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FOREWORD

This document is the final report of work done on adaptive finite
element methods for SSME internal flow analysis for NASA under Contract
NAS8-36647. The results described here summarize a one-year pilot study
into several classes of adaptive methods which may have important implica-
tions in a large body of computational fluid dynamics work connected with
the analysis and design of the space shuttle main engine. The one-year
effort supported by this NASA-Marshall Space Flight Center contract repre-
sents one component of a larger program on adaptive methods in CFD underway
at the Computational Mechanics Company, Inc. of Austin, fexas. The very
encouraging results obtained suggest that a significant increase in the
reliability of computer-generated flow simulations is possible through

the use of special error estimates and various adaptive procedures.



1. INTRODUCTION

In this report, we describe adaptive finite element methods for the
analysis of classes of problems in combressible and incompressible flow
of interest in SSME (space shuttle main engine) analysis and design.

The general objective of the adaptive methods of interest here is to
improve and to quantify the quality of numerical solutions to the governing
partial differential equations of fluid dynamics in two-dimensional cases.
Implicit in this goal is the resolution of two questions: 1) how is this
quality of the numerical solution to be assessed? and 2) how does omne
effectively adapt the solution to improve quality?

An answer to the first question is to somehow estimate the local
error in a given'mesh cell (in an appropriate norm) by using the results
of a first trial calculation. Stated in another way, one can construct
a-posteriori error estimates using data from rougher solutions obtained
on a coarse mesh or with a low-order approximation. Once an estimate of
the local quality of the solution is known, one can "adapt” the numerical
scheme so as to improve the quality of the solution; i.e. so as to reduce
the local approximation error.

There are several different families of adaptive schemes that can be
used to improve the quality of solutions in complex flow simulations.
Among these aré 1) r-methods (node-redistribution or moving mesh methods)
in which a fixed number of nodal points is allowed to migrate to points
in the mesh where high error is detected; 2) h-methods, in which the mesh
size h is automatically refined to reduceﬂlocal error and 3) p-methods,

in which the local degree p of the finite element approximation is increased



to reduce local error. There are, of course, combinations of these methods
which can be very effective. Two of the three basic techniques have been
studied in the project reported here: an r-method for steady Euler equations
in two dimensions and a p-method for transient, laminar, viscous incom-
pressible flow. For discussions of our work on h-methbds for these types
of problems see, e.g. [ 1, 2, 3, 4].

The issue of a-posteriori error estimation is a difficult one. Two
basic categories of error estimation were studied in thé work described
here: 1) residual methods and 2) interpolation methods. The former classes
of methods make use of residuals computed using trial finite element
solutions. These methods can be computationally expensive; however, they
can yield very good estimates of the local error. Interpolation methods,
on the other hand, are easily implemented but may yield quite crude
estimates of the actual error. These schemes employ interpolation theory
and exploit superconvergence properties of finite element methods; they
seem to be perfectly adequate as a basis for adaptive mesh schemes for
the classes of problems considered here.

Following this Introduction, we present weak forms of Navier-Stokes
equations and the Euler equations that are used as a basis for the
development of finite element approximations. Since we anticipate the use
of techniques which move nodes and elements, we construct general space-time
"variational formulations"” for these problems for which the computational
domain can vary with time. In Section 3, we present two types of adaptive
schemes. First, an r-method for two-dimensional steady problems in inviscid
compressible flow characterized by the Euler equations. Numerical results

are presented for some representative test problems. In Section 3, we



also outline a p-method for incompressible viscous flows and cite some
preliminary numerical results. A brief introduction to residual methods
of a-posteriori error estimation is given in an Appendix, and some pertinent

conclusions of the study are listed in Section 4.



2. SPACE-TIME VARIATIONAL FORMULATIONS

OF COMPLEX FLOW PROBLEMS

2.1. A Space-Time Navier-Stokes Formulation. A general space-time

variational principle for incompressible viscous flow is characterized as
follows (see [ 1, 2, 3]).

Find a velocity field u in a class of functions V such that over a
time interval [ 0, T],

T

f {o [ v, u )l +u(Cu®, v + pb (v, v, v)
0

+ e b ( div o, div v ), )t

T
€
= J[ ( £, V)t dt + p (u, v)0 - p (u, v)T
0
VveV (2.1)
where v is an arbitrary test function, ¢ the mass density, u the
viscosity, f the body force, and
v
{ Voo u]t = J[ Y u dx at time t
S.21:
(Cu, v)), = Jrv u: Vvdx at time t
Qt
( u, v), = u-vdx at time t
Qt:

b (u, u, v) = b (u, u, v) + ; (u, 9, v) + g ($, u, v)

b (u, v, w) J( ((u-V) v.w+ Y div u (v « w) ] dx
Q
t



with Qt the spatial time domain at time t. Here we use a penalty method

(artificial compressibility) to approximate the hydrostatic pressure

p, by

1 ..
= - d
P iv u,
with € a small positive parameter. The functional b (+,s,s) represents
the convective term in the Navier-Stokes equations and ¢ is a particular
function designed to simplify the enforcement of no-flow boundary con-
ditioms.
A finite element approximation (2.1) is obtained by replacing
> . . . . . .
u and v with appropriate discrete approximations defined over a space-

time element K; e.g.

£ € _ N
o = ut (x, ©) =)l (8) vy ()
N
Once a finite element solution is obtained on a fixed mesh, we use

it to compute a local error indicator ¢Kwhich bounds the local eh =d -

uﬁ in an appropriate norm:

”Eh”K s ” QKH for element K

We shall discuss means for obtaining ¢K later.

2.2 A Space-Time Variational Formulation of the Euler Equations.

By following a plan similar to that used in the formulation of the
weak-space-time problem (2.1), a space-time formulation of the Euler

equations in two dimensions can be obtained.



Here,

m

In these equations, p is the thermodynamic pressure and y is the ratio

of specific heats,

QW)

m

(volume) and length (area) of @ and 9%

- J Q(U)n ds
g~~~

is the flux and n is

T
g = {D ’ ml ’ m2 ’ E}
4 ™
‘ -1 2
Y m]. + P(g)
Q(U) = -1
MM
-1
p ml(E + P(g))
n = {n n }T H Q1))
= 1* "2 5 P

assumed here to be constant.

U= {p, m, E}T, with p the mass density, m the linear momentum, and

respectively, then we demand

that U satisfy the following system of conservation laws:

(3.1

the unit outward normal to 3R

2 denote Cartesian components of m , then

)

' —lm m
. S )
o

l O-lmz(E + P(H))

.

= (y-DE-=-p"a- /2

If U(x,t), (x,t) C D, is the 4-vector of conservation variables,

E the total energy, and if dQ and dS denote Lebesque measures of area

If

In addition to (3.1),

U must satisfy an entropy production inequality as well as an initial

condition,

where

0G0 = Gy

Yo

is given.



It is of fundamental importance to note the smoothness requirements on
U 4n order that (3.1) make sense mathematically. Conservation laws (3:1)
hold when the components of U are bounded measurable (with respect to
Lebesque measure iﬁ. X ) functions on D . Thus, we may seek solutions in

the function space

T

Vé}

| v

v=|[Vs= (Vs ¥y Vs, 1 Vi(§,t)

6 L7(0.T 5 LY@) 5 1 =1, 2, 3, 4}

In particular, (3.1) is not equivalent to the classical Euler equationms,
Up + div Q) = 0 (with U_= 3U/ot and div Q = § 3Q ,/3x,) since
solutions may not possess derivatives across surfaces in D . However,
the conservation laws and initial conditions are fully equivalent to

the following weak boundary-initial value problem:

Find g 6 Y such that

] (" ¢, + Q@ : yg)dnar
D

T

T T
+ j U, ¢(+,0)dQ = J } F ds dt
g "0 g

0

for all ¢ 6W

where F 1is the actual prescribed flux through 32 and W 1is a suitable

space of test functions.

Here, we use the notation



4 3¢ 2 4 3o
R a o
gg:-ZU_._. ; Q'YQ=Z ZQ__
t asl’ a 3t i=1 a=1 ol axi

Consider an arbitrary time interval [11,12] — [0,T] and include
in W functions ¢(x,r2) z 0. Let © be a subset of § such that
wO v I‘k =@ , and.-let  F

% -~
conservation laws over g

Qn . Then another weak statement of the system
x [11,12] is:

Find U 6 V7 such that

T2 T T
j J [-g d¢ + (div g) Q) dg dt
1.'1 w

. J (U ary) gCoaty) = UTC,T)) 9Curpd)da = 0 (2.2)
W

for all ¢ € W T

with v®*T and w7 appropriate spaces of trial and test functioms.



3. ADAPTIVE SCHEMES

3.1 Finite Element Approximations. A hierarchal finite element

method designed for use in a p-method is used to construct approximations
of (2.1). We furnish some details late in this section. For a more
complete discussion of our approach, see [5].

Turning to (2.2), finite element approximations of the gas dynamics
problem are obtained by a direct approximation on finite-dimensional spaces
approximating the spaces V and W . The spatial domain Q is partitioned
into a collection Th of finite elements Qe over which the components of
trial functions V are approximated by polynomials of degree k . In this

way, we construct a family {Vh} of finite dimensional spaces of the type

h_,,h b h _hT
v = (=, v v vtev ] Ver, @), 1-1,2,3, 4
where Pk(ﬂe) is the space of polynomials of degree k defined over Q .

Alternatively, we can use- Vl;.lQe 6 Qk(ﬂe) » Where Qk(ﬂe) is the space of

tensor products of polynomials of degree k on Qe (e.g., Ql(Qe) is
spanned by bilinear functions, QZ(Qe) by biquadratics, etc.). In addi-
tion, a family {Wh} of finite dimensional spaces of test functions is
also constructed. We then consider Galerkin approximations by seeking
solutions ih'&h. with W replaced by wp.

We next derive a special semi-discrete, weak formulation which
provides the basis for the construction of a popular family of finite

element schemes. We proceed with the following steps:

10



i) Partition the time interval [O0,T] according to 0 =¢t_ < t

0 1

< t2 € ¢ o o < tN =T ;

ii) Apply the weak balance law (2.2 ) to a typical time interval
[tn, tn+1] (with T, = tn and T, = tn+1 );:

iii) Set Qt =0 1in (2. 2) suggesting the ultimate use of a
time-invariant grid (we relax this assumption later);

iv) Replace the time integrations in (2.2 ) by the elementary

midpoint quadrature rule

n+l
J £(t)de ~ at £7*E
t

n+s

At = t -t , £ == f(tn + At/2)

Thus, with w = @ , we obtain the semidiscrete approximation

j Qg U da + At I o™ Vo, do
Q Q -7

T Un+1 dQ
[

- at } 8¢ ("™ n)as
30
for all ¢ (3.1)

n-—
where gh =

U, and 9n+% is the flux at the half step,

Uh(g, tn) s etc., gh being the approximation of

+
v) To obtain an approximation gﬁ & ,» we use (2.1 ) again for time

interval [tn, tn+k] , this time replacing the time integrals by

a simple strip rule and integrating by parts the divergence terms

11



- J g (div gMdn
Q
e

for all ¢y (3.2)
We thus arrive at the algorithm,

1) With (g: R Qn = g(g;)) known at the n th time step,

1

compute g§+1 using (3.4)

2) Compute 9n+% using (3.3)
1
3) Compute y§+5 using (3.4)

4) Go to 1)

This algorithm is the finite—element based two-step Lax-Wendroff/
Taylor Galerkin scheme. It is one of a family of methods advanced by
Donea [6], studied by Baker and Kim [7], and successfully refined and
used by Ldhner et al. [8,9] in finite-element applications in fluid
dynamics. This semi-explicit method is of second order in time and
can experience spurious oscillations near shocks and other types of
irregularities in the solution. These deficiencies must be reckoned
with in implementing the method, and for this purpose we append to

the right-hand side of (3.1) an artificial term of the form

4 2

- At [Z Locw o™ et aq

Qa=11=1 i a,l "a,i
At?g ¢ (c (u™)v U") n ds
N
with
Bul
ci(u) = C Fye (no sum on 1)

12



In this work, we use meshes of four-node quadrilaterals over which
the components of U are piecewise bilinear functions. Similar approximations
and algorithms are used by Bey et al. 1In addition, so-called group
approximations of the flux Qai (a = 1,2,3,4; i = 1,2) are employed
so that these components are also piecewise bilinear functions determined
by their values at element nodes. In general, this finite element approximation

will be of the form,

N,

U= ) ul(e) 6, (x)

a j=1 a i~
Voo

Qpq * jgl Oyy (€) 8,(x)

where N denotes the total number of nodes in the discretization, and:
h h

Ug R Qgi are values of U Q at node j , and ¢j are the global
piecewise bilinear basis functions.

As noted earlier, we advance the solution in time in two steps. It is
important to note that the first step is essentially local, computed over

each element, while the second is global and contains the artificial

viscosity terms:

First Step:- For eaéhgelement Qe.’ calculate a constant element vector

Un.";i from
o

» N -

i J aa = J a{q $.d0) vl
ae ) o =11 ol @ -
e e -
ad
At -1 i,n
-5 (JQ -3'% de) e }

13



n+l
Second Step: For each node j , calculate Ui’ by solving the

following system of equations

N 36, 34, N
——14 j!n+1 - j,n
J-Zl {JQ [¢1¢j + 1, o%, 3x8]d9} Uy jzl (JQ 649 dn) U
3 .
n+s "4 _ nth _ =n
v A JQ 0(!8 aXB da At JBQ nB (QQB OGB)‘bi ds

- At J n Qn ¢, ds
5q B 0B 71

Here, §n denotes the elementwise averaged value of the flux. The

coefficients = are defined to be constant over each element,

8
Bug
T = cA —
B e BXB

where ¢ 1is a global constant (¢ =1 1in the examples), Ae denotes the

area of Qe , u: denote the components of the fluid velocity.

3.2 A Node Redistribution Method. We now describe one of the principal

aspects of this investigation: a moving-mesh, node-redistribution method
based on equidistribution of error indicators. We begin by presenting
a simpler mathematical justification of the concept of equidistribution
of error.

Consider a regular mesh of quadrilateral elements Qe with a diameter
he Let % be an error indicator for element e and suppose that the mesh

contains a fixed number M of elements. Let h = h(xl, x2) be a mesh

14



function such that
h(xl’XZ) = he = dia(ﬂe) for (xl,xz) € Qe
and note that, approximately,

M:J d_{zz
Q h

with d@ = dxldx2 (this being exact for domains which are unions of square
elements). Let @ = e(xl,xz) be mesh function which gives the local error
indicator when evaluated at a point (0 = ee for X 6 Qe ). We wish to
minimize the total error indicator functional,
M 2
Je = J I 0% da
e
e=17'Q

subject to the constraint (3.3). Using Lagrange multipliers, this leads to

the optimality condition,

§(3 + A(J nlan-m) =0,

Q
or
30 -3 _
12 f (6, 55 = Ah “)éhdn = 0
e Q
e
or
90
3 e -
he @e el A=0
Suppose that meas(Qe) = oéhz and that Oe is of the form
ee = hZf(u) . Then, integrating this last result over a typical element
gives

j ohd 0. Wl f(u)de = Ao b2
Q e e e c e

e

Hence, the optimal mesh size distribution results when

15



N
?"{INITIAL

Figuré 1. Calculation of area center-of-error
N ‘s .
X to equidistribute element error

~

indicators in a cluster of four elements.

16



J Gi daQ = Xoo/o = CONST. (3.4)
Q

In other words, to obtain the optimal mesh, we must equidistribute the

indicators Iei .

To use this result to redistribute nodes, we proceed as follows (cf.

Diaz et al.

1) GCenerate an initial (generally regular) mesh with a fixed number

M of elements and compute a trial solution on this mesh at one time step;

2) Compute the corresponding error indicators ee 3

3) For a group k of P elements (with P always 4 in this

work), let Ae denote the area of element i 1in the group. The
i

area-weighted indicators for group k are the P-numbers,

0ei’Aa1

4) Let ze denote a vector from the origin of a global coordinate
1

system to the centroid of element ey of group k . Then the center of

error of group k 1is defined as the vector (see Fig. 1)

xk ~ i=1 ei
~ ¢]
Ay
£ A
i=1 .ei.

5) Relocate the node at the center of group k to lie at the vertex
k

of x
6) Continue this sequence of operations over each group h of four
elements until the new location of each node does not change more than a

preassigned tolerance.



There remains only the issue of how the error indicator ee can
be calculated in an efficient manner. Instead of using residual methods
such as those discussed in the Appendix, we shall use an interpolation
method. These methods are derived from the theory of interpolation
of finite elements (see Oden and Carey [10]. In particular, let u be

a smooth function defined over a regular domain §. The woP (R)-semi-

1/p
de

J

norm of u is defined by

3i+ju

1]
3x13x2

|ul

W' P Q) Jn 1+j=r
i,j20
where 1 Sp S® and r 1is a non-negative integer.

The Sobolev norm of u 1is

r
=31 lul?

“ ] 1/p
u ! \,
WP (Q)u k=0 wk’p(ﬂ)f

Let G be an arbitrary convex subdomain (a finite element) of Q
over which u 1is interpolated by a function Gh which contains complete

piecewise polynomials of degree k . Then, it can be shown that

the local interpolation error in the Wm’p(G)-éemi-norm is

lu -
nl

*Po)
n n
s hk;l cwP P |y
P wk+1’p(C)
where

h = the diameter of the domain G
p = the diamegér of the largest sphere that can be inscribed inside G
n = the dimension of the domain @

18



p'= p/(p-1)

C a constant independent of h , p, and u.

If p 1is proportional to h and if it remains proportional in refinements

of G defined by parametrically reducing h , we have

. 2 -l 4ktl-m
"] schP P lul (4.13)

m,p,G k+l,p

~

, etc. and Eh =u-u .

with m,p,G - lflwm!p(c)

Such estimates can be used to devise crude adaptive schemes. Suppose
that u on the right side of (4.13) is replaced by a finite element

approximation u_  and that 'uh|k+1,p = 'ulk+l,p + 0(h) . Then, (3.4

indicates that the local error in the Wm’p(G) seminorm is proportional to

' - -
the error indicator, hn/p n/p + k+l - m lul Some choices are:

k+l,p *
1) n=2, m=0, k=1, p=p' =2

h
IE L2y S € 0lulz 2 o = Co (3.5)

In this case, one must approximate the W2’2-semi-norm of u over G ;

i.e., the LZ2-norm of second partial derivatives of u .
i) n=2, p=e, p'=1, k=0, m=0,

2] oh
L1 () Ch lEaverage,

oA

Chalull’m’G

Ch® max|V-u(x)| = CO; (3.6)
x6G

19



3.3 Numerical Experiments - An r-method. We shall now cite some

representative examples in which the r-method described above is used.

All examples here are steady-state problems and the following conventions

are used:

1. The numerical solution is computed on a fixed mesh and is advanced

in time until a steady state is reached.

2. After convergence to a steady state, initial error indicators

ee are computed according to

in analogy with (3.5).

3. Then, a modified error indicator ee is employed which is designed
to be always greater than unity even when ee: 0. In particular, we

use

In our examples, a = 81, B =1, and y = 8.

4. Nodes are redistributed a total of K times using the procedure

described earlier. In the example, we take only two iterations (K = 2).

A Shock Reflection Problem. We begin with a problem for which

an exact solution is known and which has been used as a benchmark problem

by others.

20



The problem involves the steady flo& of a perfect gas in a rectangular
duct in which density, velocity, and energy are prescribed in each of four
triangular wvedges in such a way that the appropriate jump conditions (the
Rankine-Hugoniot conditions) are exactly satisfied. Thus, a problem of
shock reflection fer which an exact solution is known is obtained. Dimen-
sions and data are given in Fig, 2. In this and all the other problems,
the solution is considered to have converged to steady state when the
magnitude of the LZ%-norm of the density is reduced by three orders of
magnitude.

The time step is monitored by the formula

f 0.50vA
At = min T—T—-—E—
e | TeTFC
Here, C2 = %2- and lglz = u% + hg s Y =1,40 . The constants

multiplying the artificial viscous terms were selected locally as:

where the bar denotes average element values. A Lapidus constant of
1.0 is used.

The results of a uniform coarse grid approximation are shown in
Fig. 3. The computed density contours are also shown.

The same problem was also analyzed using the node redistribution
algorithm with 20 node redistribution iteration. Results are shown

in Fig. 4. There, the original coarse initial mesh of Fig. 3 is progressively

21



1 I1 p =1.7
m,=4.45145
m,=2.9 E =9.8702
m2=0.0
=5.99
II JT1
ZShock Lines
Figure 2.. A shock reflection problem. Inflow values of the conservation

. variables are prescribed as indicated in regioms I and II, and

outflow values are computed in III to satisfy the conservation

laws.
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distorted to conform to the reflected shock locations. Corresponding

density contours are also given in the figure.

NACA 0012 Airfoil in Supersonic Wind Tunnel. In this example,

the supersonic flow through a narrow wind tunnel containing a NACA 0012

airfoil is studied. The inflow Mach number was set at M_ = 2 , with

Y = 1.40 and symmetry is exploited to reduce the computational effort.
The initial coarse mesh and density computed contours are given in

Fig,., 5. Note that the critical features of the solution -- the

reflected shock and contact discontinuity -- are lost with this coarse

mesh. Results of a node-redistribution scheme for the coarse mesh
are gshown in Fig. 6. In these results, ten iterations of the node re-

distribution algorithm were used.

Supersonic Flow in a Wind Tunnel with a Step. The steady-state

solution of the problem of a wind tunnel with a step introduced into the
flow is next considered. The inflow Mach number was selected M_ = 3.0
and Yy = 1,40 . The inifial coarse mesh is shown in Figure 14 with the

corresponding density profiles. The mesh refinement algorithm was also

used, with the mesh and density profiles obtained after 10 iterations
shown in Fig. 8. We see that some oscillations are present downstream,

and they are believed to be due to the non-monotonicity of the solution
algorithm. The results presented for the refinement-unrefinement procedure
have been constrained by a maximum number of 2000 nodes or 2000 elements

that can be allowed. In the refined mesh shown, this constraint has

been achieved.

23



Figure 3.

Reflecting shock problem.

Initial mesh and density contours.
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s

Figure 4. Reflecting shock problem. Mesh and density contours obtained

after 2x10 applications of the mesh redistribution algorithm.
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Initial mesh and density contours.
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Figure 6. NACA 0012 airfoil in supersonic wind tunnel.
Mesh and density contours obtained after 2x10

applications of the mesh redistribution algorithm.
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Figure 7. Supersonic flow in a wind tunnel with a

step. Initial mesh and density contours.
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Figure 8. Supersonic flow in a wind tunnel with a step.
Mesh and density contours obtained after 2x10

applications of the mesh redistribution algorithm.
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Blunt leading edge in hypersonic flow field.

Figure 2.

Initial mesh and density contours.
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Figure 10. Blunt leading edge in
hypersonic flow. Mesh
and density contours
obtained after 4
applications of
the mesh
redistribution

algorithm.
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Blunt Leading Edge of 8' HTT Panel Holder in Hypersonic Flow.

The problem of the blunt leading edge of the 8' HTT panel holder in a

supersonic flow field with freestream Mach number M = 6,57 , y = 1.38

©
and 0° gngle of attack was solved to obtain the steady-state solution.
This problem has also been studied by Bey et al.

A coarse mesh solution is indicated in Fig. 9. A distorted mesh
and corresponding density map are indicated in Fig. 10. In this particular
problem, the r-method did not give particularly good results, as a poor
approximation of the solution between the shock and blunt body results
from spurious ocsillations in the basic time-marching algérithm. In
the case of mesh adaptation using redistribution, the solution actually
diverges after four passes through the adaptive scheme due to the badly
graded (hourglassed) mesh produced from the oscillations of the adaptive

scheme downstream of the shock.

3.4. A p-Method. Returning now to the full, viscous, Navier-Stokes

problem characterized by (2.1), we outline a p-method for adaptive

improvement of finite element solutions. The procedure is straightforward:

1. On a fixed mesh, compute a trial solution at each time step
using a linear or bilinear approximation of the velocity field Ui.

2. Use gi to compute a residual for data in a local problem which
yields the local error indicator ¢K over each element K.

3. Use local quadratic approximations to compute approximate error

indicators ¢K.
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4. Check for pre-assigned error tolerances. If the error is too

large, recompute Ui locally using quadratic elements.

We employ hierarchal families of elements and could go up to quadic
polynomials. In results given below, only quadratics are employed,
and mesh refinement is used if increasing p fails to bring error with
acceptable limits.

To test the residual estimation technique and our p-method, we
examine the performance of the method using a problem with a known
analytical solution. Since few analytical solutions to the tramsient
Navier-Stokes equations are known, we attempt to construct solutions
to special problems by choosing an analytic solution and then computing

the corresponding boundary counditions and body force.

The theoretical analysis suggests the following local error indicators:

K
K2 1292
Elg _ <{tn Epl? IK:t + plat |"1’K’t+u”¢K"2}dt +
» 1 tn-1 2 I
Kj2 Ki2 i
. eloRE .+ Ple ’K,tn-1)
2
1 = K
Ex’n - l? lK,tn
2 “n Ky b
*K,n ~ ( t ”? ”K tdt)
n-1
t
3 . n 39K 5 3
“K,n (Ic I‘EE 21k, 099
n-1
th
K 1
S T AT
a-1 -~
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Here,

K2 _ , K K, . 2 K K
19T, 2 @500 Il = o 0 T

For each error indicator ej , J=1,...,4 we define the

K,n

effectivity ratio

. J
pd = _SKun
| E":‘h” 1J<,n

]

as described above. We
K,n

where ||e ”J is the norm estimated by ¢
~-h"K,n
say that ed is an effective estimator if the corresponding

b

effectivity ratio takes values close to unity.

In the numerical example to follow space-time elements of

first order (bilinear in space, linear in time) are used to obtain an
approximate solution and second-order space-time elements (biquadratic
in space, quadratic in time) are employed to solve the local parabolic
problems in the first time step. Then a normalized value Eg,n of

the local error indicator QBK is computed for every element K . A

new order of approximation for element K is defined as follows:

If 0 < Eg q <8 first order approximation
?
-0
If 6§ < EK <1 second order approximation
, I

Thus, the order of approximation is increased in the elements with
error indicator bigger or equal to & times the value of the largest
error indicator and an enriched mesh is obtained. This enriched mesh
is used to advance the solution for M time steps (including the
first) and after that the whole procedure is repeated. The success of

this strategy in any particular problem depends on the choice of the
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discretization parameters h , At and the constants § , M .

We now consider a problem.with a one-dimensional "wave-like"

solution in the fixed spatial domain Q = [0,20) x [0,20], namely

12
6 =0, v =10e-{08Gx=6)-2t}2 o _¢

The problem was solved with two uniform (5x 5 and 10 x 10) meshes

using the following parameters:
Time step: At = 0.025, 0.100
Penalty parameter: ¢ = 1073

Fluid constants: p =1, n =1

Kinematic boundary conditions were applied on the side with y =0

| while traction boundary conditions were applied on the remaining three

sides of the boundary. This explains why the numerical solution-for

the v-component shown in Fig. 11, 12 is not uniform in the y-direction.
For each error indicator we may cémpute a global effectivity

ratio defined by:

K y2 \% o
ej = E(Ej’n)- vV
. z(ngh”é’n 2

Table 1 gives the evolution of the global effectivity ratios for
the proposed error estimators through the first nine time steps. It
is observed that the values of these ratios diverge from the optimal
value of one as the time marching progresses. This phenomenon is due
to accumulation of the truncation error which destroys the effectivity

of the error estimates and makes the adaptive procedure inefficient as
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Figure 11. Problem with exponential solution. Computed solution

time t = 0.1, Parameters: h =2, At = 0.1, §= 0.25,

M=4.
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can be seen. This situation can be corrected by reducing the values

of the parameters of the adaptive procedure, namely h, At, M, 6.

Table 3.1

Values of the global effectivity ratios after the first time step; At =

0.025
1 2 3 L
Mesh 81 61 61 61
5%x5 1.0439 1.6995 1.3037 1.0339
10x10 1.0054 0.3225 1.1627 1.0011
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4. CONCLUSIONS

1. The use of rigorous residual error estimates for time-dependent
Navier-Stokes problems in two dimensions is justified by the methods and
results developed during the course of the work. In particular, sharp
error bounds can be derived which were found to yield excellent error
estimates for a test problem.

2. The use of p—methods and residual error estimates can be computa-
tionally expensive. New data structures must be developed before these
types of methods can find wide application in practical flow problems.

3. Adaptive p-methods may ultimately offer significant advantages
over other adaptive schemes if used in parallel computation with efficient
use of multiple array processes. At present, these schemes do not perform
well in comparison with some other adaptive strategies from the viewpoint
of programming ease and computational efficiency.

4. Node redistribution methods are simple to use and can be effective
in certain steady problems. They do not appear to be attractive in general
flow problems, particularly in cases in which boundary conditions vary in
time.

5. The node-redistribution-relaxation scheme described in this report
can exhibit numerical instabilities in certain flow problems. The method
is incapable of reducing 1local erfors below very high tolerance levels
without acquiring some destabilizing properties. It is doubtful that the
method will find broad applications unless it is combined with an h-type

or p-type adaptive strategy.
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6. The h-methods, not dealt with here, do offer some advantages in
terms of speed of implementation and general data structures over the
r-method and the p—method developed here. However, these schemes can also
exhibit instabilities. It is highly likely that the best adaptive schemes
will prove to be those which combine h- and r-strategies.

7. Interpolation methods for error estimates are rather easy to
implement and can be easily added to existing CFD software. They can
provide only a crude indication of the actual local errors, but they can
be used to produce an adequate indication of relative error between succes-
sive meshes.

8. Additional studies are needed to explore algorithms for accurate
and efficient time-dependent problems. While we have developed some schemes
in earlier work (e.g. [l]), a general approach to this important problem

which fulfills requirements of accuracy and efficiency is not yet available.
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APPENDIX

A-Posteriori Error Estimation for a Class of One-Dimensional Elliptic

Problems.

Consider the model problem,
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—% (a.-i—:-)-'r bu=f in (0,1)

u(0) =u(l) =0

where it is assumed that

0 <ap, Sa(x) Say, <+ ¥xe[0,1)

0 <b(x) <b, Vxe[0,1].

Assuming a,a’,b,fe C([0,1]) we have ue C%([0,1]).

Let us define the bilinear form,

1
du dv

a(u,v) =_[ (a =— — + buv)dx
0 dx dx

Then u is the solution of the variational equation,

1
a(u,v) = [ fvdx  VveHg([0,1])
0
Moreover, we define the energy norm ||'||g by,

Ivilg = a(v,v) Vve H([0,1])

QY

We discretize [0,1] using N linear element Qj=[x-_1, xj], j=1,...,N, where

0=xo<x < * -+ <x;_j<x; - - - <xy=1. Let VP HZ ([0,1]) denote the space which is

) )

spanned by the basis functions of the discretization. We approximate the solu-

tion u of (1) with a u,e V! which is obtained as the solution of the discrete

problem:
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Find u,e V" such that,
1 :
a(uh, Vh) =J’ fvhdx Vvhe Vh
0
We want to estimate the energy norm of the approximation error,

ep = u-uy. In view of the orthogonality condition,

a(ey, vi) =0 VvpeVh

the energy norm of the approximation error satisfies,

lienll = aley, ey — vy)
Choose \:'he VP such that ﬁh(xj)=eh(xj), j=0,1,....,N and let w=eh—1;h to obtain:
N % d d
leiE = ] {a = (u-up) T + blu—uywldx (2)
=0 ox .

Integrating by parts and noting that u{;:O in (%}, X1), J=0,1,..N—1, we get,

N-1 X,
lesiZ = % ] (Fra'u’y-bupwdx 3)
0 x

We also have (see Babuska and Rheinboldt [1]) that:

ley=vellg < (1+OM)lleyllg | (4
Starting from (2) and using Schwarz’s and Korn’s inequality and (3) we get

the following estimate:
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N-1 X l
llewle < (I+OMNKM( T | (F+a’u'y-buy)dx)” (5)
=0 X; '

Here, h = max (x;,,—x;), and K(h) denotes Korn’s constant.
0<igN-1

The estimate given in (4) has the disadvantage that it involves Kom’s
constant which has to be computed for a given discretization and even then the
estimate is far from being optimal. Babuska and Rheinboldt [2}, developed a
less obvious approach ( than the one leading to (4) ) which gives sharp error
estimates. This approach is summarized below.

Define a family of local auxiliary problems as follows:

For every element Qj+l’ find dj1€ H(}([xj, xj+1]) such that,

xj‘l ,
a(0j41, V) = I (f+a'u’,—buy)vdx

X

Vve HJ([xj, X;41)), j=0,....N-1
Combining (2 J- with (5) - using Schwarz’s inequality and inequality (3 ) we

obtain the bound:

N-1
lewle < (X 19,111 q,.,)"
=0 :

One can estimate 19541l Q. using the Lax-Milgram theorem to obtain:
”‘bj-;.l”E,Q_j’1 < Cﬁ1]|f+a'u'h—buh||0'9}'l
Moreover by using spectral analysis one can show (see [ 3 ])
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2
(Xj417%;)

Cii < :
s n¢ min a(x) (&)
X€ (XK1
and finally we get the estimate:
N-1 (x x;)? "
- " .
leyle < |3 r-_J lIf+a"w’—buylid, (7)
=0 T min a(x

X€ (XyXpa1)

We note that the error bound given in (6) can be computed without solving

the local problems defined in  (5).

Locally Computed A-Posteriori Error Estimates for Elliptic Equations

For the sake of simplicity, we first restrict ourselves to the following
model elliptic problem.

Find u such that

Au=fin Q
u=uy only

du

on

Here Q is a bounded domain in R2 Iy, and I'; form two disjoint parts of the

= on FT

boundary 0Q and f, uy, g are given functions.

If uy denotes a function from HY(Q) whose extension to I', coincides
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with ug ( when we use the same symbol for ug and its extension) we have the

usual variational formulation to (7).

Find u € ug + V such that

JYu'Yde=J'f-de+J'gv ds Vve V
Q Q Iy
where

V={ue H(Q)u=0 onT,}
and dQ, ds denote measures of volume and surface area‘respectively.

In the following, we discuss a method to compute a-posteriori enbr esti-
mates for finite element solutions of (7).

Suppose we are given two approximation spaces, say Vi, VP < V such
that approximation (interpolation particularly) of an arbitrary element v € V by
elements vf € VP results in "much smaller” error than the approximation by
vg € V. Specifically we can think about VP as the space spanned by the
hierarchical elements with order p large enough. V}} dpcs not mean necessarily
the space corresponding to the first order approximation.

The approximate problem for the "lower order" approximation can be

stated as follows:

Find u! € uy + V{ such that
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[Vup-Vvy dQ = [ fvy dQ + [gvp ds V vy € V)
Q Q I
For simplicity, we will assume that kinematic boundary conditions can be

satisfied exactly by the first order approximation (i.e., ug € V).

The residual r} corresponding to the solution u} is an element from the

dual space V" and should be estimated in the comresponding dual space norm:

1 — 1
fitglly== sup <rp, v> (8)
v eV

IVl <)

Certainly r, is weakly continuous over V and the ball |lv|ly <1 is weakly com-
pact, and, therefore, there must exist a certain vy, ||vglly < 1 in fact it must be

normalized in the sense that |jvpll = 1) such that

irplly = <1'h’, vo©

Now, let \:&h denote the best approximation of vy out of the space VP. Suppose

llvg — \;&H < &. Defining v§ = \;& /||\;&|| we easily conclude that also

3
vo—- Vgl <€+ —
Ivo = vl —
which is equivalent to saying that vy can be approximated "close enough” by ele-

ments with unit norm.

Next, (8) can be replaced by
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ety < lindlvelive—vEll + e <y, VP> (9)-
\'4

the first term on the right-hand side being negligible. In other words we
presume that the error in terms of the dual space norm can be estimated

sufficiently well by taking the supremum over only the subspace V.

Now let us try to estimate this supremum. We have:

<rp, vf> = _[Yuhl-Vv,{’ dQ - j fvp dQ - ‘LﬂTgvﬁ ds =
Q Q

1 au,,l au,}*

SA{)= Au,} - vk dQ + —(— - P ds +
% Jea2 0
b} 1
+I (-%;h— - g)vg ds (2.n+y)

aKmr'r
Let us note also that in (2.24) vf can be replaced by'the differnce vP — vy, with

arbitrary v} € V! since the residual r} is orthogonal to V}. In particular, we

can choose for v} — a V! - interpolant of v{.

Finally, defining

VR(K) = {v{ € VR(K)IV}{ - interpolant of vf = 0}

we may use the following-local problem associated with an element K:

Find ¢ge V{, (K) such that:
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IY¢KYVP? dQ =
K

1 dul  dul*
(-Vul-Hvp dQ + - (— -
! Joa? o o

)P ds
du,!
+I (-E— -g)vPds Vvle VPK)
dKA\T-
M T
and equation (9) can be rewritten in the form:

<y, vE> =3 [VoxV(vf - v) dQ
K K
The functions ¢ are local error indicator functions.

Finally, we note that for each element K there exists a constant Cg

such that

Iv@ = vallix € CklivBlli x ¥ v e VE(K)

which results in
<tp, VB> S C(T [(Yor)? d)*(IvElly (10)
K K
provided

C= C
mélxK

The constant Cyg is independent of the size of element K, but it does depend on
its shape. In particular, for grids consisting of the same regular elements (not

necessarily uniform Cy is independent of K and does not affect the local
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behavior of the estimate (10) (comp. also [ 4 }).

- Qur estimate:

lirally- < C(E [(Yoy)? d)*
KK

clearly has only a global character; however, the contributions J(Yq)K)de
K

(local) error indicators) may serve as a basis for some local refinement.

Finally, let us note that in the case of the model problem the residual

estimate can be directly reinterpreted as the estimate of the error e} = u - u,
since
leallé = [Ve,Vey dQ =
Q
1 du
= quh Vei dQ - j(—Au)cr} dQ - J's—
Q Q Iy
<y, ep> < lirgllellel

and therefore,

lleglly < lirglls

Conversely taking into account that in the case of a Hilbert space H with inner

product (.,.)y and the corresponding norm |}y,

<u, v>
llully = su -

veH |Ivl|

one gets that
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gl = lleallv (11)
In fact, for ény self-adjoint elliptic problem wc. may define the proper
(energy) norm in such a way that the norm of residual is exactly equal to the
norm of the error. For a class of not self-adjoint problems or for certain classes
of nonlinear operators (strongly monotone) the residual norm can likewise be
bounded below by the norm of the error. However, in general the relation
between these two quantities is more complicated and we must be satisfied with
the observation that, in general when the solution of the boundary value problem
depends continuously on the righ-hand side (the data), it makes sense to minim-
ize the residual since it results in simultaneous convergence of the approximate
solution 1o the exact one (see also [.5]).
We now show that the concept of estimating the residual over a higher
order approximation space V§ can be easily applied to Stokes problem. Stokes
problem is of special interest to us since it is obtained from a linearization of the

stationary Navier-Stokes equations.

Let us restrict ourselves to the case of pure kinematic boundary condi-
tions (the Dirichlet probl'ém). The Stokes consists in the determination of the

velocity field u and pressure field p such that:
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~HAu +gradp=f
divu=0 inQ

u=1yy; onodQ
where [ is the viscosity constant, f stands for body forces and u, specifies velo-

city on the boundary. The usual consistency condtion must be satisfied, i.e.,

u,ds=0 -

2
where u, = u'n, provided n denotes the outward normal unit to dQ. The varia-

tional formulation of (2.32) is as follows:

Find u € ug+ V, p € L(Q) such that:

uf eywe(v) dQ + [pdivydQ=[fydQ VyeV
Q Q Q
Idiv uqdQ =0 Vgq e/L&(Q)
0
Here g;j(u) denotes the symmetric part of the gradient of u. In the above ug
denotes an arbitrary function in H'(Q), such that uglyq = ug (again, we use the

same notation for ug and for its trace on the boundary, and that div uy = 0, and

V = H}(Q) and, as usual,

L3(Q) = {g e L¥Q)| [ q 4Q =0}
Q
Denoting, as previously, a p-th order approximation space by V§ and
LZP respectively, we may formulate the p-th order approximate problem as fol-

lows:
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Find uf € uf + VF, pP € LE(Q), such that
k[ &ude(vR) dQ + [pf div (v)) dQ= [fyf dQ V vP e VP (12)
Q Q Q

favuafda=0 Vaqe L}
Q
As in the preceding case, we attempt to estimate £hc proper residuals
corresponding to the "l-st order approximation” i.e., replacing suprema over
ve Vandqe LZQ) by suprema over vf € VP and q, € L2, with some
p> 1

We have for the first equation:
<-pAy) +gradpl -f; vE> =
> { feiuney(vh) dQ - [py div vf dQ - [ fvf dQ} =
K K K K
Y{J(- Aup + grad py - HvF dQ +
K x

f Hud,pd) - t*(u,pd

- ) yp ds} (13)

dK Q2
where, as usual, t* denotes a stress vector corresponding to an adjacent element.

For the second equation we get simply:

<divghl,qh°>'=z‘|'divghlq§dﬂ
KK

As usual, one can see that yvf and qf in (12) and (13) can be replaced by

7
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vf - v} and qf - qf for arbitrary v; and particularly choosing for v; and g

interpolants of v and qf we can set the local problem in the following way: .

Find ¢g € VE.(K), yx € LE(EK) such that:

gk
kf(- Aup grad py - Hyf dQ + | th_ v dQ V vf e VE(K)
K dK aQ

[div(¢g)af dQ =0 V qf € LEK)
K
In the above VE(K) = {uf € VP(K)[Vy-interpolant = 0)

LE(K) = {qf € LR(K)ILy - interpolant of qf = 0}

Finally (¥2) and (13) can be rewritten in the form:
< - Ay + grad pp — f,vE > =
3 {1 &;@)e;(vE-va) dQ - [y div (vP-vy) dQ
K K K

and

< div uy, ¢f > = ¥ [ div(ox)(af—ay’ dQ
KK

where vJ and q! are> the appropriaté interpolants of vf and qP respectively. Both
identities lead to the residual error estimates. However, tﬁe second one is practi-
cally useless, since the ||div uhl"L’-(Q) can be estimated simply by a direct compu-
tation. Let us therefore focus our attention on the first residual. By Schwarz’s

inequality, we get
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I J £;(9x)€;;(vE-vy) dOMEGA - I‘VK div (vf-v}) dQ| <
K K
< (loxliZ g + Iwklé)ivE—vilik <

< Cx(lioklE k + Ilwklid) *ivElik,

where ||lgx is energy norm associated with the viscous, bilinear form,
lvllk = (lvliZx + lidiv vlI§x)* is a well-defined norm in VE,(K), and finally Cy is

a constant associated with the estimate of the type:

live - villg < Ckllvfllx 'V v§ € VR(K)

Ck is independent of the size of the element K but depends upon its shape. For
detailed discussion of these ideas, we refer to [4]. We note here that for
meshes which are uniform or consist of elements of the same s‘hape the constant
Ck 1is independent of the element and does not affect the local behavior of the

estimate.

Finally, we arrive at the estimate:

lI- nauy + gradpy ~ flly.0 < C(T (Igwlék + Ivilidx)™
K
where C = mélx Cy, and the norm in the dual space is measured with respect to

the norm:

Vil = (3, (viig + lidiv vi§x)?
2 ;
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