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AI·BASED REAL·m.rn SUPPO!lT FOR mGS PERFORl\iANCE 
AIRCY.Al?f OPEItATIONS 

Jacques J. Vidal, Prlncipallnvestigtr.cT 

UCLA Computer Science Department 

FINAL REPORT 

(FIRST YEAR) 

, , 

This report covers the first year of a joint venture with Dryden Flight Research Facil
ity to apply AI based son"nrc ood bardwOl'C concepts to the hnndling system malfunc· 
tIons during flI:tht tests. 

The ulti'llote goru i:J th2 progrc:J3ive deve!opment cf c:tpcrt system5 C3psbJe of rctrieting 
system knowledge in real-time during opemtions. 

1.0 '.Vork performed under NASA R~em'cll Grant NAG 2-302 

Work on l'dcllunction Expert System has been underway in our research group for over 
two years, and has been lately supported under the current grant. Dr John Belly com
pleted a Ph.D dissertation in 1984 under the Principal Investigator. on an c;.-pert sys
tem for space shuttle flight control, a problem investigated ior NASA jointly with the 
Aerospace Corporation [21. He is curre.ntly serving as a consultant on this project. 

This work contains a new representation of malfunction procedure'logic using 
Boolean normal forms. The rei resentation facilitates the automation of malfunction 
procedures and provides easy testing for the embedded rules. It also forms a potential 
basis for a parallel implementa.tion in logic hardware. , 

A MS thesb by Robert Cruz, just completed, deals with th" elrtr&ction or I:>gic control 
rules, from dynamic simuL<1tion and their adar.tive revision after partial failure Ill.' It 
uses a simplified 2-dimensional dimensional 'aircraft" model with a. controller that 
adaptively extracts control rules for directional thrust that satisfy a navigational goal 
without exceeding pre-established position and velocity limits. Failure recovery (rule 
adjusting) is examined after pal·tial actuator failure. While this expcrinren~' 
formed witn primitive aircraft and mission models, it illustrates an important paradigm 
and provided complexity extraI,o!utions for the proposed extraction of expertise from 
simulatinn, .lS discussed below. 

A complete account of the problem and of the experiment results is provided with this 
report as appendix 1. 
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J.J. Vidal AI-Based Real-Time Support 

2.0 On-colna prujccts dkectly relev:mt to the eITort 

Other members of the re~earch team under the Principal Investigator are involved with 
pnmllcl kn ~~7Icdg~ rcprceent!ltioD and retricvnl In dynruni:nJly progrnmmab!c logic 
OITOyn (DPLAs) [5,4]. This group's mission is to develop a special architecture for 
real-time expert systems [61. 

Finally, another relevant project deals with the use of rclmtatIon end lnexect l'C3SOnJng 
In elqtcrt r;yatems [3] • 

Last but not least, cc.opcrative work with other investigators in the UCLA AI labora
tory is contributing to the establishment of a powerful, Apollo-based environment for 
AI software development. with special attention paid to object oriented programming 
and to knowledge representation. 
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AN APPLKCATION OF ADAPTIVE LEARNiNG 

TO MALUUNCTION RECOVERY 

Rolnrt Edward Cruz, M.S • 

ABSTIlACT 

A self-organizing controller is developed for a simplified two-dimensional 

aircraft model. The controller learns how to pilot the aircraft through a navi

gational mksio:l without exceeding pre-established position and velocity lim

its. The controller pilots the aircraft by activating one of eight directional ac

tuators at all times. By continually monitoring the aircraft's position and 

velocity with respect to the mission, the controller progressively modifies its 

decision rules to improve the a.ircraft's performance. When the controller has 

learned how to pilot the aircraft, two actuators fail permanently. Despite this 

malfunction" the controller regains proficiency at its original task. The exper

imental results reported show the controller's capabilities for self-organizing 

control, learning, and malfunction recovery. 
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Introduction 

ObJeetlve~ 

As aircraft technology advances in complexity, piloting an aircraft is 

becoming IT:ore difficult and subject to error. This difficulty can be critical 

during an in-flight malIunctioD, risking the loss c..( both the pilot and aircraft. 

In these situations, it is important to devise automated assistance for the pi-

lot. With this goal in mind, UCLA and the NASA Dryden Flight Resea.rch 

Facility are developing expert systems for potential on board use in, future air

crart. The research presented in this thesis, while a long way from satisfying 

the goal, represents an initial step towards its achievement. 

The immediate objective of this study is to develop a controller that 

learns an aircraft task and recovers when the aircraft maIrunctions. A com-

put(:r program is used to simulate both the controller and the aircraft. Given 

limited a priori information and a trial-and-error learning strategy, the con

troller learns to navigate a two-dimensional aircraft through a pre-established 

mission. The controller uses performance feedback that is taken during and 

after each aircraft flight. Because its learning stra.tegy is independent of 

flight dynamics, the model can be applied to both normal and abI!ormal flIght . 

situations. 

In essence, the controller decomposes the problem into mutually isolated 

subproblems cC?rresponding to different fl;!gions or the aircraft's allowable state 

1 
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space. For each subproblem, the controller implements the same problem-

solving algorithm. The resulting solutions to each subproblem contribute to 

the accompl.i3hmcnt of the overall flight task. In. this manner, the controller 

produces useful results for a problem involvin{t a relatively large search space. 

Addition311y, the decomposition teehnique lends itself to faster computation 

possibilities related to para.l1d processing implementations. 

Prev!oull Work 

The research leading to the present work centers on controllers designed 

tor the cart-pole system shown in Figure 1. 

Figure 1. Cart-Pole System 

The system consists of a rigid pole mounted to the top of a motorized cart. 

The cart moves in two directions, left and right, a.lon~ a. straight track of 
. 

fixed length. The pole is hinged to the cart so tha.t it rota.t~ only in the vert'"' 

ical plane bounding the cart's motion. The controller moves the cart by ap-

2 

".-_.- ..... _,.: .. ;' ...... .,-

I 



f" ; . 
:, 
" .'; .. 
, 

~ 
'I 
~ 
"; 

~'. 

"7;: 

:: ~ 

.' ., 
',. 
, 

, 
-1 
~ 
,.~ 

:< 
.~. 

" .\ 
J 
" ,. 
;:t 
~ 
" 

.:.., 

" 
f. 
f 

" 

• 
\ 
'. 
;~-
< 

.<; , 
~~. 

" .' 
~ 

~ 

~ 

. 

, .,.' .. 
plying a constant-Coree motor either to the left or to the right. The cart-pole 

system is inherently unstable. Therefore, the c~utroller's tosk is to keep the 

pole Crom Calling by continually moving the cart left and right as appropriate. 

The cart-pole system wa.c; initially devised by Donaldson [4] in H360. In 

his work, Donaldson design!) an automatoD that learns the cart~pole balanCing 

task by comparing its control movements to those oC a human. This learning 

strategy, using the terminology of Carbonell, d. ale [3] is called 1earning by 

example: The human assumes the role of a teacher who provides examples 

Cor the automaton to imitate. 

In 1964, Wid row' and Smith· (13] designed a controller tha.t could be 

trained to effectively balance the pole. It consists oC an encoder and an adap

tive linear element, or Adaline. The encodt'r generates patterns based on the 

values of Cour variables that describe the cart-pole system state: 

x: the position or the cart on the track, 

9: the angle of the-pole with the vertical, 

x: the velocity or -';'e cart, and 

IJ: the angular velocity o~ H.e pole . 

The encoding scheme partitions each vli-riable into discrete interv3.ls. Conse

quently I each pattern represents a different combination or intervals occupiE'd 

by the state values. 

The Adaline produces a weighted sum from the encoded patterns. If the 

sum is greater than or equal to a certain threshold value, the controller ap

plies the cart's motOi' to the right; otherwise, it applies the -motor to the left, 

The controller learns to balance the pole by adjusting the AdaHne's 

weights according to an observer's periodic a5c;essment or the controller's per-

3 
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ronnance. When performance improves, it changes the weights to reinforce 

the Adalinc':; decision logic. Converaely, when performance degrad" 1, it ad

justs the weights so that the decision logic i, reversed. When the observer 

cannot distbgubh a change in performance, the weights are left unchrulged. 

Widrow and Smith rcr~r to this learning technique as "selective bootstrap

ping." Though it does not learn by examples, it still requires a human ob .. 

server to assess its performance. 

Tn 1968, Michie and Ch:lmbcrs [6J, 17] presented an autonomous ~ontroller 

for the cart-pole problem. Its learning strategy, using Carbonell, ct. aI. (3J 

t~IIninology again, is one of "learlling trom observation and discovery." Both 

the controller and the cart-pole system are simulated by a computer prOb7am 

called Boxes. The name derives from the method used to partition the cart

pole state space. In Michie and Chambers' represent.ation, the state variables 

are plotted along Cour mutually orthogonal axes. Consequently, each sySi:em 

state corresponds to a .unique point in the 4-dimerrsional state spaCE:. By us

ing \Vidnw a~d Smi.th's scheme or partitioning the state variables into inter

vals, the .,tat~ space divides into discrete reg:ons, or boxes. 

A "demon" resides in each box. Each demon decides the controller's out-

put when the cart-pole state enters its box. By tabulating the consequences 

of their decisio!ls, the demons learn the best controller output for each cart

pole state. Hence, the controller automatically assesses its perrormance and 

adjusts its decisions so that it eventually 'E".Lrns its task. 

In lQ82. Barto, Sutton, and Anderson [2) presented a similar prograIl} . .for 

the cart-pole problem. Their aim was to show how the cart-pole controller 

could be built ;lith neuron-like adaptive elements that tIiey had developed. 

The controller consists of a single AssociativJ Search Element (ASE) and a 
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single Adaptive C,:,itic EI~ment (ACE). Both elements rely on the state s!>ace 

representation used by ~£chi~ alld Chambers.· The ASE utilizes ad~pt~~'e 

threshold logic to control the cart's movement. It3 thresholds are modi6ed 

2.ccording to reinforcement feedback provided by the ACE. The j.~~ pro

duces the feedback by i..~plyi .; threshdd logic to the conscquerc:!S cf etch 

controller output. Barto, d. aI. showed that their controller perforIltl 

significantly better than the one designed by W.Jchie and Chambers 

In Ig66, Schaefer and Cannon [101 showed that the cart-pole problem gen-

eralizes to an 'nfiuit.e scquenc2 of nrobl~ms of increasing difficu;ty, with I, 2, 

3, etc., poles balanced each on' top of the other. The controller to be 

described represents a. different generalization of the problem. Whereas mo

tion in the cart-pole system is one-dimensional. it provides control for a two

dimensional system. Consequently, this research lays the ,?,oundwork for Cu·· 

ture work on automatic contrel in two- and t!.; ~e-dimensional syst~ms. 

Outline or the Paper 

The organization of this papc.>'- has oebn divided into three major 'sections. 

In tac first, the Boxes method b built into a controller for a. two-dimensional 

aircraft model. The controller is exercised in three simulation experiments . 

In the first experiment, the controller is designea with a learning stra.t~gy 

similar to Michie and Chambers'. Aft.erw:trd, the controller is enhanced w:th 

ada.pti.,e elements performing functions similar to the AEE and ACE designed 

by Barto, d. al. In the second section, two more experimellts are conducted. 

Their purpose is to study the controller's ability to pilot, ~,he aircraft after the 

aircr~ft maIru'lctiI)Ds. The last section is devoted to a discussion of the 
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Experiments in Adaptive Control 

In the following experiments, no controller is developed ior a simplified 

two-dimensional aircraJt model. The aircr~rt's environment consists of pre

established boundaries on its flight position and velocity with respect to a 

two-dimensional Cartesian coordinate system (Figure 2)~ 

lC 

J 

f'l1gtlt poslUon flight IIIlccltV 

Fi6Ure 2. 2-Dimensional AircraCt in a Position-Velocity World 

The aircraft is equipped wi~h force actua.tors that provide constant -ac

celeration in eight directions "rith respect to the center of its vertical plane of 

motion: up, down, lett, right, up-Iert, up-right, down-left, and down-right. 

These actuators correspond to the bi-directionu motor li.sed in the cart-pole 

problem, Thererore, the cont.roller has been designed to t.ctivate only one ac

tuator at a time. The aircraft enters a railure state when it flies outside of its 

position boundaries or exceeds maximum speed limits. These restrictions 

'7 
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correspond to the cart running off an end or its trnck or the pole Calling. A 

flight succeeds when the controller maintains flight within position and veloci

ty limits Cor a predetermined amount or time. . 

The controller's design has been adapted rrom the Boxes system developed 

by Michie and Chambers [6], [7]. The exact details will be described in the 

following sections. 

Discrcthmtton of Alrcrnft States 

At any point in time, the current aircrnCt state is defined by rour vari

ables: 

x: the aircraft's position on the X axis, 

y: the aircraft's position on the Y axis, 

x: the aircraft's velocity along the X axis, and 
-

y: the aircraft's velocity along the Y axis . 

• 

These variables correspond to the variables x, 6, X, and {) which defined the 

cart-pole system state. The variables are plotted along Cour mutually orthog

onal axes. This orientation defines a rour-dimensional state space. Each air

craft state is represented by a point in this space. To differentiate between 

a.ircraft states, the fou.r state variables are divided into value ranges creating 

discrete thresholds fOI t~e state values. (Figure 3). 

The proper thresh;Jld values are dependent on performance cha;aci~ristics . 

oC the model aircrart ~nd its mission. For the next three experiments, the 

thresholds shown ~ Figure 3 have been selected. The variables x and yare 

partitioned into five allowable ranges by thresholds at 10, 30, and 50 meters 

8 
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Figure 3. Range-Coded Aircraft Sta.te V nriables 

in both the plus and minl!S directions with respect to the coordinate origin. 

Values tor x or y of J!'ISlgnitude greater than 50 meters signal an aircrcl't 

failure. Similarly, the night velocity variables i and y are divided into three 

distinct ranges by symmetric thresholds at 2 and 10 meters pcr second. 

Again, values for x and y ot magnituJe greater tha.n 10 mls constitute an an
craft raUure. Thresholding the sb~~ variables thus "lumps together" clo3ely

related J.ircraft states such that the four-dimension3l state space within which 

the aircraft operates becomes subdivided into 5X5X3X3-225 distinct re

gions, or ~oxcs." Using the Boxes framework, the eont!'oUer's task may be re

garded 3S maintaining the four state variables within their limits so that the 

current aircraft state falls within one of the 225 boxes at all times. 

Force Aetuntor Aetivnt!on 

For simulation purposes, the aircf:l.ft's flight has been· time-sliced into 1-

second int.ervals. During each interval, the controller activa.tes a. force actua

tor. For the experiments that follow, each actuator has been "designed" to 
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pT';"'id~ 1.5 newtons of constant thrust in one or the eight directions. 

Depending on tne direction in which it is applied, the activation of an actua

tor changes the aircraft's current position And velocity and, thus determines a 

new aircraft state. In this fashion, each actu&.tor activation serves as a transi

tional operator that moves the aircraft frem one box to another within its al

lowable state space. 

Problem DecompositIon UsIng Demons 

To solve its problem, the controller must learn to avoid (sequences of) ac

tions that lead to an aircrmt Cailure. Obviously, certain action~ are appropri

ate in some insta.nces and inappropriate itt othi!rs. Because the controller 

does not have a built-in model or its environment, it must learn by trial and 

error the proper actuator(s) to activate in a given situation. 

Recall that partitio!ling the state variables has created a four-dinlcnsional 

state space with 225 regions, or boxes. For illustrative purposes, imagine that 

these boxes are inhabited by "local demons"-one per t ox-all or which are 

under the supervision or a ·global demon· (Figure 4). The global demon is in 

charge of the overall flight task. The locel demons concern themselves only 

with aircraft flight when the aircraft state enters their box. Upon entry inb 

a box, the local demon must decide which or the aircraft's eiG=" ~ actua.tors to 

activate next. After making its decision, the local demon inforIl'.5 the ·global 

demon who, in turn, activates the npprpriate actuator. After the actua.tor 

has been activated for 2. unit time-step, the global demon determines the new 

box within which the aircraft state now resides, and as!(s the corresponding 

loca.l demon which rorce to activate next. This sequence continues until the 
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Figure 4. Network of Demons for the Aircraft St~te Space 

aircraft enters a failure sta.te, thus endinr the trial run. 

The use of global a,nd local demons exemplifies the problem-!iolving tech

nique of problem decomposition into subproblems. In order to solve the 

overall problem, the global demon divides it equally into 225 smaller on"es and 

delegates their solutions to the local demons. Beca.use each demon oversees a 

separate region of the aircraft state space, its job is to determine which Coree 

setting best avoids v.lrcra.!t failure when the current state f:ills within its as

signed region. 

In order to carry out its task, each local demon records its previous ex

perience of the aircraft's flight by tabulating the following data: 

11 
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Foree Llfctimee: The total lifetime or decisions to activate a 
foree actuator in s. given direction. A COl'ce lifetime is the 
difference between the time ~r aircraft railure and the time when 
the aircra.ft state enters a box and the local demon decides to 
apply the force. A force's total Lifetime is a weighted sum or all 
or its "individual" lives during previous runs. 

Foree UG~ges: Weighted sums, COl" each force direction, of the 
total number of times the local demon decided to activate a 
force during previous runs. 

Entry Tlmea: The times during which the aircraft state en
tered the demon's box during the current run. Time is initial
ized to 1 nt the beginning of a run, and continues in I-second 
increments until aircraft failure .. 

Experimental Proceduren and Resulto 

Three experiments or 1000 simulated flights are conducted. Before the 

first run or each experiment, local force Lifetimes and Usages arc initialized to 

zero. Additionally, control decisions ror the local demons are determined at 

random. Each run begins at a randomly-generated initial point within the 

aircraft's allowable state space. The run terminates when the aircraft enters 

a failure state or avoids failure ror 1200 time-steps. Thus, 1200 seconds, or 20 

simulated minutes, is esta.blished as the duration of a successful flight. 

The objective of the first experiment is to demonstrate that Michie and 

Chambers' Boxes method can be effectively utilized by a controller for a silO-

pIe aircraft. This objective assumes a. close correspondance between the cart

pole problem and the current aircraft task. Hence, the procedures used in 

Experiment 1 are simib,r to those outlined by Michie a.nd Cha.mbers [61. 

12 
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Experiment 1 Procedures 

In this experiment, local demons are allowed to decide on only one force 

actuator to activate pcr run. Therefore, regardless or how 'cany times the 

.. ircrart state enters a demon's box during a run, the demon's control decision 

remains the same. Initial states roi each run consist of randomly-generated 

values ror x and y between :l:30m and values for x ruld y between ±2m/s. 

This initialization procedure restricts the initial aircrale state to nine local 

demen boxes loeated in the center portion of the aircraft state spa.ce. 

When the aircraft state enters a demon box during the first run, the fol

lowing actions occur: 

1. The local demon records the time of entry. 

2. The local dEmon signals the global demon to ~ctivate a. force actuator. 
The locd demon's decision depends on tabulated experience or, the con!1e
quences oC its previous decisions. However, during the first run, this decision 
is generated at random. 

As these actions continue, the aircraIt state tra!lsitions from one demon box 

to another until it finally reaches a Cailure state. This even\, terminates a. trial 

run and triggers the following actions: 

1. The global demon informs the local demons that an aircraft failure has 
occurred. . 

2. Each local demon updat.es its eight pairs of Coree Lifctime and Usage 
totals. Based on these new totals, it determines which Coree actuator to ac
tivate (via the global demon) Cor the duration of the next trial run. 

Ie a Coree I-..ctuator was ~ctive beCore the aircraCt Cailed, its j'jfetim_e 'a.nd U-;age 

values are calculated s.s Collows: 

N 
Lifetime = LiCetime'XDK + ~trti 

, i-I 
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where N = the number of times that the air'Zraft state entered the demon 
box during the run that just failed, and 

tr and tj correspond, respectively, to the time of aircraft failure; and the indi
vidual times of entry into the demon box. 

usage = Usage'XDK + N 

where DK = o.gg is a const:lnt multiplier less than unity that weights recent 
experience relative to earlier experience. 

Ir a force a.ctuator was inactive before the aircraft failure, its Lifetime and 

Usage values are reduc~dJ respectively, according to the following equations: 

Lifetime = Liretime' XDK, and 

Usage = Usage' X DK 

In order to determine which actuatoI: to activate next, the local demons 

refer to &. "target" value supplied by the global demon. This value represents 

the mean liCetime of the aircraft for all previous runs. It is calculated from 

the global demon's Lifetime (GL) and US2ge (GU) values in the following 

manner: 

GL = GL'XDK+tr 

GU = GU'XDK+l 

GL 
target =-

GU 

Using the global target value, the local demons assess the relative 

effectiveness, RE, of eal,:h or their eight force a.ctua.tors. RE is ca~culated as 

follows: 

RE = Liretime+K~target 
Usage+K 

14 
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where K = 20 is a multiplier weighting global relative to local experience. 

Incorporating K and the target into the assessment or a local (orce actuator 

serves to base the actuator's value on two levels or experience: global experi

ence rrom the aircraft's mean lifetime over K runsi and local experience from 

the actuator's Lifetime and Usa(;e totals. 

Once the demon has calculated the relative value or each of its rorce - c-

tuators, it chooses the actua.tor with the highest value as the one to activate 

during the next trial run (see rootnote). 

Experiment 1 Results 

Because a pseudo-r:mdom number generator was used to generate initial 

aircraft states and decide the local demons' initial control decisions, Experi

ment 1 was conduded ten times, each time with a. different initial seed v3lue. 

The average results ror the ten tests are plotted in Figure S. The plot shows 

the average target value versus simulation run nu~ber measured af'ter every 

50 runs. Notice the direct relationship between the controller's flight experi

ence and the aircraft's mean liCetime. AD important statistic not portrayed is 

the number of successful Bights per experiment. On the average, 41 Bights 

out of a thousand were successful. 

The results or Experiment 1 demonstrate that the Boxes method may be 

used for the control of a simplified model aircraft. However, as evidenced by 

its low success rate, the controller's effectiveness is limited. Because local-ode-

Because of the way the experiment is initialized, strict .adherence to this 
decision rule results in the local demon choosing its initial force actuator time 
after time. Therefore, the rule is followed only after a warm-up period during 
which each force actuator is randomly selected, or sampled, a.t least once. 

15 
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Figure S. Simulp.tion Results for Experiment 1 

cis ion rules nre updated only clter c:1ch a.ircra.ft fa.ilure, the demons do not re

ceive feedback 2S to the immediate consequences or their decisions. Further

more, restricting the local demons to one force a.c.tuator activation per run 

reduces the controller's Uexibility. 

The controller's performance can improve by reroovil:g these-restrictions. 

The approach taken here will be described in the Experiment 2. It entails 

making design modifica.tions to the present aircraft controller. The 

modifications involve the addition of two ada.ptive threshold-logic clements 

'r :·~~".r.-. ________________ ---"l1i;.._ ...... ..:...::-... -. -.. ---'--'_. 
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similar in function to those proposed by Barto d. al. (2). Consequently, the 

objce~;'I(~ or the next experiment is to improve the controller's flight perfor-

mance. 

Experiment 2 Proeedur~ 

This experiment differs from the first one in three resp<!cts: 

1. An Adaptiye Critic Element, or ACE, is incorporated into the con troll-
er. 

2. An Associative Search Element, or ASE, is incorporat<:d into the con
troller. 

3. Local demons may activate more than one Coree actuator per run. 

Otherwise, the initialization procedures, discretization or aircrart states, and 

local control rules remain the same as those in E~periment 1. 

The purpose of th~ ACE and ASE is to facilitate local learning by con

stant reinforcement feedba.ck. Recall that, in experiment 1, local demons had 

to wait for a failure signal ,'.nd target value froIll the global demon before they 

could update their force actuator values and make a new control decision. 

With the modified controllcr, the ASE updates force actuator values every 

time the aircraft state changes. 

Essentially, the (unctkm of th(. ACE is to compare the demon box occu

pied by the current aircraft state with the box occupied by the previous one, 

and report its findings. v) the ASE aftcr each unit time-step. ~emon~.box 

comparisons are based on the Lifetime totals for the forcc actuat~~s activated 

by the "current" local dCI:lon and the "previous" one. The findings, r, assume 

the values of either plus or minus one. If the currentiy activated actuator has 

17 
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a Lifetime as good as, or greater, than that of the previous one, r is positive; 

if not, r is negative. 

The function of the ASE is to modify local demon foree Lifetimes in light 

of the findings supplied by the ACE. Modification of a demon Lifetime as-

sumes two forms: reinforcement and penalization. Reinforcement occurs 

when f is positive, while penalization corresponds to r being negative. Be

ca.use of the manner in which the ACE calculates r, good local demon deci

sions willl-e reinforced, while poor decisions will be penalized. Note that only 

demons whose boxes have been entered during the current run become 

modified; furthermore, modification only applies to the Lifetime for the 

demon's curren tty activated actuator. 

Artc:r each unit time-step, a local force Lifetime is modified according to 

the following equation: 

Lifetime = Lifetime'+rXaXeXLifetime' 

where a = 0.05 = the minimum percentage of a local Lifetime that may be 
reinforced/penalized, and 

e = an elig,ibility trace for local demon modification. 

The eligibility trace measures the influence of a lor-al demon's actions on 

reaching the current aircraft state. Obviously, the actions of recently-entered' 

demons have more of an' influence than those of distantly-entered ones. 

Thus, the former demons will have a higher eligibility trace than the,latter 

ones. Eligibility begins at 100% when a demon box is first entt:-ed, and de

creases exponentially in the following ma.nner: 

e = e'XfJ 

where fJ = 0.95 = the percentage of l\ demon's influence which remains after 

18 
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Expcrimcnt 2 Results 

As with the first experiment, Experiment 2 was conducted ten times, each 

time with a different initial seed va.lue. As depietecl in Figure 6, the aircraIt's 

m€:!n lifetime was greatly improved by the addition or the ACE and ASE to 

the controller. In ract, successful mghts occurred 537 times out of 1000, (lr 

f~: . 3.7% or the trials. In several or the individual simulations, the mean sys

tem lifetime approached the upper time limit of 1200 nnit time-steps. 

Because the controller's task remained the same (rom Experiment 1 to Ex

peri.rG~at 2, the .'csults of the latt.er expr--ment may he attributed to the 

modifications made to the controller. The controller can now make a different 

decision each time the aircraft state enters a local demon box rluring the sarna 

run. This capability e~a.bles t.he controller to recover more ~ubkly rrom poor 

decisions. Additionally, the controller can receive immediate feedback con

cerning the consequences of locr.l demon decisions. Thin ~tedbaclr helps the 

controller to correlate aircraft performnnce to local demo!ls' adions. 

The results of Experiment 2 show that the modified controller woeks well 

at the task to which ~t was originally assigned. What happens, though, when 

the controller is assigned a. more difficult task? In thl! next experim~nt, the 

controller's task is made more difficult. The ensuing' results should provide aD 

idea. or the relative tole~ance or the controller to changes in task difficulty:.._ 
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Figure 6. Simulation Results for Experiment 2 

Experiment 3 Procedures 

This experiment studies the effect on aircraft performance of st.arting each 

run from anyv:here in tpe aircraft state space. Therefore, x and y \'ruue?_ are 

randomly selected between ±50m, while the x and y values are selected from 

the ±lOm/s range. In experiments 1 a.nd 2, initial states fell within only nine 

. possible demoD. boxes c')rresponding to the central portion or the state space. 

In this experiment, all !:!25 boxes become eligible starting points for a trial 

9n 
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run. 'fhe change in initialization procedure!! increases problem difficulty by 

;,m:r-:& the controller to map control actions to the entire aircrart state space. 

Other than this difference, n.ll operating procedures are the same as those 

used in &periment 2. 

Experiment 3 Results 

Experiment 3 was conducted with the same initial seed values used in Ex

periments 1 and 2. The average results are shown in Figure 7. Notice that 

aircraft perrormance is reduced by the addition or 216 morc initial states. 

Also, the average success rate rell to 11.7%. Thesa results show that the con

troller learns quicker when its starting conditions are more consistent. Other

wise, to attain the same performance reached in Experiment 2, a longer learn

ing period, i.e. more trial runs, are required. This conjecture was not tested . 
• 

Comparison or Experimental Results 

For comparison purposes, the average results of all three experiments have 

been superimposed onto the same graph in Fif,llre 8. With respect to the 

learning curve for Experiment I, aircraft performance levels out after the first 

500 runs. Consequently, the experience gained .from the last 500 runs is not 

utilized. The primary reason for this inefficiency conc(>!'DS the (long) time in

tervals between modifications to local demon decision rules. In Experiment 2, 

local control rules are modified after every unit time-st.·p .. The effects on air

craft performance are evident upon inspectivn of th~l experimental results. 

However, in Experiment 3, aircraft performance degra.des. This result is a na-
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Figure 7. Simulation Results for Experiment 3 

tura! c(lnsequence of the addition of 216 more starting states. 

Summery 

A controller has been developed for the adaptive control oC -ao sunplified 

model aircraft. Its components include: 

1. A global demon that m(lnitors the aircraft state, iSSUes appropriate 
messagcs, and activates the aircnCt Corce actU2.tors. 
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Figure 8. Simulation Results for Experiments 1-3 

2. A network of local demons corresponding to different regions of the 
aircraft state space that advise the global demon of the appropriate actua.tor 
to activa.te when the aircraft state enters a given box. The local demons ta
bulate data reI \ting to the consequences of their previous controi decisions. 
This data is used to make future control decisions tha.t are implemented by 
the global demon. 

3. Two adaptive threshold-logic elements, the ACE and ABE. thatmodify 
local demon control rule:; in light of immediate aircrcll feedback ... 

Because the controller learns its task from trial-and-error e."Cperience, 

changes in the structure of its components can be made to provide for the 
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control of a. more specialized flight task. Such a.n undertaking is described in 

the sequel. 
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EXperiments in Malfunction Recovery 

The purpose of the preceding experiments was to adapt the Boxes system 

to a simple flight controller. In achieving thiz purpose, the experiments pro

vide background for the experiments that follow. Their purpose is to apply 

the controller to Il specific D3.vigntional problem, and :ltudy its perrormance 

under a simulated aircraft malfunction. In the current context, a malfunction 

exists when the aircraft looe:l operational control of one or more of its eight 

force actuators. An impo:'tnnt assumption is that, despite the maIrunction, 

the aircra.ft maintains sufficient directional control to accomplish its pre

defined mission . 

Expcrime:l~ .oi Problem Description. 

This. experiment prov~eds in two ph2.Se5. In Phase One, the controller 

learns to pilot the aircraft from one demon box to another. When it achieves 

proficiency at this task, Phase O~e ends and Phase Two begins. At this 

point, an aircraft malfunction is simula.ted by rc,moving two or the aircrart's 

eight rorce actua.tors. During the second pha3c, the controller learn3to ac

complish its original task despite the loss of the a.ctur-tors . 
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At the beginning oC each ru&, the aircr!l!t's position -tmd velocity vector; 

n.re initialized as follows: 

x: -25m 

y: 25m 

x: Om/s 

y: Om/s 

Using the above values Cor the aircraft state vuiabbs, the aircraft's initial 

configuration is represented in Figure g, 

x 

Figure G, Initi31 Aircraft Stete Cor Experiment 4 

From this initial state, the controller must learn to pilot the aircraft to 

the center box of the di.sr~tized state space, This box corresponds to x and y 

Calling within the 0 ±lOm range, &nd x and j. having values between 0 ±2m/s. 

With respect to the left_half of Figure g, the circraIt must fiy from an initial 

position in the lower-left region or its -airspnce" to the center region. As in 

the preceeding experimoents, an aircraft failure oc(:urs wben the rurCf3ft 

exceeds its pcsition and velocity boundaries. Thus, a trial fun ends when the 

aircraft reaches- either the goa) state or a failure state. Trials continue u!\til 
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the aircraft reaches the goal state gO% of the time. At this point, the aircraft 

loses operation~ of two of its eight force actuators. The controller mus't then 

reeover from this malfunction by len.rning to complete the aircraft's mission 

using only six actuators. 

Experiment 4 Procedures 

Recall that in the preceeding experiments, the aircraft's mission was to 

prolong flight. Now; its mission is to fiy from one demon box to another. Be

cause the mission has changed, the local demons' mutual goal of ~'l2JCimizing 

their expected lifetimes no longer applies. Instead, the local demons must 

minimize the aircraft's expected -distance- to the go~. To fulfill this task, lo

cal demons tabulate the following data: 

Force Distances: Reb.tive approximations, for each Corce nctuator, of the 
aircraft's distance to th.e coordinate origin. . 

Force Usages: Sums, for each force nctuator, of the number of times that 
the local demon decided to activate each actuator during previous trial runs. 

To increase the granularity of the state space, thresholds have been added 

at ±6m/s for the aircraft state variables x and y. The resultant value ranges 

for the discretized aircrart state space are shown in Figur~ 10. Consequently, 

the aircraft state space divides into 5 X 5 X 5 X 5=625 demon boxes instead of 

the previous 225. 

The preceeding discussion outlined two necessary design modi~cat!ons to 
.. 

the controller. First, the information processed by the local demons has 

changed. Second, the number of local demons has increa::;ed. Now, the se

quence of e"lents occurring in a trial run will be explaiued. 
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Figure 10. Rnnge-Coded State Vuin.bles for Experiments 4 and 5 

During e&.eh unit time-step, the following actions occur: 

/' ,.' ,".'. 

... . 

1. The global demon signals the local demon whose box has just baen en
tered by the current aircrr;;ft state. 

2. If the box has never been eo',,::red during a trinl run, the demon's eight 
Corce Distances are initialized with the Pythagorean distn.nce between the 
current aircraft position :md the coordinate origin. 

3. The local demo!l' decides on a Coree actuator Cor the global demon to 
activate. The demon makes this decision at random until each of the rorce 
utU3.torn has been sanJpled at least once. Afterward, the demon decides on 
the Coree n.ctup.tor witb the lowest Distance:Usng(! ratio. \Vhen the demon has 
made its dedsion, it in;;rements its approprIate Force Usage entry by one, &nd 
informs the global demon oC its decision. ' 

4. The globnl demon activates the appropriate actuator, which causes the 
ilicraIt state "lariable5 to change. 

s. The ACE comprJes the current aircraft st2.te with the previous one 
and reports its fin din£,'s , r, to the ASE. To md:e th~ comparison, the ACE 
calculat.es the Pythngc,rean distance between tile current aircraft posi~ion to 
the coordinate origin. If the current distance is iess than the previous one, it 
sets r to 1; otherwise, it _sets r to -1 . 

6. The ASE modi,lies the appropriate Coree Distance value for each locn.l . 
demon whose box ha.s been entered during the current. run. It modifies Dis
tance values as rollow~; 

Distance = Distanc~'+QXrXcxDistance' 
where Q = 0.1 and ' 
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where fJ = 0.8 (see Cootnote). 

After the ASE modifiC!l the local Coree Distance entries, the simulated time 

is incremented a unit step, and at,eps 1-6 are repeated. This cycle continues 

until the aircraft reaches either a success or a Cailure stnte. Upon success, the 

ACE issues an r value oC 1. With i, the ASE modifies eligible Coree Distance 

values as in step 6 above, except that it uses 0.5 as its value for alpha. Upon 

CaUure,r = 1, and the ASE modifies local Coree Distances using an Q value of 

3. Consequently, local control decisions are either sigriificantly r~inCorced (de

creased) or penalized (increased) to reflect the end result oC the, trial run. 

Afterward, the controller re-initializes the aircraCt state variables, and a new 

trial run begins. The experiment proceeds in 50-run increments. When at 

least 45 out of 50 Bights a.re suecessCul, Phase One ends. 

Phase Two begins with the aircraft losing control oC its up-right and 

down-left Coree actuators. Despite this malfunction, the controller must re-
, , 

gain its 90% proficiency rate for the original aircrart mission. Its control deci-

sions Cor the six remaining actua.tors are influenced by the local force Distanc~ 

and Usage totals gained from Phase One. 

Because oC the selection oC, initial and goal aircrart states, the m~lrunction 

prevents the aircraft Crorn flying directly toward its positiona.l goal. Instead, 

it must combine its up and right a.ctuators to compensate for the loss of the 

up-right one. Simila.rly., it must combine the down and left nctuators to £qm

pensate for the loss of th~ down-Ieet one. When the aircra(~ again flies sue-

For a further explanation on the meaning of Q, r, and e, refer to the 
preceding subsection entitled "Experiment 2 Procedures." 
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cessful missions 45 times out. or 50, Phase Two and the experiment end. 

E:perlment 4 Rentdta 

&..vperiment 4 was conducted ten times, each time with a different initial 

seed value. The final results are listed in Figure 11. Notice first tha.t, re&ard

less of the initial seed value, each test achieves the QO% task profici'!ncy rate 

in both phases or the experiment. This result demonstra.tes the controller's 

capability to learn a navigational task under both normal and malCunction 

conditions. However, the required lea.rning time Cor ea.ch phase does not vary. 

Thb. :'~'..llt was not expected. 

Tot;\ trlO\' n~tQlstrv 
Initial to roaCh SS1 Ilf'Orlcl,n::V 

It Ilngl. r~Ylg3tlcnsl 
Sud tOllk. 

VolU1l Prme PIlau 
Dn. Two 

8 lOB IDi! 
1 lila IGa 
2 lea lea 
3 lC9 lca .. IGO lea 
s lSI! lea , les leo 
7 lllO leo 
D IS9 ID9 
S 1GB lC9 

Figure 11. Simulation Results lor Experummt 4 

Initially, Phase One ~was expected to take longer to c.)mplete tha.n Phase 

Two. Whereas the controller begins Phase One with no. experience of the 

consequences of its decisions, it begins Phase Two with the Distance a.nd 

Usage totals gained lrom the previous phase. ThereCore, its initial decisions in 
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Phase Two should be morc accurate than the random decisions made at the 

beginning oC Phase One. This initicl accur:lcy wss expected to reduce the re

quired learning time in Phase Two.' 

Two Cactors contributed to the experimental results. First, the experi

ment was divided into 50-run increments. At the end or ea.ch increment, the 

number or successful missions was evaluated. Ir there were &t least 45, the 

appropriate pbase would termina~e. In these terms, the average time required' 

to complete each phase was two. Perhaps, given a more difficult b..sk (i.e. one 

that takes longer to complete), the night experience gained in Phase One 

would have been rel1ected in a shorter learning time Cor Phase Two. 

The second factor concerns the particular actuators that m3.l!unctioned. 

During Phase One, the contr'Jller learned that the up-right actuator moved 

the circt!lft closest to the goa.l Crom its initial position. However, thi1 actua

tor was inoperational during Phase Two. Consequently, the controller's "best 

choice" in the first phase w~ no longer an alternative ~ the second. This 

cO'ldition prevented the contro!!er Crem effectively utilizing its experience 

bained in Phase One. 

To test the validity of these ideas, Experiment 5 was devised. Its aiIn is 

to study the effects of task difficulty and actuator malfunction on requi!ed 

learning time. Thus, the final results should show more clearly the temporal 

relationship between Phases One and Two. 

Experiment 5 Procedures 

In this experiment, the controller again learns to pilot ·the aircraCt to the 

center box oC the state space. However, its initial position and velocity no 

\ 

.. 

'L 
W:~~~".-~ :..-.-,~-.,,,,-,-_ .... -.--'-.. -.. -. -.. -. -.. -... -, .?'; -... -. "-:,:-~_>«-_-.:..i-M'-.",.,,,-.,.<-.~--:-:_-•• -•• ,-, _-_-'" __ ~~,-.... -. ,-... -_,.-::""-~"."":': "';;>"~~'''''~'.-•• -.~" -.,_-.. -- + ~,.~",.-..... -,.-.--.. -•• -:--~-~ .... __ """"""'14,, __ -

" 

.-' . i ....... ' 
., 



''i"' .. 
,'. 

\' • > 

.~ 

~, 

'j 

, .,0 .. 
longer remain constant. At the beginning of each trial run, values for the 

sta.te v~riables x and y a.re randomly gen~rated in the [-30,-10] and [10,30] 

ranges while x and r values are generated in the [-2,2J range. Consequently, 

the initial aircraft state falls within one of four local demon bo::es surround

ing the centra.l region of the aircraft state space. ' 

The random initialization procedure3 are designed for two purposes: (I) to 

increase the difficulty of t.he controller's task, and; (2) to increase the accura

cy of the controller's initial Phase Two decisions. To clarity this !:lst. point, 

realize that only the up-right and down-left actuators malfunction. Thus, in 

Phase Two, whenever the aircraft begins in the upper-Ie:t 2nd lower-right re

gions of its airsp~ce, its best decision alternatives--down-right and up-Iert) 

r~pective]y--still remain. Thus, hal! of the controller's Phase Two decisions 

maximize Phase One experience. 

Other than the addition of random initial states, the experimental pro

cedures r-:main the sam,e ::.s those employed in Experiment 4. 

Experiment 5 Results 

As usual, Experiment S was conducted ten times. The results are shown 

in Figure 12 . 

Due to th<! random iIli'tialization procedures, thcse result.s vary more t.han 

those of Experiment 4. In Phase One, the number of runs required (or com

pletion ranges from 250, to 750. In Phase Two, only 150 to 350 runs are need

ed. These results show that the controlier requires more trials "to complete 

Phase One than to complete Phr,.se Two. Thu5, for th.:l task under study, the 

controller's required learning time depends OLl its prior task experience. ' 
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Figure 12. Simulation Results for Experiment 5 

Summary 

To accommodate the aircrart's navigational mission, slight modifications 
• 

were made in the controller's original design. The number of local demons 

was increased from 225 to 625. In addition, the demons' gIJal of maximizing 

Coree litetimes was changed to minimizing (orce distances. Finally, 3. special

ized reinrorcement strategy was added to conclude each trial run. Despite 

these changes, the current controller still possesses the basic components tn~t 

comprised the original design. Thus, the controller design offers flexibility in 

its application to sim~/le aircraft tasks. 

More important, the results of the two experimen~ demonstrate t·h~ 

controller's malfunction- recovery capabilities. Although only one. p~ticuhl' 

malfunction was studied, the controller's usefulness extends to oihers. Furth-

crmore, the aircraft malfunction may occur at :lny instant instead of "wait

ing" (or the controller to achieve task proficiency. This propp.rty stems from 
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the fact that the malfunction conditions aloe transparent to the controller. It 

is important because real-life malfunctions occur unexpectedly . 
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The ControUer in Perspective 

: .I'.!> .... 
~:. 

.. ' 

The preeeeding experiments describe the development or a controller to 

pilot a two-dim~nsional mod~l aircraft. Now let us reflect on what the exer

cise has accomplished. Most sign ificnntly , it has provided a gen':ral frame

work ror adaptive control that addresses the issue of malfunction rccovery . 

Additionally, it demonstrates the controller's flexibility by applying it to two 

aircraft tasks. Finally, it provides an idea or the controller's tolerance to 

different initial conditions. 

, Though its effectiveness has only been studied 'with respect to a simplified 

aircraft model, this fact is or secondary importance (see rootnote). Instead, 

the controller's primary importance derives rrom its capability to recoycr from 

malfunctions. 

With these ideas in mind, let us e..~amine the controller from a general per-, 

spective . 

With the appropriate flight dynamics equations, a:.ld control actions ' 
corresponding to the actual deflections of an aircraft's ('ontrol surfaces, the 
controller can be modified to pilot more adyanced aircraft systems. The 
modification would entail changes in the problem space definition and local 
decision rules. However, the model's basic components and problem-solving 
strategy would remain uDchanged. 
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Classlcru Control Synte1ll9 

Although it features certain properties characteristic oC a· classical con

troll~rt the proposed controller is Cundamentally diIierent from n classical one. 

As with n classical controller, the proposed controller periodically outputs an 

actuating signal to the pla.nt, or process, that it controls. However, in 8 clas

sical controller., the actua.ting signcl.s are pre-designed to correspond to 

different input states. In thir. sense, the classical controller "knows" a priori, 

the operating dynnmics oC the controlled process. In the proposed controller, 

the operating dynamics or the airernft and its mission are not known before

hand. Instead, the controller must learn, by trial and error after the procE;SS 

begins, the correct actuating signals to issue Cor each aircrart state. 

Another major difference involves the implementation or process ieedback. 

In classical control systems, Ceedback takes on the form oC a.n "error 

dilierencc· between the plant's desired and actual perrormance. The controll

er uses this difference to adjust its o~tput so that th2 error is reduced in sub

sequent plant execution. In the proposed control system, feedback has two 

forms, both of which differ from conventional methods. In the first form, 

Ceedback occurs only when the aircraft enters s. success orrailurc state. This 

feedback signa.ls the. end of a. trial run. Depending on the event (success cr 

failure) that termina.tes the run, the controller adjusts its loc:}.l decision rules. 

In the second form, r(~edback from the ACE "predicts" the aircraft's future 

performance based on a comparison between the current and previous aircraft 
-

states. The ASE uses this prediction to adjust the controller's logi·c for deci-

sions leading to the current aircraft state. Consequently, this feedback 

influences the process only when a previQus input pattern repeats itself. 

Thus, in one instance, feedback occurs infrequently and, in. th~ other, its 
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consequences do not occur immediately. 

The primary reason for the controller's deviation from classical control 

theory arises Crom the objectives tor its ultimate use. When initially 

configured, the controller can theoretically be provided with the exact operat

ing dynamics of its plant. However, upon the occurrence of a plant malfunc

tion, the plant's operating dynamics will change. Consequently, the 

controller's decision logic will no longer remain accurate. AS such, the con

trolled process will rail unless the controller is designed to anticipate the par

ticular malfunction conditions. Unfortunately, because of the unpredictable 

nature oC most millunctions, this- capability is neither feasible nor practicru. 

In this respect, a controller designed in the classical manner will not suffice. 

Inste&.d, it is more desirable to design a controller capable ot adapting to the 

conditions prevalent Cor its current plant configuration. 

Adaptive Control 

Depending on its ccntext in this paper, the term "adaptive control" can 

take on two potentially confusing meanings. First, it can describe the process 

by which the controller learns to pilot the aircraCt throu(;h its mission. Alter

natively, it can describe the way the controller recovers the aircraft (rom a 

malfunction so tha.t the aircraft can continue its mission. Both processes arc' 

related in the sense tha.t the same control task must be accomplished though 

the plant configuration. may vary. For this reason, subsequent references. to 

adaptive control will convey its tormer, more commOD, meaning~ .As a fina.l 

note, realize that the controller's malfunction recovery capabilites dcrive 

directly from the adaptive control method that it employs. 
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In general, as Truxal [11] explains, 

the primary interest in adaptive control lies in the possibilities 
of an automatic measurement of process dynamics and of an au
tomatic and frequent redesign of controller characteristics. 

.,' 

These activities are presen"t in the proposed controller. Until pre-established 

termination conditions a.re met, the controller continually mensures the 

aircraft's position and velocity vectors. It uses these measurements to pro

gressively modify its loctll decision rules with respect to an overall perfor

mance criterion. As a result, the controller is able to adapt to the aircraft's 

operating conditions in a manner tha.t enables the aircraft's performance to 

improve. 

Lenrning Systems 

Because of its adaptive nature, the controller's task is not merely one of 

control itself; it is one of learning to control. Thus, to c.:mpletely analyze 

the controll~r, one must consider its ,=apacity for learning. L~arning occurs by 

continually observing and tabula.ting the aircraft's performa.nce. From these 

specific observations, the controller induces general conclusions as to the 

proper responses for different classes of input states. The learning process is 

then reflected in the manner in which the aircrdt's measured performance 

improves with time. 

As a machine learning paradigm, the controller exemplifi.!s whit Carbonell 

d. al. [31 call "learning Crom observation and discovery." However, a more 

precise classification comes (rom noting the functions or the ACE and ASE. 
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These adaptive logic elements in tandem' provide what \Vidrow d. aI. [12] 

call 'earning with n. critic." In this process, the controller learn3 its task via 

qualitative comparisons resulting from the application of an overill perfor

mance criterion to the outcome of its decisions. 

Selr-Orgnnl:ntlon 

Implicitly related to the controller's adaptive control and learning capabil

ities is a desirable property known' as ·selC-organization." Because the 

controller's design assumes no (J priori knowledge of the aircraft's flight 

dynamics, the controller must learn its input-output decision logic Crom trial

and-error experience. As it accumulates flight dynamics information, the con

troller associates correct responses Cor each input stlltc such that a map is 

created for the previously unknown problem space. Because the map is creat

ed cl posteriori, the process of learning to pilot the aircraft is said to selC

organize. For clarification purposes, Saridis [8] offers two definitions: 

Sel/-Organizing Control Process: A control process is called 
·selC-organizing" if reduction of the (J priori uncertainties per
taining to the effective control of the process is accomplished 
through information accrued from subsequent observations oC 
the accessible inputs and outputs as the control process evolves. 

Self-Organizing Controller: A controller designed for a self-' 
organizing control process will be called "self-organizing" if it ac
complishes on-Une reduction of the a prior; uncertainties per
taining to the effective control of the process as it evolves. 

A selt-organizing r~ontroller is necessary as long as the actions governing 

the effective control of the given process are not provided from the outset. In 

: 39 
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the present context, this restriction arise:) because of the controller's intended 

use for aircraft ma.lfunction recovery. Because of the unpredictable nature of 

malfunction situation3, the pa.rticubr conditions prevalent in a malfunction 

are difficul~ to anticipate. Thereforc, it is desirable that the controller learn 

the particular conditions that apply to a given situation. A3 an added 

benefit, the controller can use experience gained in previous situations to ac

celerate its recovery ti~e. In essence, self-organization renders the pla.ut's 

operating conditions transparent to thc controller. 

M~lruDetlon Recovery 

The main result of this resea.rch has been the development of a controller 

tha.t can recover in the event of a plant ms ~runction. This capab~~ty was 

deIDonstrated by the cOlltrollzr's performance in Experiments 4 and 5. .As 

mentioned earlier, the controller's effectiveness generalizes to other malfunc

tions providing tha.t the aircraft maintains enough directional control to fly 

its mission. For these reasons, the controller may be classified as a malCunc-

tion recovery system. 

This classification does not give the controller any properties that have 

not already been discussed. Instead, it uniquely differentiates this controller 

from all others previously" presented in the literature. Wherca.s other controll

ers have been designed with adaptive, learning, and self-organi2;ing capabili

ties, their application has heretofore been limited to processes running ulldcr 

normal operating conditions. The present controller removes this restriction 

by operating ~fi'ectively even after a plant malfunction. Because controlled 

processes are rarely immune to failure, controllers ca.n only benefit from the 
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incorporation or this capability. 

Limitatlons or the Proposed ,Controller 

A characteris~ic reature orseU-organization involves the c~>Dtroller learn

ing its task as the controlled process evolves. Because or this requirement, the 

controller's performance is highly dependent on the specificity or its reedback 

and the heuristics used to induce its control rules. Similarly, perCormance will 

vary depending on the selection or an appropria.te sta.te space. In light or 

these observations, the results reported here have not been optimal. Instead, 

they show that the controller can yield useCul performance when applied to a 

non-trivial task . 

. As, a malfunction recovery system, the controller requires that a. solution 

exists Cor each malfunction situation. In this regard, its use is limited to con

trolled processes that exhibit "redundancy or contro!." When a unit fails, the 

controller withstands the railure .by effecting compensating control actions 

from units still remaining operatio.nal. However, because or the redunda.ncy . 

or control requirement, more than one solution may exist Cor a given control 

task. Consequently, the controller may not always discover the "best" solu

tion . 
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Conclusion 

The research presented in this thesm shows how s.daptivp !ogic can be 

used to control a continuous process. In addition, it shows how a self

organizing controller can learn its task on-line. Self-organized J~arning is use

rul when only liI:lited information is available a priori, as in the case of pro

cess maIrunctions. 

In conclusion, this the3Ls proposes a controller with two significant capa

bilities: (1) it can learn its task on-line; and (2) it can recover control even 

after a process malfunction. The first capability is not new; it C:l.n be found 

in controllers developed elsewhere in the literature. HQwever, nowhere in the 

literature has a self-organizing controller been developed that addresses the 

issue of malCunction recovery. Herein lies the contribution of this work. 
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