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Summary

This paper investigates the application of the linear-quadratic-Gaussian
(LQG)/loop transfer recovery (LTR) method to the problem of synthesizing an
attitude control system for a large flexible space antenna. The study is based
on a finite-element model of the 122-m hoop/column antenna, which consists
of three rigid-body rotational modes and the first 10 elastic modes. A robust
compensator design for achieving the required performance bandwidth in the

presence of modeling uncertainties is obtained by using the LQG/LTR method
for loop shaping in the frequency domain. Based on the limitations of achieved

performance with the LQG/LTR method, different sensor actuator locations
are analyzed in terms of the pole zero locations of the multivariable systems and
possible best locations are indicated. The computations are performed by using
the LQG design package ORACLS augmented with frequency domain singular
value analysis software.

1. Introduction of the system are known imprecisely; this introduces
additional modeling errors. Typically, the modeling

The robust control synthesis methodology which errors for finite-element models increase substantially
uses frequency domain matrix norm bounds (i.e., sin- with increasing modal frequency. Controller design
gular values) has received considerable attention in for large space structures using frequency domain
the recent literature (refs. 1 through 5).1 The ha- analysis was investigated in reference 6, wherein sin-
sic framework for frequency domain synthesis using gular value analysis was used to check the robustness
the linear-quadratic-Gaussian (LQG)/loop-transfer- with respect to modeling errors.
recovery (LTR) methodology was developed in refer-
ences 1 and 2. It has been applied to diverse systems
such as power systems (ref. 3) and aircraft engine
control (ref. 4). The LQG/LTR design philosophy One of the planned activities of the NASA Space

Transportation System is the placement in Earth or-uses a low frequency "design model" of the plant
and a high frequency characterization of the mod- bit of a variety of large space antennas. Potential
eling errors. This method, which uses unstructured large space missions will require antennas and struc-
uncertainty and singular value bounds, appears to tures ranging from 30 m to 20 km in size. Ap-

plications include communications (mobile, trunk-
be particularly well suited for the control of large ing, etc.), remote sensing (soil moisture, salinity,flexible spacecraft because of the considerable un-
certainty that inherently exists in the mathematical etc.), deep space network (orbital relays), astronomy
models. (X-ray, observatory, optical array, radio telescope,

very long baseline interferometry, etc.), energy, and
Large space structures (LSS) are typically highly space platforms. Specific missions have been pin-

flexible and can be represented by partial differen- pointed and future requirements identified for large
tial equations or by very large systems of ordinary space antennas for communications, Earth sensing,
differential equations. They have many resonant fre- and radio astronomy (ref. 7). Particular emphasis
quencies, some of which may be very low and possi- is placed on mesh-deployable antennas in the 50- to
bly closely spaced. The natural damping is usually 120-m-diameter category. One such antenna is the
very small. For these reasons, control of LSS is a maypole (hoop/column) antenna, shown schemati-
challenging task (ref. 5). cally in figure 1. The hoop/column antenna basi-

Since the system is inherently of high order, a cally consists of a central mast attached to a de-
practical controller has to be based on a reduced- ployable hoop by cables in tension (refs. 7 and 8).
order design model. Furthermore, the parameters The deployable mast consists of a number of tele-
(i.e., frequencies, mode shapes, and damping ratios) scoping sections, and the hoop consists of 48 rigid

1 This methodology was also presented in a lecture entitled segments. The reflective mesh, which is made of
"Multivariable Control System Design Using the LQG/LTR knit gold-plated molybdenum wire, is attached to the
Methodology" given by Professor Michael Athans of the hoop by graphite fibers. The mesh is shaped by us-
Massachusetts Institute of Technology at the Langley ing a network of stringers and ties to form the radio-
Research Center in 1984. frequency (RF) reflective surface. In order to achieve



required RF performance, the antenna must be con- model of the system is first described in section 3.
trolled to specified precision in attitude and shape. Section 4 describes the control objectives, followed
For example, for missions such as land mobile satel- by a brief description of the LQG/LTR technique
lite system (LMSS) for providing mobile telephone (refs. 1 and 2) in section 5. The reduced-order (low
service to users in the continental United States, it is frequency) design model and the high frequency mod-
necessary to achieve a pointing accuracy of 0.03° rms eling uncertainty barrier are also discussed in that
(root mean square) and a surface accuracy of 6 mm section. The numerical results are given in section 6.
rms. It is also necessary to have stringent control Section 6.1 presents the results of synthesizing the
(usually a fraction of a degree) on the motion of the controller based on the LQG/LTR procedure with
feed (located near one end of the mast) relative to only attitude feedback being used. Section 6.2 de-
the mesh. Because of its large size and relatively scribes the results obtained when both attitude and
light weight, the antenna is highly flexible, having a rate feedback are used for controller design. Some of
large number of significant elastic modes. It is there- the problems and limitations observed are also high-
fore necessary to use reduced-order controllers, lighted. Specifically the locations of transmission ze-

Reduced-order control synthesis for this system ros and their impact on the performance for two dif-
using the standard LQG theory was investigated in ferent sensor and actuator locations are discussed.
reference 9. The standard LQG procedure yielded The results are summarized in section 7.
satisfactory control, that is, rigid-body bandwidth of
up to 0.25 rad/sec, satisfactory time constants for the 2. Symbols
elastic modes, and acceptable rms pointing errors in A system matrix
the presence of sensor noise. It should be noted that
the LQG approach in reference 10 used a large hum- AF system matrix for full-order plant
ber of actuators and sensors (four three-axis torque B input matrix
actuators and four three-axis attitude and rate sen-

sors). It was found that the first three flexible modes BF input matrix for full-order plant
had to be included in the design model (in addition C output matrix

to the three rigid modes) to obtain satisfactory per- CF output matrix for full-order plant
formance. The main problem with the LQG method
was that a large number of weighting parameters had D damping matrix
to be simultaneously adjusted to obtain a good de- (] regulator gain matrix

sign. In addition, the stability robustness proper- Gc compensator transfer function
ties with respect to inaccuracies in the modal pa-

rameters could not be properly assessed because it Gc modified compensator function
was difficult to effectively characterize the bounds
on modeling errors in a time-domain setting. The GF complete plant transfer function
LQG/LTR method offers an approach for overcom- GKF Kalman filter transfer function for
ing these problems in the frequency domain, attitude feedback

The purpose of this paper is to investigate the
use of LQG/LTR multivariable frequency domain GKF Kalman filter transfer function forattitude and rate feedback
methodology in the design of an attitude control sys-
tern for the hoop/column antenna. The design ap- G L modified loop gain

proach considered herein is determiilistic, and the Gp plant transfer function
rms pointing errors in the presence of noise are not
analyzed. A sequence of low order compensators is Cz_p modified plant transfer function
obtained by considering design models which include

G1 rigid-body transfer function
increasingly higher frequency modes. The final de-
sign model chosen is the first one in this sequence G2 elastic-mode transfer function

which allows the performance/robustness objectives H Kalman gain
to be met. In this sequence of design models, the
first one consists of the rigid-body modes only. Sub- I identity matrix

sequent design models are obtained by the successive I k k × k identity matrix
addition of flexible modes. The designs use three-

Is inertia matrix
axis torque actuators, collocated attitude and rate
sensors, and attitude and rate feedback. The organi- L weighting matrix used in Kalman filter
zation of this paper is as follows. The mathematical design
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Lp multiplicative uncertainty 3. Mathematical Model

Im upper bound on multiplicative As a consequence of its large size and light weight,
uncertainty the antenna is a highly flexible system having a large

number of significant structural modes. A finite-
m order of input vector element model of the antenna (ref. 8) is used in this

n order of system paper. The mathematical model considered consists
of rotational rigid-body dynamics (about the three

nq number of elastic modes axes) and the elastic motion. We assume that the
nT number of torque actuators control will be accomplished by using nT three-axis

torque actuators. The linearized equations of motion
P regulator Riccati matrix are

nT

q modal amplitude vector Is&s = _ Tj (1)
q regulator design parameter j=l

r reference input iil+ DO + Aq = OTu (2)

s Laplace variable where Is is the 3 x 3 inertia matrix, Tj is the three-
axis torque applied by the jth actuator,

Tj torque vector for jth actuator as = (¢s, 0s, Cs) I denotes the rigid-body attitude,

u input vector q is the nq × 1 modal amplitude vector (for nq struc-
tural modes), D = 2 diag (_1¢01, g2032, ..., _nqCOnq)

x state vector is the inherent damping matrix (where _i is the damp-

state estimate vector ing ratio for the ith mode), • is the
m x nq "mode-slope" matrix (where m = 3nT),

Ya sensed attitude u (WT, T T, T T.... , TnT ) is the m × 1 vector of

Yr sensed rate actuator torques, and A = diag (w2, w_, ..., ¢O2nq)
where (zi is the frequency of the ith elastic mode.

as rigid-body attitude vector
The rigid-body parameters and the first 10 elastic

AG additive uncertainty frequencies are given in table I. Each value of _i is
assumed to be 0.01 for i = 1, 2, ..., nq._i damping ratio for ith elastic mode

Normally, the sensors used include attitude and
0s rigid-body rotation about Y-axis rate sensors. The three-axis attitude Ya at a sensor

A diagonal matrix of squares of natural (e.g., a star tracker) location is given by

frequencies Ya -- as + _q (3)

p Kalman filter design parameter
where • is the 3 x nq mode-slope matrix at the sen-

E Kalman filter Riccati matrix sor location. If an attitude rate sensor (e.g., a rate

a singular value gyro) is used, the sensor output Yr is given by an
equation similar to equation (3), except that as and

largest singular value q are replaced by &s and il, respectively. The torque

a_ smallest singular value actuators and the attitude and rate sensors are as-
sumed to be located near the top and bottom of the

mode slope matrix at actuator mast as shown in figure 1. The elastic deformation
locations caused by some of the flexible modes is shown in fig-

Cs rigid-body rotation about X-axis ure 2.

(aT_ T )TDefine x : s, s,qT, i:lT then the state
mode slope matrix at sensor locations

space model can be written in the following form:
Cs rigid-body rotation about Z-axis

w frequency ± = AFX + BFU (4)

wi natural frequency of ith elastic mode Ya = CFX (5)
The sensor and actuator noise are not considered

Dots over symbol indicate derivative with respect in the design process in this paper; however, it
to time; superscript T indicates a transposed matrix, will have to be included when computing the rms
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pointing errors. Ignoring the noise, the transfer assumes that the loop is broken at the plant output.
matrix between the input (three-axis torque) and the Adjust the weighting matrices in the KBF design un-
output (three-axis attitude) is given by til its frequency response meets the robustness spec-

ifications at high frequencies and bandwidth specifi-
GF(s) = Gl(s) + G2(s) (6) cation at low frequencies.

where 3. Design an LQ regulator to asymptotically "re-

Gl(S) - Is1 (7) cover" the frequency response obtained in step 2.
s 4. Verify stability, robustness, and performance

nq _Y_ioT for the entire closed-loop system.

G2(s) = E s2 + 2_iwis + w2 (8) The first step, which consists of the definition ofi=1
the plant and the uncertainty (robustness) barrier,

where _i and Oi represent the mode-slope matrices is often the most important one. The basic prob-
at the sensor and actuator locations corresponding lem in controlling a flexible structure is the pres-
to the ith mode. Numerical data used to define ence of a large number of lightly damped struc-
equations (4) through (8) and a discussion of the tural modes. Practical limitations necessitate the

model characteristics are given in the appendix, use of reduced-order controllers. Therefore, the un-
controlled modes and the error in the knowledge of

4. Design Objectives the controlled modes together represent uncertainty.

The basic design objectives for the control sys- Since the number of structural modes is usually large
tems are (1) to obtain sufficiently high bandwidth and finite-element modeling accuracy typically de-
(i.e., closed-loop frequencies corresponding to the creases with increasing model frequency, the design
rigid-body modes) and satisfactory closed-loop damp- model should consist of rigid-body plus the first few
ing ratios for rigid-body and structural modes; and elastic modes. In order to obtain an acceptable low
(2) to obtain satisfactory rms pointing errors, feed frequency representation, the design model must in-
motion errors, and surface errors. The first design clude at least the three rigid-body modes. The uncer-
objective arises from the need to obtain sufficiently tainty barrier is a measure of the plant uncertainty
fast error decay when a step disturbance (such as sud- at high frequencies. The plant uncertainty can be
den thermal distortion caused by entering or leaving represented as either multiplicative or additive un-
the Earth's shadow) occurs. The second design ob- certainty (fig. 3). The LQG/LTR approach requires
jective arises from the RF performance requirements, the characterization of the uncertainty in terms of
These two objectives may not necessarily be com- a frequency-dependent upper bound. Frequency do-
patible. For example, the use of increased feedback main sufficient conditions are used to test the ro-
gains for obtaining higher bandwidth and damping bustness in the presence of uncertainties within that
ratios will in general, result in higher rms errors (be- bound.
cause of the amplified effect of sensor noise) beyond For the case of multiplicative uncertainty, Lp(jw)
a certain point. Therefore, it is necessary to carefully of figure 3(a), with the loop broken at the plant
consider the trade-offs between the speed of response output, the closed-loop system is stable if
and lower rms error. In this study, the main control

system specification is to ensure a minimum band- -_ [Lp(jW) - I] < _a_{I + [Gp(jw) Gc(jw)] -1 } (9)
width of 0.1 rad/sec for the closed-loop system. The

upper limit on the low frequency gain is not specified where Gp(jw) and Gc(jw) are the design model
but it is desired that it should be as high as possible. (plant) and compensator transfer matrices, and

and a_ denote the largest and the smallest sin-
S. Design Procedure gular values of the argument matrix, respectively.

The LQG/LTR method (refs. 1 through 3) basi- At high frequencies, assuming IILp(jw)ll >> 1 and
cally consists of the following steps: IIGp(j_) Gc(jw)l I << 1 (ref. 8) (approximately)

1. Define a "design" model of the nominal plant yields
which is an acceptable low frequency representation. -_(GpGc) < 1/_(Lp) (10)

Define the high frequency uncertainty (robustness) -For notational convenience, the argument "jw" has
barrier and the low frequency performance barrier. been dropped.

2. Design a full state feedback compensator based The uncertainty (or robustness) barrier is an up-
on the steady-state Kalman-Bucy filter (KBF). This per bound lm(w) on _(Lp). The system is stable
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in the presence of such unstructured uncertainties if The advantage of an LQG-based full state design is
_[GpGc] < lm1(w) at high frequencies, that it has excellent classical properties, and its fre-

When the additive uncertainty formulation quency response can be shaped in the desired manner
(fig. 3(b)) is used, a sufficient condition for stabil- by varying the weighting matrices (ref. 2). As dis-
ity robustness is given by (ref. 10) cussed in reference 2, this design can be accomplished

by using the linear-quadratic regulator (LQR) Ric-
a_(I + GpGc) cati equation if the loop is broken at the plant in-

y(AG) < (11)
-_(Gc) put, or the KBF Riccati equation if it is broken at

the point where the residual signal enters the KBF.

At high frequencies, assuming [[GpGc[[ << 1 (ref. 10) Herein we select the latter because the objective is
(approximately) yields to control the attitude output. This selection is also

consistent with references 3 and 4. The KBF equa-
l tions are

Y(Gc) < Y(AG---_ (12)

That is, the compensator must roll off sufficiently A_E + EIAT + LL T _]cTcIE - 0 (16)
rapidly at high frequencies. The main feature of
the LQG/LTR approach is to first design a full state

compensator (based on KBF) which has the behavior EiC T
of the desired loop transfer matrix (i.e., the loop gain H - (17)
GpGc). Therefore (from step 2), any loop shaping /z

should involve the product GpGc rather than Gc where L and /z are the design parameters, L being
alone as in equations (11) and (12). Assuming that an n × m matrix and/z a scalar, H is the KBF gain
Gp is a square matrix, matrix, and E is the corresponding Riccati matrix.

The KBF loop transfer matrix is given by
Gc = Gpl(GpGc) (13)

_(Gc) < _(G_ 1) _(GpGc) GKF(S) = C(sI - A)-IH (18)

or Generally, the frequency response a[GKF (fly)] would
Y(Gc) < a_-l(Gp)Y(GpGc) (14) shift higher as /z decreases, and the crossover fre-

Using equations (14) and (11), the following sufficient quency can be adjusted by changing L. 2
condition for stability robustness is obtained: Having obtained satisfactory singular value be-

havior of KBF, the third step is to design an LQR to

a_(I + GpGc) a_(Gp) "recover" the desired frequency response. This is ac-
> Y(AG) (15) cornplished by solving the algebraic Riccati equation

_(GpGc)

The second step in the design procedure is to de- ATp + PA - PBBTp + _/cTc = 0 (19)
sign a full state feedback compensator having desir-

able singular value properties. The performance of where P is the Riccati matrix and _ is a positive
the closed-loop system depends on the low frequency scalar. It has been proven in references 1 and 2
gain and the crossover frequency of the loop transfer that the loop transfer matrix GpGc for the overall
matrix GpGc, that is, on the behavior of a_[GpGc], system (consisting of the plant, the KBF, and the
Larger low frequency gain and crossover frequency in- LQR) tends to GKF(8) as _/ _ c¢, provided that
dicates better tracking performance. Thus, a_[GpGc] the open-loop plant has no transmission zeros in the
should lie above the performance specification as right half-plane. After recovery, Gc@)is given by
shown in figure 4(a). The other requirement is the
stability robustness in the presence of model uncer-
tainties. If the multiplicative uncertainty formulation Gc(s) = G(sI - A + BG + HC)-IH
is used, according to equation (10), the Y[GpGc] plot
should pass under the robustness barrier _-l(Lp) at
high frequencies (fig. 4(a)). On the other hand, if
the additive formulation is used, the robustness con-
dition, equation (15), should be satisfied (fig. 4(b)). 2 Ibid.
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A block diagram of the compensator is shown in in figure 6. The corresponding additive uncertainty
figure 5. AG, which consists of the (20th order) flexible dy-

Since the compensation obtained has no guaran- namics, is plotted in figure 7. Figure 6 clearly shows
teed robustness properties, the last step will consist the roll-off behavior of the plant, which is of the
of testing the eigenvalues of the entire closed-loop order of 1/82. Figure 7 indicates the presence of
system to ensure the stability and robustness. The poles near the undamped flexible mode frequencies
overall closed-loop system is of 0.75 rad/sec, 1.35 rad/sec, etc. Also, the pole near

the first mode frequency near 0.75 rad/sec produces

[._] [A F -BFG ][x] the highest peak. (The importance of this fact is seen= HC F A - BG - HC later when the stability condition is violated at this
point.) It can also be seen that a zero is present near

where the subscript F is used to denote the full-order 5 rad/sec.
nominal plant, and _ denotes the state estimate for Based on this rigid design model, the following
the design model. If instability is discovered, it will choice of L and p were made after a number of trials:
be necessary to return to step 2 and redesign the KBF
for lower bandwidth and the LQR for robustness [ 03 ]

recovery. If this does not produce satisfactory results, L .....[ J /_ = 1it would then be necessary to return to step 1 and 10-213
include more elastic modes in the design model.
Application of the foregoing LQG/LTR procedure The objective is to obtain a bandwidth of at least
for the hoop/column antenna is described in the 0.1 rad/sec. The resulting values of the "desired"
following section, loop gain matrix G are shown in figure 8.

The standard LQG/LTR procedure requires the
6. Numerical Results definition of the desired loop transfer characteristics

Before applying the LQG/LTR method for corn- (see step 2 in section 5). That is, a_(GKF) must
pensator design, the controllability, observability, satisfy the low frequency performance specifications,
and invariant zero properties of the plant (with re- and _(GKF ) must satisfy the high frequency robust-
spect to different sensor/actuator locations) were ness specifications. Thus, in the presence of additive
studied. Based on these studies (presented in de- uncertainty AG, the procedure states that the ro-
tail in the appendix), location 1 shown in figure 1 bustness condition

was selected for the sensors and the actuators. The a__(I_-GKF)O'(Gp)
> _(AG)

LQG/LTR procedure was subsequently applied, first -_(GKF)
by using only attitude sensors and then by using at-
titude and attitude-rate sensors. The computations should be satisfied. However, in the computations
were performed by using the LQG design package performed, it was found that this condition makes
ORACLS (ref. 11) augmented with frequency domain the desired design (GKF) extremely conservative in
singular value analysis software, the sense that higher loop gains can be used without

causing instability. Therefore, recovering this con-
6.1. Controller Design Using Attitude servative loop gain yields a compensator with poor
Feedback performance. This fact led to a modification of the
In this section, the results of the application of LQG/LTR procedure. In particular, this robustness

the LQG/LTR procedure are presegted when only test on GKF is omitted in the modified procedure.
attitude feedback is employed. The studies are Instead, the recovery is carried out first, and then the
performed by using the design model consisting of (less conservative) stability test (eq. (11)) is applied
(1) only rigid-body model (n = 6, nq = 0), (2) rigid- directly for the compensator Gc.
body and the first flexible mode (n = 8, nq = 1), With the use of the recovery procedure, the com-
and (3) rigid-body and the first three flexible modes pensator is obtained for this case with _ = 104. The
(n -- 12, nq = 3). The measurements available are resulting stability test (eq. (11)) is shown in figure 9.
the three attitude angles at location 1. One three- It is seen that the stability margin is lowest at the
axis torque actuator is used at the same location, first mode frequency (0.75 rad/sec). Any increase in
The compensator is designed based on these sensors the gain (obtained by _ > 104) resulted in the vio-
and actuators. The results of the designs are pre- lation of the stability condition at that point. The
sented in figures 6 through 23. resulting singular values of the compensator Gc are

The largest and the smallest singular values of given in figure 10, which shows that the compen-
the rigid-body transfer matrix (n -- 6) are plotted sator is of the "lead-lag" type. The overall loop
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bandwidth is obtained from the singular values of the expected), the recovery procedure is not very effec-
loop transfer function GpGc shown in figure 11. It is tive for making GpG c approximate GKF.
seen that the bandwidth (i.e., the frequency at which In order to improve the performance further, the
a(GpGc) = 1) is far short of the required 0.1 rad/sec, next step was to include the first three flexible modes
The plots roll off as 1/82 (40 dB/decade) and indi- in the design model. It is logical to do this because
cate the recovery process. In order to increase the they represent the first modes about each axis, that
bandwidth, the regulator gain has to be increased by is, the first torsion mode and the first bending modes
increasing q. However, this results in the violation in the X-Z and Y-Z planes. Thus the order of
of the stability condition (eq. (11)). Thus it became the design model was 12. The singular value plots
evident that, with the rigid-body design model, it is for Gp and AG are shown in figures 18 and 19,
not possible to meet the performance specifications, respectively. Figure 18 indicates that Gp has zeros

To overcome these problems, the inclusion of the near 0.082 and 0.22 rad/sec and poles near 0.75, 1.35,
first flexible mode (0.75 rad/sec) in the design model and 1.7 rad/sec. It is seen from the AG plot (fig. 19)
was considered. The inclusion of the first flexible that _ is considerably lower than that in figures 7 and
mode, which is predominantly a torsion mode, results 13. After numerous trials, the following choice of the
in a design model of order 8. The singular value L matrix and the scalar p were made:
plots for Gp and AG are given in figures 12 and
13. Figure 12 indicates the presence of a pole of Gp
near 0.75 rad/sec and a zero near 0.082 rad/sec. The 03
singular values of AG in figure 13 are an order of
magnitude lower than those in figure 7 (wherein AG 10-113
consisted of all the flexible modes). The first peak of

_(A(]) occurs at 1.35 rad/sec, which is the frequency 10-412 0
of the second mode. This is the critical point in the L = /_ = 1
stability test (eq. (11)). After a number of trials, the
following choice of L and/_ was made: 10-412 0

03 ] 10-412 0

]L 10-213= /_= 1 The resulting GKF with the desired characteris-
tics is shown in figure 20. The recovery was accom-

I 0 plished with _ = 10l°. The stability test is shown in10-212
figure 21. It can be seen that condition (11) is satis-
fied with a wide margin. Also, at the peaks for AG

The singular values of GKF are plotted in fig- (at 8 rad/sec), the upper curve slopes upward, indi-
ure 14. The recovery is obtained for _ -- 105 and the cating good tolerance of high frequency uncertainty.
stability test is shown in figure 15. The limit for increasing the gain (indicated by the

Figure 15 indicates the critical point to be about lowest point in the upper curve in figure 21) occurs
0.28 rad/sec. There is a good margin at the peaks of at about 0.3 rad/sec. The resulting compensator Gc
AG due to upward sloping of the upper curve. The is shown in figure 22. The gain of Gc is much higher
resulting compensator is shown in figure 16. The than that obtained in the previous cases. Generally,
compensator has a pole at about 0.25 rad/sec and the LQG/LTR technique attempts to choose (]c in
a zero at 0.8 rad/sec. The resulting loop transfer such a way that C_p is approximately inverted and the
function (GpGc) plots are shown in figure 17. The product GpGc is replaced by GKF. The three-mode
plots indicate that the required 0.1 rad/sec band- design plant shown in figure 18 has elastic mode
width is not obtained (although it is much higher eigenvalues at -0.0075 -4- j0.75, -0.0135 :t= jl.35,
than the rigid-model case). Any increase in the gain and -0.017 ± jl.7. Figure 22 shows that Gc has ze-
(for _ > 105) was found to result in the violation ros with frequencies near these locations. The design
of the stability condition (eq. (11)). Figure 17 in- model also has transmission zeros at
dicates the presence of the open-loop invariant zero

near 0.082 rad/sec, which was also confirmed by in- (-0.9 x 10-4) =t=j0.082

dependent computations. This zero is almost on the (-0.37 × 10-3) -4- j0.22imaginary axis (i.e., the transfer matrix is close to
being nonminimum phase). Therefore (as would be (-0.29 x 10-3) ± j0.22



The zeros of the design model are too close to For the design with attitude and rate feedback,
the jw axis and tend to numerically behave as the transfer matrix for the design model is
nonminimum phase. Some alleviation is obtained

by the compensatorpolenear 0.4rad/sec.The Gp(s)--[ G(s)]
plots for the loop transfer matrix GpGc are given ks (s)J6×3
in figure 23. It is seen that a bandwidth of

0.1 rad/sec is obtained except for the presence where G(s) is the transfer function matrix with
of the invariant zero near 0.082 rad/sec which attitude as the output. Thus Gp(S) is always of
causes some deterioration of performance. This rank 3, and a(GpGc) = 0. Therefore the loop gain
zero is invariant under feedback and depends on the can never satisfy the bandwidth specifications. To
sensor/actuator locations. At higher frequencies, overcome this difficulty, we consider only the attitude
GpGc rolls off at 60 dB/decade. Also, _ and __are measurements for performance evaluation. In other
closely spaced; this indicates good system behavior, words, the compensator Gc uses both the attitude
The compensator gains (i.e., the regulator and filter and the rate as its inputs (and has the dimension
gain matrices) for this case are shown in table II, and 3 x 6), but we consider only the 3 × 1 attitude in the
the complete closed-loop eigenvalues are shown in performance evaluation. Figure 24(b)shows the loop
table III. with a slight modification to account for this. The

Thus it is seen that the inclusion of the first three loop gain for the system is
modes in the design model yields a robust compen-
sator which also meets the bandwidth specifications. GL(S) = [I303] [GpGc] [I3sI3] T

6.2. Controller Design Using Attitude and and one needs to check a_(GL) as the measure of
Rate Feedback performance (i.e., bandwidth). Similarly, in the KBF

design for the desired loop gain, one needs to check

In this section, the numerical results for the de- a of
sign using the feedback of both attitude and rate are C=_KF = [I303] GKF [i3813]T
discussed. Similar to the attitude feedback case, one As in the previous case, the robustness test (eq. (11))
three-axis torque actuator is used at location 1. One is carried out by using (the 6 × 6) GpGc (and not
three-axis attitude sensor and one three-axis attitude GKF) although a(GL) is used as the measure of
rate sensor are assumed to be located at the same lo- performance.
cation (i.e., location 1). Thus the plant Gp(s)is now The design procedure involves first solving the
6 × 3, with the three attitude angles and the three KBF equations with suitable choices of L and
attitude rates being the outputs and three torques to obtain the desired performance characteristics
being the inputs. The compensator Gc(s) is then a_(Ggg). The next step is to recover this desir-
3 × 6. The resulting loop is shown in figure 24(a). able loop gain by increasing _ the LQ regulator de-
The realization of Gc consists of a KBF using the sign. However, the loop transfer recovery can be ob-
six measurements, followed by the 3 × n LQ regu- tained only if the number of inputs is greater than
lator gain matrix G, where n is the order of the de- or equal to the number of outputs, which is not the
sign model. As in the attitude feedback design, three case here. Based on the experience with attitude
cases are considered, with the design model consist- feedback designs, _ cannot be usually increased suf-
ing of ficiently to obtain recovery in the desired frequency

range (because the stability condition is violated).
Case a: Only rigid-body modes (n = 6) Therefore, although asymptotic recovery is not possi-

ble, a decent bandwidth should still be obtainable by
Case b: Rigid-body and the first flexible mode increasing q.

(n = 8) Figure 25 shows the frequency response of C_p for
case a, i.e., rigid-body design model. The a-plots of

Case c: Rigid-body and the first three flexible AG are shown in figure 26. After a number of trials,
modes (n = 12) the following L and p were used:

As in the design with attitude feedback, the second [[O3

and third modes (being bending modes about X- and 03 03
Y-axes) were not considered separately, and hence a L = _ = 1
three-mode model was considered after the one-mode
model. 10-213 6×6

8



The resulting a-plots of GKF are shown in figure 27. in figure 40. The a-plots of GL and Gc are shown
After the KBF design, the recovery procedure is in figures 41 and 42. As shown in figure 41, the
carried out by increasing q. The largest _ without bandwidth requirement is not satisfactorily met. In
causing instability (as indicated by the stability test addition, the presence of a transmission zero near
(eq. (11)), which is shown in fig. 28) was _ = 104. 0.082 rad/sec introduces a notch in the a(GL) plots
Figures 29 and 30, respectively, show the a-plots of similar to the attitude feedback case. The com-

GL and Gc AGc [I3sI3] T. It is seen from figure (29) pensator gains and the closed-loop eigenvalues of
that the bandwidth requirement of 0.1 rad/sec is the complete system are given in tables IV and V,
practically impossible to meet using a rigid model, respectively.

For case b, the design model consisted of the rigid- Based on these results, it appears that designing
with attitude feedback only allows for higher perfor-body and the first flexible modes. Figures 31 and 32

show the a-plots for Gp and AG, and figure 33 shows mance bandwidth while maintaining stability robust-ness. The reason can be seen from a comparison of
the plots for GKF which was obtained with the stability robustness condition (eq. (11)) in both

the attitude and attitude and rate cases. In the atti-

I tude case, AG3x 3 rolls off as 1/s 2. For attitude and
03 ] 03 rate, it rolls off as 1Is. Since, in both situations, Gc

behaves as 1Is and a_(I+ GpGc) _ I for large values

L = 03 I 10-113 /z = 1 of s, condition (11) is ultimately satisfied. However,
comparing figures 21 and 40 shows that the attitude

j and rate case experiences greater difficulty in the fre-
quency region containing the peak of _(AG). It can

10-112 I 02x4 8×6 be shown that

The largest _ in the LQ regulator design (which _(AG6×3(jw)) = (1 +w2)l/2"_(AG3x3(jw))
does not cause instability) was _ = 105, and the

corresponding stability test (eq. (11)). is shown in The (1 + w2) 1/2 magnifies _(G(jw)) and causes a
figure 34. The a-plots of G L and Gc are shown lower value of _ in the recovery process and a more
in figures 35 and 36, respectively. It is clear that conservative performance bandwidth. This difficulty
the bandwidth specification cannot be met with this could possibly be overcome by a different choice of L
model, and/_.

In order to improve the performance, the first
three flexible modes were next included in the model 7. Concluding Remarks

(in addition to the rigid modes). Figures 37 and 38, The LQG/LTR (linear-quadratic-Gaussian/loop
respectively, show the a-plots of Gp and AG. The transfer recovery) multivariable frequency domain
C=_KFplot shown in figure 39 was obtained for the technique was employed in the design of an attitude
following choice of L and p: control system for large flexible space antenna. The

LQG/LTR method was noted to be especially attrac-
tive for overcoming spillover effects common to large
space structures control problem modeled by using

03 03 finite-element data. The design objective of avoiding
excitation of higher order modes while satisfying.per-

03 10-lI 3 formance criteria was met by including these modes
in the robustness uncertainty barrier.

Design was based on a reduced-order model cho-
L = 10-112 02×4 _ = 1 sen as the rigid-body dynamics plus the fewest num-

ber of low frequency vibrational modes necessary to
meet a desired closed-loop bandwidth. Inclusion of

10-112 02×4 the first three vibrational modes (corresponding to
the three axes) was found to be necessary to meet
a bandwidth of 0.1 rad/sec. For higher bandwidths,

10-112 02×4 12×6 design models with greater than three modes would
be needed. A satisfactory control design was ob-

The largest permissible _ (without causing instabil- tained by using only a single collocated pair of three-
ity) was 108, and the resulting stability test is shown axis attitude sensor and torque actuator for this



problem. An investigation employing attitude-rate A modification of the standard LQG/LTR pro-
sensors in addition to the attitude sensors showed no cedure was introduced in which the robustness test

improvement over this arrangement, was performed with the the full LQG compensator in-
stead of the intermediate Kalman filter design. This
approach was found to produce higher gain compen-

Performance degradation was observed due to sators and helped overcome the basic conservative-
the presence of invariant zeros within the design ness shortcoming of the LQG/LTR approach.
bandwidth. These zeros were unavoidable given the
prescribed sensor/actuator locations and emphasized

the fact that consideration should be given to control NASALangley Research Center
aspects right from the early design phases of large Hampton, VA 23665-5225
space structures. April 15, 1986
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Appendix Equation (A4) describes the plant rigid-body
motion, and equation (A5) describes the elastic

System Characteristics of Hoop/Column motion contribution when nq vibrational modes
Antenna Mathematical Models are included in the design model. Frequencies

In this appendix, the state-variable realizations wi(i = 1, 2, ..., 10) are given in table I for a
employed in the LQG/LTR design studies are ana- 122-m-diameter hoop/column structure. The damp-
lyzed to determine their innate controllability, ob- ing ratios _i are taken as fi = 0.01(i = 1, 2, ..., 10).
servability, and invariant zero properties. Compu- Eigenvalues of AiE(i = 1, 2, ..., 10) are as given in
rational results are presented for a single three-axis table AI. Employing a single three-axis torque actu-
torque actuator and a collocated attitude sensor. A ator gives

combined attitude and rate sensor case yielded the [03]}
same results. BF I_-1 (6 x 3)= (A7)

The hoop/column antenna model given by equa- }tions (4) and (5) are kVB j _ (2nq × 3)

= AFX + BFU (A1) where, in units of (ft-lb-sec2) -1,

I_-1 = diag (2.37 × 10-7, 2.37 × 10-7, 3.09 × 10-7)
Ya = CFX (A2) (AS)

In equation (A1), with n = 6 + 2nq, The matrix VB depends on actuator location.

AF = [A R AE0] n×n (A3) TABLE AI. EIGENVALUESOF ELASTIC MODES

AR=[ _ I3] (A4) Mode Eigenvalue0 6x6 1 -0.0075-4-j0.75

2 -0.0135 4- jl.35

[AE]2nqx2n q = diag (A 1, A2, ..., AEq ) (A5) 3 -0.0170 4-3'1.704 -0.0318 -t-3"3.18
and 5 -0.0453 4-j4.53

6 -0.0559 + j5.59

' [ 0 2 1 ] (i=l, 2,...,nq) 7 -0.0578+j5.78A_E = --¢zi --2_ic°i 2x2 8 -0.06844-36.84

(A6) 9 -0.074 4-j7.4
lO -0.08784-38.78

11



For actuator location 1 (fig. 1):

0 0 0 )mode 16.3 x 10-5 0 -5.04 x 10 -3

0 0 0 }mode 20 -2.91 x 10 -3 0
o o o

3.71 x 10 -3 0 5.45 x 10 -4 }mode 3
0 0 o

-7.49 x 10 -7 0 -8.45 x 10 -6
o o o

-6.21 x 10 -4 0 -5.6 x 10 -5
VB= 0 0 0

5.55 x 10 -6 0 --3.19 x 10 -4
o o o (A9)
0 --5.00 x 10 -4 0
o 0 0

1.1 x 10 -3 0 -2.23 x 10 -4
o o o
0 -3.04 x 10 -3 0
0 o o

2.43 x 10 -3 0 -1.05 x 10 -4 mode 10

For actuator location 2 (fig. 1):

0 0 0 1-1.81 x 10 -5 0 -1.62 x 10-5 mode 1
0 0 o
0 2.52 x 10 -4 0 .mode 2
0 0 0

-3.76 x 10 -4 0 1.22 x 10-5 mode 3
0 0 0

1.70 x 10 -7 0 --1.97 x 10 -4
0 o o

--1.08 X 10 -2 0 -4.09 X 10 -6

VB= 0 0 0
6.69 × 10 -6 0 --1.26 × 10 -2

o o o (Alo)
0 -6.47 × 10-3 0
o o 0

4.41 x 10 -3 0 -1.23 × 10-5
o 0 o
0 --7.58 x 10 -3 0
o o o

4.90 x 10 -3 0 -2.16 × 10-6 }mode 10

In both equations (A9)and (A10), mode slope mag- [0 1]Ui (A14)
nitudes less than 10 -9 have been set to zero. = [1 0J 2X2

For collocated attitude sensors and torque
actuators, The matrix VB in equation (A12) is chosen from

CF = [(I3, 0), VC]3× n (All) equation (A9) or (A10), depending on actuator loca-
tion. For collocated rate sensors,

with

Vc=[UVB]Tx2nq (A12) CF = [(0, I3), VBT]3xn (A15)

A measure of the relative controllability of the
U2nq×2nq = diag (U1, U2, ..., Unq) (A13) rigid-body and elastic modes can be obtained through

12



examination of the reciprocal condition numbers of large numerical magnitude of the inertia matrix Is.
the polynomial matrix (ref. 12) Mode 1 is easier to control from location 1 than 2.

Modes greater than 4 are less likely to experience
C(s) = [(Sin- AF), BF] (A16) spillover (ref. 5) effects from location 1. The rigid-

body modes are most observable. Mode 1 is least
over the set of eigenvalues of AF. Reciprocal con- observable from location 2 and actually behaves nu-
dition numbers are defined as the ratio of smallest merically as an unobservable mode in Kalman filter
to largest singular values for C(s). Comparison of computations. Generally, table AII shows that the
these numbers evaluated at s = 0.0 for the rigid- first three modes have better controllability and ob-
body mode and one of each of the eigenvalues of servability properties from location 1.
A_, (i = 1, 2, ..., nq) gives an indication of the rel- The presence of invariant zeros (ref. 13) in the
ative ease or difficulty in affecting a particular mode system models can be tested by seeking those values
through the control input. A similar approach up- of s such that
plied to the polynomial matrix

Rank[ sin - AF B0F]L CF <n+3 (A18)
O(s) = [ SIncFAF ] (A17)

for given values of 1 < nq <_ 10. No zeros exist for
can be used to measure relative observability prop- nq = 0 since in this case
erties. Table AII presents controllability and observ-

ability reciprocal condition numbers for collocated [ ] ( )sensor and actuator locations 1 and 2 in figure 1. det CF (sI6 - AF) -1 BF = det Is 1 _ 0
Table AII indicates that of all the modes con- (A19)

sidered, the rigid-body modes are least controllable For nq > 0, the finite invariant zeros can be obtained
from both locations as could be expected from the from data given in table AIII.

TABLE AII. RECIPROCAL CONDITION NUMBERS FOR COLLOCATED SENSOR/ACTUATOR
LOCATIONS 1 AND 2

Reciprocal Mode
Con(tit ion Rigid
number body I 2 3 4 5 6 7 8 9 10

C(,'_). (1) .... 2.4 x l0 -7 4.0 × 10-3 1.7 × 10-3 1.9 × 10-3 2.5 × 10-6 1.3 × 10-4 5.6 x 10-5 8.5 × 10-5 1.6 × 10-4 4.1 × 10-4 2.8 × 10 -4

C(,'_). (2) . . . 2.4 x l0 -7 1.9 × 10-5 1.5 × 10-4 1.9 × 10-4 5.9 x 10-5 2.3 × 10-3 2.2 x 10-3 1.1 x 10-3 6.4 x 10-4 1.1 x 10-3 5.5 × 10 -4

O(s).(l) .... 0.56 1.6x10 -3 1.3x10 -3 1.5)<10 -3 2.4x10 -6 1.3×10 -4 5.5×10 -5 8.4×10 -5 1.6x10 -4 4.0×10 -4 2.7×10 -4

0(,'_).(2) . . . 0.56 7,9 × 10-6 1.1 × 10-4 1.6 ::<10-4 5.6 x 10-5 2.3 x 10-3 2.2 x 10-3 1.1 x 10-3 6.3 x 10 -4 1.0 x 10 -3 5.5 × 10 -4

TABLE AIII. DATA FOR INVARIANT ZEROS

nq Sensor/actuator location 1 Sensor/actuator location 2
1 -0.9 x 10-4 =!:j0.082 -0.75 x 10-u ± j0.75
2 -0.37 × 10-3 4- j0.22 -0.013 4-jl.3
3 -0.29 × 10-3 q-j0.22 -0.017 i jl.7
4 -0.032 i j3.2 -0.032 ± j3.2
5 -0.045 ± j4.5 -0.79 × 10-4 ± j0.19
6 -0.056 ± j5.6 -0.11 x 10-3 ± j0.24
7 -0.057 i j5.7 -0.17 x 10 -3 ± j0.32
8 --0.064 + j6.6 --0.065 -4-j6.5
9 --0.042 ± j5.1 --0.065 + j6.5

10 --0.074 ± j7.7 --0.082 ± j8.3

13



Given a particular nq selection, the corresponding For both locations, all zeros are (marginally) min-
set of system zeros is the collection of entries from imum phase. Many zeros lie close to the open-loop
row 1 to row nq in table III. For example, with nq = 3 eigenvalues of A E (eq. (A5)) giving, as in table AII,
and location 1, the set of system zeros are an indication that these modes will exhibit weak

controllability/observability properties. Even though

( -0.9 x 10-4_ =t=j.082 the zeros from location 2 for nq < 4 have higher fre-
\ /

quencies (therefore allowing a higher controller band-[
{-0.37 × 10-3} • j0.22 width before interfering with performance), loan-

\

\ /
tion 1 is chosen for the LQG/LTR design studies due

"_-0.29 × 10-3)_ =i=j0.22 to better controllability/observability properties.

14
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TABLE I. ANTENNA PARAMETERS

Weight, lb ...................................... 10015.64

Inertia about axes through center of mass:
Ix×, lb-ft-sec 2 .................................. 4.222 x 166

Iyy, lb-ft-sec 2 .................................. 4.239 z 106
Izz, lb-ft-sec 2 .................................. 3.233 z 106

Structural mode frequencies, rad/sec ................... 0.75, 1.35, 1.7, 3.18, 4.53,
5.59, 5.78, 6.84, 7.4, 8.78

Ixy = Iyz = Ixz = 0

TABLE II. COMPENSATOR GAINS FOR ATTITUDE FEEDBACK CASE

Filter gain matrix H12x3

4.47 × 10-1 -9.32 × 10-9 4.36 x 10 -8
-2.12 x 10-8 4.47 × 10-1 7_72 x 10-8
-2.44 × 10-8 1.48 x 10-7 4.47 x 10-1

1.00 z 10-1 1.33 x 10-9 7.60 z 10-9
-1.33 × 10-9 1.00 x 10-1 -7.96 x 10-9
-7.60 × 10-9 7.97 x 10-9 1.00 x 10-1
-1.39 x 10-5 1.42 x 10 -5 -3.60 x 10-9
-7.92 × 10-6 -1.41 x 10 -5 -1.94 x 10-9
-5.12 z 10-6 1.43 z 10 -6 -3.34 x 10-11
-2.59 x 10-6 -5.16 x 10 -6 1.19 x 10-l°
-3.29 x 10-6 5.69 x 10 -7 8.92 x 10-11
-1.65 x 10-6 -3.31 x 10 -6 1.26 x 10-10

, Control gain matrix G3x12

105 -2.73 × 10-7 -7.61 × 102
-9.85 x 10-7 105 -6.2 z 10 -7

7.61 x 102 4.5 z 10-7 105

7.52 x 105 2.26 × 10-5 -8.6 × 103
1.23 x 10-5 7.61 z 105 -7.44 z 10 -6

-3.32 × 102 3.64 × 10 -6 3.35 x 105
-2.63 -1.91 x 10-l° -4.12 x 102

9.55 2.49 × 10-1° -3.83 x 102
2.57 x 10 -8 -9.31 x 101 3.67 x 10 -9
2.88 × 10-8 -1.95 z 102 1.00 z 10-9
1.14 x 102 -6.81 × 10-9 3.60 x 101
1.98 x 102 1.413 z 10-9 2.32 x 101
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TABLE III. CLOSED-LOOP EIGENVALUES FOR ATTITUDE FEEDBACK

Real part Imaginary part

-8.54 x 10-3 8.05 × 10-2
-8.54 x 10-3 -8.05 x 10-2
-7.56 x 10-2 1.25 X 10 -1

-7.56 x 10-2 -1.25 × 10-i
-7.60 × 10-2 1.25 x 10-1
-7.60 × 10-2 -1.25 x 10-i
-2.24 x 10-i 2.24 x 10-i
-2.24 × 10-i -2.24 × 10-1
-2.33 × 10-1 2.15 × 10-1
-2.33 × 10-1 -2.15 x 10-i
-2.38 x 10-1 2.11 x 10-1
-2.38 × 10-1 -2.11 × 10-1
-7.47 x 10-3 7.47 × 10-i
-7.47 x 10-3 -7.47 x 10-i
-1.35 x 10-2 1.35 x 10°
-1.35 x 10-2 -1.35 x 100
-3.08 x 10-1 1.37 x 10°
-3.08 x 10-i -1.37 x 10°
-1.02 × 10° 1.27 x 100
-1.02 × 100 -1.27 x 10°
-1.70 x 10-2 1.70 x 10°
-1.70 x 10-2 -1.70 x 10°
-4.03 x 10-1 1.74 x 10°
-4.03 x 10-1 -1.74 x 10°
-3.18 x 10-2 3.18 x 100
-3.18 x 10-2 -3.18 x 100
-4.42 x 10-2 4.53 x 10°
-4.42 x 10-2 -4.53 x 10°
-5.58 × 10-2 5.59 x 10°
-5.58 × 10-2 -5.59 × 100
-5.73 x 10-2 5.78 x 100
-5.73 × 10-2 -5.78 x 10°
-6.69 × 10-2 6.84 × 10o
-6.69 × 10-2 -6.84 x 10°
-6.39 × 10-2 7.40 x 10°
-6.39 × 10 -2 -7.40 x 10°
-8.33 × 10-2 8.78 × 100
-8.33 x 10-2 -8.78 x 100
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TABLE IV. COMPENSATOR GAINS FOR ATTITUDE AND RATE FEEDBACK CASE

Filter gain matrix H12x6

4.17 × 10-1 -2.87 x 10-12 1.51 x 10-12 9.09 × 10-2 1.99 × 10-12 -8.20 x 10-13
1.31 x 10-11 4.17 x 10-1 6.79 x 10-12 3.92 x 10-12 9.09 x 10-2 9.36 x 10-13
1.67 x 10-il -9.32 x 10-12 4.17 x 10-1 1.78 x 10-12 2.05 x 10-12 9.09 x 10-2
9.09 x 10-2 -2.16 x 10-13 1.84 x 10-13 4.17 x 10-2 7.07 × 10-i3 -2.84 x 10-13
3.11 x 10-12 9.09 × 10-2 2.06 × 10-12 1.25 × 10-12 4.17 x 10-2 4.52 x 10-13
2.32 x 10 -12 -7.95 x 10-i3 9.09 × 10 -2 2.63 × 10 -14 6.09 × 10 -13 4.17 × 10 -2

2.51 x 10-11 2.47 x 10-11 --3.32 x 10-9 --7.10 x 10-11 6.89 x 10-11 5.39 × 10-10
3.85 x 10-11 -2.51 x 10-11 -1.83 x 10-9 3.37 x 10-il 3.12 x 10-12 -2.91 x 10-9

-1.67 × 10-11 -7.10 × 10-l° -3.15 x 10-11 -1.36 x 10-l° 6.88 x 10-11 --8.74 × 10-11
8.07 × 10-li -3.32 x 10-i° 1.12 × 10-l° 7.91 × 10-12 -1.58 × 10-9 -6.84 × 10-12
6.40 × 10-l° -1.85 x 10-11 8.03 × 10-11 -5.92 x 10-11 -7.70 × 10-ii -4.46 × 10-11
2.83 x 10-1° 9.03 x 10-11 1.19 x 10-l° 2.18 x 10-9 -1.64 x 10-1 i 3.16 x 10-l°

T
Control gain matrix G12x3

10.00 X 103 2.40 X 10-s --1.01 X 10i
5.05 × 10-9 1.00 × 104 --1.16 X 10-s
1.01 X 10i 1.12 × 10-s 10.00 X 103
2.84 X 105 1.39 X 10-6 --4.57 X 102
1.35 X 10-6 2.85 X 105 7.11 X 10-8
4.00 X 101 3.82 x 10-7 2.11 X 105

--7.10 X 10° -7.49 x 10-1 -1.52 x 10°
9.64 x 10-1 2.40 × 10-11 -7.87 x 10 i
1.22 x 10-9 -2.45 × 100 2.53 x 10-il
4.38 × 10-9 -2.81 x 101 -2.98 x 10-i°
3,13 x 100 7.35 × 10-i° 7.08 x 10-1
3.50 x 101 -2.53 x 10-11 5.19 x I0 °
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TABLE V. CLOSED-LOOP EIGENVALUES FOR ATTITUDE AND RATE FEEDBACK

...... 1 __1o1925 AND RATE FEEDBACK

-3.35 X 10-2
-3.35 x 10-2 3.52 × 10-2
-3.36 × 10-2 -3.52 × 10-2
-3.36 x 10-2 3.52 × 10-2
-2.87 × 10-2 --3.52 × 10-2
-2.87 × 10-2 4.47 × 10-2
-2.32 × 10-1 -4.47 × 10-2
-2,32 × 10-1 2.14 × 10-1
-2.30 × 10-I -2.14 × 10-1
-2.30 × 10-1 2.17 x 10-1
-2.29 × 10-1 -2.17 × 10-i
-2.29 x 10-1 2.18 × 10-I
-7,47 × 10-3 -2.18 x 10-1
-7.47 x 10-3 7.47 x 10-1
-2.09 × 10-1 -7.47 X 10-1
-2.09 X 10-1 7.53 x 10-i
-1.35 × 10-2 -7.53 x 10-i
-1.35 X 10 -2 1.35 x 10o
-5.42 × 10-2 -1.35 × 10o
-5.42 × 10-2 1.35 x 10o
-1.70 × 10-2 -1.35 × i00
-1.70 × 10-2 1.70 × 10o
-8.33 × 10-2 -1.70 x 100
-8.33 × 10-2 1.70 x 10o
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Figure 1. Hoop/column antenna concept.
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Figure 2. Plots of typical antenna mode shapes.
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(a) Multiplicative uncertainty.

Uncertainty

r

.

(b) Additive uncertainty.

Figure 3. Definition of uncertainty.
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(b) Robustness barrier for additive uncertainty.

Figure 4. Performance and robustness barriers.
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Figure 10. Singular values of compensator Gc for rigid-body design model (attitude feedback).
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Figure 15. Stability robustness test for one-mode design model (attitude feedback).
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Figure 16. Singular values of compensator Gc for one-mode design model (attitude feedback).
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Figure 17. Singular values of GpGc for one-mode design model (attitude feedback).
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Figure 18. Singular values of (_p for three-mode model (attitude feedback).
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Figure 19. Singular values of AG for three-mode design model (attitude feedback).
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Figure 20. Singular values of GKF for three-mode design model (attitude feedback).
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Figure 21. Stability robustness test (eq. (11)) for three-mode model (attitude feedback).
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Figure 22. Singular values of compensator Gc for three-mode design model (attitude feedback).
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Figure 23. Singular values of GpGc for three-mode design model (attitude feedback).
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Figure 26. Singular values of AG for rigid-body design model (attitude and rate feedback).
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Figure 27. Singular values of C:_KFfor rigid-body design model (attitude and rate feedback).



Figure 28. Stability robustness test (eq. (11)) for rigid-body design model (attitude and rate feedback).
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Figure 29. Singular valuesof loop transfer matrix G L for rigid-body design model (attitude and rate feedback).
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Figure 30. Singular values of compensator Gc for rigid-body design model (attitude and rate feedback).
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Figure 31. Singular values of Gp for one-mode design model (attitude and rate feedback).
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Figure 32. Singular values of AG for one-mode design model (attitude and rate feedback).
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Figure 33. Singular values of _:_KF for one-mode design model (attitude and rate feedback).



10-2 __

10-3 _ a(I+GpGc)

Singular
values 10-4

10-5

10-6 l I I [ I I [ I [ I [ I ' I I [ II

10-2 10-1 100 101

Frequency, rad/sec

Figure 34. Stability robustness test (eq. (11)) for one-mode design model (attitude and rate feedback).
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Figure 35. Singular values of loop transfer matrix G L for one-mode design model (attitude and rate feedback).
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Figure 37. Singular values of Gp for three-mode design model (attitude and rate feedback).
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Figure 38. Singular values of AG for three-mode design model (attitude and rate feedback).
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Figure 39. Singular values of (_KF for three-mode design model (attitude and rate feedback).
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Figure 40. Stability robustness test (eq. (11)) for three-mode design model (attitude and rate feedback).

€€i
cD



102

101

100

Singular
values

10-1 a(GL)

10-2

I
10-3 I ! I I I IIII I I I I I II

10-2 10-1 100 101

Frequency, rad/sec

Figure 41. Singular values of loop transfer matrix GL for three-mode design model (attitude and rate feedback).
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