) . 
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2. The Reduced Approximation. 

The difference approximation is completely defined now by (1.4)-(1.6), and we wish 

to apply to it the stability theory oC GustaCsson, Kreiss and Sundstrom in 151. For this 

purpose we assume Crom now on that the basic scheme (1.4a) is stable Cor the pure 

Cauchy problem (-00 < V < 00) and that the other assumptions in 151 are satisfied as 

well. With this, the GustaCsson-Kreiss-Sundstrom theory holds Cor our case* and we 

ask whether approximation (1.4)-( 1.~) is stable in the sense of Definition 3.3 of 15]. 

In Theorem 2.1 which concludes this section, we shall reduce the above stability 

question to that of a scalar outflow approximation with homogene<;lUs boundary condi­

tions. In order to obtain this reduction we begin, as in [3], by recalling Lemma 10.3 of 

15] which provides a necessary and sufficient determinental stability criterion stated 

entirely in terms oC the homogeneous part oC the difference approximation. This cri­

terion immediately implies that for stability purposes we may consider (1.4)-( 1.6) with 

(2.1) 

Moreover, since B introduces a mere O(~t) perturbation in the matrix 

coefficients AjD' and CJ~), then by Theorem 4.3 of [5], our approximation is stable if 

and only if it is stable for B = o. Setting B = 0, we get (1.6d)-( 1.6f), which together 

with (2.1) proves that our stability problem is equivalent to that of the principal part 

of (1.4)-( 1.6), given by a basic scheme of the Corm 

*The applicability of 15J to our approximation is further discussed in the first paragraph 
of Section 2 in 13J. 
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(2.2a) 

• 
Q-l v v(t + Llt) = E Qu v v(t - O'Llt), v = r, r + 1, ... , 

u=O 

Qu = t AjuE1 , O'=-I,···,s; 
j-=-r 

with initial values 

(2.2b) vv(JlLlt) =':v(JlLlt), Jl =O,···,s, v=0,1,2,···, 

and outflow and inflow boundary conditions described, respectively, by 

(2.2c) 

and 

(2.2d) 

T~I vr(t + Llt) = t T~I v~ (t - O'Llt) , 
u=o 

T~I=f; C}!Ej, O'=-I,···,q, 
j=O 

e" 0(-1) 

C~I 
1U 

nonsingular , 

diagonal and independent of v, 

v = 0,···, r -1 , 

= t [T~I(v)vr(t - O'Llt) + T~"(v)vH(t - O'Llt)], v = 0,···, r - 1 , 
0'=0 

T lIo(v) - ~ C~Io(v)E'i I II u - LJ 1U ,(l' = , , 0' = -1,···, q , 
j=O 

cA'~\~v) nonsingular, v = 0,···, r - 1; and CJ~I1(v) = 0, v > r - j . 
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This yields: 

LEMMA 1.2 (compare 3, Lemma 2.1). Approximation (1.4)-(1.6) is stable if and 

only if its principal part in (2.2) is stable. 

Since now B = 0 and b ,,(t) = 0 then evidently, the basic scheme (2.2a) is con­

sistent with the principal part of (1.1a), i.e., with the homogeneous system: 

(2.3) au(x,t)/at = Aau(x,t)/ax. 

Furthermore, B = 0 implies that the coefficients AjO' of the basic scheme (2.2a) 

are now polynomials only in )'A. Thus, the AjO' are diagonal matrices; and putting 

in accordance with the partition of A in (1.2), we may split the basic scheme (2.2a) 

and the initial values (2.2b) into two parts: 

, 
Q~l v~(t + ~t) = E Q~v~(t -O'~t), v = r, r + 1,"', 

0'=0 

(2.4a) 

Q~ = t A}O'Ej, 0'=-1,"',8, 
j=-,. 

(2.4b) v~(Jl~t) = ~(Jl~t), Jl = O,'''s, v = 0,1,2,'" ; 

and 
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• Q~lV~(t + ~t) = ~ Q~vtl(t -O'~t), V = r, r + 1,"', 
u=O 

(2.5a) 

Q~ = t AJ~Ej, 0' = -1,"',8, 
j=-r 

(2.5b) v ~(Jl~l) = ':tI(Jl~t), Jl = 0, "',8, V = 0,1,2, .. ·. 

We therefore view approximation (2.2) as made of outflow and inflow parts given by 

(2.4) (2.2c) and (2.5)(2.2d), respectively. And clearly, (2.2) is stable if and only if both 

parts are. 

We observe that the outflow approximation (2.4}(2.2c) is self-contained, so we can 

solve it to obtain the outflow values 

vt(t + ~l), v = 0,1,2,'" . 

Having found these values we realize, however, that the inflow boundary conditions 

(2.2d) can now be solved for the required inflow boundary values 

(2.6) vlI(1 + ~l) v - 0'" r-I v , -" , 

independently of the interior i.nflow values v ~, v > r. It thus follows that the inflow 

boundary values in (2.6) can be specified in advance, merely by means of outflow 

values. Hence, the stability question for approximation (2.5}(2.2d) is equivalent to that 

of the inflow basic scheme (2.5a) with arbitrary inhomogeneous boundary values. Now, 

the above-mentioned Lemma 10.3 of [5] implies again that without affecting stability we 

may replace these arbitrary inhomogeneous values by homeogeneous ones: 
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(2.7) v~(t+at)=o, v=O,···,r-i. 

This gives us the new, self-contained inflow approximation (2.5)(2.7), whose stability 

together with that of the outflow part in (2.4)(2.2c) is equivalent to the overall stability 

of approximation (2.2). 

Since the Ai (1 and C}~ are diagonal, we proceed to write 

and further split (2.4)(2.2c) into l scalar components, each of the form 

(2.8a) 

(2.8b) 

(2.8c) 

, 
Q-l vlI( t + at) = E Q17VII(t - crat), v = r, r + 1, ... , 

17=0 

Q(1 = t aj17Ei, cr = -1,· ··,8 , 
i--r 

T_l vlI(t + at) = t T17vlI(t - crat), v = 0, ···,r - 1 , 
17=0 

m . 
T17 = E Ci(1EJ, cr=-I,···,q, CO(_l)~O, 

.j=O 

where (2.8a) is consistent with a corresponding outflow component of (2.3): 

(2.9) au(x,t)/at = aau(x,t)/ax, a = constant > 0 . 
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Similarly, we split the inflow approximation (2.5)(2.7) into n - t scalar com-

ponents: 

(2.lOa) 

(2.10b) 

(2.lOc) 

, 
Q_1vlI(t + Llt) = E QO'VII{t -O'Llt), v = r, r + 1,···, 

0'=0 

QO'= t aiO'Ei, O'=-I,···,s, 
i--r 

o 
vlI{JILlt) = vlI(JILlt), Jl = O,···,s, v = 0,1,2,··· , 

VII(t + Llt) = 0, v = O,···,r -1 , 

where now, (2.10a) is consistent with an inflow component of (2.3): 

au{x,t)/at = aau(x,t)/ax, a < 0 . 

Since approximation (2.1) is stable if and only if (2.4)(2.2c) and (2.5)(2.7) are, and 

since the latter are stable if and only if their scalar components are, we immediately 

obtain: 

LEMMA 2.2 13, Lemma 2.2]. Approximation (2.2) is stable if and only if the 

approximations in (2.8) and (2.10) are stable for all eigenvalues a > 0 of AI, and 

a < 0 of A II, respectively. 

With this lemma in mind we proved: 
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LEMMA 2.3 [3, Lemma 2.31. The inflow scalar approximation (2.10) is uncondi-

tionally stable for every eigenvalue a < 0 of A II. 

This lemma -- due to Kreiss [7] in the case where the basic scheme is dissipative, 

explicit and two-level -- combined with the previous two, finally yield the main result 

of this section: 

THEOREM 2.1 (compare [4, Theorem 1.1], [3, Theorem 2.1]). Approximation 

(1.4)-( 1.6) is stable if and only if the reduced outflow scalar approximation in (2.8) is 

stable for every eigenvalue a > 0 of AI. That ;s, approximation (1.4)-(1.6) is stable if 

and only if the scalar outflow components of its principal part are all stable. 
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3. Statement of Main Results and Examples. 

Theorem 2.1 implies that Crom now on we may restrict our stability study to the 

scalar outflow approximation in (2.8). Hence, we open this section by stating the Col­

lowing five assumptions which hold throughout this paper, and guarantee the validity 

oC the GustaCsson-Kreiss-Sundstrom theory in [5J Cor this approximation. 

ASSUMPTION 3.1 ([4, Assumption 1.1]; [5, Assumption 3.1]). Approximation (2.8) 

is boundedly solvable; i.e., there exists a constant J( > 0 such that Cor each 

y E t2(~x) there is a unique solution w E t2(~x) to the equations 

with IIwll < K lIyll; where Q-l and T_l are defined in (2.8a,c), and t2(~x) is the 

space OC all grid Cunctions w = {wv}~=O with II wll 2 = ~x E~=o I wvl2 < 00. 

ASSUMPTION 3.2 ([4, Assumption 1.2]; [5, Assumption 5.1]). The basic scheme 

(2.8a) is stable for the pure Cauchy problem --00 < V < 00. That is, defining the 

basic characteristic function 

(3.1) P(Z,K) = t aj(z)Ki , 
i=-r 

where 

(3.2) 
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then: 

(i) The basic scheme fulfills the von Neumann condition; Le., the roots Z{K} of 

the basic characteristic equation 

P(Z,K} = 0 

satisfy 

I Z{K} I <1 for all K with I K I = 1 . 

(ii) If I K I = 1, and if Z(K} is a root of P( Z,K} with I Z(K} I = 1, then Z{K) IS 

a simple root of P( z,k}. 

ASSUMPTION 3.3 (compare [4, Assumption 1.3], and [5, Assumption 5.4 together 

with Definition 10.1]). The basic scheme (2.8a) belongs to one of the following classes: 

(i) Dissipative schemes; i.e., schemes for which the roots Z(K} of P( Z,K) satisfy 

IZ(K)I < 1 for all K with IKI = 1, K ~ 1 . 

(ii) Almost-dissipative schemes, where the roots of P(Z,K) satisfy 

I Z{K} I < 1 for all but a finite number of K with I K I = 1, 

(iii) Unitary schemes (also known as strictly nondissipative schemes) where the 

roots of P( z, K) satisfy 

I Z(K}I = 1 for all K with I K I = 1 . 

Obviously, if the basic schem~ belongs to any of these classes, then by continuity 
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it fulfills the von Neumann condition in Assumption 3.2. 

ASSUMPTION 3.4 ([4, Assumption 1.41; [5, Assumption 5.5]). 

ASSUMPTION 3.5 [4, Assumption 1.51. 

m 
I; I Cj(z) I > 0 for all Izl > 1, 
j=O 

where in analogy with (3.2), 

(3.3) j =O,···,m. 

The above five assumptions are satisfied by all reasonable approximations of form 

(2.8). 

In order to state our new stability criteria we define, in complete analogy with 

(3.1), the boundary characteristic function 

m . 
R( z,t<:) = I; Cj( z)t<:1 

j=O 

where the Cj( z) are given in (3.3). Putting 

O(z,k) = IP(z,t<:)/ + IR(z,t<:)1 , 

we shall prove in Section 4, the following modification of Theorem 2.1 in [41: 
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THEOREM 3.1 (1st Main Theorem). Approximation (2.8) is stable if 

O(z,le) > 0 for all 
(3.4) 

{Iz 1= llel = 1, (z,le) ¥: (1,1)} U {Iz I > 1,0 < llel < I}. 

This result is an improvement of Theorem 2.1 in 14] in that here, the (z,k) 

domain on which O(z,k) must not vanish is a proper subset of the corresponding 

domain in 14]. 

As in 14] we shall find it convenient to divide this (z, k) domain into three disjoint 

parts, and restate Theorem 3.1 as follows: 

THEOREM 3.1' (Theorem 3.1 restated). Approximation (2.8) is stable if 

(3.5a) O(z,le) > 0 for all Izl = llel = 1, Ie ¥: 1 , 

(3.5b) . O(z,1e = 1) > 0 for all Izl = 1, z ¥: 1 , 

(3.5c) O(z,le) > 0 for all Izl > 1,0 < llel < 1 . 

The advantage of this setting over that of Theorem 3.1 will be soon clarified by 

Lemma 3.1 in which we provide helpful, sufficient conditions for each of the three ine­

qualities in (3.5) to hold. Before stating this lemma we need, however, the following 

definitions: 

DEFINITION 3.1. The boundary conditions (2.8c) fulfill the von Neumann condi­

tion if the roots z(le) of the boundary characteristic function R( Z,Ie) satisfy 
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DEFINITION 3.2. The boundary conditions (2.8c) are dissipative if the roots of 

R( z, Ie) satisfy 

I z(Ie)l < 1 for all llel = 1, Ie :I: 1 . 

Clearly these definitions are analogous to those made for the basic scheme in 

Assumptions 3.2 and 3.3. Further, if the boundary conditions are dissipative then they 

obviously fulfill the von Neumann condition. 

With the above definitions we can now state: 

LEMMA 3.1 (1st Main Lemma). 

(i) Inequality (3.5a) holds if either the basic scheme (2.8a) or the boundary condi­

tions (2.8c) are dissipative. 

(3.6) 

(ii) Inequality (3.5b) holds if any of the following is satisfied: 

(a) The basic scheme is two-level. 

(b) The basic scheme is three level and 

O(Z = -1, Ie = 1) > 0 . 

(c) The boundary conditions are two-level, and at least zero-order accurate as 

an approximation to equation (2.9). 

(d) The boundary conditions are three-level, at least zero-order accurate, and 

(3.6) is satisfied. 

(iii) Inequality (3.5c) holds if the boundary conditions fulfill the von Neumann con­

dition, and are either explicit or satisfy 
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m . 
T_l(K) = :E Cj(_1)K1 i: 0 for all 0 < IKI < 1 . 

j==O 

This lemma follows immediately from Theorem 2.2 and Lemma 2.1 in [41. Part (iii) 

of the lemma is associated with important observations on solvability by Osher [111. 

With Theorems 3.1, 3.1' and Lemma 3.1 at hand, it is now a trivial matter to rees­

tablish Examples 2.1-2.10 in [41, precisely as it was carried out using Theorems 2.1, 2.1', 

2.2 and Lemma 2.1 there. Thus we conveniently achieve the following five examples: 

EXAMPLES 3.1 [4, Examples 2.1 and 2.21. Stability holds for any basic scheme of 

form (2.8a), with boundary conditions generated by either the exp!icit right-sided, dis­

sipative Euler scheme: 

or by its implicit analogue: 

v,,(t + ~t) = v,,(t) + ).a[v,,+l(t + ~t) - v,,(t + ~t)], ).a > 0, v = 0,.··, r - 1 . 

EXAMPLE 3.2 [4, Examples 2.3 and 2.81. We have stability for any two-level basic 

scheme of form (2.8a), with boundary conditions determined by either horizontal extra-

polation of order k - 1: 

or by the right-sided, dissipative, three-level Euler scheme: 
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1 o < ~a < -, v = 0,"', r -1 . 
2 

EXAMPLE 3.3 [4, Examples 2.4 and 2.5]. Stability holds for any dissipative basic 

scheme of form (2.8a), with unitary* boundary conditions generated by either oblique 

extrapolation of order k - 1: 

(3.7) 

or by the second-order accurate Box-scheme: 

(3.8) 

EXAMPLE 3.4 [4, Examples 2.6 and 2.7]. We have stability for any basic scheme 

of form (2.8a) whose characteristic function satisfies 

(3.9) P(z = -1, K = -I} ~ 0 , 

with boundary conditions determined by the right-sided three-level, almost-dissipative, 

weighted Euler scheme: 

*The boundary conditions are unitary ir the roots z( K) or R( Z,K) satisry 
I z( K)I = 1 ror all I K I = 1 . 

-21-



(3.10) 

O<Aa<l, v=O,"·,T-l. 

We realize that if the basic scheme is dissipative then by Assumption 3.3(i), 

(3.11) P(z,le) ~ 0, Izl > 1, llel = 1, Ie ~ 1 j 

so (3.9) holds automatically. As noted already in Example 2.7 of 14], however, certa.in 

well-known nondissipative schemes satisfy (3.9) as well. This includes implicit 

unconditionally-stable cases such as the unitary Crank-Nicolson scheme: 

(3.12) 
Aa 

= v,,( t) + ""4 [V,,+l(t) - v,,-l(t)], v = T, r + 1, ... , 

and the almost-dissipative, backward Euler scheme: 

Aa ] (3.13) v,,(t + At) - '"2 [v,,+l(t + At) - v,,_l(t + At) = vll(t), v = r, r + 1,'" . 

EXAMPLE 3.5 [4, Examples 2.9 and 2.10]. The Crank-Nicolson scheme in (3.12) 

with 0 < Aa < I, and the backward Euler scheme in (3.13), are stable with oblique 

extrapolation at the boundary: 

(3.14) 

While Examples 3.1-3.5 incorporate and extend many of the cases discussed in 
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recent literature (e.g., [1]-[8], [10], [12]-[15]), other interesting examples are not covered 

by Theorems 3.1 and 3.1'. For instance, GustaCsson et al. showed in Theorem 6.2 oC [5] 

that the Leap-Frog scheme 

v,,(t + At) = v(t - At) + Xa[v,,+t(t) - V,,_t(t)) , 
(3.15) 

o < Xa < 1, v = 1,2,3, ... , 

with the oblique boundary extrapolation in (3.14), provides a stable approximation. In 

this case, however, the characteristic Cunctions are 

(3.16) 

and 

( 3.17) R(Z,K) = 1 - t (J) (_I)i+ 1z-iKi = (1 - z-tK)i. 
i=t 

Therefore, O(Z,K) > 0 at all points (Z,K) in (3.4), except for 

O(z=-I, K=-I)=/P(z=-I, K=-I)/+/R(z=-I, 1'-=-1)/=0; 

so (3.4) Cails, and Theorem 3.1 does not imply stability. 

This counterexample -- which shows that our criteria in Theorems 3.1 and 3.1' are 

sufficient but not necessary Cor stability -- is not unique. As we shall see, there are 

other well-known approximations for which O(z,I'-) does not vanish on the (z,I'-) 

domain in (3.4), with the exception oC the particular point (z,I'-) = (-1,-1). With this 

in mind, we shall prove in Section 4 the following alternative to Theorem 3.1, where 

the point (z,I'-) = (-1,-1) is treated seperately. 
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THEOREM 3.2 (2nd Main Theorem). Approximation (2.8) is staMe if 

(3.18) ap( Z,Ie) / ap( Z,Ie) I < 0 , 
az ale z=II:=-1 

and 

O(z,k) > 0 for all 
(3.10) 

{Izl = llel = 1, (z,le) ~ ± (1,1)} U {Izl > 1,0 < llel < I}. 

Having Theorem 3.2, we follow the idea that led to Theorem 3.1', and split the 

(z,k) domain in (3.19) into three disjoint sets in order to obtain: 

THEOREM 3.2' (Theorem 3.2 restated). Approximation (2.8) is stable if(3.18) 

holds and 

(3.20a) O( Z,Ie) > 0 for all Izl = llel = 1, Ie ~ 1, (z,le) ~ (-1,-1) , 

(3.20b) O(z,Ie=I) > 0 for all Izl = 1, z ~ 1 , 

(3.20c) O(z,le) > 0 for all I zl > 1, 0 < llel < 1 . 

Since the inequalities in (3.20b,c) coincide with those in (3.5b,c), then Lemma 3.1 

immediately yields: 

LEMMA 3.2 (2nd Main Lemma). Inequalities (3.20b) and (3.20c) hold under the 

hypotheses in parts (ii) and (iii) of Lemma 3.1, respectively. 

We deliberately choose not to apply part (i) of Lemma 3.1 to the inequality in 

(3.20a), since if the basic scheme or the boundary conditions are dissipative, then by 
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Assumption 3.3 (i) and Definition 3.2, we have either (3.11) or 

R(z,lC) ~ 0, Izl > I, IICI = I, IC ~ 1 . 

So 

O(z = -I, IC = -1) > 0 ; 

and Theorems 3.2 and 3.2' lose any possible advantage they may have had over 

Theorems 3.1 and 3.1'. 

EXAMPLE 3.6. Consider any basic scheme of form (2.8a) whose characteristic 

function satisfies (3.18) as well as 

(3.21) P(Z,IC) :1= 0, z = IC, IICI = 1, IC :1= ± 1 ; 

and determine the boundary conditions by oblique extrapolation as in (3.7). The boun­

dary characteristic function, given in (3.17), satisfies 

(3.22) O(Z,IC) > IR(z,IC)1 > 0, z:l= IC • 

Ip addition, by (3.21), 

(3.23) O( Z,IC) > IP( Z,IC)! > 0, z = IC, IICI = 1, IC :1= ± 1 . 

So (3.22) and (3.23) imply (3.19), and Theorem 3.2 yields stability. 

The inequalities in (3.18) and (3.21) are met by a number of well known schemes, 

including: 

(a) The unitary Leap-Frog scheme in (3.15) (compare [5, Theorem 6.2j), whose 

characteristic function in (3.16) satisfies 
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ap(Z,K) I ap(Z,K) I = -=!. < 0 
aZ aK z=,,=-1 ~a 

and 

P(Z,K) = (1 - ~a)(1 - K-2) ~ 0, Z = K, K ~ ± 1, (0 < ~a < 1) . 

(b) The unitary, five-point Leap-Frog scheme (e.g. [8,9)): 

4Xa Xa 
v,,(l + ~l) = v,,(t - ~l) + -3- [V,,+I(t) - v,,-I(t)1 - ""6 [v,,+2(1) - v,,_2(1)1 , 

(3.24) 

3 o < Xa < -, v = 2,3,'" . 
5 

Here, 

so 

and 

. ap(Z,K) / ap(Z,K) I = ....:!. < 0 
az aK :=,,=-1 5Xa 

P(Z,K) = (1 - K-2)[1 + 1. Xa(K + K-I 
- 8)1 ~ 0, Z = K, IKI = 1, K ~ ± 1 . 

6 

(c) The almost-dissipative Lax-Friedrichs scheme (e.g. 11OJ): 
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(3.25) 

o < Xa < 1 v-I 2 3 .... , -", , 

for which 

(3.26) 
-1 

P(Z,K) = 1 - Z2 [K + K-1 + Xa(K - K-1)) , 

so agam, 

(3.27) 

and 

P(Z,K) = 1. (1 -Xa)(1 _K-2) ~ 0, Z = K, I/el = 1, K ~ ± 1. 
2 

We realize that the stability question for these three schemes, combined with 

oblique extrapolation at the boundary, could not have been handled by Theorem 3.1 

since here, 

O(Z = -1, K = -1) = 0 . 

EXAMPLE 3.7 (compare [4, Example 2.71). Take any basic scheme that satisfies 

(3.18), and let the boundary conditions be determined by the first-order accurate, 

weighted Euler scheme in (3.10). The boundary characteristic function is 
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so its roots z( Ie) satisfy 

(3.28) 

Denot.ing p = (Aa)2, we obtain 

1cf>(e)1 4 = p2 + (I _p)2 + 2p(1 -p)cos2e< p2 + (1 _p)2 + 2p(1 -p) = I, 

o < lei < 11", (0 < p < 1) ; 

hence by (3.28), 

Consequently, 

R(z,le) =? 0, Izi > 1, llel = 1, Ie =? ± 1 ; 

so 

O(z,le) > IR(z,Ie)l > 0, Izl > 1, llel = 1, Ie =? ± 1 , 

and (3.20b) follows. 

Next, since 

O(z = -1, Ie = 1) > IR(z = -1, Ie = 1)1 = 4Aa > 0 , 

then Lemmas 3.1 (ii) (d) and 3.2 imply (3.20b). 

Further, by (3.29), the roots of R(z,le) satisfy 
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so our boundary conditions fulfill the von Neuma.nn condition. Moreover, we easily 

verify -that 

Hence, Lemmas 3.1 (iii) and 3.2 assure (3.20c), and by Theorem 3.2' we have stability. 

We recall that the Leap-Frog scheme in (3.15), the five-point Leap-Frog scheme in 

(3.24), and the Lax-Friedrichs schemes in (3.25), all satisfy (3.18); so they fit into the 

above example. 

We also point out that the stable approximation (3.25) (3.1O) was mistakenly 

declared unstable in [4]. 

EXAMPLE 3.8. Consider the almost-dissipative Lax-Friedrichs scheme in (3.25), 

with the Box-scheme boundary conditions in (3.8). As indicated in (3.27), the charac­

teristic function in (3.26) fulfills (3.18). Also, the roots of P(Z,K) satisfy 

so 

Z{K == -1) == .-1 

and 

Thus, 

P(Z,K) --1= 0, Izi > 1, IKI == 1, K --1= 1, (Z,K) --1= (-1,-1) j 
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hence 

O{z,le) > IP{z,Ie)l > 0, Izl > 1, llel = 1, Ie:;rf 1, (z,Ie):;rf (-1,-1) , 

and we obtain (3.20a). 

In addition, Lemmas 3.1 (ii) (c) and 3.2 immediately give (3.20b). Also, by (3.30) 

we get 

so the boundary conditions fulfill the von Neumann condition. And since 

Re T_t{le) = 1 + Re{le) + Xa[1 - Re{le)J :;rf 0, llel < 1, (O < Xa < 1) , 

then Lemmas 3.1 (iii) and 3.2 yield (3.20c), so Theorem 3.2' implies stability. 
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4. Proof of Main Results. 

In [41 we proved: 

THEOREM 4.1 [4, Theorem 2.11. Approximalion (2.8) is slable if 

O(Z,K) > 0 for Izl > 0, 0 < IKI < 1, (Z,K) ~ (1,1) . 

With this we can easily obtain: 

Proof of Theorem 3.1. Since by Assumption 3.2 the basic scheme fulfills the von 

Neumann condition, then the characteristic function in (3.1) satisfies 

P(Z,K) ~ 0 for Izl > 1, Itcl = 1 . 

Thus, we always have 

(4.1) O(z,tc) > 0, Izl > 1, Itcl = 1 , 

which together with the statement of Theorem 4;1, completes the proof. [J 

In order to prove Theorem 3.2 we again consider P(Z,K). By Assumption 3.4, for 

each z with Izl > 1, P(z,tc) has r + p roots tc(z). These continuous roots, which 

playa major role in the stability analysis of Approximation (2.8), have the following 

separation property. 

LEMMA 4.1 (14, Lemma 3.11; compare [5, Lemmas 5.1 and 5.2]). For I zl > 1, 

lhe characterislic funclion P( Z,K) has 'precisely r rools K( z) wilh 0 < Itc( z)l < 1, 

p roots wilh Itc(z)l > 1, and no rools wilh Itc(z)l = 1. 
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By this lemma, the roots K(Z) of P(Z,K) split for Izl > 1 into two groups: r 

inner roots satisfying IK(Z)l < 1, and p outer roots with IK(Z)I > 1. Using a con­

tinuity argument, we realize that these groups of inner and outer roots remain well­

defined for Izl > 1 as well, where milder inequalities, IK(Z)I < 1 and IK(Z)l > 1, 

hold, respectively. Here, of course, if for Zo with IZol = 1 we have IK(Zo)l = 1, 

then K(ZO} is an inner (outer) root of P(ZO,K) ifandonlyif,as z, Izi > 1, 

approaches zo, there exists an inner (outer) root K(Z) of P(Z,K) that satisfies 

K(Z) - K(ZO)' Since by Assumption 3.4, K = 0 is not a root of P(Z,K} for Izi > I, 

we summarize the above argument as follows: 

LEMMA 4.2 [4, Lemma 3.2J. For Izi > I, the r + p roots K(Z} of the basic 

characteristic function P( Z,K} split into r inner roots with 0 < IK( z)I < 1 and p 

out er roots with / K( z)l > 1. 

We quote now the following stability criterion: 

THEOREM 4.2 [4, Corollary 3.1]. Approximation (2.8) is stable If and only if for 

every z with / z/ > 1 and each corresponding inner root K( z) of P( Z,K), 

O(Z,K(Z)) = IP(Z,K(Z))I + IR(z,K(Z))1 > 0 . 

We shall also need: 

LEMMA 4.3. (i) K = 1 is not an inner root of P( Z,K) for z = 1. 

(ii) If (3.18) holds, then K = -1 is not an inner root for z = -1. 
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Proof. (i) The first part of the lemma is precisely the content of Lemma 3.3 in [4]. 

(ii) If P(z = -1, K = -1) ~ 0,. then there is nothing to prove, so suppose that 

(4.2) P(z = -1, K = -I} = 0 . 

By (3.18), 

( 4.3) 

thus having (4.2) and (4.3), we employ the implicit function theorem and find that in 

some neighborhood N of z = -1, the characteristic equation 

P(Z,K) = 0 

has a unique dift'erentiable solution K = R( z) satisfying 

(4.4) 

Since 

then 

( 4.5) 

R( z = -1) = -1 . 

P(z,R(z)) = 0 for zEN, 

OP(Z,K) + OP(Z,K) 
OZ OK 

dR(z) 
dz I =0. 

z=IC=-1 

Hence, (3.~8) and (4.5) imply, 

(4.6) dR(z) I - OP(Z,K) / OP(Z,K) I = 'Y > 0 . 
dz z=-l = oz OK Z=II:=-I 
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By (4.4) and (4.6), therefore, for z = -1 - € with sufficiently small € > 0, a Taylor 

expansIOn gives 

Thus, for z in some left real neighborhood of -1 we have 

( 4.7) IR(z)1 > 1 . 

Since R{z) is a continuous function in N then by Lemma 4.1, th.e inequality in (4.7) 

holds for all zEN,lzl >1. That is, R(z) is an outer root of P(z,l\,) for zEN, 

1 zl > 1. Since in addition, 

R(z) - -1, 
z -+ -I 

then by definition, I\, = -1 is an outer root for z = -1, and the proof is com-

plete. 0 

Proof of Theorem 3.2. By (3.18) and Lemma 4.3, n, = 1 and I\, = -1 are 

excluded as inner roots of P(z,l\,) for z = 1 and z = -1, respectively. Thus, in 

view of Theorem 4.2 and Lemma 4.2, approximation (2.8) is stable if 

(4.8) O(z,l\,) > 0 for all Izl > 1,0 < 11\,1 < 1, (z,l\,) ~ ± (1,1) . 

Since the basic scheme fulfills the von Neumann condition then, as shown in the 

proof of Lemma 4.1, we automatically have (4.1). But (4.1) combined with the 

hypothesis in (3.19) implies (4.8), and stability follows. 0 
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