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FOREWORD

This document is the final report of work done on adaptive finite

element methods for SSME internal flow analysis for NASA under Contract

NAS8-36647. The results described here summarize a one-year pilot study

into several classes of adaptive methods which may have important implica-

tions in a large body of computational fluid dynamics work connected with

the analysis and design of the space shuttle main engine. The one-year

effort supported by this NASA-Marshall Space Flight Center contract repre-

sents one component of a larger program on adaptive methods in CFD underway

at the Computational Mechanics Company, Inc. of Austin, Texas. The very

encouraging results obtained suggest that a significant increase in the

reliability of computer-generated flow simulations is possible through

the use of special error estimates and various adaptive procedures.



I. INTRODUCTION

In this report, we describe adaptive finite element methods for the

analysis of classes of problems in compressible and incompressible flow

of interest in SSME (space shuttle main engine) analysis and design.

The general objective of the adaptive methods of interest here is to

improve and to quantify the quality of numerical solutions to the governing

partial differential equations of fluid dynamics in two-dimensional cases.

Implicit in this goal is the resolution of two questions: 1) how is this

quality of the numerical solution to be assessed? and 2) how does one

effectively adapt the solution to improve quality?

An answer to the first question is to somehow estimate the local

error in a given mesh cell (in an appropriate norm) by using the results

of a first trial calculation. Stated in another way, one can construct

a-posteriori error estimates using data from rougher solutions obtained

on a coarse mesh or with a low-order approximation. Once an estimate of

the local quality of the solution is known, one can "adapt" the numerical

scheme so as to improve the quality of the solution; i.e. so as to reduce

the local approximation error.

There are several different families of adaptive schemes that can be

used to improve the quality of solutions in complex flow simulations.

Among these are 1) r-methods (node-redistribution or moving mesh methods)

in which a fixed number of nodal points is allowed to migrate to points

in the mesh where high error is detected; 2) h-methods, in which the mesh

size h is automatically refined to reduce local error and 3) p-methods,

in which the local degree p of the finite element approximation is increased



to reduce local error. There are, of course, combinations of these methods

which can be very effective. Two of the three basic techniques have been

studied in the project reported here: an r-method for steady Euler equations

in two dimensions and a p-method for transient, laminar, viscous incom-

pressible flow. For discussions of our work on h-methods for these types

of problems see, e.g. [ 1, 2, 3, 4].

The issue of a-posteriori error estimation is a difficult one. Two

basic categories of error estimation were studied in the work described

here: 1) residual methods and 2) interpolation methods. The former classes

of methods make use of residuals computed using trial finite element

solutions. These methods can be computationally expensive; however, they

can yield very good estimates of the local error. Interpolation methods,

on the other hand, are easily implemented but may yield quite crude

estimates of the actual error. These schemes employ interpolation theory

and exploit superconvergence properties of finite element methods; they

seem to be perfectly adequate as a basis for adaptive mesh schemes for

the classes of problems considered here.

Following this Introduction, we present weak forms of Navier-Stokes

equations and the Euler equations that are used as a basis for the

development of finite element approximations. Since we anticipate the use

of techniques which move nodes and elements, we construct general space-time

"variational formulations" for these problems for which the computational

domain can vary with time. In Section 3, we present two types of adaptive

schemes. First, an r-method for two-dimensional steady problems in inviscid

compressible flow characterized by the Euler equations. Numerical results

are presented for some representative test problems. In Section 3, we



also outline a p-method for incompressible viscous flows and cite some

preliminary numerical results. A brief introduction to residual methods

of a-posteriori error estimation is given in an Appendix, and some pertinent

conclusions of the study are listed in Section 4.



2. SPACE-TIME VARIATIONAL FORMULATIONS

OF COMPLEX FLOW PROBLEMS

2.1. A Space-Time Navier-Stokes Formulation. A general space-time

variational principle for incompressible viscous flow is characterized as

follows (see [ 1, 2, 3]).

Find a velocity field u in a class of functions V such that over a

time interval [ 0, T],

P [ y, u ] + \i(( ue, v )) + pb ( ue, ue, v

0

+ e 1 ( div u£, div v ) } dt

T

= / ( f, v)t dt + p (u, v)Q - p (u
£, v)r

V v e V (2.1)

where v is an arbitrary test function, p the mass density, M the

viscosity, f the body force, and

/

3v
-r— u dx at time t
3t

"t

(( u> v)) = |V u : V v dx at time t

( u, v) = I u • v dx at time t

b (u, u, v) = b (u, u, v) + b (u, if, v) + b (<|), u, v)

b (u, v, w) = I [(u -V ) v • w + \ div u (v • w) ] dx



with ft the spatial time domain at time t. Here we use a penalty method

(artificial compressibility) to approximate the hydrostatic pressure

P> by

p = - e div u
e e

with e a small positive parameter. The functional b (•,»,•) represents

the convective term in the Navier-Stokes equations and (p is a particular

function designed to simplify the enforcement of no-flow boundary con-

ditions .

A finite element approximation (2.1) is obtained by replacing

u and v with appropriate discrete approximations defined over a space-

time element K; e.g.

u » ujj (x, t) = 2_ue (t) <|IN (x)

N
Once a finite element solution is obtained on a fixed mesh, we use

it to compute a local error indicator $which bounds the local e = u -

u? in an appropriate norm:

lie II S || <k v \\ for element K—* K. •* lx

We shall discuss means for obtaining <J> later.
K

2.2 A Space-Time Variational Formulation of the Euler Equations.

By following a plan similar to that used in the formulation of the

weak-space-time problem (2.1), a space-time formulation of the Euler

equations in two dimensions can be obtained.



If U(x,t), (x,t) C D, is the 4-vector of conservation variables,

T
U = {p, m, E} , with p the mass density, m the linear momentum, and

E the total energy, and if dft and dS denote Lebesque measures of area

(volume) and length (area) of ft and 3ft respectively, then we demand

that U satisfy the following system of conservation laws:

H? - f Q(U)n
•> ao~ ~ ~

Q(U)n dS (3.1)

Here, Q(U) is the flux and n is the unit outward normal to 3ft .

m. , m. denote Cartesian components of m , then

T
U = {p , m. , m_ , E}

If

Q(U)

m.

p(U)

-1

p n

-1 2

— 1p m^E + p(U)) |

p(U)

^ (E + p(U))
^

; p(U) = (Y - m • m/2)

In these equations, p is the thermodynamic pressure and y is tne ratio

of specific heats, assumed here to be constant. In addition to (3.1),

D must satisfy an entropy production inequality as well as an initial

condition,

U(x,0) = Un(x) , x 6 ft
_ -, ~u ~

where U. is given.



It is of fundamental importance to note the smoothness requirements on

U in order that (.3.1) make sense mathematically. Conservation laws (3-1)

hold when the components of U are bounded measurable (with respect to

Lebesque measure in x ) functions on D . Thus, we may seek solutions in

the function space

V = {V = {V1§ V2, V3, V4)
T I V± = V±(x.t)

6 L°°(0,T ; L!(fi)) ; i = 1, 2, 3, 4}

In particular, (3.1) is not equivalent to the classical Euler equations,

Ufc + div Q(U) = 0 (with U = 3U/3t and div Q = j SQ̂ /3*̂  since

solutions may not possess derivatives across surfaces in D . However,

the conservation laws and initial conditions are fully equivalent to

the following weak boundary-initial value problem:

Find U 6 V such that

FT $ dS dt

for all $ 6 W

where F is the actual prescribed flux through 3« and W is a suitable

space of test functions-

Here, we use the notation



4 34 2 4 34
E .D«?T ; 2 : ?* = I I Qai^

a=l a • 1=1 o«l al 3xi

Consider an arbitrary time interval [T,,T2] d[0,T] and include

in W functions <J>(x,T2) * ° •
 Let ui be a subset of fi such that

u) o u T, = 0 > and let F•= Qn . Then another weak statement of the system

conservation laws over oj x [T,*!.,] is:

Find U 6 V<0'T such that

~T + (div )T dn dt
T2

u

for all % G w"fT

with v"'1 and W01'1 appropriate spaces of trial and test functions.



3. ADAPTIVE SCHEMES

3.1 Finite Element Approximations. A hierarchal finite element

method designed for use in a p-method is used to construct approximations

of (2.1). We furnish some details late in this section. For a more

complete discussion of our approach, see [5].

Turning to (2.2), finite element approximations of the gas dynamics

problem are obtained by a direct approximation on finite-dimensional spaces

approximating the spaces V and W . The spatial domain fl is partitioned

into a collection T, of finite elements ft over which the components of
h e

trial functions V are approximated by polynomials of degree k . In this

way, we construct a family (V } of finite dimensional spaces of the type

vh = {y
h = (v\, v£, v*. vJ}T e v | vj e ?k <ne) , i - i. 2. 3. 4}

where P,(8 ) is the space of polynomials of degree k defined over flK e e

Alternatively, we can use V̂ |fi 6 Qk(8g) » where Qfc(8 ) is the space of
e

tensor products of polynomials of degree k on n (e.g., Q. (fi ) is
c 1 6

spanned by bilinear functions, Q2(fl ) by biquadratics, etc.). In addi-

tion, a family (W, } of finite dimensional spaces of test functions is

also constructed. We then consider Galerkin approximations by seeking

solutions in v , with W replaced by W .

We next derive a special semi-discrete, weak formulation which

provides the basis for the construction of a popular family of finite

element schemes. We proceed with the following steps:

LO



i) Partition the time interval [0,T] according to 0 = t_ < t.

< t2 < . . . < tN = T ;

ii) Apply the weak balance law (2.2) to a typical time interval

[V W (wlth Tl = 'n and T2 = Cn+l );

iii) Set <k = 0 in (2. 2) suggesting the ultimate use of a

time-invariant grid (we relax this assumption later);

iv) Replace the time integrations in (2.2) by the elementary

midpoint quadrature rule

Cn+l
f(t)dt ~ At

= f(tn

Thus, with ID = ft , we obtain the semidiscrete approximation

f n+1*
0 ^ : 7$. dft

Jo ~ n
dn - yn dn + At

- A t

for all $ (3.1)

where ll" = U, (x, t ) , etc., U. being the approximation of
~n n ** n **n

U , and n+^ is the flux at the half step,

Uh

v) To obtain an approximation U, " , we use (2.1 ) again for time

interval [t , t-AiJ , this time replacing the time integrals by

a simple strip rule and integrating by parts the divergence terms

11



-f

for all $h (3.2)

We thus arrive at the algorithm,

1) With (D™ , gn = Q(uJJ)) known at the n th time step,

compute u"+'5 using (3.4)

2) Compute Qn+i5 using (3.3)

3) Compute iF*̂  using (3.4)
~h

4) Go to 1)

This algorithm is the finite-element based two-step Lax-Wendrof f /

Taylor Galerkin scheme. It is one of a family of methods advanced by

Donea [6], studied by Baker and Kim [7], and successfully refined and

used by Lb'hner et al. [8,9] in finite-element applications in fluid

dynamics. This semi-explicit method is of second order in time and

can experience spurious oscillations near shocks and other types of

irregularities in the solution. These deficiencies must be reckoned

with in implementing the method, and for this purpose we append to

the right-hand side of (3.1) an artificial term of the form

4 2
c.(u) Un+J <(.h . d fi

T <jj (c (un).V Un)- At T <j (c (u).V U) n ds

with
3uic.(u) = C -T— - (no sum on i)

12



In this work, we use meshes of four-node quadrilaterals over which

the components of U are piecewise bilinear functions. Similar approximations

and algorithms are used by Bey et al. In addition, so-called group

approximations of the flux Q . (a = 1,2,3,4; i = 1,2) are employed

so that these components are also piecewise bilinear functions determined

by their values at element nodes. In general, this finite element approximation

will be of the form,

N

tt 1=1

where N denotes the total number of nodes in the discretization, and'

Ua ' ^ai are va^-ues °f H Q at node 3 » and <f>. are the global

piecewise bilinear basis functions.

As noted earlier, we advance the solution in time in two steps. It is

important to note that the first step is essentially local, computed over

each element, while the second is global and contains the artificial

viscosity terms:

First Step:- For each element fl , calculate a constant element vector

Un+$5 from -••-"^•'a,e • ... • . .

Ua1 fa'e > i=i J ng
j

f V W

At r i
~ 2 Jo 9xR

13



Second Step; For each node j , calculate tT'n+ by solving the

following system of equations

+ *»• i /•»"' * ±- j<-» A j. i _ in n+-2

*i ds

Here, Q denotes the elementwise averaged value of the flux. The

coefficients TO are defined to be constant over each element,
P

- cAe

where c is a global constant (c = 1 in the examples), A denotes the

area of fl , u denote the components of the fluid velocity.

3.2 A Node Redistribution Method. We now describe one of the principal

aspects of this investigation: a moving-mesh, node-redistribution method

based on equidistribution of error indicators. We begin by presenting

a simpler mathematical justification of the concept of equidistribution

of error.

Consider a regular mesh of quadrilateral elements ft with a diameter

h Let 0 be an error indicator for element e and suppose that the mesh

contains a fixed number M of elements. Let h = h(x1, x_) be a mesh

14



function such that

= dia(fie) for

and note that, approximately,

«-( ^Jo >i'fl

with dn = dx.dx. (this being exact for domains which are unions of square

elements). Let 0 = 0(x.,x2) be mesh function which gives the local error

indicator when evaluated at a point (0=0 for x 6 Q ). We wish to

minimize the total error indicator functional,

? f e2 dn
1 I« e

e=l ' fi

subject to the constraint (.3.3). Using Lagrange multipliers, this leads to

the optimality condition,

5(J + X(f h~2 dfi - M)) = 0 ,J

or

If

or

3 39e
h 0 -rr̂ - - \ = 0
e e 3h

2
Suppose that meas(JJ ) = a h and that 0 is of the form

e o e e

0 = h f(u) . Then, integrating this last result over a typical element

gives

oh3 0. hq~l f(u)dR = \a h2
e e e o e

Hence, the optimal mesh size distribution results when

15



Figure 1. Calculation of area center-of-error

N
X to equidistribute element error

indicators in a cluster of four elements,

16



l« 02 dfi = Aa /a = CONST. ( 3 > 4 )

In other words, to obtain the optimal mesh, we must equidistribute the

f 2
indicators 0e .

To use this result to redistribute nodes, we proceed as follows (cf.

Diaz et al. :

1) Generate an initial (generally regular) mesh with a fixed number

M of elements and compute a trial solution on this mesh at one time step;

2) Compute the corresponding error indicators 0g ;

3) For a group k of P elements (with P always 4 in this

work), let A denote the area of element i in the group. The
ei

area-weighted indicators for group k are the P-numbers,

0 ./A .
ei ei

4) Let y_ denote a vector from the origin of a global coordinate
ei

system to the centroid of element e. of group k . Then the center of

error of group k is defined as the vector (see Fig. 1)

4 ( e.

I IU AfA

kx = . 04 r e,

A

*/ '.V

5) Relocate the node at the center of group k to lie at the vertex

, kof x ;

6) Continue this sequence of operations over each group h of four

elements until the new location of each node does not change more than a

preassigned tolerance.



There remains only the issue of how the error indicator 6 can

be calculated in an efficient manner. Instead of using residual methods

such as those discussed in the Appendix, we shall use an interpolation

method. These methods are derived from the theory of interpolation

of finite elements (see Oden and Carey [10]. In particular, let u be

a smooth function defined over a regular domain fi. The W (fi)-semi-

norm of u is defined by

)l/P

wr>p(n) ( Jn i+j=r
i.ĵ o

where I ̂  p = °° and r is a non-negative integer.

The Sobolev norm of u is

f r }1/P

M rp ' * |u|%Pwr'p(fl)u lk=o ir'p(n)J

Let G be an arbitrary convex subdomain (a finite element) of fJ

over which u is interpolated by a function u^ which contains complete

piecewise polynomials of degree k . Then, it can be shown that

the local interpolation error in the ^̂ (O-seroi-norm is

where

h = the diameter of the domain G

P = the diameter of the largest sphere that can be inscribed inside G

n = the dimension of the domain ft

18



p' - p/(p - 1)
C = a constant independent of h , P , and u .

If p is proportional to h and if it remains proportional in refinements

of G defined by parametrically reducing h , we have

- mc hP p

With 'L .p .G- ' '

Such estimates can be used to devise crude adaptive schemes. Suppose

that u on the right side of (4.13) is replaced by a finite element

approximation u and that I^L+i = I U L + 1 + °^) • Then, (3 .4)

indicates that the local error in the '̂̂ (G) seminorm is proportional to

the error indicator, hnp np ~m|u|, . Some choices are:
K+l ,p

i) n = 2, m = 0, k = 1, p = p' = 2

«Eh||L2(G) . C h^|u|2)2>G = C6G (3.5)

In this case, one must approximate the W2'2-semi-norm of u over G ;

i.e., the L2-norm of second partial derivatives of u .

ii) n = 2, p = ~, p1 = 1, k = 0, m = 0 .

'(G)

Ch3 max|7'u(x)| = C6G (3.6)
x6G ~

19



3.3 Numerical Experiments - An r-method. We shall now cite some

representative examples in which the r-method described above is used.

All examples here are steady-state problems and the following conventions

are used:

1. The numerical solution is computed on a fixed mesh and is advanced

in time until a steady state is reached.

2. After convergence to a steady state, initial error indicators

9 are computed according to

G = A
e e

in analogy with (3.5).

3. Then, a modified error indicator 9 is employed which is designed

to be always greater than unity even when 9 ~ 0. In particular, we

use

06

- l * 6

In our examples, a = 81, 3 = 1, and y = 8.

4. Nodes are redistributed a total of K times using the procedure

described earlier. In the example, we take only two iterations (K = 2).

A Shock Reflection Problem. We begin with a problem for which

an exact solution is known and which has been used as a benchmark problem

by others.

20



The problem involves the steady flow of a perfect gas in a rectangular

duct in which density, velocity, and energy are prescribed in each of four

triangular wedges in such a way that the appropriate jump conditions (the

Rankine-Hugoniot conditions) are exactly satisfied. Thus, a problem of

shock reflection for which an exact solution is known is obtained. Dimen-

sions and data are given in Fig, 2. In this and all the other problems,

the solution is considered to have converged to steady state when the

magnitude of the L2-norm of the density is reduced by three orders of

magnitude.

The time step is monitored by the formula

At = mln + ce • • '

2 vp i 12 2 -'2
Here, C = — and |u| = u. + u_ , Y = 1.40 . The constants

multiplying the artificial viscous terms were selected locally as:

T = A
x e

3u_
3x

n

e
, T = Ay e

3v
ay
n

where the bar denotes average element values. A Lapidus constant of

1.0 is used.

The results of a uniform coarse grid approximation are shown in

Fig. 3. The computed density contours are also shown.

The same problem was also analyzed using the node redistribution

algorithm with 20 node redistribution iteration. Results are shown

in Fig. 4. There, the original coarse initial mesh of Fig. 3 is progressively

21



P = 1.7
=4.45145

m =-0.86071

7Shock Lines

Figure 2-. A shock reflection problem. Inflow values of the conservation

variables are prescribed as indicated in regions I and II, and

outflow values are computed in III to satisfy the conservation

laws.

22



distorted to conform to the reflected shock locations. Corresponding

density contours are also given in the figure.

NACA 0012 Airfoil in Supersonic Wind Tunnel. In this example,

the supersonic flow through a narrow wind tunnel containing a NACA 0012

airfoil is studied. The inflow Mach number was set at M^ = 2 , with

Y =* 1.40 and symmetry is exploited to reduce the computational effort.

The initial coarse mesh and density computed contours are given in

F*g. 5. Note that the critical features of the solution — the

reflected shock and contact discontinuity — are lost with this coarse

mesh. Results of a node-redistribution scheme for the coarse mesh

are shown in Fig. 6. In these results, ten iterations of the node re-

distribution algorithm were used.

Supersonic Flow in a Wind Tunnel with a Step. The steady-state

solution of the problem of a wind tunnel with a step introduced into the

flow is next considered. The inflow Mach number was selected M^ = 3.0

and Y = 1.40 . The initial coarse mesh is shown in Figure 14 with the

corresponding density profiles. The mesh refinement algorithm was also

used, with the mesh and density profiles obtained after 10 iterations

shown in Fig. 8. We see that some oscillations are present downstream,

and they are believed to be due to the non-monotonicity of the solution

algorithm. The results presented for the refinement-unrefinement procedure

have been constrained by a maximum number of 2000 nodes or 2000 elements

that can be allowed. In the refined mesh shown, this constraint has

been achieved.

23



Figure 3. Reflecting shock problem.

Initial mesh and density contours.
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Figure 4. Reflecting shock problem. Mesh and density contours obtained

after 2x10 applications of the mesh redistribution algorithm.

25
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Figure 5. NA.CA. 0012 airfoil in supersonic wind tunnel.

Initial mesh and density contours.
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Figure 6. NACA 0012 airfoil in supersonic wind tunnel.

Mesh and density contours obtained after 2x10

applications of the mesh redistribution algorithm.

27
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Figure 7. Supersonic flow in a wind tunnel with a

step. Initial mesh and density contours.

28



Figure 8. Supersonic flow in a wind tunnel with a step.

Mesh and density contours obtained after 2x10

applications of the mesh redistribution algorithm.
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Figure 9_. Blunt leading edge in hypersonic flow field,

Initial mesh and density contours.
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Figure 10. Blunt leading edge in

hypersonic flow. Mesh

and density contours

obtained after 4

applications of

the mesh

redistribution

algorithm.
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Blunt Leading Edge of 8' HTT Panel Holder in Hypersonic Flow.

The problem of the blunt leading edge of the 8' HTT panel holder in a

supersonic flow field with freestream Mach number M^ = 6.57 , y = 1«38

and 0 angle of attack was solved to obtain the steady-state solution.

This problem has also been studied by Bey et al.

A coarse mesh solution is indicated in Fig. 9. A distorted mesh

and corresponding density map are indicated in Fig. 10. In this particular

problem, the r-method did not give particularly good results, as a poor

approximation of the solution between the shock and blunt body results

from spurious ocsillations in the basic time-marching algorithm. In

the case of mesh adaptation using redistribution, the solution actually

diverges after four passes through the adaptive scheme due to the badly

graded (hourglassed) mesh produced from the oscillations of the adaptive

scheme downstream of the shock.

3.4. A p-Method. Returning now to the full, viscous, Navier-Stokes

problem characterized by (2.1), we outline a p-method for adaptive

improvement of finite element solutions. The procedure is straightforward:

1. On a fixed mesh, compute a trial solution at each time step

using a linear or bilinear approximation of the velocity field U, .

2. Use U to compute a residual for data in a local problem which

yields the local error indicator $ over each element K.
K.

3. Use local quadratic approximations to compute approximate error

indicators <f> .
K

32



4. Check for pre-assigned error tolerances. If the error is too

large, recompute U, locally using quadratic elements.

We employ hierarchal families of elements and could go up to quadic

polynomials. In results given below, only quadratics are employed,

and mesh refinement is used if increasing p fails to bring error with

acceptable limits.

To Lest the residual estimation technique and our p-method, we

examine the performance of the method using a problem with a known

analytical solution. Since few analytical solutions to the transient

Navier-Stokes equations are known, we attempt to construct solutions

to special problems by choosing an analytic solution and then computing

the corresponding boundary conditions and body force.

The theoretical analysis suggests the following local error indicators;

lg.̂ .V
/

33



Here,

I , K i 2 , ,K .K.. i i , K i | 2 . . K , Kv.
I* IK,? (! •* V H* I 'K. t = ((? ' * "t

For each error indicator e., ,j = l , . . . , 4 w e define theK. , n

effectivity ratio

K,n n

where lie II is the norm estimated by e^ as described above. We
-h K,n K,n

say that c^ is an effective estimator if the corresponding

effectivity ratio takes values close to unity.

In the numerical example to follow space-time elements of

first order (bilinear in space, linear in time) are used to obtain an

approximate solution and second-order space-time elements (biquadratic

in space, quadratic in time) are employed to solve the local parabolic

problems in the first time step. Then a normalized value e,, ofK.,n

the local error indicator (Z> is computed for every element K . A

new order of approximation for element K is defined as follows:

If 0 < e < 6 first order approximation
IN y H

If 6 < e < 1 second order approximation
K,n

Thus, the order of approximation is increased in the elements with

error indicator bigger or equal to 5 times the value of the largest

error indicator and an enriched mesh is obtained. This enriched mesh

is used to advance the solution for M time steps (including the

first) and after that the whole procedure is repeated. The success of

this strategy in any particular problem depends on the choice of the
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discretization parameters h , At and the constants 6 , M .

We now consider a problem. with a one-dimensional "wave-like"

solution in the fixed spatial domain n - [0,20] x [0,20], namely

The problem was solved with two uniform (5x5 and 10 x 10) meshes

using the following parameters:

Time step: At = 0.025, 0.100

Penalty parameter: e = 10~3

Fluid constants: p "I, v a 1

Kinematic boundary conditions were applied on the side with y = 0

while traction boundary conditions were applied on the remaining three

sides of the boundary. This explains why the numerical solution-for

the v-component shown in Fig. H} L2 is not uniform in the y-direction.

For each error indicator we may compute a global effectivity

ratio defined by:

6J
n

Table 1 gives the evolution of the global effectivity ratios for

the proposed error estimators through the first nine time steps. It

is observed that the values of these ratios diverge from the optimal

value of one as the time marching progresses. This phenomenon is due

to accumulation of the truncation error which destroys the effectivity

of the error estimates and makes the adaptive procedure inefficient as
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Figure 11. Problem with exponential solution. Computed solution for

time t = 0.1. Parameters: h = 2, At = 0.1, 6 - 0.25,
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can be seen. This situation can be corrected by reducing the values

of the parameters of the adaptive procedure, namely h, At, M, 6.

Table 3-1

Values of the global effectivity ratios after the first time step; At

0.025

Mesh

5x5

10x10

olel

1.0439

1 . 0054

•?

1.6995

0.3225

6?

1.3037

1.1627

•J

1.0339

1.0011
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4. CONCLUSIONS

1. The use of rigorous residual error estimates for time-dependent

Navier-Stokes problems in two dimensions is justified by the methods and

results developed during the course of the work. In particular, sharp

error bounds can be derived which were found to yield excellent error

estimates for a test problem.

2. The use of p-methods and residual error estimates can be computa-

tionally expensive. New data structures must be developed before these

types of methods can find wide application in practical flow problems.

3. Adaptive p-methods may ultimately offer significant advantages

over other adaptive schemes if used in parallel computation with efficient

use of multiple array processes. At present, these schemes do not perform

well in comparison with some other adaptive strategies from the viewpoint

of programming ease and computational efficiency.

4. Node redistribution methods are simple to use and can be effective

in certain steady problems. They do not appear to be attractive in general

flow problems, particularly in cases in which boundary conditions vary in

time.

5. The node-redistribution-relaxation scheme described in this report

can exhibit numerical instabilities in certain flow problems. The method

is incapable of reducing local errors below very high tolerance levels

without acquiring some destabilizing properties. It is doubtful that the

method will find broad applications unless it is combined with an h-type

or p-type adaptive strategy.
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6. The h-methods, not dealt with here, do offer some advantages in

terms of speed of implementation and general data structures over the

r-method and the p-method developed here. However, these schemes can also

exhibit instabilities. It is highly likely that the best adaptive schemes

will prove to be those which combine h- and r-strategies.

7. Interpolation methods for error estimates are rather easy to

implement and can be easily added to existing CFD software. They can

provide only a crude indication of the actual local errors, but they can

be used to produce an adequate indication of relative error between succes-

sive meshes.

8. Additional studies are needed to explore algorithms for accurate

and efficient time-dependent problems. While we have developed some schemes

in earlier work (e.g. [1]), a general approach to this important problem

which fulfills requirements of accuracy and efficiency is not yet available.
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APPENDIX

A-Posteriori Error Estimation for a Class of One-Dimensional Elliptic

Problems.

Consider the model problem,
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-j-(a-j) + bu = f in (0,1)
dx dx

(1)

u(0) = u(l) = 0

where it is assumed that

0 < a^ < a(x) < amax < + oo Vx6[0,l]

0 £ b ( x ) < b ! Vxe[0,l].

Assuming a,a',b,feC([0,l]) we have ueC2([0,l]).

Let us define the bilinear form,

a(u,v) = f (a -p- -p- + buv)dx
o dx <*

Then u is the solution of the variational equation,

1
a(u,v)=J fvdx VveHjUO,!])

0
Moreover, we define the energy norm ||-||E by,

||v|| = a(v,v)

We discretize [0,1] using N linear element Qj = [Xj_j, Xj], j=l,...,N, where

0=x0<X!< • • • <Xj_!<Xj • • ' <xN=l. Let VhcH0
1([0,l]) denote the space which is

spanned by the basis functions of the discretization. We approximate the solu-

tion u of ' - (I) with a uheVh which is obtained as the solution of the discrete

problem:
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Find uhe Vh such that,

1 f v d x V v 6 V h

o
We want to estimate the energy norm of the approximation error,

eh = u-uh. In view of the orthogonality condition,

a(eh,vh) = 0 VvheVh

the energy norm of the approximation error satisfies,

= a(eh> eh - vh)

Choose vheVh such that uh(Xj)=eh(Xj), j=0,l,...,N and let w=eh-uh to obtain:

l!ehlll = E 1 {aT-(u-uh)-T^ + b(u-uh)w}dx
j=0 ^ dx dx

Integrating by parts and noting that u^=0 in (Xj, x^j), j=0,l,...N-l, we get,

l l e h l l E = I T (f+a'u'h-buh)wdx (3)

We also have (see Babuska and Rheinboldt []]) that:

||eh-vh||E < (l40(h))||eh||E .

Starting from (2) and using Schwarz's and Kom's inequality and (3) we get

the following estimate:
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||eh||E<(l+0(h))K(h)(£ f (f+a'u'h-buh)
2dx)* (5)

j=o x,

Here, h = max (x:, i-X;), and K(h) denotes Korn's constant.
- J J

The estimate given in (4) has the disadvantage that it involves Korn's

constant which has to be computed for a given discretization and even then the

estimate is far from being optimal. Babuska and Rheinboldt [2], developed a

less obvious approach ( than the one leading to (4) ) which gives sharp error

estimates. This approach is summarized below.

Define a family of local auxiliary problems as follows:

For every element Qj+1, find ty+jsHoftXj, Xj+1]) such that,

i, v> = J (f+a'u'h-buh)vdx
*i

Vv6H0
1([xj,xj+1]),j=0,...,N-l

Combining (2./- with (5) using Schwarz's inequality and inequality (3 ) we

obtain the bound:

j=0

One can estimate Hfy+illE.*}., using the Lax-Milgram theorem to obtain:

Moreover by using spectral analysis one can show (see [ 3 ])
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n2 min a(x) (6)

and finally we get the estimate:

WE * i=o 7C2 min a(x)
(7)

We note that the error bound given in (6) can be computed without solving

the local problems defined in ( 5 ) .

Locally Computed A-Posteriori Error Estimates for Elliptic Equations

For the sake of simplicity, we first restrict ourselves to the following

model elliptic problem.

Find u such that

Au = f in n

u = u0 on Tu

9u = on

Here £2 is a bounded domain in R2, ru, and FT form two disjoint parts of the

boundary 8D and f, u0, g are given functions.

If u0 denotes a function from H^Q) whose extension to Fu coincides
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with u0 ( when we use the same symbol for UQ and its extension) we have the

usual variational formulation to (7) .

Find u e UQ + V such that

JVu-Vv dQ = J f-v dQ + Jgv ds V v e V
n n rT

where

V = (u e H^lu = 0 on Fu}

and dfi, ds denote measures of volume and surface area^respectively.

In the following, we discuss a method to compute a-posteriori error esti-

mates for finite element solutions of C 7 ) .

Suppose we are given two approximation spaces, say VjJ, V^ c V such

that approximation (interpolation particularly) of an arbitrary element v e V by

elements vfi e Vjf results in "much smaller" error than the approximation by

VQ e Vj,1. Specifically we can think about Vfi as the space spanned by the

hierarchical elements with order p large enough. Vh
J does not mean necessarily

the space corresponding to the first order approximation.

The approximate problem for the "lower order" approximation can be

stated as follows:

Find Uh e UQ + Vh
! such that
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JVujJ-Vv,,1 dQ = J fvj dft 4- jgv,} ds V vh' e V,1

n n rT

For simplicity, we will assume that kinematic boundary conditions can be

satisfied exactly by the first order approximation (i.e., u0 e Vj|).

The residual r^ corresponding to the solution UjJ is an element from the

dual space V* and should be estimated in the corresponding dual space norm:

||rhV= sup <rh
1, v> (8)

V € V

Certainly rh is weakly continuous over V and the ball ||v||v < 1 is weakly com-

pact, and, therefore, there must exist a certain v0> ||v0||v ^ 1 in fact it must be

normalized in the sense that ||v0|| =1) such that

Now, let v<^ denote the best approximation of v0 out of the space Vf . Suppose

A A A

||v0 - v^JI < e. Defining v£ = v£ /||v£|| we easily conclude that also

||v0 - v^|| < e + -^

which is equivalent to saying that v0 can be approximated "close enough" by ele-

ments with unit norm.

Next, ( 8 ) can be replaced by
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l|rhV * llrhVllvcr-Vifll + sup <r,},vjP> (9).

the first term on the right-hand side being negligible. In other words we

presume that the error in terms of the dual space norm can be estimated

sufficiently well by taking the supremum over only the subspace Vfi.

Now let us try to estimate this supremum. We have:

- J fvf dfl - j^Tgv,P ds =

- Au> - f)vj dfl + J l ( j£ - - - . ) V , P dsh

K K

r h+ J (-T- - g)yi? ds (2

aKnrT
 9n

Let us note also that in (2.24) v£ can be replaced by the differnce v| - V),1, with

arbitrary v,} 6 VjJ since the residual rj is orthogonal to Vj. In particular, we

can choose for v,,1 - a Vh
J - interpolant of vf .

Finally, defining

V,P(K) = {v,P 6 V^KJIV^ - interpolant of v£ = 0}

we may use the following local problem associated with an element K:

Find 4>K€ V£(K) such that:
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jY<j>Kvv,f
K

J 1 ( -
- 2 <™ ^

- g)vf ds V vfo € Vf (K)

and equation (9) can be rewritten in the form:

dti
K K

The functions (J>K are local error indicator functions.

Finally, we note that for each element K there exists a constant CK

such that

IK - v,}||liic < CK||vf ||liK V vf 6 Vf (K)

which results in

J(Y(()K)
K

provided

C = maxCK
K K

The constant CK is independent of the size of element K, but it does depend on

its shape. In particular, for grids consisting of the same regular elements (not

necessarily uniform CK is independent of K and does not affect the local



behavior of the estimate (10) (comp. also [ 4 ]).

Our estimate:

l l fh l iv * c(Z J(Y<t>k)
2 an)*

K K

clearly has only a global character; however, the contributions J(Y4>K)
K

(local) error indicators) may serve as a basis for some local refinement

Finally, let us note that in the case of the model problem the residual

estimate can be directly reinterpreted as the estimate of the error ej = UjJ - u,

since

n

dli - J(-Au)eh
1 dfl - J - - e , , 1 ds =

n n rT
 on

e^ <

and therefore,

Conversely taking into account that in the case of a Hilbert space H with inner

product (.,.)H and the corresponding norm ||-||H>

„ .. <u, v>u H = sup '

one gets that
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IWII- = IWIIv (ii)

In fact, for any self-adjoint elliptic problem we may define the proper

(energy) norm in such a way that the norm of residual is exactly equal to the

norm of the error. For a class of not self-adjoint problems or for certain classes

of nonlinear operators (strongly monotone) the residual norm can likewise be

bounded below by the norm of the error. However, in general the relation

between these two quantities is more complicated and we must be satisfied with

the observation that, in general when the solution of the boundary value problem

depends continuously on the righ-hand side (the data), it makes sense to minim-

ize the residual since it results in simultaneous convergence of the approximate

solution to the exact one (see also [ 5 ]).

We now show that the concept of estimating the residual over a higher

order approximation space Vjf can be easily applied to Stokes problem. Stokes

problem is of special interest to us since it is obtained from a linearization of the

stationary Navier-Stokes equations.

Let us restrict ourselves to the case of pure kinematic boundary condi-

tions (the Dirichlet problem). The Stokes consists in the determination of the

velocity field u and pressure field p such that:
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- (lAu -f grad p = /

div u = 0 in

u = u0 on

where ji is the viscosity constant, / stands for body forces and u0 specifies velo-

city on the boundary. The usual consistency condtion must be satisfied, i.e.,

J Un ds = 0 '
XI

where un = u-n, provided n denotes the outward normal unit to 3fi. The varia-

tional formulation of (2.32) is as follows:

Find u 6 u0 + V, p e LO(£&) such that:

Hj eij(u)eij(y) dO + J p div y dQ = J fy dQ V y e V
n n n

Jdiv u q dD = 0 V q €
n

Here £jj(u) denotes the symmetric part of the gradient of u. In the above UQ

denotes an arbitrary function in H^Q), such that ^Q\^n = Vo (again, we use the

same notation for u0 and for its trace on the boundary, and that div u0 = 0, and

Y = H^Q) and, as usual,

= {q € L*(Q)| J q dQ = 0}
n

Denoting, as previously, a p-th order approximation space by Y| and

respectively, we may formulate the p-th order approximate problem as fol-

lows:
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Find uj € u£ + yf, p|P € L*h(Q), such that

^J EijOtftejCvfl dQ + Jpjf div (y£) dfl= J f yf dH V v£ e V,P ( 12 )
n n n

J div uff <rf dQ = 0 V q e L t f
n

As in the preceding case, we attempt to estimate the proper residuals

corresponding to the "1-st order approximation" i.e., replacing suprema over

y e V and q e Lo(Q) by suprema over y$ e. V^ and qj, e L^jf, with some

p> 1.

We have for the first equation:

< - ^lAu,,1 + grad Ph1 - f; y£ > =

£{Jeij(uh
1)eij(y1P) dfl - Jp,} div y| dTi - | fyf dii}

K K K K

£{J(- Au,,1 + grad ^ -_f)yf dQ +
K K

where, as usual, jt* denotes a stress vector corresponding to an adjacent element.

For the second equation we get simply:

< div Uh1, q£ > = £ J div u,i q£ dfl
K K

As usual, one can see that y£ and q^ in (12) and (13) can be replaced by
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V]P - yh
! and OjP - qj| for arbitrary yh

! and particularly choosing for y^ and

interpolants of yf and oj* we can set the local problem in the following way:

Find $K e Y&(K), yK e L&(K) such that:

H/(- Ay,} grad ph1 -/)y| dQ + J -^ yf dO V y,?

K

In the above V£(K) = {ujf e VIP(K)|yh
1-interpolant = 0)

- interpolant of qg = 0}

Finally (-t2) and (13) can be rewritten in the form:

< - nAUh1 + grad ph1 - f,v£ > =

Z {^J ^(ftc^Cyf-yh1) <JQ - JvK
K K K

and

< div U1, < > = d i v X P - 1 ) dQ

where Vj,1 and qj| are the appropriate interpolants of yf and qj* respectively. Both

identities lead to the residual error estimates. However, the second one is practi-

cally useless, since the ||div U^HL^ can be estimated simply by a direct compu-

tation. Let us therefore focus our attention on the first residual. By Schwarz's

inequality, we get
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j&f-yh1) dOMEGA - JyK div (yj-y,}) dfl|
K K

(H<t>KllE.K

where ||-||E,K is energy norm associated with the viscous, bilinear form,

llyllfc = (llylli,K + Hdiv y||JK)% is a well-defined norm in Y£0(K), and finaUy CK is

a constant associated with the estimate of the type:

CK||yfl|K V y| 6 Y

Cj^ is independent of the size of the element K but depends upon its shape. For

detailed discussion of these ideas, we refer to [ 4 ] • We note here that for

meshes which are uniform or consist of elements of the same shape the constant

CK is independent of the element and does not affect the local behavior of the

estimate.

Finally, we arrive at the estimate:

||- jiAUh1 + gradp,} - fl|_1>n < C(£ (11̂ 11̂  + HvKllo2
fK)>*

K

where C = max CK, and the norm in the dual space is measured with respect to
iV

the norm:

llvll =
K
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