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ABSTRACT 

We report on a series of numerical examples and compare several 

algorithms for estimation of coefficients in differential equation models. 

Unconstrained, constrained and Tikhonov regularization methods are tested for 

their behavior with regard to both convergence (of approximation methods for 

the states and parameters) and stability (continuity of the estimates with 

respect to perturbations in the data or observed states). 
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On Compactness of Admissible Parameter Sets: 
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Lefschetz Center for Dynamical Systems 
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In this brief note we summarize some of our findings [3J from 

numerical studies on certain aspects of ill-posed ness 10 inverse or 

parameter estimation problems involving differential equation constraints. 

There is a vast literature (which we shall not attempt to discuss here) on 

a number of questions (e.g., lack of existence and/or uniqueness of 

solutions, lack of continuous dependence of solutions on data) related to 

the estimation of parameters even when the constraining systems are 

algebraic equations or ordinary differential equations. Additional 

difficulties arise when one is. attempting to estimate functional (i.e. time 

and/or spatially dependent) coefficients in partial differential equation or 

distributed parameter systems. Here we focus on the role that compactness 

of the admissible parameter or coefficient set plays in such problems. Due 

to the limitations of space, our presentation will be sketchy, with all but 
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the expert reader most likely wishing to consult some of our references for 

further elaboration. 

Consider a general least-squares inverse or parameter estimation 

problem: Minimize J(q) = I Cu(q) -z I z over qEQAD' QAD C Q, subject to the 

constraints A(q,u(q» = Y. Here C is an observation operator from the state 

space X to an observation or data space Z, QAD is the admissible subset of 

parameters in the space Q, and the parameter dependent operator A defines 

the· dynamics that constrain the problem. In the problems of interest to us, 

A = Y represents a partial differential equation (elliptic, parabolic, 

hyperbolic) with parameter functions q which depend on time and/or 

spatial coordinates (or even the state u itself in some nonlinear system 

problems). It is now well-understood (e.g. see [1] for a discussion) that a 

compactness hypothesis (QAD compact in some Q topology) for QAD plays 

an important theoretical role in both convergence (of approximating 

solutions) and stability (continuity of the estimated parameters with respect 

to the data or observations). Here we wish to demonstrate that this 

compactness also plays an important comoutational role ill such problems. 

To do this, we illustrate the basic ideas with one dimensional elliptic 

systems (so we actually have an ordinary differential equation with 

spatially dependent coefficient). We wish to emphasize, however, that our 

findings are most certainly relevant to problems with more complex system 

dynamics (second order parabolic or hyperbolic equations, or higher order 

equations of elasticity). Indeed we have observed the difficulties and 

phenomena we discuss here in a number of these technically more 

challenging problems. 

Turning to a class of concrete examples, we consider minimization of 

over qEQAD C Q = qO,I] subject to 

D(qDu) = f, u(O) = u(I) = O. 

Here f is assumed known, D = :x ' and 
A 

U are given observations for 

(1) 

(2) 

u = u(q) the solution of (2). For computational purposes, we replace this 

original problem by a sequence of approximating problems where the states 

u are replaced by Galerkin approximations uN (for example, here we take 



UN in the N-I dimensional space of linear splines with grid size liN and 

satisfying the boundary conditions· uN(O) = uN(l) = 0) and the approximate 

parameters qM are chosen from an approximating set QM for QAD. That is, 

. Our algorithms are used to seek qM E QM C Q = qO,I] that minimizes 

(3) 

A convergence theory (as the dimensions of the approximating spline 

spaces increase i.e., N ... co, M ... co) can be given where one may use either 

linear or cubic splines for the state approximations and for the parameter 

approximations (e.g. see [2], [4] for the ideas). An essential feature of these 

particular convergence proofs is that the admissible parameter set QAD and 

its approximations QM lie in some compact subset of qO,I]. This same 

compactness assumption plays a fundamental role in proving stability (e.g., 

continuity of the inverse of the mapping from the parameter estimates to 

the observations or data) as is discussed in [I], for example. 

Perhaps the most direct way to interpret the compactness 

requirements is in terms of constraints on the parameters. For example, in 

the computations reported on herein, we imposed compactness in qO,I] by 

putting pointwise upper and lower bounds on the parameter function 

values as well as an upper bound on the absolute values of the slope of 

the functions. In practice it is common to ignore functional constraints, 

imposing the pointwise upper and lower bounds to insure that the 

optimization algorithms perform satisfactorily. The results summarized in 

this note illustrate the apparent necessity in many examples of including 

the full compactness constraint in computational algorithms. Examples are 

given here and in [3] where both stability and convergence properties are 

as expected whenever a constrained estimation procedure is employed 

whereas instability and divergence are in evidence when unconstrained 

techniques are used. It is safe to speculate that similar behavior occurs in 

problems with parabolic and hyperbolic as well as elliptic systems. In our 

own work and in that reported in the literature - e.g. see Yoon and Yeh 

[6], one sometimes encounters severe problems with oscillations in the 

estimates for q as one pushes the algorithms for increased accuracy in the 

parameter estimates (i.e. as one lets M ... co). As the examples in this note 

and [3] demonstrate, these difficulties can to' some extent be alleviated by 

imposition of compactness constraints. 

3 
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An alternative but essentially theoretically equivalent approach 

involves the use of Tikhonov regularization as formulated by Kravaris and 

Seinfeld in [5]. One restricts the parameter set to QR C Q with QR 
compactly imbedded in Q and then modifies the original least squares 

criterion J to minimize J 13 = J + 131 q 1 ~ where I' 1 R is the norm in QR and 

13 is -a regularization parameter. Thus minimizing sequences for J 13 are 

bounded in QR and hence compact in Q; this is, in some sense, roughly 

equivalent to minimizing J over a restriction of Q which is compact even 

though the minimization of J 13 only produces (hopefully) an approximation 

to the minimizer for the original criterion J. In the cases considered below, 

we use QR = Hi while Q = C (which corresponds to 1\ = C i and ~ = H2 

in the notation of [5]). 

As we shall see below, each approach has inherent difficulties in 

choosing related imbedding parameters: in the first, the estimates produced 

are sensitive to the constraints (the bound L on the derivatives of the 

parameters in the computations summarized here) while the estimates 

produced using regularization are quite sensitive to the regularization 

parameter 13. 

We carried out a series of numerical tests to compare spline based 

algorithms (linear spline approximations for both the states and parameters) 

on a number of examples for three cases: the unconstrained minimization 

of J; the constrained minimization of J; and unconstrained minimization of 

a regularized criterion JI3' Details of our packages and the algorithms are 

given in [3]. Here we only note that for the constrained minimization we 

used a reduced gradient algorithm with a corresponding gradient algorithm 

for the unconstrained minimization. For the compactness constraints we 

used 1 DqM(x) 1 ' Land .5 , qM(x) , 10.0 in all our examples. 

Our algorithms were compared on examples for which we knew the 
* A true solutions, i.e. we used "true" parameter values q to generate data u 

(in some cases with noise) as described in [3]. We summarize our findings 

and present representative results. 

CONVERGENCE 

In Figure I we compare estimates for several values of approximation 

indices N, M produced for an example (Example 2 of [3]) with 
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· r + x 
o ~ x ~ 1/3 

q (x) = 8/3 - x 1/3 ~ x ~ 2/3 (4) 
4/3 + x 2/3 ~ x ~ I, 

u(x) = vx(1 - VX), (5) 

in the system (2). We chose L = I (the exact maximum of * IDq (x)!> for 

the constrained algorithms. For low values of N (often a desirable situation 

in practice) compared to M, the unconstrained estimates are totally useless. 

For larger values of N, the unconstrained estimates are improved with only 

small oscillations appearing at each end. In all cases, convergence took 

much longer for the unconstrained package. For this same example we 

depict in Figure 2 the estimates obtained using Tikhonov regularization 

with N 64, M = 16 and several values of the regularization parameter 13. 

Results for a slightly different example (Example 3 of [3]) with the same 

u but q * (x) piecewise linear as in (4) except with slopes 1= 2 are depicted 

in Figure 3. Here we illustrate, for N 64, M = 16, the typical 

performance of Tikhonov regularization as 13 changes and that of the 

constrained minimization as L varies. As one might expect, the estimates 

begin to resemble unconstrained estimates as 13 .... 0 and L .... "". 

STABILITY 

To investigate stability with respect to noise in the data, we took the 

true u, q * and f associated with (4), (5) above but perturbed u to produce 

data ~ = up for the least squares criterion IN of (3). We used perturbations 

of the form up(x) = u(x) + p(x)/K where p(x) is a perturbing function and 

K can be varied to control the size of the perturbation. As K -+ "", we 

have up(x) -+ u(x) for bounded perturbations p. In our numerical 

experiments we used two different perturbation functions: p 1 (x) = 
x(I - x), p 2(x) = 1. Note that p 1 (like u) satisfies the homogeneous 

boundary conditions while P2 does not. The unconstrained, constrained and 

)Tikhonov estimates for several values of K with perturbation function p 1 

in the data and N 8, M = IS are given in Figure 4. The depicted 

behavior is typical: For all values of N the behavior of the constrained 

and Tikhonov methods are similar, with the estimates improving steadily as 

up(x) -+ u(x), i.e. as the noise in the observations tends to zero. 

5, we present results obtained using the perturbation P2 

In Figure 

with the 

unconstrained, constrained and Tikhonov estimation procedures for several 

Ii 
10; 

• -. 
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values of (N,M) : (8,15), (16,16) and (64,16). The L co norm of the error 

(from the true values q *) in the final estimates is graphed versus the 

values of K. 

SUMMARY REMARKS 

The results here and in [3] demonstrate severe problems in some 

instances with using an unconstrained algorithm to estimate the parameter 

q in examples such as (I), (2). When modified, either by regularizing the 

problem using Tikhonov regularization or by constraining the estimate set 

as iIi this note, the algorithm does give good estimates. 

Unlike the unconstrained algorithm, both the Tikhonov and 

constrained algorithms are stable with respect to increasing M while 

holding N fixed. However as N is increased the estimates from the 

Tikhonov algorithm do not improve as much as do those of the constrained 

algorithm. The Tikhonov estimates are biased by the regularization of the 

cost functional, and never show all the detail of q when q has significant 

variation. 

Both the constrained and Tikhonov estimation algorithms are stable 

with respect to systematic errors in the observation data, while, except 

when N is large, the unconstrained algorithm fails to give goOd results on 

even the exact data. 

For both the Tikhonov and constrained algorithms there are 

parameters which affect the algorithm's performance. For the constrained 

algorithm suitable constraints must be found while for the Tikhonov 

algorithm suitable values of 13 must be found. The constrained algorithm 

has tbe advantage that the constraints used here, i.e. limits on the slope of 

q, have an obvious meaning, and so may well be (at least approximately) 

known in advance. In the Tikhonov algorithm 13 has no obvious meaning. 

It must be chosen by looking at the change in the estimate behavior as 13 

changes and perhaps using some a priori knowledge about the shape of q 

to choose values of 13 that give an estimate that is neither too flat, nor 

too oscillatory. For the constrained algorithms, the estimates are sensitive to 

the slope constraint parameter L. We have begun investigations into how 

one might use this sensitivity in some type of adaptive manner in 

algorithms to choose a "best" value of L (and hence a good parameter 

estimate). In Figure 6 we depict some of our initial findings. In this figure 

11 
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we graph the square of the H 1 norm of the final estimate versus the 

constraint L for several different examples and various values of N (with 

M fixed at 16). All but the second of the examples involve. true 

parameters q * of the form (4), differing only in the slope of the piecewise 

linear functions. In the first example Dq * (x) = ~ I, while in the last two 
* d *() . . Dq (x) = ~ 2 an Dq x = ~ 5 respectIvely. The second IS made up of 

piecewise linear and parabolic segments satisfying ,Dq *<x)·, ' I. Note that 

it is not necessary to know the true values q * in order to obtain the 

graphs in this figure. Furthermore, we observe a striking separation in the 

values of the Hi norm of the estimate for qM at the value of L 

corresponding to the desired value of L to be used with each example. We 

are continuing our investigations into how these and other features of 

some of our results might be used to develop "adaptive" constrained 

parameter estimation algorithms. 
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