NASA Technical Memorandum 58273

Scientific and Technical Papers
Presented or Published by
JSC Authors in 1985

AUGUST 1986

NASA
Scientific and Technical Papers
Presented or Published by
JSC Authors in 1985

Compiled by
Management Services Division
Lyndon B. Johnson Space Center
Houston, Texas
FOREWORD

This bibliography of scientific and technical papers is the first in a series to be published annually in compliance with the National Aeronautics and Space Act of 1958 which requires "the widest practicable and appropriate dissemination of information about the Agency's programs and the results thereof."

The purpose of the series is to provide to the technical community a compendium of current JSC research and technological developments.

Comments concerning this publication or suggestions for future annual bibliographies should be addressed to the Documentation Management Branch, JM2, Lyndon B. Johnson Space Center, Houston, Texas, 77058; FTS 525-6267 or 713/483-6267.

Carolyn E. Huntoon
Associate Director
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>OFFICE OF THE DIRECTOR</td>
<td>3</td>
</tr>
<tr>
<td>FLIGHT CREW OPERATIONS DIRECTORATE</td>
<td>5</td>
</tr>
<tr>
<td>MISSION OPERATIONS DIRECTORATE</td>
<td>7</td>
</tr>
<tr>
<td>ENGINEERING DIRECTORATE</td>
<td>9</td>
</tr>
<tr>
<td>Crew Systems Division</td>
<td>10</td>
</tr>
<tr>
<td>Advanced Programs Office</td>
<td>12</td>
</tr>
<tr>
<td>Tracking and Communications Division</td>
<td>13</td>
</tr>
<tr>
<td>Simulation and Avionics Integration Division</td>
<td>16</td>
</tr>
<tr>
<td>Avionics Systems Division</td>
<td>17</td>
</tr>
<tr>
<td>Propulsion and Power Division</td>
<td>18</td>
</tr>
<tr>
<td>Structures and Mechanics Division</td>
<td>20</td>
</tr>
<tr>
<td>Flight Projects Engineering Office</td>
<td>23</td>
</tr>
<tr>
<td>MISSION SUPPORT DIRECTORATE</td>
<td>25</td>
</tr>
<tr>
<td>SPACE STATION PROJECTS OFFICE</td>
<td>27</td>
</tr>
<tr>
<td>SAFETY, RELIABILITY, AND QUALITY ASSURANCE OFFICE</td>
<td>29</td>
</tr>
<tr>
<td>SPACE STATION PROGRAM OFFICE</td>
<td>31</td>
</tr>
<tr>
<td>WHITE SANDS TEST FACILITY</td>
<td>33</td>
</tr>
<tr>
<td>SPACE AND LIFE SCIENCES DIRECTORATE</td>
<td>35</td>
</tr>
<tr>
<td>Space Biomedical Research Institute</td>
<td>35</td>
</tr>
<tr>
<td>Medical Sciences Division</td>
<td>36</td>
</tr>
<tr>
<td>Solar System Exploration Division</td>
<td>43</td>
</tr>
<tr>
<td>Man-Systems Division</td>
<td>64</td>
</tr>
<tr>
<td>Artificial Intelligence and Information Sciences Office</td>
<td>65</td>
</tr>
<tr>
<td>TITLE INDEX</td>
<td>67</td>
</tr>
<tr>
<td>AUTHOR INDEX</td>
<td>89</td>
</tr>
<tr>
<td>SUBJECT INDEX</td>
<td>99</td>
</tr>
</tbody>
</table>

PRECEDING PAGE BLANK NOT FILMED
INTRODUCTION

This listing of the Johnson Space Center's scientific and technical publications and presentations is arranged alphabetically by first author within the organization of that author's affiliation at the time the request for approval was initiated. Organizational groupings are made by directorate or major office, then if number of entries warrants, by division or suboffice. Organizations are listed by 1985 designations. The citations are based primarily on JSC authorship, with contractors, grantees, and independent collaborators included for coauthored papers.

Types of papers included are NASA formal series reports, journal articles, presentations given at professional society meetings and seminars, papers published in conference proceedings and other collective works, and workshop results. Dates are confined largely to calendar year 1985, except those few cases in which a published version of a 1985 presentation had already appeared in early 1986 or in which a 1984 presentation was not published until 1985.

Information presented herein is based chiefly on that supplied by authors first on forms requesting approval and later on review of this listing, copies of which were distributed to all directorates and offices involved. Additional information was obtained from literature searches in the NASA Scientific and Technical Aerospace Reports (STAR), International Aerospace Abstracts (IAA), and available professional publications cited.

MISSION OPERATIONS DIRECTORATE

1. Bruce, Tandy N.: STS Retrieval of Satellites. Presented at the 22nd Space Congress hosted by the Canaveral Council of Technical Societies, April 23-26, 1985, Cocoa Beach, Florida.

ENGINEERING DIRECTORATE

Tracking and Communications Division

Structures and Mechanics Division

Flight Projects Engineering Office

MISSION SUPPORT DIRECTORATE

SPACE STATION PROJECTS OFFICE

SAFETY, RELIABILITY, AND QUALITY ASSURANCE OFFICE

WHITE SANDS TEST FACILITY

1. Benz, Frank J.; Briles, Owen; Hagemann, Dan; and Farkas, Tibor: Explosive Decomposition of Hydrazine Due to Rapid Gas Compression. Presented at the JANNAF Interagency Propulsion Committee Conference, April 9-12, 1985, San Diego, California.

5. Reschke, M. F.; Parker, D. E.; Homick, J. L.; Anderson, D. J.; Arrott, A. P.; and Lichtenberg, B. K.: Reinterpretation of Otolith Input as a Primary Factor in Space Motion Sickness. NATO AGARD Results of Space Experiments in Physiology and Medicine and Informal Briefings by the F-16 Medical Working Group, March 1985, 18 p.

Medical Sciences Division

3. Bungo, Michael W.; Charles, John B.; and Johnson, Philip C., Jr.: Cardiovascular Deconditioning During Space Flight and the Use of Saline as a Countermeasure to Orthostatic Intolerance. Aviation, Space, and Environmental Medicine, Volume 56, October 1985, pp. 985-990.

13. Coleman, M. E.: Toxicological Concerns and Safeguards at NASA. Presented at the University of Mississippi Medical Center, July 22, 1985, Jackson, Mississippi.

35. Leach, Carolyn S.; and Johnson, Philip C., Jr.: Fluid and Electrolyte Control in Simulated and Actual Spaceflight. Presented at the 7th Annual Meeting of the IUPS Commission on Gravitational Physiology, 1985, Niagara Falls, New York.

Solar System Exploration Division

1. Annexstad, John O.: Displacement, Ablation, and Meteorite Concentrations at the Allan Hills Icefield. Presented at Oregon State University, Corvallis, Oregon, April 23, 1985; and at the University of Minnesota, Minneapolis, Minnesota, April 26, 1985.

2. Annexstad, John O.: Geography and Glaciology of Selected Blue Ice Regions in Antarctica. Presented at the University of Minnesota, Minneapolis, Minnesota, April 26, 1985.

50

81. Mackinnon, Ian; Rietmeijer, Frans J.; McKay, David S.; and Zolensky, Michael E.: Microbeam Analyses of Stratospheric Particles. Presented at the Workshop on Microbeam Analysis Techniques in the Study of Lunar, Meteorites, and Cosmic Dust Samples, August 5-9, 1985, Louisville, Kentucky.

Man - Systems Division

Artificial Intelligence and Information Sciences Office

TITLE INDEX

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerated River Delta Aggradation Along Northwestern Madagascar</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Accurate Stratospheric Particle Size Distributions from a Flat-Plate Collection Surface</td>
<td>62</td>
<td>172</td>
</tr>
<tr>
<td>Accurate Stratospheric Particle Size Distributions from Two Separate Flat-Plate Collection Surfaces: Can We See Variations with Time?</td>
<td>62</td>
<td>174</td>
</tr>
<tr>
<td>Acoustic Emission Monitoring of Space Shuttle Tiles</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Advanced Geological Exploration Supported by a Lunar Base: A Traverse Across the Imbrium-Procellarum Region of the Moon</td>
<td>46</td>
<td>30</td>
</tr>
<tr>
<td>Advanced Metabolic Support in Space</td>
<td>41</td>
<td>49</td>
</tr>
<tr>
<td>Aerodynamic Flight Testing of the Space Shuttle Orbiter</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Age of the Mulcahy Lake Intrusion, Northwest Ontario, and Implications for the Evolution of Greenstone Granite Terrains</td>
<td>55</td>
<td>110</td>
</tr>
<tr>
<td>Agglutinate Melting Mechanisms: Experimentally Shocked Feldspars</td>
<td>58</td>
<td>139</td>
</tr>
<tr>
<td>Alkalic Basalts from the Geronimo Volcanic Field: Petrologic and Geochemical Data Bearing on Their Petrogenesis</td>
<td>45</td>
<td>19</td>
</tr>
<tr>
<td>Alteration in Archean Anorthosites</td>
<td>55</td>
<td>108</td>
</tr>
<tr>
<td>Analysis of Leaf Area Estimates Made from Allometric Regression Models</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Analysis of Micrometeorite Material Captured by the Solar Max Satellite</td>
<td>52</td>
<td>83</td>
</tr>
<tr>
<td>Apollo 16 Impact Melt Splashes: Implications from the Host Rocks</td>
<td>58</td>
<td>136</td>
</tr>
<tr>
<td>Application of Space Shuttle Technology and Experience to Concepts for Space Station Crew Equipment Modular Storage System</td>
<td>64</td>
<td>9</td>
</tr>
<tr>
<td>Application of Thematic Mapper Data to Corn and Soybean Development Stage Estimation</td>
<td>43</td>
<td>8</td>
</tr>
<tr>
<td>Applied Manned Systems Interface Modeling</td>
<td>64</td>
<td>3</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Assessment of African Lake Levels Using Space Shuttle Earth Photography</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>Astronaut Crew Performance: Recent Space Experience</td>
<td>41</td>
<td>48</td>
</tr>
<tr>
<td>Auger Spectroscopy of Stratospheric Particles: The Influence of Aerosols on Interplanetary Dust</td>
<td>51</td>
<td>78</td>
</tr>
<tr>
<td>Automated Subsystem Control Development</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Automating Human Monitoring and Control: Integrating Artificial Intelligence and Data Analysis</td>
<td>65</td>
<td>4</td>
</tr>
<tr>
<td>Automation and Robotics in the Space Station Era</td>
<td>65</td>
<td>1</td>
</tr>
<tr>
<td>Beam-Plasma Interactions Laboratory Experiments and Theory</td>
<td>50</td>
<td>69</td>
</tr>
<tr>
<td>Beyond Low Earth Orbit - An Overview of Orbit-to-Orbit Stages</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>The Binary Fission Origin of the Moon</td>
<td>44</td>
<td>12</td>
</tr>
<tr>
<td>Biochemical Effects of Oral Saline Consumption as a Countermeasure to Post-Space-Flight Orthostatic Intolerance</td>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>Biomedical Applications of Ion Chromatography</td>
<td>37</td>
<td>9</td>
</tr>
<tr>
<td>Biotechnology and Pharmaceutical Research in Space</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>CAI's Among the Cosmic Dust Collection</td>
<td>62</td>
<td>171</td>
</tr>
<tr>
<td>Carbonaceous Material in CPA W 7029*A</td>
<td>57</td>
<td>127</td>
</tr>
<tr>
<td>Cardiovascular Deconditioning During Space Flight and the Use of Saline as a Countermeasure to Orthostatic Intolerance</td>
<td>36</td>
<td>3</td>
</tr>
<tr>
<td>Cardiovascular Responses of Untrained and Endurance Trained Dogs to Oscillatory Blood Volume Shifts</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>Cell Maintenance Systems</td>
<td>40</td>
<td>41</td>
</tr>
<tr>
<td>Cell Separations in Microgravity and Development of a Space Bioreactor</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>Challenges of Developing an Electro-Optical System for Measuring Man's Operational Envelope</td>
<td>64</td>
<td>7</td>
</tr>
<tr>
<td>Changes in Arterial Compliance in Humans Following Multi-Day Weightlessness</td>
<td>36</td>
<td>7</td>
</tr>
<tr>
<td>Changes in Cardiovascular Function: Weightlessness and Ground-based Studies</td>
<td>41</td>
<td>47</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Changes in Orthostatic Heart Rate and Heart Size in Humans as a Function of Space Flight Duration</td>
<td>37</td>
<td>8</td>
</tr>
<tr>
<td>Chemical Signatures at the Cretaceous-Tertiary Boundary Within a Single Manganese Nodule</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>Chemistry and Petrology of Apollo 12 Drive Tube 12027</td>
<td>59</td>
<td>144</td>
</tr>
<tr>
<td>Chronology and Petrogenesis of a 1.8g Lunar Granitic Clast: 14321, 1062</td>
<td>58</td>
<td>138</td>
</tr>
<tr>
<td>Chronology of Breccia Formation on Meteorite Parent Bodies</td>
<td>45</td>
<td>22</td>
</tr>
<tr>
<td>Circulating Red Blood Cell Disappearance in Microgravity</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>Clay Minerals in Meteorites: Preliminary Identification by Analysis of Goodness-of-Fit to Calculated Structural Formulas</td>
<td>47</td>
<td>41</td>
</tr>
<tr>
<td>Clinopyroxene REE Distribution Coefficients for Shergottites: REE Content of the Sherogotty/Zagami Melts</td>
<td>53</td>
<td>91</td>
</tr>
<tr>
<td>Collisional Balance of the Meteoritic Complex</td>
<td>63</td>
<td>176</td>
</tr>
<tr>
<td>Collisional Fragmentation of Granodiorite Targets by Multiple Impact Events</td>
<td>49</td>
<td>55</td>
</tr>
<tr>
<td>Communications and Tracking Aboard the Space Station</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>Communications and Tracking: The Keys to Space Station Utilization</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Comparative Study of Suits and SAIL Canopy Reflectance Models</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>Comparative Study of Various Charge-Up Neutralization Systems</td>
<td>52</td>
<td>82</td>
</tr>
<tr>
<td>Comparison of Petrology, Grain Sizes, and Surface Maturity Parameters for Apollo 15 Regolith Breccias and Soils</td>
<td>45</td>
<td>24</td>
</tr>
<tr>
<td>A Comparison of Shuttle Solid Rocket Effluent with Aluminum-Rich Stratospheric Particles</td>
<td>60</td>
<td>154</td>
</tr>
<tr>
<td>Components for Chemical Mixing Models of Apollo 16 Impact Melt Splashes (IMS's)</td>
<td>54</td>
<td>105</td>
</tr>
<tr>
<td>Composition of Agglutinitic Glass</td>
<td>52</td>
<td>84</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Compositional Domains of Apollo 16 Impact Melt Splashes (IMS's)</td>
<td>54</td>
<td>106</td>
</tr>
<tr>
<td>Compositional Homogeneity/Heterogeneity of Apollo 16 Impact Melt Splashes: How Many Impacts?</td>
<td>58</td>
<td>135</td>
</tr>
<tr>
<td>Computational Methods for Hypersonic Viscous Flow Over Finite Ellipsoid-Cones at Incidence</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>A Consideration of Atomic Oxygen Interactions with Space Station</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>Contamination Effects During Rendezvous and Proximity Operations</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>A Continuum Between Interplanetary Dust and CI/CM Meteorites</td>
<td>57</td>
<td>128</td>
</tr>
<tr>
<td>Contribution of Explosion and Future Collision Fragments to the Orbital Debris Environment</td>
<td>50</td>
<td>67</td>
</tr>
<tr>
<td>Cooling Histories of Chondrules</td>
<td>52</td>
<td>85</td>
</tr>
<tr>
<td>Correlation of Predicted and Measured Sonic Boom Characteristics From the Reentry of STS-1 Orbiter</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>Cosmogenic He and Ne in Chondrites: Monitors of Spatial Gradients in the Cosmic Ray Flux?</td>
<td>55</td>
<td>115</td>
</tr>
<tr>
<td>Crop Characteristics Research: Growth and Reflectance Analysis</td>
<td>43</td>
<td>6</td>
</tr>
<tr>
<td>A Cruciform Chromite in an Agglutinate in Lunar Soil 15271</td>
<td>52</td>
<td>86</td>
</tr>
<tr>
<td>Data Systems Environment for Space Station and Beyond</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>Decreases in Red Cell Mass Found After Space Flight</td>
<td>39</td>
<td>28</td>
</tr>
<tr>
<td>The Depth of the Mare Basalt Source Region</td>
<td>44</td>
<td>13</td>
</tr>
<tr>
<td>The Design and Qualification of the Manned Maneuvering Unit Vibration Isolation System</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Design Concepts of a Proposed Earth Observatory for the Shuttle and Space Station</td>
<td>62</td>
<td>170</td>
</tr>
<tr>
<td>Design Evolution of the Orbiter Reaction Control Subsystem</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Design Study of an Integrated Aerobraking Orbital Transfer Vehicle</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>Determination of Biophysical Properties for Vegetated Canopies Using a Helicopter C-Band Scatterometer</td>
<td>56</td>
<td>119</td>
</tr>
<tr>
<td>Determination of Minor Element Distribution in Synthetic Olivine by Election Channelling</td>
<td>51</td>
<td>75</td>
</tr>
<tr>
<td>Determination of Optical Penetration Depths From Reflectance and Transmittance Measurements on Albite Powders</td>
<td>54</td>
<td>103</td>
</tr>
<tr>
<td>Determination of γ-Carboxyglutamic Acid by Paired-Ion Reverse Phase High Performance Liquid Chromatography</td>
<td>37</td>
<td>10</td>
</tr>
<tr>
<td>The Development and Application of Aerodynamic Uncertainties and Flight Test Verification for the Space Shuttle Orbiter</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>Development of the NASA/FLAGRO Computer Program</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>Development Status of Regenerable Solid Amine CO₂ Control Systems</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Devitrification and Thermoluminescence Properties of Type 3 Chondrites</td>
<td>51</td>
<td>74</td>
</tr>
<tr>
<td>Direct Integrated Solar Heating (DISH) Concept for a Manned Space Station</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Direct Solar Heating for Space Station Application</td>
<td>58</td>
<td>141</td>
</tr>
<tr>
<td>Disaggregation of Regolith Breccias</td>
<td>52</td>
<td>87</td>
</tr>
<tr>
<td>Discovery of Sodium in the Atmosphere of Mercury</td>
<td>56</td>
<td>122</td>
</tr>
<tr>
<td>Displacement, Ablation, and Meteorite Concentrations at the Allan Hills Icefield</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>Display Comparison for Six-Degree-of-Freedom Force/Torque Control</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>Dual Band Microstrip Antennas with Monolithic Reactive Loading</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Dual Band Reactively Loaded Microstrip Antenna</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Dynamic Crystallization Experiments on Chondrule Melts of Porphyritic Olivine Composition</td>
<td>51</td>
<td>72</td>
</tr>
<tr>
<td>Earth Orbital Debris</td>
<td>49</td>
<td>57</td>
</tr>
<tr>
<td>Echocardiographic Evaluation of Space Shuttle Crewmembers</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td>Echocardiographic Investigation of the Hemodynamics of Weightlessness</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>The Effect of Astemizole on the Vestibular Ocular Reflex</td>
<td>35</td>
<td>4</td>
</tr>
<tr>
<td>Effect of Hydration on Nitrogen Washout in Humans</td>
<td>42</td>
<td>57</td>
</tr>
<tr>
<td>The Effect of Metal Cleaning Methods on the Corrosion Rate and Surface Chemistry of Type 304 Stainless Steel in MON-3 Oxidizer</td>
<td>33</td>
<td>5</td>
</tr>
<tr>
<td>Effect of Microbial Fouling on Dynamic Column Capacities of Activated Charcoal and Ion Exchange Resins</td>
<td>39</td>
<td>30</td>
</tr>
<tr>
<td>The Effect of Multiple Simulated Extravehicular Activity (EVA) Decompressions Over a 72-Hour Period on Symptom and Bubble Incidence</td>
<td>42</td>
<td>56</td>
</tr>
<tr>
<td>Effect of Operant Behavior of Rats from Inhaling Sublethal Levels of Pyrolysates from a Polyimide and a Polyurethane Foam</td>
<td>39</td>
<td>33</td>
</tr>
<tr>
<td>Effects of Nonequilibrium and Wall Catalysis on Shuttle Heat Transfer</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>The Effects of Particulates from Solid Rocket Motors Fired in Space</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>Effects of Phase and Amplitude Errors Upon Image Resolution for Discrete Element Arrays</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Effects of the Low Earth Orbital Environment on Spacecraft Materials</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>Electrochemical CO₂ Concentration for the Space Station Program</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Electronstagmography and Audio Potentials Space Flight</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>An Empirical Evaluation of Direct, Menu, and Hybrid Computer Command Modes in the Context of Proposed Space Station Requirements</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>Endocrine and Fluid Metabolism in Males and Females of Different Ages After Bedrest, Acceleration, and Lower Body Negative Pressure</td>
<td>40</td>
<td>36</td>
</tr>
<tr>
<td>Energy Storage for a Space Station Solar Dynamic Power System</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Engineering in the Anthropometric Measurement Lab</td>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td>Environment Definition, Large Particles</td>
<td>49</td>
<td>58</td>
</tr>
<tr>
<td>Estimation of Biophysical Properties of Forest Canopies Through Inversion of Microwave Scatterometer Data</td>
<td>56</td>
<td>121</td>
</tr>
<tr>
<td>Estimation of Leaf Area Index and Biomass in a Boreal Forest Using Helicopter-Acquired C-Band Scatterometer and Optical Reflectance Data</td>
<td>56</td>
<td>120</td>
</tr>
<tr>
<td>Euler Solutions Using Implicit Multigrid Techniques</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>Eutectic Crystallization of Feldspar</td>
<td>51</td>
<td>76</td>
</tr>
<tr>
<td>Evaluating Alternative Manufacturing Flows for the Space Station Common Module Using Simulation</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>Evolution of the Astronaut's Role</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Evolving Technology and Engineering at NASA Johnson Space Center</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Examination of Returned Solar-Max Surfaces for Impacting Orbital Debris and Meteoroids</td>
<td>50</td>
<td>68</td>
</tr>
<tr>
<td>An Experimental Investigation of Agglutinate Melting Mechanisms: Shocked Mixtures of Sodium and Potassium Feldspars</td>
<td>58</td>
<td>140</td>
</tr>
<tr>
<td>Experimental Regolith Evolution: Differential Comminution of Plagioclase, Pyroxene and Olivine</td>
<td>49</td>
<td>54</td>
</tr>
<tr>
<td>An Expert System for Fault Management and Automatic Shutdown Avoidance in a Regenerative Life Support Subsystem</td>
<td>65</td>
<td>6</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>An Expert Systems Approach to Automated Fault Diagnostics</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Explorer 46 Meteoroid Bumper Experiment: Earth Orbital Debris</td>
<td>49</td>
<td>59</td>
</tr>
<tr>
<td>Interpretation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explosive Decomposition of Hydrazine Due to Rapid Gas Compression</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>Explosive Volcanism: Inception, Evolution, and Hazards</td>
<td>61</td>
<td>165</td>
</tr>
<tr>
<td>Fault Detection in the Space Shuttle Orbiter Body Flap using the</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Modal Assurance Criterion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/Mg Kp for Olivine/Liquid in Chondrules: Effect of Cooling Rate</td>
<td>51</td>
<td>73</td>
</tr>
<tr>
<td>Feasibility of Expert Systems To Enhance Space Station Subsystem</td>
<td>65</td>
<td>7</td>
</tr>
<tr>
<td>Controllers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Finite Difference Method for Solving Unsteady Viscous Flow Problems</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>The Fisher Linear Classifier</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Flow Cytometry of Human Embryonic Kidney Cells: A Light Scattering</td>
<td>39</td>
<td>31</td>
</tr>
<tr>
<td>Approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid and Electrolyte Control in Simulated and Actual Spaceflight</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>Forecast Requirements for Shuttle Post-Launch Operations</td>
<td>61</td>
<td>161</td>
</tr>
<tr>
<td>A Fracture Mechanics Study of the Turbine Wheel in the Space Shuttle</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Auxiliary Power Unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Frequency Domain Stability Analysis of a Phase Plane Control</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future Uses of Machine Intelligence and Robotics for the Space Station</td>
<td>65</td>
<td>5</td>
</tr>
<tr>
<td>The General Perception Problem</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>Geochemical Variations within the Lower Volcanic Cycle of the</td>
<td>59</td>
<td>147</td>
</tr>
<tr>
<td>Archean Wawa Greenstone Belt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geochronology and Petrogenesis of VHK Basalts</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Geography and Glaciology of Selected Blue Ice Regions in Antarctica</td>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>Granulite Xenoliths from the Geronimo Volcanic Field, Southeastern Arizona: Evidence for a Heterogeneous Proterozoic Lower Crust Beneath the Southwestern United States</td>
<td>49</td>
<td>56</td>
</tr>
<tr>
<td>Hafnium, Zirconium, and Rare Earth Element Partition Coefficients between Ilmenite and Liquid</td>
<td>53</td>
<td>92</td>
</tr>
<tr>
<td>Hematological Changes Following Repetitive Decompressions Simulating EVA</td>
<td>38</td>
<td>24</td>
</tr>
<tr>
<td>High Stress Shallow Moonquakes: Evidence for an Initially Totally Molten Moon</td>
<td>44</td>
<td>16</td>
</tr>
<tr>
<td>High-Flying Training Manuals</td>
<td>53</td>
<td>97</td>
</tr>
<tr>
<td>High-Temperature Controlled Redox Crystallization Studies</td>
<td>61</td>
<td>162</td>
</tr>
<tr>
<td>An Historical Overview of NASA Manned Spacecraft and Their Crew Stations</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Honeycomb Panel Heat Pipe Development for Space Radiators</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>The Human Cardiovascular System in the Absence of Gravity</td>
<td>36</td>
<td>2</td>
</tr>
<tr>
<td>Human Factors Issues in Space Station Architecture</td>
<td>40</td>
<td>37</td>
</tr>
<tr>
<td>Hunting for Meteorites in Antarctica</td>
<td>43</td>
<td>3</td>
</tr>
<tr>
<td>Hypervelocity Impact Investigations and Meteoroid Shielding Experience Related to Apollo and Skylab</td>
<td>46</td>
<td>33</td>
</tr>
<tr>
<td>Hypervelocity Impacts on Skylab 4/Apollo Windows</td>
<td>46</td>
<td>32</td>
</tr>
<tr>
<td>Ignition of Metals by a Strong Promoter</td>
<td>33</td>
<td>2</td>
</tr>
<tr>
<td>Ignition of Metals by Frictional Heating</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>Ignition of Metals by Impact of High Velocity Particles</td>
<td>33</td>
<td>4</td>
</tr>
<tr>
<td>Illustration of the Use of Modal Assurance Criterion to Detect Structural Changes in an Orbiter Test Specimen</td>
<td>22</td>
<td>25</td>
</tr>
</tbody>
</table>

75
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilmenite Partitioning Revisited: Confirmation of Zr Results for High-Ti Mare Basalts</td>
<td>53</td>
<td>93</td>
</tr>
<tr>
<td>Impact Cratering Experiments in Cold Rock, II: Collisional Fragmentation</td>
<td>59</td>
<td>146</td>
</tr>
<tr>
<td>Impact Experiments in Cold Rock Targets, I: Cratering</td>
<td>59</td>
<td>145</td>
</tr>
<tr>
<td>Impact Experiments in H₂O Ice, I: Cratering</td>
<td>46</td>
<td>28</td>
</tr>
<tr>
<td>Impact Experiments in H₂O Ice, II: Collisional Disruption</td>
<td>46</td>
<td>29</td>
</tr>
<tr>
<td>Impact Melting of the Cachari Eucrite 3.0 Gy Ago</td>
<td>45</td>
<td>26</td>
</tr>
<tr>
<td>Impactite and Tektite Glasses From Lonar Crater, India</td>
<td>45</td>
<td>21</td>
</tr>
<tr>
<td>Impacts on Explorer 46 from an Earth Orbiting Population</td>
<td>49</td>
<td>60</td>
</tr>
<tr>
<td>Improve Decision Processes of Management Through Centralized Communication Linkages</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Inclusion of Specular Reflectance in Vegetative Canopy Models</td>
<td>57</td>
<td>126</td>
</tr>
<tr>
<td>Increase in Whole-Body Peripheral Vascular Resistance During Three Hours of Air or Oxygen Prebreathing</td>
<td>37</td>
<td>14</td>
</tr>
<tr>
<td>Increasing Productivity in Flight with Voice Commanding</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Inertial Energy Storage for Advanced Space Station Applications</td>
<td>59</td>
<td>143</td>
</tr>
<tr>
<td>Infrared Spectra of Mg-SiO Smokes: Comparison with Analytical Electron Microscope Studies</td>
<td>57</td>
<td>129</td>
</tr>
<tr>
<td>Influence of the Meteoritic Component on the Composition of Apollo 16 Impact Melt Splashes (IMS's)</td>
<td>54</td>
<td>107</td>
</tr>
<tr>
<td>Initial Development and Performance Evaluation of a Process for Formation of Dense Carbon by Pyrolysis of Methane</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Initiation of the Next Step: The Acquisition of a Space Station Program</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>The Interplanetary Micrometeoroid Flux and Lunar Primary and Secondary Microcraters</td>
<td>62</td>
<td>177</td>
</tr>
<tr>
<td>Interpreting Images Requires Imagination</td>
<td>61</td>
<td>166</td>
</tr>
<tr>
<td>Iron Kinetics During Exposure to Microgravity</td>
<td>38</td>
<td>26</td>
</tr>
<tr>
<td>Isotope Analysis of Crystalline Impact Melt Rocks from Apollo 16 Stations 11 and 13, North Ray Crater</td>
<td>57</td>
<td>125</td>
</tr>
<tr>
<td>Isotopic Provenance of Aluminous Mare Basalts from the Fra Mauro Formation</td>
<td>47</td>
<td>36</td>
</tr>
<tr>
<td>Johnson Space Center Work Package 2 Phase B Activities</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>The JSC Microbiology Program, An Overview</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>The JSC Toxicology Program: An Overview</td>
<td>37</td>
<td>12</td>
</tr>
<tr>
<td>Keynote Lecture</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Ku-Band - The First Year of Operation</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>LAMPS, A Computer Model for Describing Large Amplitude Fluid Motion</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Large Format Camera (LFC) Maiden Voyage</td>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>Large Volcanic Debris Avalanche Deposits in the Central Andes</td>
<td>61</td>
<td>168</td>
</tr>
<tr>
<td>Laser and Electro-Optical Technology at NASA</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Laser and RF Systems for Space Proximity Operations</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Laser Docking System</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Lava Tubes: Potential Shelters for Habitats</td>
<td>48</td>
<td>51</td>
</tr>
<tr>
<td>The Long Term Increase of Baseline and Reflexly Augmented Levels of Human Vagal-Cardiac Nervous Activity Induced by Scopolamine</td>
<td>37</td>
<td>15</td>
</tr>
<tr>
<td>Low-Gravity Impact Experiments: Progress Toward a Facility Definition</td>
<td>46</td>
<td>27</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Low-Temperature Aqueous and Hydrothermal Activity in a Proto-Planetary Body</td>
<td>57</td>
<td>130</td>
</tr>
<tr>
<td>Lunar and Martian Operations</td>
<td>53</td>
<td>98</td>
</tr>
<tr>
<td>Lunar Base Concepts</td>
<td>54</td>
<td>99</td>
</tr>
<tr>
<td>Lunar Bases and Space Activities of the 21st Century</td>
<td>54</td>
<td>100</td>
</tr>
<tr>
<td>Lunar Bases and Space Activities of the 21st Century</td>
<td>47</td>
<td>37</td>
</tr>
<tr>
<td>Lunar Zircon and the Closure Age of the Lunar Crust</td>
<td>54</td>
<td>102</td>
</tr>
<tr>
<td>Machine Vision for a Robotic Application</td>
<td>65</td>
<td>3</td>
</tr>
<tr>
<td>Management Lessons Learned from the Space Shuttle Program</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>The Manned Maneuvering Unit: A Nice Flying Machine</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Mapping of Vegetation, Leaf Area Index and Primary Productivity in Boundary Waters Canoe Area Using Landsat Data</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>Mare Basalt Genesis: Trace Elements and Isotopic Ratios</td>
<td>44</td>
<td>14</td>
</tr>
<tr>
<td>Mars Sample Return: A Planet in Our Future</td>
<td>44</td>
<td>17</td>
</tr>
<tr>
<td>"Martian" Volatiles in Shergottite EETA79001: Possible Significance of Secondary Minerals</td>
<td>47</td>
<td>42</td>
</tr>
<tr>
<td>Martian Weathering Products: Response to Climate Changes and Effects on Volatile Inventories</td>
<td>47</td>
<td>43</td>
</tr>
<tr>
<td>Mass Extinctions and Cosmic Collisions: A Lunar Test</td>
<td>48</td>
<td>52</td>
</tr>
<tr>
<td>Material Reactions with the Low Earth Orbital Environment: Accurate Reaction Rate Measurements</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>Materials Test Laboratory Activities at the NASA - JSC White Sands Test Facility</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>Measurements</td>
<td>56</td>
<td>123</td>
</tr>
<tr>
<td>Mercury: Absence of Crystalline Fe^{2+} in the Regolith</td>
<td>60</td>
<td>154</td>
</tr>
<tr>
<td>Metabolic Support for a Lunar Base</td>
<td>41</td>
<td>50</td>
</tr>
</tbody>
</table>

78
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metallized Graphite Epoxy and Metal Matrix Composite Fabrication for Space Station Antennas</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>Meteorite Concentration Mechanisms in Antarctica—How Complete Is The Picture?</td>
<td>43</td>
<td>4</td>
</tr>
<tr>
<td>Meteorites From Mars: SNC's and the Shergotty Consortium</td>
<td>53</td>
<td>94</td>
</tr>
<tr>
<td>A Method for Screening of Plant Species for Space Use</td>
<td>38</td>
<td>19</td>
</tr>
<tr>
<td>Methods for the Repetitive Measurement of Multiple Hematological Parameters in the Individual Rat</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>Microbeam Analyses of Stratospheric Particles</td>
<td>52</td>
<td>81</td>
</tr>
<tr>
<td>Microbeam Analysis of Stratospheric Particles</td>
<td>51</td>
<td>79</td>
</tr>
<tr>
<td>Microbiological Monitoring During the Spacelab 3 Mission</td>
<td>38</td>
<td>18</td>
</tr>
<tr>
<td>Micrometeorite Material Returned From Space -- A Progress Report on the Analysis of Solar Max Impact Craters</td>
<td>52</td>
<td>88</td>
</tr>
<tr>
<td>The Microstructure of Cylindrical Tochilinites from Cornwall, Pennsylvania, and the Jacupiranga Mine, Sao Paulo, Brazil</td>
<td>62</td>
<td>173</td>
</tr>
<tr>
<td>Mineralogy and Origin of "White Matrix" in the Tieschitz (H3) Chondrite</td>
<td>47</td>
<td>44</td>
</tr>
<tr>
<td>Mineralogy of Chondritic Porous Aggregates: Current Status</td>
<td>53</td>
<td>89</td>
</tr>
<tr>
<td>Minor Phases, Fe-Rich Pyroxene, and Shergotty Chronology</td>
<td>53</td>
<td>95</td>
</tr>
<tr>
<td>A Model for Diagenesis in Proto-Planetary Bodies</td>
<td>57</td>
<td>131</td>
</tr>
<tr>
<td>A Model for Relating a Pristine Eucrite Lava to Ordinary Eucrites by an Impact Event</td>
<td>60</td>
<td>152</td>
</tr>
<tr>
<td>A Model for Trace Element Partitioning: Orthopyroxene and Melt</td>
<td>53</td>
<td>96</td>
</tr>
<tr>
<td>Modeling</td>
<td>63</td>
<td>178</td>
</tr>
<tr>
<td>Monolithic Design of Dual-Band Microstrip Antennas Using Reactive Loading</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>The Mulcahy Lake Gabbro and Related Intrusions</td>
<td>55</td>
<td>109</td>
</tr>
<tr>
<td>Multi-Source Verification of the Desiccation of Lake Chad, Africa</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>Multiple Comparisons in Designs With Repeated Measures</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>NASA In-House Antenna Design</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>The NASA Johnson Space Center Impact Facilities</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>NASA/JSC Orbital Debris Study: Debris Model</td>
<td>50</td>
<td>66</td>
</tr>
<tr>
<td>New Commercial Opportunities for the Space Station</td>
<td>31</td>
<td>4</td>
</tr>
<tr>
<td>New Multiwire Gamma Camera with a Unique Short-Lived Isotope Tantalum-178</td>
<td>39</td>
<td>32</td>
</tr>
<tr>
<td>The 1985 August 20 Neptune Occultation Observed From CTIO</td>
<td>60</td>
<td>155</td>
</tr>
<tr>
<td>Nine-Year Microflora Study of an Isolator-Maintained Immune deficient Child</td>
<td>42</td>
<td>55</td>
</tr>
<tr>
<td>Non-Contact Sensors for Space Station Applications</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>NORAD's PARCS Small Satellite Tests (1976 and 1978)</td>
<td>49</td>
<td>61</td>
</tr>
<tr>
<td>Numerical Procedure for Three-Dimensional Hypersonic Viscous Flow</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>Numerical Procedure for Three-Dimensional Hypersonic Viscous Flow Over Aerobrake Configuration</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>Nutrition in Space Flight: Some Thoughts</td>
<td>39</td>
<td>27</td>
</tr>
<tr>
<td>Observations of Sodium on Mercury</td>
<td>57</td>
<td>124</td>
</tr>
<tr>
<td>1 km Left-Lateral Offset Detected by Large Format Camera on Kunlun Fault, Tibet</td>
<td>61</td>
<td>160</td>
</tr>
<tr>
<td>On Dust Particles in the Jovian System</td>
<td>63</td>
<td>179</td>
</tr>
<tr>
<td>On Statistical Analysis of a Type of Data With Magnitude and Direction</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>Operational Bioinstrumentation System: ECG Monitoring for Space Shuttle Missions</td>
<td>40</td>
<td>39</td>
</tr>
</tbody>
</table>

80
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Development of Small Plant Growth Systems</td>
<td>41</td>
<td>53</td>
</tr>
<tr>
<td>Optical Communications Thru the Shuttle Window</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Optical Detection of Large Meteoroids in Space</td>
<td>63</td>
<td>180</td>
</tr>
<tr>
<td>Optical Spectroscopy of the Filamentary Halo That Surrounds AD148937 and NGR6164-65</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Optimization of Antenna Surfaces for Conformal Arrays</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>Orbital Debris Issues</td>
<td>49</td>
<td>62</td>
</tr>
<tr>
<td>Orbital Fluid Resupply</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>Orbital Fluid Resupply Tanker Development</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>The Orbiter Camera Payload System's Large Format Camera and Attitude Reference System</td>
<td>64</td>
<td>5</td>
</tr>
<tr>
<td>Origin of HREE-Depleted Archean Dacites: A Case Study from the Wawa (Michipicoten) Greenstone Belt, Ontario</td>
<td>59</td>
<td>148</td>
</tr>
<tr>
<td>Origins and Significance of Weathering Effects in Antarctic Meteorites</td>
<td>48</td>
<td>45</td>
</tr>
<tr>
<td>Otolith Tilt-Translation Reinterpretation Following Prolonged Weightlessness - Implications for Preflight Training</td>
<td>35</td>
<td>3</td>
</tr>
<tr>
<td>Oxygen Extraction From Lunar Materials</td>
<td>61</td>
<td>163</td>
</tr>
<tr>
<td>Panel for Space Station Medical Sciences Concepts</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>The Parallel Line Assay: Multifunctional Software for Biomedical Applications</td>
<td>42</td>
<td>54</td>
</tr>
<tr>
<td>Particle Size, Number, Composition and Velocity from Solid Rocket Motors</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>Performance and Endurance Testing of a Prototype Carbon Dioxide and Humidity Control Subsystem For Space Shuttle Extended Mission Capability</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Petrogenesis and Tectonic Significance of Proterozoic Mafic Dikes, St. Francois Mountains, Missouri</td>
<td>59</td>
<td>149</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Petrogenesis of Calcic Plagioclase Megacrysts in Archean Rocks</td>
<td>56</td>
<td>117</td>
</tr>
<tr>
<td>Pharmacokinetics of Scopolamine in Normal Subjects</td>
<td>41</td>
<td>46</td>
</tr>
<tr>
<td>Physical Parameters of Near-Earth Asteroid 1982 DV</td>
<td>61</td>
<td>159</td>
</tr>
<tr>
<td>Physiologic Adaptation to Space: Space Adaptation Syndrome</td>
<td>35</td>
<td>6</td>
</tr>
<tr>
<td>Physiological Considerations for EVA in the Space Station Era</td>
<td>38</td>
<td>23</td>
</tr>
<tr>
<td>A Physiological Evaluation of Space Shuttle Extravehicular Activities</td>
<td>38</td>
<td>22</td>
</tr>
<tr>
<td>Plagioclase Composition and the Mare Basalt Component of Core 64001/2</td>
<td>53</td>
<td>90</td>
</tr>
<tr>
<td>Planetary Exploration in the 1990's: Implications for Nonterrestrial Resources</td>
<td>47</td>
<td>38</td>
</tr>
<tr>
<td>Plans for a 1996 Mars Sample Return Mission</td>
<td>44</td>
<td>18</td>
</tr>
<tr>
<td>Poorly Graphitized Carbon as a New Cosmo-thermometer for Primitive Extraterrestrial Materials</td>
<td>57</td>
<td>132</td>
</tr>
<tr>
<td>A Poorly Graphitized Carbon Contaminant in Studies of Extraterrestrial Materials</td>
<td>57</td>
<td>133</td>
</tr>
<tr>
<td>Practical Analysis Systems for Recovered Spacecraft Water</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Prediction of Space Motion Sickness</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>Prediction of Susceptibility to Space Motion Sickness</td>
<td>38</td>
<td>21</td>
</tr>
<tr>
<td>A Probable Occurrence of Well Preserved Meteorite Ablation Material from the Upper Jurassic of Poland</td>
<td>62</td>
<td>175</td>
</tr>
<tr>
<td>Proceedings of the Workshop on Food Service and Nutrition for the Space Station</td>
<td>41</td>
<td>51</td>
</tr>
<tr>
<td>Productivity Increase Through Implementation of CAD/CAE Workstation</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Properties of Electrophoretic Fractions of Human Embryonic Kidney Cells Separated on Space Shuttle Flight STS-8</td>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>Proposed Preliminary Design Criteria—Model Environment for the 1990's</td>
<td>50</td>
<td>63</td>
</tr>
<tr>
<td>Rb-Sr and Sm-Nd Internal Isochron Ages of a Subophitic Basalt Clast From the Y75011 Eucrite</td>
<td>55</td>
<td>114</td>
</tr>
<tr>
<td>Rb-Sr Internal Isochron Age of a Subophitic Basalt Clast from the Y75011 Eucrite</td>
<td>44</td>
<td>11</td>
</tr>
<tr>
<td>Recent Shuttle EVA Operations and Experience</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Regolith Breccias from Apollo 15 and 16: Petrology, Rare Gases, and FMR Maturity</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>Regulation of Hematopoiesis in Rats Exposed to Antiorthostatic, Hypokinetic/Hypodynamia, I - Model Description</td>
<td>37</td>
<td>16</td>
</tr>
<tr>
<td>Reinterpretation of Otolith Input as a Primary Factor in Space Motion Sickness</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>Remote Sensing for Crop Identification: State of the Art</td>
<td>44</td>
<td>9</td>
</tr>
<tr>
<td>A Representative Space Station Expert System for Maintenance Scheduling</td>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>Return to the Moon</td>
<td>54</td>
<td>101</td>
</tr>
<tr>
<td>Rhyolitic Components of the Michipicoten Greenstone Belt, Ontario: Evidence for Late Archean Intracontinental Rifts or Convergent Plate Margins in the Canadian Shield?</td>
<td>60</td>
<td>150</td>
</tr>
<tr>
<td>The Role of Boron in Monitoring the Leaching of Borosilicate Glass Waste Forms</td>
<td>58</td>
<td>134</td>
</tr>
<tr>
<td>Salivary Concentrations for Clinical Drug Monitoring of Scopolamine</td>
<td>37</td>
<td>11</td>
</tr>
<tr>
<td>Segmentacion Volcano-Tectonica de los Andes Septentrionales</td>
<td>48</td>
<td>46</td>
</tr>
<tr>
<td>Selection Effects Against Small Comets</td>
<td>63</td>
<td>181</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>A Sensitivity Analysis of the Shuttle Orbiter Heating</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>Shuttle Crews Record Shrinking Lake Chad</td>
<td>62</td>
<td>169</td>
</tr>
<tr>
<td>Shuttle Imaging Radar Antenna Technology</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>Shuttle Ku-Band Communications/Radar Technical Concepts</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Shuttle On-Orbit Contamination and Environmental Effects</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>A Simple Microgravity Table for the Orbiter or Space Station</td>
<td>31</td>
<td>3</td>
</tr>
<tr>
<td>A Simplified Guidance Algorithm for Lifting Aeroassist Orbital Transfer Vehicles</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Sm-Nd and Rb-Sr Isotope Systematics of an Archean Anorthosite and Related Rocks from the Superior Province of the Canadian Shield</td>
<td>43</td>
<td>5</td>
</tr>
<tr>
<td>The Space Age: An Ongoing Revolution in Technology</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Space Debris, Asteroids, and Satellite Orbits</td>
<td>50</td>
<td>64</td>
</tr>
<tr>
<td>Space: Exploration-Exploitation and the Role of Man</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Space Heat Rejection Radiators: Meteoroid/Debris Consideration</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Space Motion Sickness</td>
<td>35</td>
<td>7</td>
</tr>
<tr>
<td>Space Salvage - A Report on Shuttle Mission STS 51-A</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Space Shuttle Electrical Power Generation and Reactant Supply System</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>Space Shuttle Flight Operations - Training, Planning, Accomplishments</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>The Space Shuttle Orbiter Molecular Environment Induced by the Supplemental Flash Evaporator System</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Space Shuttle Payload Design and Development</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Shuttle Photography: A New and Inexpensive Tool for Geologic Mapping in Africa</td>
<td>61</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Shuttle Structural Loads Response to Ascent Wind Profiles</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Station Challenges for Navigation</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Station Crew Workload: Station Operations and Customer Accommodations</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Station: Lasers and Electro-Optics</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Station Operations, Operational Control Zones</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Space Station Plume Model as Updated by an On-Orbit Plume Impingement Experiment</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Station Program and Related Communication Systems Overview</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Station Propulsion Requirements</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Station, The First Step</td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Station Thermal Management System</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Development-Status and Plans</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacecraft Food Service</td>
<td>41</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacelab I Hematology Experiment (INS103): Influence of Space Flight on Erythrokinetics in Man</td>
<td>39</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacelab 2 - A Preview</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Spatial Evolution of Energetic Electrons and Plasma Waves During the Steady State Beam Plasma Discharge</td>
<td>50</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral and Other Physicochemical Properties of Submicron Powders of Hematite (alpha-Fe2O3), Maghemite (gamma-Fe2O3), Magnetite (Fe3O4), Geothite (alpha-FeOOH), and Lepidocrocite (gamma-FeOOH)</td>
<td>54</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral Characteristics of Experimental Regoliths</td>
<td>56</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Spectral Studies of Possible Sources of Near-Earth Asteroids - CCD Reflectance Spectra</td>
<td>60</td>
<td>156</td>
</tr>
<tr>
<td>Standardized Hydrazine Coupling Development</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>Statistical Comparison of Pooled Nitrogen Washout Data of Various Altitude Decompression Response Groups</td>
<td>38</td>
<td>17</td>
</tr>
<tr>
<td>STS Retrieval of Satellites</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>STS-8 Atomic Oxygen Effects Experiment</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>STS-8 Orbiter Mission Window Pitting and Possible Association with El Chichon Eruption of March-April 1982</td>
<td>46</td>
<td>34</td>
</tr>
<tr>
<td>Sulfur in Achondritic Meteorites</td>
<td>47</td>
<td>40</td>
</tr>
<tr>
<td>Surface Sulfur Measurements on Stratospheric Particles</td>
<td>51</td>
<td>80</td>
</tr>
<tr>
<td>Survey of Probable Micrometer Sized Earth-Orbital Debris Fragments in the NASA–JSC Cosmic Dust Sample Collection</td>
<td>46</td>
<td>31</td>
</tr>
<tr>
<td>System for Conducting Igneous Petrologie Experiments Under Controlled Redox Conditions in Reduced Gravity</td>
<td>61</td>
<td>164</td>
</tr>
<tr>
<td>Systems Analysis and Technology Development for the NASA Orbit Transfer Vehicle</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td>Technology for Manned Mars Flight</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Tectonic Significance of Biomodal Volcanism in the Michipicoten Greenstone Belt</td>
<td>60</td>
<td>151</td>
</tr>
<tr>
<td>Telepresence Work System Concepts</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>Telerobotic Work System Concepts</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>Test Results From a Comparative Evaluation of a Condensation Nuclei Fire Detector</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>Testing EVA Equipment for Polar Orbit Operations</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Thermal Energy Storage (TES) Materials Compatibility Test for Space Solar Dynamic Power System</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td>Entry</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Thermal Energy Storage for a Space Solar Dynamic Power System</td>
<td>59</td>
<td>142</td>
</tr>
<tr>
<td>Thermal Management System Options for High Power Space Platforms</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>A Three-Dimensional Navier-Stokes/Euler Code for Blunt-Body Flow Computations</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>Towards A Lunar Base Programme</td>
<td>47</td>
<td>39</td>
</tr>
<tr>
<td>Toxicological Concerns and Safeguards at NASA</td>
<td>37</td>
<td>14</td>
</tr>
<tr>
<td>U.S. Gravity Utilization of Tethers Activity</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>Use of Ground Radar to Detect Reentering Debris</td>
<td>46</td>
<td>35</td>
</tr>
<tr>
<td>A Variable Configuration Controller for a Multi-Purpose Articulated End Effector</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Vegetation Change Detection from NOAA Polar Orbiting Satellites</td>
<td>55</td>
<td>113</td>
</tr>
<tr>
<td>Very High Potassium (VHK) Basalt: Complications in Mare Basalt Petrogenesis</td>
<td>58</td>
<td>137</td>
</tr>
<tr>
<td>A View from the Shuttle Orbiter: Observing the Oceans from Manned Space Flights</td>
<td>55</td>
<td>112</td>
</tr>
<tr>
<td>Vision Requirements for Space Station Applications</td>
<td>65</td>
<td>2</td>
</tr>
<tr>
<td>Voice Controlled Closed Circuit Television for the Space Shuttle Orbiter</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Volcano-Tectonic Segmentation of the Northern Andes</td>
<td>48</td>
<td>47</td>
</tr>
<tr>
<td>Widespread Tholeiitic Melts in Archean Crustal Genesis</td>
<td>56</td>
<td>116</td>
</tr>
<tr>
<td>Young Thrust Fault Scarps in the Highlands: Evidence for an Initially Totally Molten Moon</td>
<td>44</td>
<td>15</td>
</tr>
<tr>
<td>Your Spacesuit and You - Significance of Manloading in Pressure Suit Design</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Zinc Balance During Bed Rest: Sodium Flouride Supplementation</td>
<td>39</td>
<td>29</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

Hyphenated number sets following author names refer to page number, then entry number(s). When an author's name appears on multiple pages, hyphenated number sets are separated by semicolons.

Aaron, John W. 31-1
Actkinson, Arland L. 17-1
Adelfang, S. I. 22-20
Alred, John W. 12-1,2,5
Amsbury, D. 62-170
Anderson, C. A. 58-134
Anderson, D. J. 35-5
Annexstad, John O. 43-1,2,3,4
Antin, Johnathan F. 64-1
Armstrong, Dan 33-4
Arndt, George D. 13-1,2
Arrott, A. P. 35-3,5
Ashwal, L. D. 43-5; 55-110
Audran, J. 39-33
Babich, J. W. 39-32
Badhwar, Gautam D. 43-6,7,8; 44-9,10; 56-121; 57-126
Baggen, Abe 64-2
Ball, M. E. 39-32
Bansal, B. M. 44-11; 45-25; 47-36; 55-114; 57-125; 58-138
Barlow, G. H. 40-43
Barton, Richard L. 12-3
Benz, Frank J. 33-1,2,3,4
Bernstein, W. 50-71
Berry, Robert L. 20-1
Binder, Alan 44-12,13,14,15,16
Blanchard, Douglas P. 44-17,18; 45-19,20,21; 49-56; 55-111
Blevins, D. 19-10
Block, Roger F. 10-6
Bluford, Guion S., Jr. 5-1
Bogard, Donald D. 45-22,23,24,25,26; 55-110; 58-138
Bollendonk, Walter W. 11-14
Boronkay, Allen R. 64-2
Bourke, R. D. 44-18
Boyd, Robert B. 10-4
Brasher, Warren L. 3-3
Bruchwicz-Lewinski, W. 62-175
Bricker, Richard W. 29-1
Briles, Owen 33-1
Bromley, Linda K. 13-3
Brown, Jeri W. 64-3
Bruce, Tandy N. 7-1
Bungo, Michael W. 36-1,5,7; 37-8; 39-32; 41-47
Bunnik, N. J. J. 44-10
Calkins, Dick S. 35-1
Campins, H. 61-159
Campos, Carlos S. 31-2
Cardenas, F. 46-28,29; 49-54,55; 59-146
Carol, J. R. 13-2
Castner, Willard L. 20-2
Cerimele, C. J. 12-4; 21-19
Charles, John B. 36-1,2,3,4,6,7; 37-8, 9
Chen, J. P. 39-34
Chen, Y. 37-10
Chhikara, R. S. 10-3
Cintala, Mark J. 46-27,28,29,30; 48-53; 49-54,55; 59-145,146
Cintron, Nitza M. 36-1; 37-9,10, 11,15; 39-29; 41-46
Cirilin, E. -H. 51-73
Clanton, Uel S. 46-31,32,34; 50-68
Coleman, M. E. 37-12,13; 39-33
Colling, Arthur K. 10-2
Compton, W. 54-102
Conkin, Johnny 37-14; 42-57
Cooke, D. R. 20-6
Cour-Palais, Burton G. 46-33,34; 48-53
Crews, J. L. 46-35; 48-53
Crosby, W. 39-34
Crouse, Kenneth 66-1,2
Curry, Donald M. 22-27
Cusick, Robert J. 10-1,2,7
Dasch, E. J. 47-36
Davidson, Shayla 13-1,4,5,6,7,8
Davis, D. W. 55-110
Davis, J. 35-7
Day, Jack L. 40-39
DeBra, Daniel B. 31-3
Deitterich, Charles F. 7-2
Dell'Osso, Renato D., Jr. 7-3
deVries, J. P. 44-18
Dibner-Dunlap, M. E. 37-15
Driscoll, T. B. 39-28; 41-44
Duke, Michael B. 3-2; 47-37,38, 39
Dungan, Michael A. 45-19
Dunn, C. D. R. 37-16; 39-34; 41-44
Eckberg, D. L. 37-15
Edwards, Ben F. 38-17
Ehlers, H. K. F. 20-3,8
Ejzak, Edward M. 11-9
Erwin, Harry O. 13-9; 14-10,11,18
Estes, James 13-1
Faget, Nanette M. 18-1,2; 59-142
Horz, Friedrich 46-28,29; 48-51, 52,53; 49-54,55; 54-105,106,107; 56-118; 58-135,139,140; 59-145, 146
Houston, A. G. 44-9; 66-3
Hubbard, W. B. 60-157
Hunton, Carolyn L.
see Leach, Carolyn S.
Huth, Gaylord K. 14-15
Jacobs, S. 20-8
Janauer, G. E. 39-30
Jauchem, James R. 38-24
Jedlika, Russel P. 13-1
Jenkins, Lyle M. 23-1,2
Johnson, P. 45-24
Johnson, Philip C., Jr. 36-3; 37-16; 38-25,26,27,28,32,34; 39-35
Jones, Jess H. 27-1
Jordan, William T. 14-16,17
Kaltenback, J. 55-112
Karakulko, W. 19-10
Kelley, James S. 14-15
Kempton, Pamela 45-19; 49-56
Kessler, Donald J. 46-34; 49-57,58,59,60,61,62; 50-63, 64,65,66,67,68; 59-147
Konradi, Andrei 50-69,70,71
Koontz, Steven L. 33-5
Kramer, W. G. 41-46
Kraus, Jane M. 40-36
Krebs, J. 39-29
Kril, M. B. 39-30
Krishen, Kurmar 14-18
Kroll, Kenneth R. 18-6; 21-19
Kubiak, E. T. 17-2
Kuminecz, J. F. 22-22
Kunze, M. E. 39-31; 40-43
Kuo, M. C. 39-29
Lacy, J. L. 39-32
Lance, Nick Jr. 10-4,5,6; 65-6,7
Lange, R. D. 37-16; 39-34
Larkin, E. 39-34
Lauer, H. V., Jr. 54-104
Laul, J. C. 58-137; 59-144
Lawrence, W. H. 39-33
Lawson, C. A. 54-104
Lazaron, Mary 12-1
Leach, Carolyn S. 36-1;39-28,29, 34; 40-35,36
Leach-Hunton, Carolyn S.
see Leach, Carolyn S.
LeBlanc, A. 39-29,32
Leger, Lubert J. 12-5; 20-7,8,9; 22-21,22
Lehtinen, A. 10-8
Leitner, Nancy J. 12-2
Lebofsky, L. A. 61-159
Lewis, C. F. 47-40
Lewis, James L. 40-37; 41-48; 64-3
Lewis, M. L. 39-31; 40-43
Li, Chien-Peng 21-10,11,12,13,14,15; 21-19
Li, Z. K. 40-43
Lichtenberg, B. K. 35-3,5
Lin, Chin 10-7
Lin, Karl K. 35-2
Llobet, X. 50-71
Lofgren, Gary E. 51-72,73,74,75,76,77
Loftus, Joseph P., Jr. 3-1,2,3,4,5
Long, Stuart A. 13-6,7,8
MacDonald, R. B. 44-9
MacKinnon, Ian D. 51-78,79,80; 52-81; 57-125; 62-172; 173,174
Maczuga, David E. 55-110; 56-117
Magic, N. M. 37-15
Magin, Roy L. 53-97
Magnuson, J. W. 41-53
Malin, Jane T. 10-5; 65-4,5,6,7
Mail, W. N. 50-70
Mancuso, Thomas G. 27-3
Mandell, Humboldt C. 27-4,5
Mason, John A. 40-38
McCandless, Bruce 11-14
McCormick, T. C. 51-75
McCoy, J. E. 52-82
McCutchen, Don K. 20-1
McDowell A. F. 55-115
McFadden, L. A. 60-158
McFadyen, Gary M. 40-39
McKay, David S. 45-24; 50-68; 52-81,83,84,85,86,87,88; 53-89,90; 62-174
McKay, Gordon A. 53-91,92,93,94,95,96
McKay, May Fae 53-97
Mendell, Wendell W. 47-39; 53-98; 54-99,100,101
Meyer, Charles, Jr. 54-102
Miller, Edgar 12-5; 20-8
Mitchell, Charles 22-26
Mogk, D. W. 51-80
Molberg, Bernard H. 64-4,5
Molina, T. 38-18
Moorbath, S. 49-56
Moore, C. B. 47-40
Morgan, T. H. 57-124
Morris, Richard V. 45-24; 54-103,104,105,106,107; 58-136
Morrison, Dennis R. 39-31; 40-40,41,42,43,44
Morrison, Donald A. 43-5; 55-108,109,110; 56-117
Moser, Thomas L. 9-1,2
Mount, Frances E. 64-6
Mueller, A. C. 50-65
Murali, A. V. 45-20; 55-111; 62-175
Nace, G. A 54-104
Nader, Blair A. 25-2
Nagy, Kornel 21-19
Nanevice, J. E. 50-70
Natchman, R. G. 41-44
Nelson, R. 55-112
Nerem, R. S. 55-113
Nessel, R. 37-16
Ngo, John Carre 13-1
Nieder, R. L. 22-20
Nitschke, Harold A. 14-19
Noyes, Gary 10-1
Nyquist, Laurence E. 44-11; 45-25; 47-36; 55-114, 115; 57-125; 58-137,138; 60-152
Oberst, J. 44-16
Olds, S. 49-54
Orr, Linda S. 64-2
Papike, J. J. 58-139,140; 59-144
Parish, Richard C. 10-8
Parker, D. E. 35-3,5
Parker, Robert A. R. 5-3
Perez, L. 37-16
Peterson, J. S. 51-76
Petro, A. J. 53-97
Petty, J. C. 40-39
Phinney, William C. 43-5; 55-110; 56-116,117
Pierson, D. L. 38-18; 41-45
Pieters, C. 56-118
Pippen, David L. 33-6
Pitts, David E. 56-119,120,121
Pixley, Paul T. 27-6
Popp, R. L. 36-5; 41-47
Potter, Andrew E. 50-68; 56-122, 123; 57-124
Price, Donald F. 11-9
Primus, T. M. 47-40
Putcha, L. 37-11; 41-46
Rader, W. Paul 20-1
Rankin, J. Gary 11-10,11,12
Rappole, C. L. 41-52
Reid, Robert C. 21-19
Reimold, W. U. 57-125
Reschke, Millard F. 35-3,4,5; 38-21
Resnick, Judith A. 53-97
Reyna, Edward 56-121; 57-126
Reysa, Richard P. 10-2
Richards, William F. 13-6,7,8
Riddle, J. 36-4
Rietmeijer, Frans J. 52-81; 57-127,128,129,130,131,132,133
Roberds, J. B. 50-66
Roberts, Barney B. 3-2; 21-16,19; 47-39
Roberts, R. 39-32
Robinson, G. A. 50-68; 62-174
Rodriguez, Manuel 11-15
Roesch, J. 36-4
Rogers, Leslie 11-15
Rouen, Michael 11-13
Russell, W. J. 51-77
Sadunas, J. A. 10-8
Samonski, Frank H. 10-6
Sandier, Harold 36-5; 40-36; 41-47
Sanford, C. 39-33
Santy, Patricia A. 41-48; 64-4
Sarnoff, B. E. 40-43
Sauer, Richard L. 38-19; 39-30; 41-49,50,51,52,53
Sawyer, Ralph S. 14-20; 15-21
Scarlett, J. 38-18
Schardt, Bruton, B. 64-5
Scheetz, B. E. 58-134
Scheild, H. W. 38-19; 41-53
Schliesing, J. A. 20-9
Schlosser, D. C. 20-6
Schmidt, Oron L. 14-20; 15-21
Schmitt, R. A. 45-26
Schneider, V. 39-29
Schramm, L. S. 50-68
Schultz, R. A. 46-32; 50-68
Schwartz, Mary R. 10-4
Scott, Carl D. 21-18,19
Sears, D. W. G. 51-74
Seddon, R. 36-4
See, T. H. 49-54,55; 54-105,106,107; 58-135,136,139,140
Sehmal, L. 50-64
Shaw, Randy 33-2
Shervais, J. W. 58-137
Shih, C.-Y. 44-11; 45-25; 47-36; 55-114; 57-125; 58-137,138
Shinkle, Gerald L. 7-4
Simanton, Donald F. 25-3
Simon, S. B. 58-139,140; 59-144
Simon, William E. 18-2,7,8; 58-141; 59-142,143
Smistad, Olav 31-4
Smith, D. K. 58-134
Smith, Irwin D. 33-5
Smith, M. R. 45-26; 59-144
Smith, O. E. 22-20
Smrekar, S. 46-28,29; 59-145,146
Smyth, J. R. 51-75
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommer, M.</td>
<td>45-21; 55-111</td>
</tr>
<tr>
<td>Spiker, I. K.</td>
<td>22-22</td>
</tr>
<tr>
<td>Spudis, P. J.</td>
<td>46-30</td>
</tr>
<tr>
<td>Steiner, Allan</td>
<td>14-15</td>
</tr>
<tr>
<td>Stewart, C.</td>
<td>54-104</td>
</tr>
<tr>
<td>Stewart, D.</td>
<td>35-7</td>
</tr>
<tr>
<td>Stoltzfus, Joel</td>
<td>33-3</td>
</tr>
<tr>
<td>Stone, H. W., Jr.</td>
<td>20-6</td>
</tr>
<tr>
<td>Stradling, Jack S.</td>
<td>33-6</td>
</tr>
<tr>
<td>Straskus, J. V.</td>
<td>50-70</td>
</tr>
<tr>
<td>Su, S. -Y.</td>
<td>50-66, 67; 59-147</td>
</tr>
<tr>
<td>Suddath, J. H.</td>
<td>13-2</td>
</tr>
<tr>
<td>Swank, Paul R.</td>
<td>42-55</td>
</tr>
<tr>
<td>Sylvester, Paul J.</td>
<td>59-147, 148, 149; 60-150, 151</td>
</tr>
<tr>
<td>Taeuber, Ralph J.</td>
<td>18-9; 19-10</td>
</tr>
<tr>
<td>Takeda, H.</td>
<td>44-11; 55-114; 60-152</td>
</tr>
<tr>
<td>Tanzer, Herb</td>
<td>11-12</td>
</tr>
<tr>
<td>Tapley, B. D.</td>
<td>55-113</td>
</tr>
<tr>
<td>Tavassoli, M.</td>
<td>39-34</td>
</tr>
<tr>
<td>Taylor, G. J.</td>
<td>45-26</td>
</tr>
<tr>
<td>Taylor, Gerald R.</td>
<td>42-55</td>
</tr>
<tr>
<td>Taylor, L. A.</td>
<td>51-73; 58-137</td>
</tr>
<tr>
<td>Taylor, Peter</td>
<td>21-19</td>
</tr>
<tr>
<td>Tholen, D. J.</td>
<td>61-159</td>
</tr>
<tr>
<td>Thomas-Ver Ploeg, K. L.</td>
<td>60-153</td>
</tr>
<tr>
<td>Thompson, T. D.</td>
<td>49-55; 59-146</td>
</tr>
<tr>
<td>Thornton, William E.</td>
<td>5-5</td>
</tr>
<tr>
<td>Todd, P. W.</td>
<td>39-31; 40-43</td>
</tr>
<tr>
<td>Tsui, J.</td>
<td>41-46</td>
</tr>
<tr>
<td>Underwood, J. M.</td>
<td>20-6</td>
</tr>
<tr>
<td>Vanderploeg, James M.</td>
<td>35-6, 7; 37-11; 38-21; 41-46</td>
</tr>
<tr>
<td>Vang, Harold A.</td>
<td>14-15</td>
</tr>
<tr>
<td>Van Tassel, Keith E.</td>
<td>19-11; 59-143</td>
</tr>
<tr>
<td>Veeder, G. J.</td>
<td>61-159</td>
</tr>
<tr>
<td>Verani, M. S.</td>
<td>39-32</td>
</tr>
<tr>
<td>Verhoef, W.</td>
<td>44-10</td>
</tr>
<tr>
<td>Vernikos-Danellis, Joan</td>
<td>40-36</td>
</tr>
<tr>
<td>Vilas, Faith</td>
<td>60-154, 155, 156, 157, 158, 159</td>
</tr>
<tr>
<td>Visentine, J. T.</td>
<td>20-9; 22-21, 22</td>
</tr>
<tr>
<td>Wade, Donald C.</td>
<td>22-23, 24</td>
</tr>
<tr>
<td>Waligora, James M.</td>
<td>38-17, 23; 42-56, 57</td>
</tr>
<tr>
<td>Warren, J. L.</td>
<td>50-68</td>
</tr>
<tr>
<td>Watts, L. A.</td>
<td>50-68</td>
</tr>
<tr>
<td>Weaver, B. L.</td>
<td>49-56</td>
</tr>
<tr>
<td>Wells, Gordon, L.</td>
<td>55-112; 61-160; 62-170</td>
</tr>
<tr>
<td>Wentworth, S. J.</td>
<td>50-68</td>
</tr>
<tr>
<td>West, Walter</td>
<td>22-25, 26</td>
</tr>
<tr>
<td>White, W. B.</td>
<td>58-134</td>
</tr>
<tr>
<td>Whitehead, V. S.</td>
<td>61-161</td>
</tr>
<tr>
<td>Whitsett, Charles E., Jr.</td>
<td>11-14, 15</td>
</tr>
</tbody>
</table>
Wiesmann, H. 44-11; 47-36; 55-114; 57-125; 58-138

Williams, I. S. 54-102

Williams, Ralph 33-4

Williams, Richard J. 61-162, 163,164

Williams, S. D. 22-27

Wolf, D. 36-4

Wood, Charles A. 48-46,47,50; 61-165,166,167,168; 62-169,170

Wooden, J. L. 43-5; 44-11; 55-110,114; 57-125; 58-138

Woolford, Barbara J. 64-3,7,8

Zavala, Ruben 64-9

Zolensky, Michael E. 45-21; 52-81; 55-111; 58-134; 60-153; 62-171,172,173,174,175

Zook, Herbert A. 46-32,34; 50-68; 62-176,177; 63-178,179,180,181

Zrubek, William E. 14-15
SUBJECT INDEX

Hyphenated number sets following subject terms refer to page number, then entry number(s). When a subject occurs on multiple pages, hyphenated number sets are separated by semicolons.

Activated charcoal columns 39-30
AD148937 5-3

Aerobrakes
flow equations 21-14
orbital transfer vehicles 21-19

Aerodynamics 12-3; 20-6; 22-20
see also Flow equations

Aerosols 51-78

Aerospace medicine 40-38
see also Cardiovascular system;
Orthostatic tolerance;
Weightlessness

Africa
geologic mapping 61-167
water resources 48-48, 49, 50;
62-169

Altitude decompression 38-17

Anorthosites 43-5; 55-108

Antarctica
Glaciology 43-2
Meteorites 43-3, 4; 48-45

Antennas
conformal arrays 13-2
design 13-5
discrane element arrays 13-1
dual band 13-6, 7, 8
metallizing 13-4
microstrip 13-6, 7, 8
radar 14-19
reactive loading 13-6, 7, 8

Anthropometry 64-8

Apollo 12 drive tube 12027 59-144

Apollo 15 and 16 impact melts
see Impact melts

Artificial intelligence 65-4, 5
see also Expert programs

Asteroids 50-64
1982 DV 61-159
spectral reflectance 60-156;
60-158

Astronauts 3-5; 41-48

Atomic oxygen 20-9; 22-22

Audio potentials 5-5

Auxiliary power sources 20-5

Basalt 44-11, 13, 14; 45-19, 25;
47-36; 53-90, 93; 55-114; 58-137

Beam plasma discharge 50-71

Beam-plasma interactions 50-69

Bed rest studies 39-29

Bioinstrumentation 40-39, 42

Biomedical data
Computer programs 42-54

Biotechnology 40-40

Blood 36-6; 38-25, 26; 39-28, 34
see also Cardiovascular system;
Hematopoiesis; Hematology

Body fluids 40-35, 36
see also Blood

Borosilicate glass 58-134
Breccia 45-22,23,24; 52-87
CAD/CAE workstation 13-3
Carbon
dense, formation 10-1
poorly graphitized 57-132,133
Carbon dioxide concentration 10-4
Carbonaceous materials 57-127
Carboxyglutamic acid 37-10
Cardiovascular system 37-14,15,16
space flight effects 36-2,3,4,5,6,7; 37-8; 38-24,25,26; 39-28;41-47
Charge neutralization 52-82
Chondrites 47-44; 51-74; 55-115
Chondrules 51-72,73,77; 52-85
Chromite 52-86
Comets 63-181
Communication systems 14-20;
15-21; 25-3; 31-1
Computer command modes 64-1
Computer vision 17-1; 65-2,3
Conical bodies 21-10
Contamination 12-5; 20-8
Control systems
automated 10-6; 65-1,4
frequency analysis 17-2
variable configuration 16-1
see also Environmental control systems
Cosmic dust 46-31; 62-171
see also Interplanetary dust
Cosmic ray flux 55-115
Crew stations 3-4
Crew workloads 7-4
Crops
remote sensing 43-6,8; 44-9
see also Vegetation
Cytology 39-31; 40-41,42,43
Dactites 59-148
Debris
see Space debris
Decision processes 25-3
Design analysis 35-2
Docking systems 14-11
Earth crust 56-116
Earth observations (from space)
48-50; 55-112; 61-167; 62-169,170
Ecocardiography 36-4,5
Electric power generation 18-8
Electrochemical carbon dioxide concentration 10-4
Electronstagrammetry 5-5
Electro-optics 14-10,13; 64-7
End effectors 16-1
Energy storage 18-2
Environmental control systems 10-2,7,8
Erythrokinetics
see Blood
Eucrite 44-11; 45-26; 55-114;
60-152
Euler solutions 21-11,15
Eutectics 51-76

Exobiology
 plant species 38-19

Expert programs 64-6; 65-6,7

Explorer satellites 49-59,60

Extraterrestrial matter 57-132,133
 see also Cosmic dust, Interplanetary dust, Meteorites

Extravehicular activity 11-15
 equipment tests 50-70
 physiological effects 38-22,23,24; 42-56

Fault diagnostics 10-5

Feldspars 51-76; 58-139,140

Finite difference method 21-12

Fire detectors 29-1

Fisher linear classifier 7-2

FLAGRO computer program 20-4

Flash evaporator system 20-3

Flight operations 7-3; 61-161

Flight tests
 Space Shuttle orbiter 12-3; 20-6

Flight training 7-3; 53-97

Flow equations 21-10,12,13,14,15

Fluid metabolism
 see Body fluids

Food
 see Nutrition

Fracture mechanics 20-4,5

Frequency analysis 17-2

Gabbro 55-109

Gamma ray imagery 39-32

Geochemistry 45-20

Glass 45-21; 52-84; 55-111; 58-134

Granite 55-110; 58-138

Granodiorite 49-55

Granulite 49-56

Greenstone Belt, Ontario 55-110;
 59-147,148; 60-150,151

Guidance
 orbital transfer vehicles 12-4

Heat pipes 11-12

Heat rejection radiators
 see Radiators

Heat transfer 21-18

Heating analysis 22-27

Hematology 38-24; 39-34; 41-44
 see also Blood

Hematopoiesis 37-16

Human factors 40-37; 64-3,7

Hydrazine
 coupling systems 18-5
 explosive decompression 33-1

Igneous rocks 61-164

Ilmenite 53-92,93

Image interpretation 61-166

Image resolution 13-1

Immunodeficiency 42-55

Impact facilities 46-27; 48-53

Impact melts 45-26; 51-72; 54-105,
 106,107; 57-125; 58-135,136,139,
 140
Impact studies 49-55; 60-152
 cold rock targets 59-145,146
 H2O ice 46-28,29
 low gravity 46-27
 spacecraft 46-32,33,34; 49-60

Inertial energy storage 59-143

Interplanetary dust 51-78; 57-128; 63-179
 see also Cosmic dust

Ion chromatography 37-9,10

Ion exchange resins 39-30

Iron oxides 54-104

Jupiter
 Interplanetary dust 63-179

Kidney cells
 see Cytotogy

Kunlun Fault, Tibet 61-160

Lake Chad
 see Africa, water resources

LAMPS computer program 12-2

Landsat data 43-7

Large Format Camera 61-160; 64-4,5

Lasers 14-10
 docking systems 14-11
 space proximity operations 14-18
 Space Station 14-13

Leaf area estimates 10-3

Life support systems 65-6

Liquid chromatography 37-10

Low Earth orbit 20-7; 22-21

Low gravity
 see Reduced gravity;
 Weightlessness

Lunar bases 46-30; 47-37,39;
 48-51; 53-98; 54-99,100,101
 metabolic support 41-49,50

Lunar crust 54-102

Lunar evolution 44-12,15; 49-54;
 54-102; 56-118

Lunar geology 44-11,12,13,14,
 15,16; 45-23,24,25,26; 46-30;
 47-36; 49-54; 54-102; 58-137,
 138; 59-144

Lunar mineralogy 54-104; 61-163
 see also names of specific
 minerals

Lunar rocks
 see Lunar geology or specific
 rock and mineral types

Manganese 45-20

Manned Maneuvering Unit (MMU)
 11-14; 20-1

Manned missions 3-1
 Mars 3-2
 history 3-4
 see also Space Shuttle missions

Mars 44-17,18; 53-98

Mars missions 3-2

Martian volatiles 47-42,43

Mass extinctions 48-52

Materials tests 33-6
 see also Spacecraft materials

Mercury (planet) 56-122; 57-124;
 60-155

Metabolic support 41-49,50

Metals
 antenna materials 13-4
 cleaning 33-5
 ignition 33-2,3,4
Meteorite craters
Lonar crater 45-21; 55-111
Lunar microcraters 62-177

Meteorites 45-22
Allan Hills icefield 43-1
Achondritic 47-40
Antarctica 43-3,4; 48-45
Apollo 16 impact melts 54-107
chondrite 47-44
CI/CM 57-128
clay minerals 47-41
collisional balance 62-176
Poland 62-175
Shergotty 53-194

Meteoroid shielding 46-33; 49-59

Meteoroids
optical detection 63-180

Microbiology 38-18; 39-30; 41-45; 42-55

Microgravity
see Reduced gravity;
Weightlessness

Micrometeorites 52-83,88

Micrometeoroid flux 62-177

Modal assurance 22-25,26

Moonquakes 44-16

Multigrid techniques 21-11

Navier-Stokes/Euler code 21-15

Navigation 27-6

Neptune 60-155,157

NGR6164-65 5-3

Nitrogen depletion 42-57

Non-contact sensors 13-9

Nutrition in space flight 39-27; 41-51,52

Oceans
Space Shuttle observations 55-112

Olivine 49-54; 51-72,73,75,77

Optical communications 14-12

Optical spectroscopy 5-3

Orbit-to-orbit stages 3-3

Orbital debris
see Space debris

Orbital environments 20-7; 22-21

Orbital fluid transfer 18-3,4

Orbital rendezvous
contamination effects 12-5

Orbital transfer vehicles
design 21-19
guidance 12-4
systems analysis 21-17

Orthostatic tolerance 36-1,3; 37-8

Otolith
see Vestibular physiology

Oxygen prebreathing 37-14

Oxyhydroxides 54-104

Particle emission 21-16

Payloads
see Space Shuttle payloads

Pharmacology 40-40; 41-46

Plagioclase 49-54; 53-90; 56-117

Planetary evolution 56-116,117; 57-130,131
see also Lunar evolution

Planetary exploration 47-38
see also Mars missions

Plant growth systems 41-53
Plume models 12-1
Polar orbiting satellites 55-113
Polar orbit EVA 50-70
Polyimides 39-33
Polyurethane foam 39-33
Pressure suits see Space suits
Productivity 13-3; 14-16
Propulsion
Space Station 19-9
Protoplanets see Planetary evolution
Proximity operations in space 12-5; 14-18
Pyroxenes 49-54; 53-91,95,96
Radar
imaging 14-19
Ku-band 14-14,15
Reactant supplies 18-8
Reaction control system 19-10
Redox crystallization 61-162
Redox environment
igneous petrology experiments 61-164
Reduced gravity 31-3
cell separation 40-42
impact experiments 46-27 see also Weightlessness
Regression models 10-3
Remote sensing 43-6,7,8; 44-9;
55-113; 56-119,120,121; 57-126
Africa 48-49,50
see also Space Shuttle mis-
sions; Earth photography; Ocean observations
Rhyolite 60-150
Robotics 23-1,2; 65-1,3,5
Rock intrusions
Mafic dykes 59-149
Mulcahy Lake 55-109,110
Rocket exhaust 21-16; 50-65;
60-153
Satellite retrieval 7-1
Scatterometers 56-119,120,121
Scopolamine 37-11,15; 41-46
Shergotty 53-91,94,95
Solar energy systems 18-1,2,7;
58-141; 59-142
Solar Maximum Mission 50-68;
52-83,88
Sonic booms 27-1
Space adaptation 35-6
see also Orthostatic tolerance;
Space motion sickness;
Weightlessness
Space biology see Exobiology
Space debris 11-10; 46-31,35;
49-57,58,59,60,62; 50-63,64,
65,66,67,68; 56-123; 63-178
Space flight physiology
duration effects 37-8
extravehicular activity 38-22
metabolic support 41-50
see also Weightlessness
Space manufacturing 31-2
Space motion sickness 35-5,7;
38-20,21
Space photography see Earth observations; Space
Shuttle missions
Space platforms 10-8
Space radiators
heat pipes 11-12
heat rejection 11-10
Space salvage 5-2

Space Shuttle missions
Earth observatories 62-170
Earth photography 48-50; 61-167; 62-169
echocardiography 36-5
electrocardiography 40-39
extended duration 10-7
extravehicular activity 11-15; 38-22
flight operations 7-3; 61-161
management 27-5
ocean observations 55-112
satellite retrieval 7-1
Spacelab flights
see Spacelab
STS-1
sonic boom 27-1
STS-8
atomic oxygen experiment 22-22
cytology 40-43
STS 51-A 5-2

Space Shuttle orbiters
aerodynamics 20-6
auxiliary power unit 20-5
cameras 64-5
see also Large Format Camera
closed circuit television 14-17
contamination 20-8
electric power supplies 18-8
flight tests 12-3; 20-6
heat transfer 21-18
heating 22-27
molecular environment 20-3
optical communication 14-12
radar 14-15, 19
reaction control system 19-10
reduced gravity 31-3
Space Station applications 64-9
structural analysis 22-25, 26
STS-1 reentry 27-1
tiles 20-2

Space Shuttle payloads 22-23, 24
Space Shuttles
heat transfer 21-18
program management 27-5
structural loads 22-20

Space Station
artificial intelligence 64-6; 65-4, 5, 7
atomic oxygen interactions 20-9
commercial opportunities 31-4
communications 14-20; 15-21; 31-1
computers 64-1
control systems 65-7
crew workloads 7-4
data systems 25-1
Earth observatories 62-170
electrochemical CO₂ concentration 10-4
electro-optics 14-13
extravehicular activity 38-23
human factors engineering 40-37
inertial energy storage 59-143
lasers 14-13
maintenance scheduling 64-6
manufacturing flows 31-2
medical sciences 40-38
modular storage 64-9
navigation 27-6
non-contact sensors 13-9
nutrition 41-51
operational control zones 25-2
planning 27-2, 3, 4
plume models 12-1
propulsion 18-9
robotics 65-1, 5
solar energy systems 18-2, 7; 58-141
thermal management 11-11
tracking 14-20; 15-21
vision requirements 65-2

Space suits 11-13

Space technology 5-1; 9-1

Spacecraft materials 20-7; 22-21
Specalab 5-4
hematology experiment 39-34
microbiological monitoring 38-18

Specular reflectance 57-126
Statistical analysis 7-2; 35-1,2
Stratospheric particles 51-78,79, 80; 52-81; 60-153; 62-172,174
Structural analysis 22-25,26
Structural loads 22-20
Structural reliability 9-2
STS flights
see Space Shuttle missions
Tectonics 48-46,47; 60-151,152; 61-160
Teleoperators 23-1,2; 64-1
see also Robotics
Television, closed circuit
voice control 14-17
Tethering 18-6
Thermal analysis
spacecraft environment 22-27
Thermal energy storage 18-1;
59-142
Thermal protection 20-2
Thermal systems
space platforms 10-8
Space Station 11-11
Tholeiitic melts 56-116
Three-dimensional flow 21-13,14,15
Tochilinites 62-173
Toxicology 37-12,13; 39-33
Tracking
Space Station 14-20; 15-21

Vegetation
remote sensing 55-113;
56-119,120,121; 57-126
Vestibular physiology 35-3,4,5
Vision
see Computer vision
Voice control 14-16,17
Volcanism 61-165
Andes 48-46,47; 61-168
Geronimo volcanic field 49-56
Greenstone belt 59-147; 60-151
Water analysis 11-9
Weightlessness
physiological effects 35-3;
36-2,3,4,7; 37-8; 38-25,26;
39-28,34; 40-35; 41-47
see also Reduced gravity;
Space flight physiology
Zinc balance 39-29
Zircon 54-102
Abstract

This document is a compilation of Lyndon B. Johnson Space Center contributions to the scientific and technical literature in aerospace and life sciences made during calendar year 1985. Citations include NASA formal series reports, journal articles, conference and symposium presentations, papers published in proceedings or other collective works, and seminar and workshop results.