o NASA CR-/ 76 766

NASA-CR-176906
19860021246

A Reproduced Copy

OF

N<c¢- 39_111

Reproduced for NASA
by the
NASA scientific and Technical Information Facility

LIBRARY £0py

MAR 1 2 1op7

’ I"”m "" ﬂ!’!@'ﬂ’ﬂgﬂ!’ m!, ,”I I"I LARGLEY RESEARCH CENTER

LIERARY, NASA
HI\MP_TON‘ VIRGINIA
TTee——

FFNo 672 Aug 65



AR

,
T [
e e T T

ol (RN
et
£

LT '?;

T

S o A A AR AR S A i o

o
)

(AR S

ik S oA

L LnrLe

ST : o ) g
SiA SHp.e Y
) T T DAM e
" FINAL STATUS REPORT
{NASA-CR-176906) A.I.-BASED KEAL-TIHNE H86-30718

SUPPORT FOR H1GH EFERFCRHAHCE RIRCEAFT

OFERATIORS Report, 15 Hay 19&4 - 14 Hay _

1685 (Califorrnia Cpiv.) S2 p CcsSCcL 01c Unclas
¢3/05 43028

A.L-BASED REAL-TIME SUPPORT FOR HIGH PERFORMANCE
AIRCARAFT OEERATIONS '

Principal Investigator
Jacques J. Vidal

Computer Sciencs Departmsent
Univarsity of California, Los Angeles
Los Angeles, California 90024

NASA Research Grant No. NAG 2-302
Performance Faricd: May 15, 1984 - May 14, 1985

NASA Technical Officer: Eugens L. Duks

Drydsen Aeronautical Project Office, D-OP
P.Q. Box 273, Edwards, Ca. 93523

=
NS6e-307/Y




Rt er sy Ry S

RO ST e A

PRERI s

ot iy ot

PRR P ioneat ramytin

Ntk ek Tkt a ey oyt

b

o

TR AL

T,

i

141

May 15, 1984

AI-BASED REAL-TIME SUPPORT FOR HIGH PERFORMANCE
AILCPRART OPZERATICNS :

Jacques'..l. Vidal, Principal Investigazor
UCLA Computer Science Department

FINAL REPORT
(FIRST YEAR)

This report covers the first year of a joint venture with Dryden Flight Research Facil-
ity to apply AI based software end hardware concepts to the handling system maifunc-
tions during flight tests. . . :

The ultisnote goal i3 the prégressive development of expert systems capable cf retricving
system knowledge in real-time during operations. '

1.0 Work performed undef MNASA Research Grant NAG 2-302

Work on Melfunction Expert System has been underway in our research group for over
two years, and has been lately supported under the current grant. Dr John Helly com-
pleted a Ph.D dissertation in 1984 under the Principal Investigator. on an expert sys-
tem for space shuttle flight control, a problem investigated for NASA jointly with the
Aerospace Corporation [2]. He is currently serving as a consultant on this project.

This work contains a new representation of malfunction procedure logic using
Boolean normal forms. The rejresentation facilitates the automation of malfunction
procedures and provides easy testing for the embedded rules. It also forms a potential
basis for a parallel implementation in logic hardware.

A MS thesis by Robert Cruz, just completed, deals with the extraction of logic control .
rules, from dynamic simulation and their adaptive revision after partial failure [1].- It

uses a simplified 2-dimensional dimensional "aircraft” model with a controller that
adaptively extracts control rules for directional thrust that satisfy a navigational goal

without exceeding pre-established position and velocity limits. Failure recovery (rule
adjusting) is examined after partial actuator failure. While this experiment—~wasper=——
formed witn primitive aircraft and mission models, it illustrates an important paradigm

and provided complexity extrapolations for the proposed extraction of expertise from
simulatinn, as discussed below. v

A complete account of the probiem and of the experiment results is provided with this 1
report as appendix 1.
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J.J. Vidal Al-Based Real-Time Support

2.0 On-going prujects directly relevant to the effert

Other members of the recearch team under the Principal Investigator are involved with
parailel knwilsdpe reprecentation and retricvel In dynamicaliy pregrammable logic
arrays (DPLAs) [5,4]. This group’s mission is to develop a special architecture for
real-time expert systems [6].

Finally, another relevant project deals with the use of relaxation and inexect reasoning
in expert systems [3].

Last but not least, ccoperative work with other investigators in the UCLA Al labora-
tory is contributing to the establishment of a powerful, Apollo-based environment for
Al software development. with special attention paid to object oriented programming
and to knowledge representation,
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AN APPLICATION OF ADAPTIVE LEARNING
TO MALFUNCTION RECOVERY
Robert Edward Cruz, M.S.
ABSTRACT
g
’ A self-organizing controller is developed for a simplified two-dimensional
aircraft model. The controller learns how to pilot the aircraft through a navi-
r gational mission without exceeding pre-established position znd velocity lim-
its. The controller pilots the aircraft by activating one of eight directional ac-
4

tuators at all times. By continually monitoring the aireraft's position and
velocity with respect to the mission, the controller progressively modifies its
decision rules to improve the aircraft's performance. When the controller has
learned how to pilot the aircraft, two actuators fail permanently. Despite this
\ malfunction, the controller regains proficiency at its original task. The exper-
r imental results reported show the controller’s capabilities for self-organizing
control, learning, and malfunction recovery.
i
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Introduection

Objectives

As aircraft technology advances in complexity, piloting an aircraft is
becoming more difficult and subject to error. This difficulty can be critical
during an in-flight malfunction, risking the loss of both the pilot and aircraft.
In these situations, it is important to devise automated assistance for the pi-
lot. With this goal in mind, UCLA and the NASA Dryden Flight Research
Facility are developing expert systems for potential onboard use in future air-
craft. The research presented in this thesis, while a long way from satisfying
the goal, represents an initial step towards its achievement.

The immediate objective of this study is to develop a controller that
learns an aircraft task and recovers when the aireraft malfunctions. A com-
puter program is used to simulate both the controller and the aircraft. Given
limited @ priori information and a trial-and-error learning strategy, the con-
troller learns to navigate a two-dimensional aircraft through a pre-established
mission. The controller uses performance feedback that is taken during and
after each aircraft flight. Because its learning strategy is independent of
flight dynamics, the model can be applied to both normal and abnormal flight
situations.

In essence, the controller decomposes the problem into mutually isolated

subproblems corresponding to different regions of the aircraft's allowable state
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space. For each subproblem, the controller implexﬁents the same p'réblem-
solving algorithm. The resulting solutions to each subproblem contribute to
the accomplishment of the overall flight task. In.this manrer, the controller
produces useful results for a problem involving a relatively large search space.
Additionally, the decompesition technique lends itself to faster computation

possibilities related to parallel processing implementations.

Previous Work

The research leading to the present work centers on controllers designed

for the cart-pole system shown in Figure 1.

Figure 1. Cart-Pole System

The system consists of a rigid pole mounted to the top of a motorized cart.
The cart moves in two directions, left and right, alony a straight track of
fixed length. The pole is hinged to the cart so that it rotates only in the vert-

ical plane bounding the cart's motion. The controller moves the cart by ap-
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plying a constant-force motor either to the left or to the right. The cart-pole

system is inherently unstable. Therefore, the coatroller’s task is to keep the

- pole from fzlling by continually moving the cart left 2nd right as appropriate.

" The cart-pole system was initially devised by Donaldson [4] in 1960. In
his work, Donaldson designs an automaton that learns the cart-pole balancing
task by comparing its control movements to those of a humar. This learning
strategy, using the terminology of Carbonell, ef. al. [3] is called "learning by
example.” The human assumes the role of a teachér who provides exauiples
for the automaton to imitate.

In 1964, Widrow and Smith [13] designed 2 cbntroller that could be
trained to effectively balance the pole. It consists of an encoder and an adap-

tive linear element, or Adaline. The encoder generates patterns based on the

~ values of four variables that describe the cart-pole sysiem state:

x : the position of the cart on the track,
6 : the angle of the pole with the vertical,
% : the velocity of -e cart, 2nd

6 : the angular velocity of tLe pole.

The encoding scheme partitions each variable into discrete intervals. Conse-

quently, each pattern represents a different combination of intervals occupied
by the state values.

The Adaline produces a weighfed sum from the encoded patterns. If the
sum is greater than or_ equal to a certain threshold vélue, the con’trdlle;“ap-
plies the cart’s motor to the right; otherwise, it applies the motor to the left.

The controller learns to balance the pole by adjusting the Adaline’s

weights according to an observer’s periodic assessment of the controller's per-
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formnance. When performance improves, it changes the weights to reinforce
the Adaline's decision logic. Conversely, when performance degrad-, it ad-
justs the weights so that the decision logic is reversed. When the observer
cannot distinguish a change in performance, the weights are left unchanged.
Widrow and Smith refsr to this learning techﬁique as "selective. bootstrap-
ping.” Though it does not learn by examples, it still requires a human ob-
server to assess its performance.

In 1968, Michie and Chambers [6}, [7] presented an autonomous controller
for the cart-pole problem. Its learning strategy, using Carbonell, ct. al. [3]
terminology again, is one of "learning from observation and discovery.” Both
the controller and the cart-pole system are simulated by a computér program
called Boxes. The name derives from the method used to partition the cart-
'polé state space. In Michie and Chambers' represcntatior, the state variables
are plotted along four mutuzlly orthogonal axes. Consequently, each sysiem
state corresponds to a unique point in the 4-dimensional state spaée. By us-
ing Widryw acd Smith’s scheme of partitioning the state variables into inter-
vals, the state space divides into discrete regions, or boxes.

A "demon" resides in each box. Each demon decides the controller’s out-
put when. the cart-pole state enters its box. By tabulating the consequences
of their decisions, the demons learn the best controller output for each cart-
pole state. Hence, the controller automatically assesses its performance and
adjusts its decisions so that it eventually learns its task. | |

In 1082, Barto, Sutton, and Anderson [2] presented a similar program for
the cart-pole problem. Their aim was to show how the cart-pole. cc;x;troller
could be built ith neuron-like adaptive elerents that they had developed. -

The controller consists of a single Associative Search Element (ASE) and a

i
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single Adaptive Critic Element (ACE). Both elements re;y on the state snace
representation used by Michiz aad Chambers.- The ASE utilizes adaptive
threshold logic to control the cart’s movement. It3 thresholds are modified
according to reinforcement feedback provided by the ACE. The ACE pro-
duces the feedback by cpplyi  threshcld logic to the consequere:s cf ezch
controller output. Barto, ef. al. showed that tbeir controller performs
significantly better than the one designed by Michie and Chambers |

In 1966, Schaefer and Carnon {10} showed that the cart-pole problem gen-
eralizes to an infiuite scquenca of problems of increasing difficuity, with 1, 2,
3, etc., poles balanced each on' top of the other. The controller to be
described represents a different generalization of the problem. Whereas mo-
tion in the cart-pole system is one-dimensional. it provides cohtrol for a two-
dimensional system. Consequently, this research lays the ~roundwork for fu-

ture work on automatic contrcl in two- and tL: :e-dimensional systems.

Outline of the Paper

The organization of this papei has been divided into three major sections.
fn tae first, the Boxes method is built into a controller for 2 two-dimensional
aircraft model. The controller is exercised in three simulation expériments.
In the first experiment, the controller is designed with a learning strategy
similar to Michie and Chambers'. Afterward, the controller is enhanced with
adaptive elements perfcrming functions similar to \the ASE and ACE designed
by Barto, ct. al. In the second section, two more experiments are conducted.
Tleir purpose is to study the controller’s ability to pilot. she aircraft after the

aircraft malfunctinons. The last section is devoted to a discussion of the
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controller’s properties, as well as its performance limitations.




Experiments in Adaptive Control

In the following experiments, a controller is developed ior a simplified
two-dimensional aircraft model. The gircrzft's environment consists of pre-
established boundaries on its flight position and velocity with respect to a

two-dimensional Cartesian coordinate system (Figure 2).

Y Y
flight positien flight velccity

1 . Figure 2. 2-Dimensional Aircraft in a Position-Velocity World

The aircraft is equipped with force actuators that provide constant .ae-

celeration in eight directions with respect to the center of its vertical plane of

—

: motion: up, down, left, right, up-left, up-right, down-left, and down-right.
These actuators corresp;md to the bi-directional motor used in the cart:i)ole .
problem. Therefore, the controller has been designed to cetivate only one ac-
tuator at a time. The aireraft enters a failure state when it flies outside of its

position boundaries or exceeds maximum speed limits. These restrictions

E::,z.;u fe YU 1t - Ui TR
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correspond to the cart running off an end of its track or the pole falling. A
flight succeeds when the controller maintains flight within position and velcei-
ty limits for a predetermined amount of time. _

The controller's design has been adapted from the Boxes system developed

by Michie and Chambers [6], [7). The exact details will be described in the

following sections.

Discretization of Alrceralt States

At any point in time, the current aircraft state is defined by four vari-

ables:

x : the aircraft’s position on the X axis,

y : the aircraft’s position on the Y axis,
X : the aircraft's velocity along the X axis, and

y: the aircraft’s velocity along the Y axis.

These variables correspond to the variables x, 8, x, and 9 which defined the

cart-pole system state. The variables are plotted along foﬁr mutually orthog-

‘onal axes. This orientation defines a four-dimensional state space. Each air-

craft state is represented by a point in this space. To differentiate between
aircraft states, the four state variables are divided into value rangés cf.eating
discrete thresholds for t}lé state values. (Figure 3).

The proper threshold values are dependent on pe'rforrﬁance chax:ac_iéristics
of the .model aircraft and its mission. For the next three expﬁriments, the .

thresholds shown in Figure 3 have been selected. The variables x and y are

partitioned into five allowable ranges by thresholds at 10, 30, and 50 meters

PO TSR e
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Figure 3. Range-Coded Aircraft State Va.riaBlcs

in both the plus and minus directions with respect to the coordinate origin.
Values for x or y of magnitude greater than 50 meters signal. an asircraft
failure. Similarly, the flight velocity variables x and y are divided into three

distinct ranges by symmetric thresholds 2t 2 and 10 meters per second.

Again, values for x and ¥ of magnitude greater than 10 m/s constitute an air-
craft failure. Thrwhold-ing the state variables thus "lumps together” closely-
related aircraft states such that the four-dimensional state space within which
the aircraft operates becomes subdivided into 5X5X3X3=225 distinct re-
gions, or "boxes.” Using the Boxes framework, the controller’s task may be re-
garded as maintaining j:he four state variables within their limits so that the

current aireraft state falls within one of the 225 boxes at all times.

Force Actuator Activation

For simulation purposes, the aircraft's flight has been time-sliced into 1-
second intervals. During each interval, the controller activates a force actua-

tor. For the experiments that follow, each actuator has been "designed” to
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provide 1.5 newtons of constant thrust in one of t-he eight directioné.
Depending on the direction in which it is applied, the activation of an actua-
tor changes the aireraft's current position and velocity and, thﬁs determines a
new aircraft state. In this fashion, each actuator ‘activation serves as a transi-

tional operator that moves the aireraft from one box to another within its al-

lowable state space.

Problem Decomposition Using Demons

To solve its problem, the controiler must learn to avoid (sequences of) ac-
tions that lead to an aircraft failure. Obviously, certain actions are appropri-
ate in some instances and inappropriate iu others. Because the controller
does not have a built-in model of its environment, it must learn by trizl and
error the proper actuator(s) to activate in a given situation.

Recall that partitioning the state variables has created a four-dimensional
state space with 225 regions, or boxes. For illustrative purposes, imagine tha(
these boxes are inhabited by local demons™one per ' ox~all of which are
under the supervision of a "globzl demon” {Figure 4). The global demon is in
charge of. the overall flight task. The loczcl demons concern themselves only
with aircraft flight when the aircraft state ecnters their box. Upon entry into
a box, the local demon must decide which of the aircraft's eig.t actuators to
activate next. After making its decision, the local demen informs the global
demon who, in turn, activates the apprpriate actuator. After th_e actuator
has been activated for 2 unit time-step, the global demon determines the new
box within which the airecraft state now resides, and asks the corresponding -

local demon which force to activate next. This sequence continues until the

10
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Figure 4. Network of Demons for the Aircraft State Space

aircraft enters a failure state, thus ending the trial run.

The use of global aﬁd local demons exemplifies the problem-solving tech-

‘nique of problem decomposition into subproblems. In order to solve the

overall problem, the global demon divides it equally into 225 smaller ones and
delegates their solutions to the local demons. Because each demon oversees a
separate region of the aircraft state space, its job is to determine which force

setting best avoids aircraft failure when the current state falls within its as-

signed region. ' -
In order to carry out its task, each local demon records its previous ex-

perience of the aircraft’s flight by tabulating the following data:

11
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Force Lifctimes: The total lifetime of decisions to activate a
force actuator in s given direction. A foree lifetime is the
difierence between the time of aireraft failure and the time when
the aircraft state enters 3 box and the local demon decides to
apply the force. A force’s total Lifetime is 2 weighted sum of sll
of its "individual” lives during previous ruas.

Force Usnges: Weighted sums, for each force direction, of the
total number of tiines the lccal demon decided to activate a
force during previous runs. '
Entry Times: The times during which the aircratt state en-
tered the demon's box during the current run. Time i3 initial-
ized to 1 at the beginning of 2 run, and continues in 1-second
increments until aircraft failure. -

Experimentsal Procedures and Results

Three experiments of 1000 simulated flights are conducted. Before the
first run of each experiment, local force Lifetimes and Usages are iritialized to
zero. Additionally, control decisions for the local demons are determined at
random. Each run be_gins at a randomly-generated initial point within the
aircraft’s allowable state space. The run terminates when the aireraft enters
a failure state or avoids failure for 1200 time-steps. Thus, 1200 seconds, or 20
simulated minutes, is established as the duration of a successful flight.

The c;bjective of the first experiment is to demonstrate that Michie and
Chambers’ Boxes method can be effectively utilized by a controller for a sim-
ple aircraft. This objective assumes 2 close correspondance between the cart-
pole problem and the current aircraft task. Hence, the procedures uﬁed in

Experiment 1 are similar to those outlined by Michie and Chambers [6]. __

12
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Experiment 1 Procedures

In this experiment, local demons are allowed to decide on'only one force
actuator to activate per run. Thercfore, regardless of how many times the
sircraft state enters a demon’s box during a run, the demen’s control decision
remains the same. Initial states for each run consist of randomly-gencrated
values for x and y between £30m and values for x and y between 2m/s.
This initialization procedure restricts the initial aircralt state to nine local
demcn boxes located in the center portion of the aircraft state space.

When the aircraft state enters a demon box during the frst rur, the fol-

lowing actions occur:

1. The local demon records the time of entry.

2. The local demon signals the glotal demon to activate a force actuator.
The loczi demon's decision depends on tabulated experience of .the conse-
quences of its previous decisions. However, during the first run, this decision

is generated at random.

As these actions continue, the aircraft state transitions from one demon box

. to another until it finally reaches a failure state. This eveny terminates a trial

run and triggers the following actions:

1. The global demon informs the local demons that an aircraft failure has
occurred.

2. Each local demon updates its eight pairs of force Lifctime and Usage
totals. Based on these new totals, it determines which force actuator to ac-
tivate (via the global demon) for the duration of the next trial run.

I o force sctuator was active before the aircraft failed, its Lifetime 2nd Usage

values are calculated as follows:

‘N
Lifetime = Lifetime’ XDK + 3 t-t;

jml
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where N = the number of times that the au'"raft state entered the demon
box during the run that just failed, and
t; and t; correspond, respectively, to the time of aircraft failu}e, and the indi-
vidual times of entry into the demon box.

usage = Usage' XDK + N .
where DK = 0.99 is a constant multiplier less than unity that weights recent
experience relative to earlier experience.

If a force actuator was inactive before the aircraft failure, its Lifetime and

Usége values are reduced, respectively, according to the following equaﬁons:

Lifetime = Lifetime’ X DK, and
Usage = Usage' XDK

In order to determine which actuator to activate next, the local demons
refer to & "target” value supplied by the global demon. This value represents
the mean lifetime of the aircraft for all previous runs. It is calculated from .

the global demon's Lifetime (GL) and Uszge (GU) values in the followmg

mann er:

GL = GL'XDK+t,
GU = GU'XDK+1

G

t t: ——

arge QU

Using the globil target value, the local demons assess the relative

effectiveness, RE, of each of their cight force actuators. RE is calculated as

follows:

__ Lifetime-+K Xtarget
RE = Usage+K

14




L4 -

where K =20is a mu'ltiplier weighting global relative to local experience.

Incorporating K and the target into the assessment of a local force actuator
serves to base the actuator's value on two levels of experience: global experi-
ence from the aircraft's mean lifetime over K runs; and local experience from
the actuator's Lifetime and Usage totals. |

Once the demon has calculated the relative value of each of its force - ¢-
tuators, it chooses the actuator with the highest value as the one to activate

during the next trial run (see footnote).

Experiment 1 Results

Because a pseudo-random number generator was used to generate initial
aircraft states and decide the local demons’ initiai control decisio_ns, Experi-
ment & was conducted ten times, cach time with a different initial seed value.
The average results for the ten tests are plotted in Figure 5. The plot shows
the average target value versus simulation run number measured after every
50 runs. Notice the direct relations;hip between the controller’s flight experi-
ence and the aircraft’s mean lifetime. Ap important statistic not portrayed is
the number of successful flights per experiment. On the average, 41 flights
out of a thousand were successful.

The results of Experiment 1 demonstrate that the Boxes method may be
used for the control of a simplified model aircraft. However, as evidenced by

its low success rate, thé controller’s effectiveness is limited. Because local de-

Because of the way the experiment is initialized, strict .adherence to this
decision rule results in the local demon choosing its initial force actuator time
after time. Therefore, the rule is followed only after 2 warm-up period during
which each force actuator is randomly selected, or sampled, at least once.

15
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Figure 5. Simulation Results for Experiment 1

cision rules are updated only zfter each aircraft failure, the demons do not re-
ceive feedback 2s to the immediate consequences of their decisions. Further-
more, restricting the local demons to one force actuator activation per run

reduces the controller’s flexibility.

-

The controller’s performance can improve by removitz these restrictions.

The approach taken here will be described in the Experiment 2. It entails -

making design modifications to the present aircraft controller. The

modifications involve the addition of two adaptive threshold-logic elements

16
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similar in function to those proposed by Barto et. al. [2]. Consequently, the

~ objeciive of the next experiment is to improve the controller’s flight perfor- .

mance.

Experiment 2 Procedures
This experiment differs from the first one in three respacts:
1. An Adaptive Critic Element, or ACE, is incorporated into the controll-

er.

2. An Associative Search Eleinent, or ASE, is incdrporatcd into the con-
troller. '

3. Local demons may activate more than one force actuator per run.

Otherwise, the initialization procedures, discretization of aireraft states, and

local control rules remain the same as those in Experiment 1.

The purpose of the ACE aud ASE is to facilitate local learning by con- -

stant reinforcement feedback. Recall that, in Lixperiment 1, local demons had
to wait for a failure signal and target value from tﬂe global'demon before they
could update their force actuator values and make a new control decision.
With the modified controller, the ASE updates force actuator values every
time the aircraft state chaﬁg&é. ' '

Essentially, the function of thc ACE is to compare the demon box occu-
pied by the currenf aircraft state with the box occupied by the previous one,
and report its findings to the ASE after each unit time—step. Demon. box
comparisons are based on the Lifetime totals for the force actuators activated
by the "current” local derion and the "previous” one. The-ﬁndings, £, assume

the values of either plus or minus one. If the currentiy activated actuator has

-
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a Lifetime as goéd as, or greater, than that of the previ;us one, f is positive;
if not, f is negative,

The function of the ASE is to modify local demon force Lif;etim& in light
of the findings supplied by the ACE. Modification ;)f a demon Lifetime as-
sumes two forms: reinforcement and penalization. Reinforcement occurs
when F is positive, while penalization corresponds to £ beicg negétive. Be-
cause of the manner in which the ACE calculaté f, good local demon deci-
sions will be reinforced, while poor decisions will be penalized. .Note that only
demons whose boxes have been entered during the current run become
modified; furthermore, modification only applies to the Lifetime for the
demon'’s currently activated actuator.

After each unit time-step, a local force Lifetime is modified according to

the following equation:

Lifetime = Lifetime’+f X a X eXLifetime’

where a = 0.05 = the minimum percentage of a local Lifetime that may be
reinforced/penalized, and

e = an eligibility trace for local demon modification.

The eligibility trace méasur% the influence of a local demon’s actions on
reaching the current aircraft state. Obviously, the zctions of recently-entered
demons have more of an’ influence than those of distantly-entered ones.
Thus, the former demons will have a higher eligibility trace than the latter
ones. Eligibility begins at 1009 when a2 demon box i first entered, and de-

creases exponentially in the following manner: -

e=c¢e'Xp

where 8 = 0.95 = the percentage of a demon’s influence which remains after

18
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each siinulation time-step.

Experiment 2 Results

As with the first experiment, Experiment 2 was conducted ten times, each
time with a different initial seed value. As depicted in Figuré 8, the aircraft’s
mezn lifetime was greatly improved by the addition of the ACE and ASE to
the controller. In fact, successful 8ights occurred 537 times out of 1600, or
fo: - 3.7% of the trials. In several of the individual simulations, the mean sys-
tem lifetime approached the upper time limit of 1200 unit time-steps.

Beca;use the controller’s task remained the same from Experiment 1 to Ex-
perirceat 2, the results of the latter expe-iment mﬁy bhe attributed to the
modifications made to the controller. The controller can now make a different
decision each time the aircraft state enters a local demon box during the same
run. This capability enables the controller to recover more cuizkly from poor
decisions. Additionally, the controlier can receive immediate feedback con-
cerning the consequences of loczl demon decisions. This icedback helps the .
controller to correlate aircraft performance to local demons’ actions.

The results of Experiment 2 show that the modified controller wocks well

at the task to which it was originally assigned. What happens, though, wien

" the controller is assigned a more difficult task? In the next experiment, the

controller’s task is made more difficult. The ensuing resuits should provide an

idea of the relative tolerance of the controller to changes in task difficulty.

19
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Experiment 3 Procedures
e This experiment studies the effect on aircraft performance of starting each
g run from anywhere in tbe aircraft state space. Therefore, x and y values are
j randomly selected between #£50in, while the X and y values are selected from
! the +£10m/s range. In experiments 1 and 2, initial states fell within only nine -
- possible demon boxes corresponding to the central portion of the state space.
In this experiment, all 225 boxes become eligible starting points for a trial
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ruc. ‘The change in initialization procedures increases problem difficulty byb

foreir.g the controller to map control actions to the entire aircraft state space.
Other than this difference, all operating procedures are the same as those

used in Experimeat 2.

Experiment 3 Results

Experiment 3 was conducted with the same initial seed values used in Ex-
periments 1 and 2. The average results are shown in Figure 7. Notice that
aircraft performance is reduced by the addition of 216‘ more initial states.
Also, the average success rate fell to 11.7%. Thesa results show that the con-
troller learns quicker when its starting conditions are more consistent. Other-
wise, to attain the same performance reached in Experiment 2, a longe.r learn-

ing period, i.e. more trial runs, are required. This conjecture was not tested,

Comparison of Experimental Results

For comparison purposes, the average results of all three experiments have
been superimposed onto the same graph in Figure 8. With respect to the
learning curve for Experiment 1, aircraft performance levels out after the first
500 runs. Consequently, the experience gained from the last 500 runs is not
utilized. The primary reason for this inefﬁciency‘concerns the (long) time in-
tervals between modiﬁchations to local demon decision rules. In Exp’erime;i 2,
local control rules are modified after every unit time-stup. “The effects on air-
craft performance are evident upon inspection of the expérimentai results.

However, in Experiment 3, aircraft performance degrades. This result is a na-
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Figure 7. Simulation Results for Experiment 3

tural consequence of the addition of 216 more starting states.

Summary

-

A controller has been developed for the adaptive.control of .a simplified

model aircraft. Its components include:

1. A global demon that monitors the aircraft state, issues appropriate
messages, and activates the aircraft force actuators. :

ve
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Figure 8. Simulation Results for Experiments 1-3

2. A pctwork of local demons correspondiug to different regions of the
aircraft state space that advise the global demon of the appropriate actuator
to activate when the aircraft state enters a given box. The local demons ta-
bulate data reliting to the consequences of their previous controi decisions.
This data is used to make future control decisions that are imp.emented by

the global demon. '

3. Two adaptive threshold-logic elements, the ACE and ASE, that modify
local demon control rules in light of immediate aircrzait feedback. - :

Because the controiler learns its task from trial-and-error experience,

changes in the structure of its components can be made to provide for the
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control of a more specialized flicht task. Such an undertaking is described in

the sequel.

. \
ey ey i

24

et I b R g i mi s mem v 2 4T e LR E AR s Rt e T e . . T R TRCI R T 123



v

EYRE Wit i g BT A L T

T

YRS 82 )

vy
<

EEACH Apeneaviean

g

IRt A e

HSC by

PR

R “qi"#ﬂ':‘ﬂ""ﬁ!?{“_w:“:f'i'l

L At

e S0 S

Experiments in Malfunction Recovery

The purpose of the preceding experiments was to adapt the Boxes systéem
to a simple flight controller. In achieving this purpose, the experiments pro-
vide background for the experiments that follow. Their purpose is to apply
the controller to a specific navigational problem, and study its performance
under a simulated aircraft malfunction. In the current context, a malfunetion
exists when the aircraft loses opt;ratibnal control of one or more of its eight
force actuators. An important assumption is that, despite the malfunction,
the aircraft maintains sufficient directional control to accomplish its pre-

‘defined missicn.

Experiment 4 Problem Deseription

This experiment procceds in two pheoses. In Phase One, the controller
learns to pilot the aireraft from one demon box to another. When it achieves
proﬁcieﬁcy at this task, Phase Ope ends and Phase Two begins. At this
point, an aircraft malfunctioﬁ is simulated by removing .two of the aircraft"s
eight force actuators. During the second phase, the controlier learns to ac-

complish its original task despite the loss of the actustors.

- —~—
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At the beginning of each rur, the aircraft’s position and velocity vectors

are initialized as follows:

x:-20m
y: 25m
x: Om/s

y: Om/s

Using the above values for the aircraft state veriables, the aircraft’s initial

configuration is represented in Figure 9.

»

4 Y
flight positien flignt velcsity

Figure 6. Initial Aireraft State for Experiment 4

From this initial state, the controller must learn to pilot the aireraft to
the center box of the disrstized state space. This box corresponds to x and y
2 falling within the ¢ £10m range, 2nd X and y having values between 0 +2m/s.
With respect to the left hall of Figure 8, the aircraft must fly from an initial
1 position in the lower-left region of its "airspace” to the center reg;lon.' Asin °
the preceading experiments, an aircraft failure occurs when the aireraft .
exceeds its pcsition and velocity boundaries. .Thus, a trial run ends when the
, aircraft reaches cither the goal state or a failure state. Trials continue until
26
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the aircraft reaches the goal-state 90% of the time. At this point, the aircraft
loses operational of two of its eight force actuators. The controller must then
recover from this malfunction by learning to complete the aircraft’s mission

using only six actuators.

Experiment 4 Procedures

Recall that in the preceeding experiments, the aircraft’s mission was to
prolong flight. Now, its mission is to fly from one demon box to znother. Be-
cause the mission has changed, the local demons’ mutual goal of vaaximizing
their expected lifetimes no longer applies. Instead, the local dcmons must
minimize the aircraft's expected "distance” to the goal. To fulfill this task, lo-
cal demons tabulate the following data: '

Force Distances: Relative approximations, for each force actuator, of the
aircraft’s distance to the coordinate origin.

Force Usages: Sums, for each force actuator, of the number of times that
the local demon decided to activate each actuator during previous trial runs.

To increase the granularity of the state space, thresholds have been #dded
at £6m/s for the aircraft state variables x and y. The resultant value ranges
for the discretized aircraft state space are shown in Figure 10. Consequently,
‘the aircraft state space divides into 5X5X5X 5==625 demon boxes instead of
the previous 225.

The preceeding discussion outlined two necessary design modifications to
the controller. First, the information processed by the local demons has
changed. Second, the number of local demons has increa;;.'ed. Now, the se-

quence of events occurring in 2 trial run will be explained.
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Figure 10. Range-Coded State Variables for Experiments 4 and 5

During ecch unit time-step, the follewiag actions oceur:

1. The global demon signals the local demon whose box has just bzen en-
tered by the current airerzit state.

2. If the box has never been enicred during a trial run, the demon s eight
force Distances are initialized with the Pythagorean distance between the
current sireraft position and the coordinate origin.

3. The local demon decides on a force actuator for the global demon to
activate. The demon makes this decision at random until each of the force
zctuators has been sampled at least once. Afterward, the demon decides on
the force actuntor with the lowest Distance:Usage ratio. When the demon has
. made its decision, it in.rements its appropriate Force Usage entry by one, und
% informs the globzl demon of its decision.

4.. The globsl demon activates the appropriate actuator, which causes the
. eireraft state variables to change. v

5. The ACE compares the current aircraft state with the previous one
and reports its findings, ¥, tc the ASE. To mzke the comparison, the ACE
calculates the Pythagerean distance between the current aircraft position to
the coordinate origin. If the current distance is jess than the previous one, it
% sets T to 1; otherwise, it sets fto-l.

6. The ASE modiles the appropriata force Distance value for each local °
ks demon whose box has been entered during the current, run. It modifies Dis-
A o tance values as follows:

Distance == Distance’+a ¥ FXeXDistance’

where @ = 0.1 and
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where # = 0.8 (see footnote).

After the ASE modifies the local force Distance entries, the simulated time
is incremented a unit step, and steps 1-6 are repeated. This cycle continues
until the aircraft reaches either a success or a failure state. Upon success, the
ACE issues 2o £ value of 1. With f, the ASE modifies eligible force Distance
values as in step 6 above, except that it uses 0.5 as its value for aipha. Upon
failure, f = 1, and the ASE modifies local force Distances using an a value of
3. Consequently, local control decisions are either significantly reinforced (de-
creased) or penalized (increased) to reflect the end result of the trial run.
Afterward, the controller re-initializes the aircraft state variables, and a new
trial run begins. The experiment proceeds in 50-run increments. When at
least 45 out of 50 flights are successful, Phase One ends.

‘Phase Two begins with the aircraft losing control of its up-right and
down-left force actuators. D&pite this malfunction, the controller must re-
gain its 80% proficiency rate for the original aircraft mission. Its control deci-
sions for the six remsining actuators are influenced by the local force Distanca
and Usage totals gained from Phase One.

Because of the selection of initial and goal aircraft states, the malfunction
prevents the aircraft from flying directly toward its positional goal. Iastead,
it must combine its up and right actuators to compensate for the loss'of the
up-right one. Similarly, it must combine the down and left actuators to com-

pensate jor the loss of the down-left one. When the aircraft again flies suc-

For a further explanation on the meaning of a, T, and e, refer to the
preceding subsection entitled "Experiment 2 Procedures.”
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1 - cessful missions 45 times out of 50, Phase Two and the experiment end.
Experiment 4 Results
Experiment 4 was conducted ten times, each time with a different initial
. seed value. The final results are listed in Figure 11. Notice first that, regard-

less of the initial seed value, each test achieves the 90% task proficiency rate
in both pkases of the experiment. This result demonstrates the controller's
capability to learn a navigational task under both normal and malfunction

conditions. However, the required learning time for each phase does not vary.

Py T 7 A b
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This result was not expected.

o

= Total trials necassery
i Initial to reach SIX proficiency
g 8t single Ravigstichal
r Soed tock.

i % velue Phase Phass
One Teo

3 ) 109 163

1 169 163

Z 2 18 169

3 ‘168 108

q 1c3 160

% 5 168 13

5 s 13 168

? 100 160

& 0 156 100

s 13 . 108

Figure 11. Simulation Results for Experiment 4

E Initially, Phase One was expected to take longer to complete than Phase
Two. Whereas the controller begins Phase One with no experience of the
consequences of its decisions, it begins Phase Two with the Distance znd

Usage totals gained from the previous phase. Therefore, its initial decisions in
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Phase Two should be more 2ccurate than the random decisions made at the
beginning of Phase Oae. This initial 2ccuracy was expected to reduce the re-
quired learning time in Phase Two. '

Two factors contributed to the experixhental results.. First, the experi-
ment was divided into 50-rua increments. At the end of eé.ch increment, the
number of successiul missions was evaluated. If there were st least 45, the
appropriate pbase would terminate. In these terms, the average time required -
to complete each phase was two. Perhaps, given a more difficult task (i.e. one
that takes longer to coinplete), the flight experience gained in Phase One
would have been reflected in a shorter learning time for thase Two.

The second factor concerﬁs the particular actuators that malfunctioned.
During Phase One, the controller learned that the up-right actuator moved
the sircraft closest to the goal from its initial position. However, this aétua-
tor was inoperational during Phase Two. Consequently, the controller's "best
choice” in the first phase was no longer an alternative in the second. This
condition prevented tize controMer frcm effectively utilizing its experience
oained in Phase One. | '

To test the validity of these ideas, Experiment 5 was devised. Its aim is

to study the effects of task difficulty and actuator malfunction on required

learning time. Thus, the final results should shbw. more clearly the temporal

relationship between Phases One and Two.

Experiment 5 Proccidures . .o

In this experiment, the contrcller again learns to pilot ‘the aircraft to the

center box of the state space. However, its initial position and velocily no
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longer remzin constant. At the beginning of each trial run, values for the
state variables x and y are randomly gencrated in the [-30,-10] and [10,30]
ranges while x and y values are generated in the [-2,2] range. 'Consequently,
the initial aircraft state falls within one of four local demon bo:xes surround-
ing the central region of the aircraft state space. -

The random initialization procedures are designed for two purposes: (1) to
increase the difficulty of the controller’s task, and; (2) to increase the accura-
cy of the controller’s initial Phase Two decisions. To .clarify this last point,
realize that only.the ﬁp-right and doxén-left actuators malfunction. Thus, in
Phase Two, whenever the aircraft begins in the upper-left and lower-right re-
gions of its airspace, its best decision alternatives--down-right and up-left,
respectively--still remain. Thus, half of the controller’'s Phase Two decisions
maximize Phase One experience.

Other than the addition of random initial states, the experimental pro-

cedures remain the same cs those employed in Experiment 4.

Experlmént 5 Results

As usual, Experiment § was conducted ten times. The results are shown
in Figure 12. .

Due to the random initialization procedures, these results vary more than
those of Experiment 4. In Phase One, the number of runs required for com-
pletion ranges from 250.to 750. In Phase Two, only 150 to 350 runs are need-

ed. These results show that the controlier requires more trials to complete

Phase One than to complete Phase Two. Thus, for the task under study, the -

controller’s required learning time depends oa its prior task experience.
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Figure 12. Simulation Results for Experiment § -

Summary

To accommodate the aircraft’s navigational mission, slight modifications
.
were made in the controlier’s original design. The number of local demons

was increased from 225 to 625. In addition, the demons' goal of maximizing

force lifetimes was changed to minimizing force distances. Finally, a special-

ized reinforcement strategy was added to conclude each trial run. Despite
these changes, the currenf controllef stﬁl possesses the basic components that
comprised the original design. Thus, the»controller design offers fexibility in
its gppﬁcation to simyle aircraft tasks. | |

More important, the results of the two experiments demonstrate the
controller’s malfunction- recovery capabilities. Although only one pusticular
malfunction was studied, the controller’s usefulness extends to others. Furth-
ermore, the aircraft malfunction may occcur at any instant instead of "wait-

ing” for the controller to achieve task proficiency. This property stems from
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the fact that the malfunction conditions are transparent to the controller. It

is important because real-life malfunctions occur unexpectedly.
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The Controlier in Perspective

The preceeding experiments describe the development of a coantroller to
pilot a two-dimensional model aircraft. Now let us Areﬂect on what thé exer-
cise has accomplished. Most significantly, it has provided a gen~ral frame-
work for adaptive control that addresses the issue of malfunction recovery.
Additionally, it demonstrates the controller’s flexibility by applying it to two
aircraft tasks. Finally, it provid'% an idea of the controller's tolerance to
different initial conditions. |

Though its effectiveness has only been studied with respect to a simplified
aircraft model, this fact is of secondary importance (see footnote). Instead,

the controller’s primary importance derives from its capability to recover from

malfunctions.

With these ideas in mind, let us examine the controller from a general per- .

spective.

- -

With the appropriate flight dynamiecs equations, aad control actions
corresponding to the actual deflections of an aircraft's control surfaces, the
controller can be modified to pilot more advanced aircraft systems. The
modification would entail changes in the problem space definiticn and local
decision rules. However, the model's basic components and problem-solving
strategy would remain unchanged.




NSt

Classical Control Systems

Although it features certain properties characteristic of a- classical con-
troller, the proposed controller is fundameantally different from a classical one.
As with a classical controller, the proposed controller periodically outputs an
actuating signal to the plant, or prdcess, that it controls. However, in s;1 cles-
sical controller, the actuating signzls are pre-designed to correspond to
different input states. In thir sense, the classical controller "knows" a priori,
the operating dynamics of the controlled process. In the proposed controller,
the operating dynamics of the aircraft and its mission are not knc;wn before-
hand. Instead, the controller must learn, by trial and error after the process
begins, the correct actuating signals to issue for each aircraft state.

Another major difference involves the implemeﬁtation of process x‘eedb:ack.
In classical control systems, feedback takes on the form of an “error
difference” between the plant’s desired and actual performance. The controll-

er uses this difference to adjust its output so that the crror is reduced in sub-

.sequent plant execution. In the proposed control system, feedback has two

forms, both of which differ from conventional methods. In the first form,
feedback occurs only when the aircraft enters a success or failure state. This
feedbﬁck signals the end of 2 trial run. Depending on the event (success cr
failure) that terminates the run, the.controller adjusts its local decision rules.
In the second form, feedback from the ACE “predicts” the aircraft’s 'future
performance based on a comparison between the cﬁrrent and previous aircraft
states. The ASE uses this prediction to adjust the controller's logic for deci-
sions leading to the current aircraft state. Consequently, this feedback
influences the process only when a previous input pattern repeafs itself.

Thus, in one instance, feedback occurs infrequently and, in.the other, its
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con’sequencé do not occur immediately.

The primary resson for the controller’s deviation from classical control
theory arises from the objectives for its ultimate ﬁse. When initiaiiy
configured, the controller can theoretically be provided with the exact operat-
ing dynamics of its plant. However, upon the occurrence of a plant malfurc-
tion, the plant's operating dynamics will change. Consequently, the
controlier’s decision logic will no longer remain accurate. As such, the con-
trolled process will fail unless the controller is designed to anticipate the par-

ticular malfunction conditions. Unfortunately, because of the unpredictable

nature of most malfunctions, this capability is neither fessible nor practical.

In this respect, a controller designed in the classical manner will not suffice.
Instezd, it is more desirable to design a controller capable of adapting to the

conditions prevalent for its current plant configuration.

Adaptive Control

Dep‘ending on its ccntext in this paper, the term "adaptive control® can
take on two potentially confusing meaﬁings. First, it can describe the process
by whick the controller learns to pilot the aircraft through its mission. Alter-
natively, it can describe the way the controller recovers the aircraft from a
malfunction so that the Aircraft can continue its mission. Both processes are:
related in the sense that the same control task must be accomplished though
the plant configuration.may vary. For this reason, subsequent refgrences. to
adaptive control will convey its former, more common, meaning. As a final
note, realize that the controller's malfunction recovery 'capabilite.s derive

directly from the adaptive control method that it employs.
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In general, as Truxal [11] explains,

the primary interest in adaptive control lies in the possibilities
of an automatic measurement of process dynamics and of an au-
tomatic and frequent redesign of controller characteristics.

These activities are present in the proposed controller. Until pre-established
termination conditiohs are met, the controller continually measures the
aircraft’s position and velocity vectors. It uses these measurements to pro-
gressively modﬁ’y its local decision rules with respect to an overall perfor-
mance criterion. As a result, the controller is able to adapt to the aireraft’s
operating conditions in a2 manner that enables the aircraft’s performance to

improve.

Learning Systems

Because of its adaptive nature, the controller’s task is not merely one of
control itself; it is one of learning to control. Thus, to completely analyze
the controller, one must consider its capacity for learning. Learning occurs by
continually observing and tabulating the aircraft’s performance. From these

specific observations, the controller induces genecral conclusions as to the

.proper responses for different classes of input states. The learning process is

then reflected in the manner in which the aircraft’s measured performance

improves with time. - : -

As a machine lcarning paradigm, the controller exemplifies what Carbonell

et. al. [3] call "learning from observation and discovery.” However, a more

- precise classification comes from noting the functions of the ACE and ASE.
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These a.daptiv'e logic elements in tandem provide what Widrow et. al. [12]
call "learning with a critic.” In this process, the controller learns its task via
qualitative comparisons resclting from the apphcatxon of an overall perfor—

mance criterion to the outcome of its decxsxons

Self-Organization

 Implicitly related to the controller’s adaptive control and learning capabil-
ities is a desirable property known as “self-organization.” Becaﬁse the
controller’s .design assumes no @ priori knowledge of the aircraft's flight
dynamics, the controller must leafn its input-output decision logic from trial-
and-error experience. As it accumulates flight dynamics infofmation, the con-
troller associates correct responses for each input state such that a map is
created for the previously unknown problem space. Because the mip is creat-

ed a posteriori, the process of learning to pilot the aircraft is said to self-

- organize. For clarification purposes, Saridis [8] offers two definitions:

' Sclf Orgamzmg Control Process: A control pmc&ss is called
self-orgamzmg if reduction of the a priors uncertamtxes per-
. taining to the effective control of the process is accomplished
through information accrued from subsequent observations of
the acccssible inputs and outputs as the control process evolves.,

Self- Orgamzmg Controller A controller designed for a self-
organizing control process will be called “self-organizing” if it ac-
complishes on-line reduction of the a priori uncertainties per-
taining to the effective rontrol of the process as it evolves.

A self-organizing rontroller is necessary as long as the actions governing

the effective control of the given process are not provided from the outset. In ‘

- 39
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the present context, this restriction arises because of the controller’s '»intended
use for aircraft malfunction recovery. Because of the unpredictable nature of
malfunction situations, the particular conditicns prevalent in a malfunction
are difficult to anticipate. Therefore, it is desirable that the controller learn
the particular conditions that apply to s given situation. As an added
benefit, the controller can use experience gained in previous situations to 2c-

celerate its recovery time. In esscnce, self-organization renders the plant’s

. operating conditions transparent to the controller.

Moalfunction Recovery

The main result of this research has been the development of a controller
that can recoi'er in the event of a plant ms'function. This capablity was
demonstrated by the coutroller's performance in Experiments 4 and 5. As
mentioned earlier, the controller’s effectiveness generalizes to other malfunc-
tions providing that the aircraft maintains enough directional control to fly
its mission. For these reasons, the controller may be classified as a malfunc-
tion recovery system.

This élassiﬁcation does not give the controller any properties that have
not already been ciiscussed. Instead, it uniquely differentiates this controller
from all others previously presented in the literature. Whereas other controll-
ers have been designed with adaptive, learning, and self-organizing ca.pabili-
ties, their application has heretofore been limited to processes running under
normal operating conditions. The present controller removes this rest.riction
by opebrating effectively even after a plant malfunction. Because controlled

processes are rarely imrmune to failure, controllers can only benefit from the
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incorporation of this capability.

Limitations of the Proposed Controller

A characterisiic feature of self-organization involves the controller learn-
ing its task as the controlled process evolves. Because of this requirement, the
controller’s performance is highly dependent on the Speciﬁcity of its feedbéck
and the heuristics used to induce its control rules. Similarly, performance will
vary depending on the selection of an appropriate state space. In light of
these observations, the results reported here have not been optimal. Instead,
they show that the controller can yield useful performance when applied to a
non-trivial task.

_As a malfunction recovery system, the controller requires that a solution
exists for ezch malfunction situation. In this regard, its use is limited to con-
trolled processes that exhibit "redundancy of control” When a unit fails, the

controller withstands the failure by effecting compensating control actions

from units still remaining operational. However, because of the redundancy

of control requirement, more than one solution may exist for a given control

task. Consequently, the controller may not always discover the "best” solu-

tion.
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‘Conclusion

The research present_ed in this thesis shows how adaptive logic can be
used to control a continuous process. In addition, it shows how a self-
organizing controller can learn its fask on-line. Self-organized lsarning is use-
.ful when only limited information is available @ priors, as in the case of pro-
cess malfunctions. .

In conclusion, this thesis prbpcs& a controller with .two significant capa-
bilities: (1) it can learn its task on-line; and (2) it can recover control even
after a process malfunction. The first capability is not new; it can beAfound
in controllers developed elsewhere in the literature. However, nowhere in the
literature has a self-organizing controller been developed that addresses the

issue of malfunction recovery. Herein lies the contribution of this work.
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