DEPARTMENT OF GEOLOGY
SCHOOL OF SCIENCES AND HEALTH PROFESSIONS
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23508

TECHNICAL REPORT GSTR-86-4

THEORY AND OPERATION OF THE REAL-TIME
DATA ACQUISITION SYSTEM FOR THE NASA-LaRC
DIFFERENTIAL ABSORPTION LIDAR (DIAL)

By
Carolyn Butler

Submitted by Earl C. Kindle, Principal Investigator

Final Report
For the period January 1, 1985 to December 31, 1985

Prepared for the
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665

Under
Research Grant NCC1-28
Dr. Edward Browell, Technical Monitor
Chemistry and Dynamics Branch

June 1986
DEPARTMENT OF GEOLOGY
SCHOOL OF SCIENCES AND HEALTH PROFESSIONS
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23508

TECHNICAL REPORT GSTR-86-4

THEORY AND OPERATION OF THE REAL-TIME
DATA ACQUISITION SYSTEM FOR THE NASA-LaRC
DIFFERENTIAL ABSORPTION LIDAR (DIAL)

By
Carolyn Butler

Submitted by Earl C. Kindle, Principal Investigator

Final Report
For the period January 1, 1985 to December 31, 1985

Prepared for the
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665

Under
Research Grant NCC1-28
Dr. Edward Browell, Technical Monitor
Chemistry and Dynamics Branch

Submitted by the
Old Dominion University Research Foundation
P.O. Box 6369
Norfolk, Virginia 23508-0369

June 1986
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>AIRBORNE DIAL SYSTEM</td>
<td>1</td>
</tr>
<tr>
<td>DATA ACQUISITION SYSTEM</td>
<td>2</td>
</tr>
<tr>
<td>SYSTEM CONFIGURATION AND CONNECTION</td>
<td>5</td>
</tr>
<tr>
<td>DIAL DAS PROGRAM THEORY</td>
<td>9</td>
</tr>
<tr>
<td>PERIPHERAL PROGRAMMING INFORMATION</td>
<td>11</td>
</tr>
<tr>
<td>DSD-480 Floppy Disk System</td>
<td>11</td>
</tr>
<tr>
<td>Interprocessor Link (DA11BOI)</td>
<td>13</td>
</tr>
<tr>
<td>Cipher F880 Interface (Dilog DQ130)</td>
<td>13</td>
</tr>
<tr>
<td>Transiace 2012 Interface (Kinetics 2920-Z28 bus adaptor)</td>
<td>15</td>
</tr>
<tr>
<td>Parallel Line Interface Module (DRV11-C)</td>
<td>17</td>
</tr>
<tr>
<td>Analog-to-Digital Converter (ADV11-C)</td>
<td>18</td>
</tr>
<tr>
<td>Line Printer Controller (MLSI-LP11)</td>
<td>18</td>
</tr>
<tr>
<td>Teletype (Plessey PM-DLV11J Serial Line Interface)</td>
<td>19</td>
</tr>
<tr>
<td>Timing Control Unit (TCU-50 and TCU-50 DYR)</td>
<td>20</td>
</tr>
<tr>
<td>Matrox ORGB-GRAPH Controller</td>
<td>22</td>
</tr>
<tr>
<td>DIAL DAS SOFTWARE</td>
<td>25</td>
</tr>
<tr>
<td>Getting Started</td>
<td>25</td>
</tr>
<tr>
<td>Data Acquisition</td>
<td>26</td>
</tr>
<tr>
<td>Real-Time Data Display</td>
<td>27</td>
</tr>
<tr>
<td>Raw Data (MODE1)</td>
<td>28</td>
</tr>
<tr>
<td>Online/Offline Overlay (MODE2)</td>
<td>28</td>
</tr>
<tr>
<td>Concentration Profiles (OZONE and WATER)</td>
<td>32</td>
</tr>
<tr>
<td>Gray-Scale Display (GRYSCL)</td>
<td>32</td>
</tr>
<tr>
<td>Hard Copy Gray-Scale (ACTON)</td>
<td>35</td>
</tr>
<tr>
<td>Magnetic Tape Storage and Format</td>
<td>35</td>
</tr>
<tr>
<td>Decoding Information</td>
<td>37</td>
</tr>
<tr>
<td>KEYBOARD COMMANDS</td>
<td>41</td>
</tr>
<tr>
<td>Stop Mode Commands</td>
<td>41</td>
</tr>
<tr>
<td>Start Mode Commands</td>
<td>42</td>
</tr>
<tr>
<td>Trigger Markers</td>
<td>45</td>
</tr>
<tr>
<td>Scaling</td>
<td>46</td>
</tr>
<tr>
<td>Sample DIAL DAS Dialogue</td>
<td>48</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>49</td>
</tr>
<tr>
<td>HARDWARE MANUALS</td>
<td>49</td>
</tr>
<tr>
<td>APPENDIX : DIAL DAS Error Messages</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIAL DAS component specifications for size, weight, and power requirements</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>DAS component interconnections</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Digitizer connections</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Base addresses for registers used by peripheral devices</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Default plotting parameters</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>Banner record word assignments</td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>Data record structure for shot buffers</td>
<td>39</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shematic drawing of the DIAL DAS as configured on January 1, 1986</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Computer devices flow chart</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Internal computer configurations</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Example of MODE1 display</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>Example of MODE2 display</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>MODE2 display with background subtraction and range-squared options in effect</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>Example of DZONE display (100 shots averaged)</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>Example of GRYSCl</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>Example of ACTON</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>Example of digitizer memory as compared to saved buffer memory</td>
<td>47</td>
</tr>
</tbody>
</table>
INTRODUCTION

This report documents work performed under Research Grant NCCI-28 toward the improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system. The NASA DIAL system is undergoing development and experimental deployment at NASA/Langley Research Center (LaRC) for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O₃ and H₂O concentrations from an aircraft platform. Test flights of the DIAL system were successfully performed onboard the NASA/Goddard Flight Center Electra aircraft from 1980-1985 (ref.1).

The DIAL Data Acquisition System (DAS) has undergone a number of improvements over the past few years. These improvements have now been field tested during two experiments in 1984 (ref 2,3) and further tested during the Amazon Boundary Layer Experiment in 1985.

This report is designed to be used as an operational manual for the DIAL DAS. Few changes were made to the system in 1985 — those changes will be pointed out in the appropriate sections. Also, in this report an effort has been made to discuss the theory behind a real-time computer system as it applies to the needs of the DIAL system.

AIRBORNE DIAL SYSTEM

The airborne lidar system uses the DIAL technique for the remote measurement of atmospheric gas profiles. This technique determines the average gas concentration over some selected range interval by differencing the backscatter signals for laser wavelengths tuned on and off the molecular absorption line of the gas under investigation. Two DIAL wavelengths are transmitted with a 250 usec temporal separation. Simultaneously, measurements of aerosol backscatter at multiple wavelengths can be made by transmitting unused (non-doubled) energy from the DIAL system pump lasers. The aerosol measurements are single wavelength returns. A coaxial receiver system is used to collect and optically separate the DIAL and aerosol returns. Photomultiplier tubes (PMT) and photodiodes detect the backscattered laser returns after optical filtering, and the analog signals from these tubes are digitized and stored on high-speed magnetic tape.

The lasers can be fired at 1, 5, or 10 Hz. Current operations are to transmit five wavelengths: an on-line UV and off-line UV for DIAL ozone measurements; two IR wavelengths (one shooting up and one shooting down); and a visible aerosol wavelength. The UV returns are both detected by the same PMT with 250 usec separation. The visible wavelength (from the off-line)
is collected by a second PMT and the two IR returns are detected by separate photodiodes. Present software allows up to four digitizers to be used with no more than 4096 words saved in the computer (10 MHz sampling interval). Of the 4096 words allotted per buffer, at least 35 are reserved for shot header information (shot number, navigation information, energy monitors, etc.) so a safe estimate of the number of words to record per return is obtained by dividing 4000 words per buffer by the total number of returns. If there are six returns to be digitized then no more than 650 words per return should be stored (range of 9.75 km from laser platform). This software limitation can be exceeded in one channel only at the expense of decreasing the number of stored words from another digitizer channel. For example, the current defaults are to store 600 words from the two UV returns, 600 words from the visible aerosol, 800 from the IR looking down, and 1400 words from the IR looking up.

DATA ACQUISITION SYSTEM

The DIAL DAS is currently housed in half a double rack (see figure 1) with digitizers, control electronics and photomultiplier tube (PMT) power supplies occupying the other half. This set-up is advisable in that it eliminates the occurrence of ground loops between the PMT's and the digitizers. The DIAL DAS is based upon two Digital Equipment Corporation (DEC) LSI 11/23 processors. Each LSI has 128K words of 16-bit memory. The overall flow chart for the DIAL DAS is shown in figure 2. In general, all data acquisition and storage is performed by the LSI on the left (LSI #1), while all data display and analysis are performed by the LSI on the right (LSI #2). LSI #1 does have one data analysis function. On command, LSI #1 will generate a real-time color scale representation of range resolved data with averaging on the ACT II.

LSI #1 acts as the master computer through which the operator communicates with LSI #2. The operator communicates with the master's software through a modified Ann Arbor keyboard (the Ann Arbor CRT has been replaced by one of the dual Panasonic monitors; the Ann Arbor interface board is mounted in a separate box). Operator input to LSI #1 is to a Plessey PM-DLV11J serial line interface with four serial line ports (the fourth port being the console input). The first serial port on LSI #1 is used to communicate to the console input port on an identical PM-DLV11J on LSI #2.

Data is presented to the operator on either the Panasonic video monitor through the Matrox QRGB-Graph controller and/or the system color printer Act II. Hard copy images of the video graphics display may be obtained through Polaroid photography or through a software copy command to the Trilog (with four size options). The DSD-480 dual floppy disk units (double sided and double density capabilities although not presently configured for either option) are used for storage and retrieval of program information on both LSI's. The DIAL data is stored real-time using one of two Cipher FB80 magnetic tape units on 731.5 m (2400 ft) reels of 1.27 cm (.5 inch) wide magnetic tape. Two tape units are required so that continuous data is stored while one
Figure 1. Schematic drawing of the DIAL DAS as configured on January 1, 1986.
Figure 2. Computer devices flow chart.
unit is rewinding. Tape speeds and densities are as follows:

- 25 ips @1600 bpi (PE; IBM and ANSI compatible)
- 100 ips @1600 bpi (PE; IBM and ANSI compatible)
- 50 ips @3200 bpi (PE; not IBM or ANSI compatible)

A Dilog D0130 provides Cipher interface with the LSI 11/23.

The acquisition of data is accomplished using four Transiac Model 2012 waveform digitizers. The Transiacs are manually programmable for digitization of analog signals into 12-bit memory of selectable record lengths (the settings are typically 2048 or 4096 for DIAL applications). The internal memories of these digitizers are made available to the LSI 11/23 through a Kinetics Systems Direct Memory Access (DMA) interface board. Sixteen Analog-to-Digital Conversion (ADC) single ended inputs (or eight differential) are available to the system through an ADV11-C board (not used). Unipolar inputs can range from 0V to 10V and bipolar inputs from -10V to +10V. Data can be converted with programmable gains of 1, 2, 4, or 8 times the input voltage. In addition, there are four DRV11-C modules (three in LSI #1 and one in LSI #2) available for parallel interfacing of TTL digital signals.

SYSTEM CONFIGURATION AND CONNECTION

Data on system component size, weight, and power consumption requirements are given in table 1. A drawing of the two controller box distributions is shown in figure 3.

One advantage to going with a two computer system is that one computer can be dedicated to data acquisition while the second is dedicated to data analysis, thus allowing for much more real-time processing of the data. An additional advantage is hardware backup. Should one LSI fail, then the other computer

Table 1. DIAL DAS component specifications for size, weight, and power requirements.

<table>
<thead>
<tr>
<th>DIAL DAS COMPONENT</th>
<th>Height (in)</th>
<th>Weight (lb)</th>
<th>Power (amp @ 115 Vac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic tape drive (2)</td>
<td>8.75</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>LSI 11/23 (2)</td>
<td>5.5</td>
<td>35</td>
<td>4</td>
</tr>
<tr>
<td>DSD-480 floppy disk (2)</td>
<td>5.5</td>
<td>60</td>
<td>1.5</td>
</tr>
<tr>
<td>Panasonic dual monitors</td>
<td>8.75</td>
<td>27</td>
<td>.5</td>
</tr>
<tr>
<td>Console keyboard</td>
<td>3.0</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>Camac crate (full)</td>
<td>12.5</td>
<td>105</td>
<td>12</td>
</tr>
<tr>
<td>Trilog Printer (HxWxD)</td>
<td>38.5 x 30 x 24.25</td>
<td>185</td>
<td>7</td>
</tr>
<tr>
<td>Act II Printer (HxWxD)</td>
<td>8.2 x 22 x 17.9</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>710</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>M8186 CPU</td>
<td>DSD-480 FLOPPY INTERFACE</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DA11 BOI INTERPROCESSOR LINK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DQ 130 MAG TAPE INTERFACE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CAMAC INTERFACE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DRVII-C @ 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DRVII-C @ 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>LP II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>M8059 MEMORY (128K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TCU 50-DYR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Internal computer configurations.
can be used as a totally independent data acquisition system with limited real-time display capabilities. In fact, the boards have been configured inside each LSI (figure 3) so that minimal changes would be necessary for fall back to a one computer system.

Table 2a shows connections from the two LSI's. LSI #2 houses spare boards which need not be connected to anything at present. Table 2b shows various other connections that need be made in order to get the DAS up and running. Table 3 lists the necessary connections to the digitizers. The first item on 2b is a "daisy chain" connection between the two Cipher tape drives. The Cipher 880 manual shows no twist for these cables.

Table 2a. DAS component interconnections.

<table>
<thead>
<tr>
<th>LSI #1 Board</th>
<th>Connector Type</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSD-480 floppy interface</td>
<td>26p flat cable</td>
<td>DSD-480 #1</td>
</tr>
<tr>
<td>DA11BOI interprocessor link</td>
<td>dual 50p flat cables</td>
<td>LSI #2 DA11BOI (P1 P2; P2 P1)</td>
</tr>
<tr>
<td>DQ130 magtape interface</td>
<td>dual 50p flat cables</td>
<td>Cipher #1 (J1 P2; J2 P1)</td>
</tr>
<tr>
<td>Camac crate interface</td>
<td>50p flat cable</td>
<td>Camac crate</td>
</tr>
<tr>
<td>DRV11-C digital interface</td>
<td>40p flat cable</td>
<td>A/D interface</td>
</tr>
<tr>
<td>@50</td>
<td>(customized)</td>
<td>(N. McRae design)</td>
</tr>
<tr>
<td>DRV11-C digital interface</td>
<td>40p flat cable</td>
<td>Energy monitor</td>
</tr>
<tr>
<td>@60</td>
<td>(customized)</td>
<td>(R. Allen design)</td>
</tr>
<tr>
<td>DRV11-C digital interface</td>
<td>40p flat cable</td>
<td>Nav interface</td>
</tr>
<tr>
<td>@70</td>
<td>(customized)</td>
<td>(N. McRae design)</td>
</tr>
<tr>
<td>LP11 line printer controller</td>
<td>36p flat cable</td>
<td>Act II printer</td>
</tr>
<tr>
<td>DLV11-J serial line interface</td>
<td>2p EIA (port 4)</td>
<td>Ann Arbor</td>
</tr>
<tr>
<td></td>
<td>2p EIA (port 1)</td>
<td>LSI #2 DLV11 (port 4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LSI #2 Board</th>
<th>Connector Type</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSD-480 floppy interface</td>
<td>26p flat cable</td>
<td>DSD-480 #2</td>
</tr>
<tr>
<td>DA11BOI interprocessor link</td>
<td>dual 50p flat cables</td>
<td>LSI #1 DA11BOI spare</td>
</tr>
<tr>
<td>DQ130 magtape interface</td>
<td>dual 50p flat cables</td>
<td>Panasonic #2</td>
</tr>
<tr>
<td>Matrox QRGB-Graph</td>
<td>75 BNC cable</td>
<td>Trilog T100</td>
</tr>
<tr>
<td>LP11 line printer controller</td>
<td>36p flat cable</td>
<td></td>
</tr>
<tr>
<td>DLV11-J serial line interface</td>
<td>2p EIA (port 4)</td>
<td>LSI #1 DLV11 (port 1)</td>
</tr>
</tbody>
</table>
Table 2b. Other interconnections.

<table>
<thead>
<tr>
<th>Source</th>
<th>Connector Type</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipher #1</td>
<td>50p dual flat cables</td>
<td>Cipher #2</td>
</tr>
<tr>
<td></td>
<td>(half twist)</td>
<td>(P1 P1; P2 P2)</td>
</tr>
<tr>
<td>Ann Arbor interface</td>
<td>26p flat cable</td>
<td>keyboard</td>
</tr>
<tr>
<td></td>
<td>BNC cable</td>
<td>Panasonic #1</td>
</tr>
<tr>
<td></td>
<td>power cable</td>
<td>Power supply</td>
</tr>
</tbody>
</table>

Table 3. Impedences for digitizer connections.

<table>
<thead>
<tr>
<th>Transiack Internal 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
</tr>
<tr>
<td>Time Base</td>
</tr>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Amp Input</td>
</tr>
</tbody>
</table>

Available Connections for Digitizers

- Lase-Coherent trigger
- Master Control trigger
- T-0 markers (positive)
- T-0 markers (negative)
- Diode clippers

but we found a half twist was necessary to make the tape drives function properly. Also, Cipher #1 must not be terminated and Cipher #2 must have its unit number changed to two to make this configuration work.

The Ann Arbor keyboard/display has functioned reliably and yields good quality characters. The display, however, is large and bulky. A VK-170 (DEC) keyboard kit was tried but the lettering was poor and characters were often thrown out to the screen at random. A new keyboard kit is being investigated but for now the Ann Arbor keyboard and its interface board are being used. The interface board is mounted in a separate box with an external power supply (drawn from LSI #1 chassis).

It is not always easy to determine where a problem is occurring. The DIAL DAS programs have been written to provide error messages when detection is possible through software techniques. These messages and appropriate action will be detailed in the Appendix.
DIAL DAS PROGRAM THEORY

The NASA multipurpose DIAL DAS has been developed toward optimizing the following:

1. Speed. The DIAL DAS must be able to digitize and store 4096 words at up to 10 Hz rates as well as retrieve other information such as navigation, laser energies, and meteorological data. All this data must be read into computer memory (possibly averaged) and then recorded to magnetic tape prior to the next laser fire. To accomplish this, DMA (direct memory access) devices were chosen. Timing tests show that it takes about 16 msecs to store 2000 words from the Transiac 2012 digitizer. To record the data, streamer tape speeds are a necessity (for 4096 words and 10 Hz). Since tape units take about 3 minutes to rewind, two streamer tape drives are necessary to avoid interruptions in the data.

2. Size. Since the LaRC DIAL system is mainly an airplane platform system, size is a major consideration in DAS hardware. The current DIAL DAS is half the size of what it was five years ago with more than twice the computer capability.

3. Program control. Some experimenters prefer the type of computer system which, once started, runs itself with no operator intervention necessary. The DIAL DAS is not that kind of system and, in fact, requires this report and some hands-on experience to operate. The advantage to this type of software is that it allows the experimenter to have maximum control over real-time data acquisition and display. Near instantaneous modifications can be made to both using the commands detailed in the section "Keyboard Commands".

4. Data display. There are three purposes to the DIAL DAS data display. When starting out on a mission a fast refresh plotting capability is needed to align and optimize returns. When a dial or a mirror is turned we need near instantaneous display of that adjustment. As the mission proceeds we need the capability to monitor our returns but the refresh cycles are not so important. At this time, however, we need the capability to do some processing of the data to determine ozone and relative aerosol concentrations. We cannot expect to do all necessary corrections to the data in a real-time situation, so the software has been written to do as much as possible in the one second refresh time allotted. As an example, ozone concentrations can be calculated but the aerosol correction is not performed. Hard-copy color maps of aerosol concentrations have been extremely useful in DIAL missions in determining aerosol layers and subsequent flight altitudes in and around those layers. The third purpose to the data display is diagnostics. There are times when we need to look at the returns in a number of different ways in order to determine why we are getting errors in our concentrations. If the problem turns out to be something like mis-alignment, the beams can be re-aligned and the data for the mission can be salvaged.

The DIAL DAS has four data display capabilities. The CRT keyboard monitor can be used to list out raw data, the current banner record (a record consisting of experimental parameters) or
the current plotting options. The second CRT monitor is used for plotting data returns in a number of viewing modes. There are also two printers, one is a color printer which is used to generate real-time aerosol concentrations in a 3-D type display and the other is used to make hard copies of the plotting CRT. Plans are to purchase a second color printer for plotting real-time ozone concentrations in a similar fashion as the aerosol. All these display modes cannot be performed by a single computer which is why the DIAL DAS is a two-computer system. The advantage of having all these display modes is two-fold: (1) maximum control over experiment objectives, and (2) hard-copy data format for post-mission debriefings. The disadvantage is that the DIAL DAS software is long (requires most of the 128K word memory on both computers) and involved (not easily interpreted by other programmers). Ideally, it would be desirable to see all the data inputs at any processing level on a shot by shot basis but this is usually not possible in a real-time situation. As an example, we have two modes of calculating ozone concentrations for CRT display. One mode does a shot-by-shot calculation averaging in each successive concentration. This allows the user to see an updating and converging average and when the specified averaging interval is complete error bars are also shown. To perform the ratios and logarithms each time requires considerable CPU time (about .8 seconds on the LSI 11/23). The other mode averages all the on-line returns and all the off-line returns and does only one DIAL calculation at the end of the specified averaging interval. In this mode, the screen remains empty during the averaging process and no error bars can be calculated, however, the computation is done in about half the time. In real-time situations there is a trade-off between time required to generate a display versus being able to view the data in the most informative way. The DIAL DAS display modes will be covered in more detail in the section entitled "Real-Time Data Display" and refresh times are cited for each example shown.
PERIPHERAL PROGRAMMING INFORMATION

Table 4 is a summary of the base registers and trap vectors for all the peripheral devices associated with the two LSI computers. The magtape interface is the only device at BR7 -- the highest priority interrupt. The components marked with an asterisk are spare boards with switch registers set as shown.

Table 4. Base addresses for registers used by peripheral devices.

<table>
<thead>
<tr>
<th>Device</th>
<th>Base Address</th>
<th>Trap Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floppy Disk</td>
<td>777170</td>
<td>264</td>
</tr>
<tr>
<td>Interprocessor Link</td>
<td>772410</td>
<td>124</td>
</tr>
<tr>
<td>Mag-tape Interface</td>
<td>772520</td>
<td>224</td>
</tr>
<tr>
<td>Camac Interface</td>
<td>777550</td>
<td>400</td>
</tr>
<tr>
<td>DRV11-C @50</td>
<td>767750</td>
<td></td>
</tr>
<tr>
<td>DRV11-C @60</td>
<td>767760</td>
<td></td>
</tr>
<tr>
<td>DRV11-C @70</td>
<td>767770</td>
<td></td>
</tr>
<tr>
<td>*ADV11-C</td>
<td>770400</td>
<td></td>
</tr>
<tr>
<td>Line Printer Controller</td>
<td>777514</td>
<td>200</td>
</tr>
<tr>
<td>Serial Link (Console)</td>
<td>777560</td>
<td>60</td>
</tr>
<tr>
<td>Serial Link (to LSI #2)</td>
<td>776500</td>
<td>320</td>
</tr>
<tr>
<td>TCU 50-DYR</td>
<td>760770</td>
<td></td>
</tr>
</tbody>
</table>

LSI #2

Floppy Disk	777170	264
Interprocessor Link	772410	124
*Mag-tape Interface	772520	224
Matrox	764400	
*DRV11-C @70	767770	
*ADV11-C	770400	
Line Printer Controller	777514	200
Serial Link	777560	60
*TCU 50	760770	

On the following pages each of these peripheral devices will be discussed in a little more detail. The intention here is to provide only enough information to determine if a particular device is functioning properly and for more involved programming requirements references are given for each item.

DSD 480 Floppy Disk System

The DSD 480 is a double sided, double density flexible disk system which is RX02 compatible with RT-11 V3B. However, since the existing DIAL computer system is using RT11 V3 internal switches were set to make it RX01 compatible (single sided, single density). The floppy disk registers are outlined below.
RXICS @ 777170 command and status register
RXIDB @ 777172 data buffer register

RXICS @ 777170

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>ERROR</td>
<td>Error detected.</td>
</tr>
<tr>
<td>14</td>
<td>INIT</td>
<td>Initialize the DSD 480.</td>
</tr>
<tr>
<td>13</td>
<td>XBA17,XBA16</td>
<td>Extended address bits.</td>
</tr>
<tr>
<td>12</td>
<td>RX02</td>
<td>RX02 system identification bit.</td>
</tr>
<tr>
<td>11</td>
<td>SIDE SEL</td>
<td>Side select: =1 for side 0; =0 for side 1.</td>
</tr>
<tr>
<td>10</td>
<td>DEN</td>
<td>Density of the function encoded in FCN1-FCN3.</td>
</tr>
<tr>
<td>9</td>
<td>TRAN REQ</td>
<td>Transfer request flag.</td>
</tr>
<tr>
<td>8</td>
<td>IE</td>
<td>Allows DONE to interrupt.</td>
</tr>
<tr>
<td>7</td>
<td>DONE</td>
<td>Operation completed.</td>
</tr>
<tr>
<td>6</td>
<td>UNIT SEL</td>
<td>Drive unit select.</td>
</tr>
<tr>
<td>5</td>
<td>FCN3-FCN1</td>
<td>Function select: 000 fill buffer</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>001 empty buffer</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>010 write sector</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>011 read sector</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>100 set media density</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>101 read status</td>
</tr>
<tr>
<td></td>
<td>GO</td>
<td>Execute the function</td>
</tr>
</tbody>
</table>

RXIES @ 777172

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>NNM</td>
<td>Non-existent memory error.</td>
</tr>
<tr>
<td>14</td>
<td>WC OVL</td>
<td>Word count overflow.</td>
</tr>
<tr>
<td>13</td>
<td>SIDE SEL</td>
<td>Indicates side selected during last operation.</td>
</tr>
<tr>
<td>12</td>
<td>UNIT SEL</td>
<td>Indicates unit selected during last operation.</td>
</tr>
<tr>
<td>11</td>
<td>DRY RDY</td>
<td>Drive ready -- disk installed and ready to go.</td>
</tr>
<tr>
<td>10</td>
<td>DEL DATA</td>
<td>Deleted data -- indicates deleted data address mark was found on last operation.</td>
</tr>
<tr>
<td>9</td>
<td>DRY DEN</td>
<td>Density of diskette.</td>
</tr>
<tr>
<td>8</td>
<td>DEN ERR</td>
<td>Diskette density did not match DEN.</td>
</tr>
<tr>
<td>7</td>
<td>PWR LO</td>
<td>Power failure in the controller/drive subsystem.</td>
</tr>
<tr>
<td>6</td>
<td>INIT DN</td>
<td>Initialize done.</td>
</tr>
<tr>
<td>5</td>
<td>SD 1 RDY</td>
<td>Set for double sided diskette when ready.</td>
</tr>
<tr>
<td>4</td>
<td>CRC</td>
<td>Cyclic redundancy error.</td>
</tr>
</tbody>
</table>

12
Interprocessor Link (DA11BOI)

The Interprocessor Link provides a means of transferring data through DMA between two LSI 11/23 processors. This is the device used by the DIAL DAS software to transfer a data record from LSI #1 to LSI #2 to be processed and plotted.

<table>
<thead>
<tr>
<th>WCNT</th>
<th>ADDR</th>
<th>STATUS</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ 772410</td>
<td>@ 772412</td>
<td>@ 772414</td>
<td>@ 772416</td>
</tr>
</tbody>
</table>

WCNT word count

ADDR bus address

STATUS control/status

DATA data buffer

<table>
<thead>
<tr>
<th>STATUS @ 772414</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</td>
</tr>
</tbody>
</table>

ERROR Set by NEX, ATTN from the other computer or by bus address overflow.

NEX Non-existent memory.

ATTN Reads ATTN from the other computer.

MAINT Maintenance.

IN IR Input interrupt request. Reads status of the OUT IR from the other computer.

IN DIR Input direction. Reads status of OUT DIR from the other computer.

IN MODE Input mode. Reads status of OUT MODE from other computer.

CYCLE Initiates a DMA transfer when the generating DA11BOI is both the requested computer and the transmitter. When CYCLE and GO are both set, an immediate bus cycle is executed.

READY Must be cleared before a block transfer can be done.

IE Allows READY, IN IR or ERROR to cause interrupt.

XBA17, XBA16 Extended memory bits.

OUT IR Causes IN IR and READY in the other computer.

OUT DIR During block transfer: =0 for transmitter; =1 for receiver. Must be opposite of IN DIR.

OUT MODE Output mode: =0 for DMA; =1 for program mode.

GO Executes.

Cipher F880 Interface (Dilog D0130)

Two Cipher F880 tape drives are available for storage of data. This allows for continuous data acquisition when one drive is rewinding. The two units are cabled together by a "daisy chain" configuration and interfaced to the LSI 11/23 through a
Dilog D0130 tape coupler. Tape density is determined by a button on each Cipher unit and tape speed is software selectable. The fast speed (100 ips) or streamer mode requires a longer repositioning time if the tape motion stops during read or write operations. The DIAL DAS software must stack data records in extended memory during repositioning times to take advantage of the streamer mode. Tests showed that for 4096 word buffers and 10 Hz DIAL data, 11 or 12 records would get stacked during repositioning. The interface registers are outlined below.

MTS @ 772520 .status
MTC @ 772522 command
MTBRC @ 772524 byte/record counter
MTDMA @ 772526 current memory address
MTD @ 772530 data buffer
MTRD @ 772532 tape read lines

ILL COM

Occurs if (a) a new instruction is issued before last one has finished, (b) no write ring when told to write, (c) a command to unit whose SELR is 0, or (d) SELR becomes 0 during tape operation.

EOF
Set when end of file is detected during tape operation.

PAR ERR
Parity error.

BGL
Bus grant late.

EOT
End of tape marker detected.

RLE
Record length error -- detected during read operations if tape record is too long.

NXM
Non-existent memory.

SELR
Indicates unit addressed is on-line.

BOT
Beginning of tape.

7 CH
Set to indicate 7-channel tape unit.

SDWN
Will accept new command during settle down as long as it is in the same direction.

WRL
Write lock set if no write ring is on tape.

RWS
Rewind status set when rewind command given, cleared at BOT.

TUR
Tape unit ready is cleared by GO and function occurs.
MTC
@772522

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERROR</td>
<td>PWR CLR</td>
<td>STREAMER</td>
<td>US1</td>
<td>US0</td>
<td>READY</td>
<td>IE</td>
<td>XBA17</td>
<td>XBA16</td>
<td>FCN3</td>
<td>FCN2</td>
<td>FCN1</td>
<td>GO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ERROR
Set by bits 7-15 of the status register.
PWR CLR
Clears the control unit and tape units.
STREAMER
Selects streamer mode.
US1, US0
Selects unit number for MTS operation.
READY
Control unit ready.
IE
Interrupt enable.
XBA17, XBA16
Extended memory bits.
FCN3-FCN1
Function bits (with GO set):
- 000 (1) Off line
- 001 (3) Read
- 010 (5) Write
- 011 (7) Write EOF
- 100 (11) Space Forward
- 101 (13) Space Reverse
- 110 (15) Write with Extended Interrecord Gap
- 111 (17) Rewind

GO
When set, begins operation defined by function.

Transiac 2012 Interface (Kinetics 2920-22B bus adaptor)

The Transiac 2012 digitizers are interfaced to the LSI 11/23 through a Kinetics 3920 Crate Controller and a Kinetics Bus Adaptor board. The interface is versatile in that any unit in the Camac crate can be addressed by its slot number. The function codes will be defined by the type of hardware being used in that slot. Since this interface is presently being used only for the Transiac digitizers, only those function codes will be listed here. The interface has four directly addressable registers plus an additional 6 registers addressed by offsets.

DLO @ 777550 data low (RA2 = 0, RA1 = 0)
LLO 1am low (RA2 = 0, RA1 = 1)
MAR memory address (RA2 = 1, RA1 = 0)
DMACSR DMA control/status (RA2 = 1, RA1 = 1)
DHI @ 777552 data high (RA2 = 0, RA1 = 0)
LHI 1am high (RA2 = 0, RA1 = 1)
WCR word count (RA2 = 1, RA1 = 0)
EMA extended memory (RA2 = 1, RA1 = 1)
NAF @ 777554 station/function
CACSR @ 777556 control/status
ASCAN

Enables the crate controller to increment the Camac address on completion of a Dataway Cycle.

SLOT0-SLOT4

Station or slot number of Camac device.

SA0-SA3

Sub-address of Camac device (not used with Transiaks.)

FCN0-FCN4

Function code defined by user device.

Transiak Function Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000 Read front panel switch settings. Sets Q = 1.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>00001 Read status of overtemperature indicator.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>00010 Read data sequentially from memory. The N+1 word (N = record length) will return Q = 0.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>01000 Tests LAM and returns Q = 1 if ready for readout. Must be preceded by function 32 (11010).</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>01001 Resets to sampling mode—all previous data is written over. Q = 1 returned.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>01010 Clears LAM. Q = 1 returned.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>01011 Computer generated sampling clock. Sets Q = 1.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>11000 Disables LAM and switches from readout mode to display mode. Sets Q = 1.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>11001 Generates stop trigger. Sets Q = 1.</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>11010 Enables LAM — enables unit for readout. Sets Q = 1.</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>11011 Enables offset measurement logic. Sets D = 1.</td>
<td></td>
</tr>
</tbody>
</table>
GO (W)

Starts 3920 operation defined in NAF and DMACSR.

DMACSR

@ 777550

RA2 = 1

RA1 = 1

ERROR (R)

Set by NXM, NO-X, N>23, or TMO; cleared by INIT or GO.

NXM (R)

DMA transfer to non-existent memory attempted.

TMO (R)

Time-out condition during Q-Repeat DMA mode (mode 3).

16/24 (R/W)

Specifies 16 or 24 bit data transfers (16-bit = 1).

DMA DONE (R)

Set when DMA operation is done.

DMA IE (R/W)

Enables DMA DONE to interrupt.

A17,A16 (R/W)

Extended memory bits used with MAR during DMA.

M2,M1 (R/W)

Specify mode when GO of CACSR is set.

- mode 0 programmed transfer
- mode 1 Q-stop/stop on word count
- mode 2 address scan
- mode 3 Q-repeat/stop on word count

SUS (R/W)

Set to suspend DMA operation.

Parallel Line Interface Module (DRV11-C)

This module acts as an interface between the LSI 11/23 and a peripheral device. The DIAL DAS presently uses one of these modules to pass data from the LORAN or INS interface to the computer. There are three spare DRV11-C modules in LSI #2 which are not being used.

DRSR

@ 767770 control/status

DRO

@ 767772 output buffer

DRI

@ 767774 input buffer

REQ B

Set by user device and causes interrupt if IEB set.

REQ A

Set by user device and causes interrupt if IEA set.

IEB

Interrupt enable for REQ B.

IEA

Interrupt enable for REQ A.

CSR1

User defined function -- if linked to another DRV11-C causes REQ B.

CSR0

User defined function -- if linked to another DRV11-C causes REQ.
Analog-to-Digital Converter (ADV11-C)

Sixteen Analog-to Digital Conversion single ended inputs (or eight differential) are available to the DIAL DAS through an ADV11-C board. Unipolar inputs can range from 0V to 10V and bipolar inputs from -10V to +10V and can be stored with programmable gains of 1, 2, 4, or 8 times the input voltage.

ADST: @ 770400 control/status
ADBF: @ 770402 data buffer

ERROR
Caused by doing a GO when A/D DONE is set or A/D still in progress.
ERR IE
Allows ERROR to interrupt.
ADD3-ADD0
Channel address.
A/D DONE
Set when A/D done, cleared by reading A/D data buffer.
IE
Interrupt enable.
RTC
Enables real-time-clock input to start A/D conversion.
EXT TRIG
When set allows external trigger to start A/D.
GS1-GSO
Gain select: 00=1, 01=2, 10=4, 11=8.
GO
Starts an A/D conversion -- cleared after starting.

Line Printer Controller (MLSI-LP11)

The LP11 provides the interface between the LSI 11/23 computers and the TRILOG T100 printer. Each computer has its own interface board and care must be taken to cable up the desired computer to the Trilog. Eventually, we hope to have either a software instruction or a manual switch to select which computer's output to send to the Trilog.

LPS: @ 777514 status
LPB: @ 777516 data buffer
Teletype (Plessey PM-DLV11J Serial Line Interface)

The Plessey PM-DLV11J is a 4-channel asynchronous serial line interface between the LSI 11/23 bus and standard I/O devices. On LSI #1 one port is used to communicate with the teletype and another port is used to communicate with a second PM-DLV11J interface on LSI #2. Baud rates on both boards have been wire-wrapped for 9600 baud.

From LSI #1 port #1 to LSI #2 port #4:

RCSR @ 776500 receiver control/status (port 1)
RBUF @ 776502 receiver buffer (port 1)
XCSR @ 776504 transmitter control/status (port 1)
XBUF @ 776506 transmitter buffer (port 1)

From LSI #1 to console device:

RCSR @ 777560 receiver control/status (port 4)
RBUF @ 777562 receiver buffer (port 4)
XCSR @ 777564 transmitter control/status (port 4)
XBUF @ 777566 Transmitter buffer (port 4)

DONE Set when entire word has been received and is ready for transmission.
IE When set, allows DONE to cause interrupt.

ERROR Set by bits 14, 13, or 12.
OVER RUN Set when previous character was not completely read prior to receiving a new character.
FRAME Set when no valid stop bit for character.
PAR ERR Parity error.
DAT7-DAT0 Received data bits.
READY
Enables READY to cause interrupt.
When set, causes a continuous space level to be transmitted.

XBUF
Transmitter data bits.

Timing Control Unit (TCU-50 and TCU-50 DYR)
These two timing control units are similar in that they are both crystal clocks that continue to operate even after the computer has been powered down. The TCU-50 has month, day, hours, minutes and seconds while the TCU-50 DYR also has year, day of week as well as .1, .01 and .001 seconds. The two clocks are set and read differently so both are outlined below. The TCU-50 DYR is used in LSI #1 while the TCU-50 resides in LSI #2 but is not currently being used by the DIAL DAS -- it is maintained for back-up purposes.

TCU-50:

MNTH/DAY

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

HR/MIN

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
M/D SET
Month/day being set -- fast clock on.

H/M SET
Hour/minute being set -- fast clock on when 1.

READY
TCU ready.

TCU-50 DTR:

DATA
Read/write data bits. When reading a counter or latch register, the bits are 2 BCD numbers packed in 8 binary bits (eg. 23 = 00010011 = 0001 0011 = 13).

CTRL
Interrupt enable if switch SW3-1 is on.

IE
Write enable -- allows writing to the clock or RAM registers.

WRT
If this bit is 0, then bits 0-4 select one of the 32 clock registers. If 1, then bits 0-9 select one of the 1024 CMOS RAM registers.

CLK/RAM
Register select:
- 00000: counter - .001 secs
- 00001: counter - .1 and .01 secs
- 00010: counter - secs
- 00011: counter - mins
- 00100: counter - hours
- 00101: counter - day of week
- 00110: counter - day of month
- 00111: counter - month
The Matrox QRGB-GRAPH controller is a color graphics interface for use with RGB monitors. Contained in a PROM is a color look-up table which has been modified by Norman McCrae for gray-scale operations. I have written general purpose software routines to be used with the Matrox board and these are printed out in Appendix I. There are 512 x 512 pixels available but due to some flaw in the design of the Matrox board the software only uses 256 pixels in the Y direction. There are 11 directly accessed registers plus 14 CRTC registers that are indirectly accessed through an address register (VECT) and data port (CRT5). The CRTC registers will not be discussed here -- they are used only for initialization procedures and their use can be found in the Matrox manual. Not all mnemonics for the directly accessible registers will be defined in this report as they are not used in the DIAL DAS software.

XREG @ 764400 X coordinate (10 bits)
YREG @ 764402 Y coordinate (10 bits)
DATA @ 764404 data register (4 bits)
ST1 (R) @ 764406 preset memory status
CTR1 (W) @ 764406 zoom/pan control
ALP (R) @ 764410 auxiliary light pen register
CTR3 (W) @ 764410 color map select
CTR4 @ 764412 write plane enable
ST2 (R) @ 764414 vertical blanking status
VECT (W) @ 764414 CRTC address/vector register
CTR5 @ 764416 CRTC data register/preset control

PREM FLG If 1, memory is being preset or frame grab in progress.
CRT1
@ 764406

YZOOM1-YZOOM0
Y-zoom: 00 = 1, 01 = 2, 10 = 4
XZOOM2-XZOOM0
X-zoom: 111 = 1, 110 = 2, 101 = 3, 100 = 4,
 011 = 5, 010 = 6, 001 = 7, 000 = 8
XPAN2-XPAN0
Horizontal display pan delay.
ALTMAP
Selects A or B color-look-up table.
BLINKEN
When set, blinks display.
FGC
Continuous frame grab (not used).
DMA
When 1, the display memory can be accessed by DMA.
IRQEN
Interrupt enable.
VDD BUS
Video bus enable when 0.
CLIPEN
Clipping enabled when 1.
WRCPL
Data at X,Y is complemented when 1.

VECT
@ 764414

WRT AUTO
When 0, data in DATA is automatically written to
 X,Y when VECT is loaded.
DEC Y
When 1, auto-decrement of Y is in effect.
DEC X
When 1, auto-decrement of X is in effect.
INC Y
When 1, auto-increment of Y is in effect.
INC X
When 1, auto-increment of X is in effect.
CRTC7-CRTC0
Address of CRTC register (used only at start-up).

CRT5
@ 764416

PRESET
When 1, the part of display memory appearing on the
 screen is preset to the value in DATA.
FGS
Frame grab control.
The DIAL DAS Operating System (OS) software consists of two programs which run simultaneously on the two LSI computers. The program on LSI #1 is called "MASTER" and is dedicated to data transfer and storage. The LSI #2 program is called "SLAVE" and is responsible for data analysis and display. The user communicates with both programs through LSI #1 which passes data buffers and display options to LSI #2 as necessary. During real-time experimental situations, the MASTER program gathers digitized laser signals from the Transiac 2012's. It also gathers laser energies through a DRV11-C interface, temperatures and pressure altitude through a second DRV11-C interface, time of day from the TCU-50 DYR, and position information from the Loran or INS navigation devices through a third DRV11-C. Data acquisition is interrupt driven by the Laser Coherent Trigger into the Transiacias. After the data is packed into one continuous buffer, the record is written to magnetic tape. If LSI #2 has finished processing the previous laser shot, the new data buffer is transferred to LSI #2 from LSI #1 through a DMA interprocessor link. The display rate in real-time depends on the amount of data to be plotted and on the complexity of the data analysis to be performed. For example, at 5 Hz laser firing, 2048 words of raw data from one unit (no analysis) will be viewed every third shot. Real-time profiles of ozone or water vapor concentrations are updated every fifth shot. These displays of raw and processed DIAL information allow for real-time system optimization as well as flight path decisions during flight operations.

Data transfer operations from the digitizing units are readily accomplished within the minimum 100 ms operation time envelope between laser firings. The laser-coherent time base is designed to key the digitizers to sample for 83.9 usecs (839 words) then to go into a "sleep" mode until just prior to the second laser at which time it restarts the sampling (ref. 3). This avoids the necessity of digitizing long records to acquire the on-line return followed by the off-line return 250 usecs later. Software commands are available which control the starting point and number of words for data storage for each signal return. The maximum buffer size is presently set at 4096 words. The combined data stored from all the digitizers in use plus the shot header information must not exceed 4096 words.

Getting Started

Since the teletype is interfaced to LSI #1, a short program is available on each of the system diskettes which allows the user to communicate directly with LSI #2. Once LSI #1 is booted, type "R LSI2" to access LSI #2. Thereafter, each character is sent through the serial line interface to LSI #2. To exit, hit the "BREAK" key -- this returns the user to ODT (on line debug-technique) on LSI #1.

To run the MASTER and SLAVE programs, LSI #2 must start out in ODT. This allows program MASTER to boot LSI #2 and run program SLAVE. The procedure to start up the MASTER/SLAVE
programs is outlined below. System diskettes with the RT11 monitor on them have blue labels. The diskettes with the programs "MASTER" and "SLAVE" have yellow labels.

1. Place system diskettes (blue) in drive 0 of both disk drives.
2. Place MASTER (yellow) in drive 1 of LSI #1 and SLAVE (yellow) in drive 1 of LSI #2.
3. Boot LSI #1 by typing: 173000G
4. Run program MASTER by typing: RUN MASTER
5. MASTER will load and in turn call SLAVE. LSI #2 is ready when "MATROX" is visible on the video display. LSI #1 is ready when the default banner record is printed out on the console display.
6. You are now under the DIAL DAS OS. Anything you type in from now on will be interpreted by program MASTER. To return to the monitor use the instruction KILL. To return to ODT hit the BREAK key.
7. To erase one character hit the "backspace" key. To erase a whole line hit the DEL key.
8. Valid instructions are listed in the section "Keyboard Commands".
9. If LSI #1 bombs, halt both computers and start back at step 4.
10. If LSI #2 bombs to ODT (indicated by "@"), then type BOOT. If LSI #2 bombs to Monitor (indicated by RT-11 error message), type SLAVE.

If the display on LSI #2 stops updating, use the SYNC command.

The user now has the capability to fully control data buffering and recording, as well as many other aspects of data analysis and display. A sample user dialogue is given at the end of the section "Keyboard Commands". Comments are made on each line to describe what the user is doing (those preceded by two hyphens) or what action the computer is taking (comments in parentheses). Commands marked "---*

Data Acquisition

Data acquisition is controlled by hardware switches on the digitizing units and by keyboard commands. On the Transiac 2012 a knob setting selects the number of pre-trigger samples in increments of 1/8 of the total record (a selected record length of 2048 words would have pre-trigger increments of 256). A certain number of pre-trigger samples are desirable (about 10 to 20) to provide a good window for the trigger marker but certainly not all 256 of the Transiac pre-trigger words need be saved. There is also the case where a unit is used to digitize only an offline return which occurs some time after that unit was triggered. The data sampled during the on-line laser firing must be read by the program, but only the data from the second return need be saved. The instruction "STORE U1,U2,U3,U4" determines the starting word for each unit at which data is to be saved. For those units storing two returns (both online and offline), the first return is saved starting at Ui and the second return...
is saved starting at \(U_i + 839 \), \(i = 1, 2, 3, \) OR 4. The number of words saved for each unit is determined by the instruction "POINTS \(U_1, U_2, U_3, U_4 \)". An example of data acquisition will be given at the end of the section "Keyboard Commands".

Real-Time Data Display

All data processing and display to the video screen are performed by the SLAVE program on LSI #2. LSI #1 is reserved for data transfer from the digitizers, for magnetic tape operations, and for console keyboard communications. However, on request, LSI #1 will produce real-time color representation of range resolved profiles on the Act II printer. On LSI #2, four basic modes for DIAL data display are available, each with a variety of display options. At the same time several other pieces of information can be shown on the right hand side of the screen. Altitude, temperature data and laser energies from the DRVII-C interfaces can be viewed. Certain hook-up conventions must be observed for the DRVII-C input in order to get default conversion constants and labeling to correspond:

<table>
<thead>
<tr>
<th>DRVII-C Channel (850)</th>
<th>Input</th>
<th>Label</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>aircraft altitude</td>
<td>ALT</td>
<td>ft</td>
</tr>
<tr>
<td>2</td>
<td>dewpoint temperature</td>
<td>DPT</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>temperature</td>
<td>T</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>total temperature</td>
<td>TT</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRVII-C Channel (860)</th>
<th>Input</th>
<th>Label</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>online UV laser energy</td>
<td>UVN</td>
<td>MJ</td>
</tr>
<tr>
<td>2</td>
<td>offline UV</td>
<td>UVF</td>
<td>MJ</td>
</tr>
<tr>
<td>3</td>
<td>online IR</td>
<td>IRN</td>
<td>MJ</td>
</tr>
<tr>
<td>4</td>
<td>offline IR</td>
<td>IRF</td>
<td>MJ</td>
</tr>
<tr>
<td>5</td>
<td>visible</td>
<td>VIS</td>
<td>MJ</td>
</tr>
<tr>
<td>6</td>
<td>spare</td>
<td>---</td>
<td>MJ</td>
</tr>
</tbody>
</table>

The DIAL DAS command language allows the user to input a slope and intercept to the banner record for each DRVII-C channel to convert the digitized counts to the units shown above. Conversion constants must be input as integers. So each slope and intercept is represented by an integer mantissa and corresponding exponent of 10. These four words per conversion channel are stored in the banner record. The user also has options to update the plot side of the screen (left) by itself, update the right side by itself, or both sides at the same time (UPDATE command).

The different display options are summarized below. Each display mode has a number of default options associated with it. These are summarized in table 6. The default values can be changed by various keyboard commands. Display options are available for background subtraction, range-square correction, overlaying data of different digitizers, scale and more. Each display option can be activated or de-activated in real-time to observe signal features in the most useful format.
Raw Data (MODE1)

This is the basic display mode which presents raw data from each of the digitizing units as it exists in computer memory (figure 4). The abscissa represents word sequence in memory while the ordinate is adjusted to present the 12-bit signal magnitude with variable magnification. The one word instruction "MODE1" calls up all the options listed as defaults in table 5.

Table 5. Default plotting parameters.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MODE1</th>
<th>MODE2</th>
<th>OZONE</th>
<th>GRYSCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit select</td>
<td>all</td>
<td>all</td>
<td>UNIT1</td>
<td>UNIT2</td>
</tr>
<tr>
<td>y-axis scale</td>
<td>0-4096</td>
<td>0-4096</td>
<td>0-800</td>
<td>150m/tic</td>
</tr>
<tr>
<td>x-axis scale</td>
<td>all data</td>
<td>150m/tic</td>
<td>150m/tic</td>
<td>---</td>
</tr>
<tr>
<td>background word</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>background window</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>trigger search</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>smooth</td>
<td>no</td>
<td>210m</td>
<td>210m</td>
<td>no</td>
</tr>
<tr>
<td>average shots</td>
<td>no</td>
<td>no</td>
<td>100</td>
<td>no</td>
</tr>
<tr>
<td>range cell</td>
<td>---</td>
<td>---</td>
<td>210m</td>
<td>---</td>
</tr>
<tr>
<td>gas exponent</td>
<td>---</td>
<td>---</td>
<td>-10</td>
<td>---</td>
</tr>
<tr>
<td>atmospheric correction</td>
<td>---</td>
<td>---</td>
<td>yes</td>
<td>---</td>
</tr>
<tr>
<td>Rayleigh correction</td>
<td>---</td>
<td>---</td>
<td>-6.7 ppb</td>
<td>---</td>
</tr>
<tr>
<td>shift toa</td>
<td>---</td>
<td>no</td>
<td>no</td>
<td>---</td>
</tr>
<tr>
<td>update right screen</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Online/Offline Overlay (MODE2)

A second display mode presents the raw data signals in an overlapped format. As shown in figure 5, the online and offline UV signals are overlayed when the data is tagged as a DIAL type measurement. The top 2 profiles in figure 5 represent aerosol returns (single wavelength measurements) at 600nm and 1060nm. By default, each of these returns have been smoothed over 210m and plotted as a function of range, each tic mark representing 1 usec. Each data shot is plotted in this mode starting after the PMT gate delay. In this mode a search is also performed for a trigger position to line up each of the returns with respect to the laser firings. This trigger position word number is displayed on the right hand side of the screen. The user specifies the trigger ordinate level to be used for each digitizer unit along with the number of words it is nominally delayed. The laser-coherent trigger markers are electronically delayed 14 words from the actual laser firing but a breakthrough pulse occurs at the same word as the laser firing.

Figure 6 shows the effect of activating the background subtraction and range squared options on the profile of UNIT1 in figure 5 (MODE2).
Figure 4. Example of MODE1 display. Copied to Trilog with COPY -2 command. Refresh cycle is 1.6 sec.
Figure 5. Example of MODE2 display. Refresh cycle is 2.4 sec.
Figure 6. MODE2 display with background subtraction and range-squared options in effect.
Refresh cycle is 1.2 sec.
Concentration Profiles (OZONE and WATER)

This display mode presents the gas concentration mixing ratios as a function of altitude or range calculated from the DIAL signal pair (figure 7). For each DIAL return, the background signal level is integrated over a specified interval. The starting point of this integration is selected by the command "BGWORD" and the number of words to average over is specified by "BGWIND". This average background is subtracted from the return signal, and the resulting data is then smoothed with a running mean over the specified range interval (see "SMOOTH"). This smoothing technique does not introduce errors only for those atmospheric conditions where the aerosol scattering is not changing rapidly along the DIAL measurement path. The DIAL equation (ref. 1) is evaluated using the smoothed lidar returns over a specified range cell size, usually 210 m. Ozone mixing ratios are determined by dividing each range cell concentration by the corresponding standard atmospheric number density at that altitude. A correction factor specified by "RAYCOR" is subtracted from the ozone mixing ratio to compensate for Raleigh extinction differences between the on and off lines. Water vapor mixing ratios are determined by dividing each range cell by the standard number density at sea level since the product of the water vapor absorption cross section at line center and the atmospheric number density is independent of pressure. This pressure dependence correction can be activated, however, by the instruction "ATMCOR". Each DIAL signal pair produces a mixing ratio profile. Any number of DIAL measurements can be averaged together to improve the profile statistics at the expense of increased horizontal integration for the measurement. The standard deviation for the resulting averaged profile is computed at increments equivalent to the range cell size and displayed on the mixing ratio profile.

There is also an alternative concentration display mode that has been added this year (OZONE2). This routine sums up all the on-line returns and all the off-line returns prior to performing any calculations. The speed in obtaining an averaged profile is twice as fast, however, no statistics can be calculated using this method and there is no update on the CRT until the average is complete.

Gray-Scale Display (GRYSCALE)

A 16 level gray scale display format is available for presentation of the spatial distribution of aerosol scattering (figure 8). In processing the aerosol lidar return, the background signal level is subtracted from the lidar-plus-background signal and the geometrical range squared lidar signal dependence is eliminated. The resulting lidar backscatter profile is indicative of the distribution of aerosols along the lidar line-of-sight. The vertical resolution of the aerosol data is 15 m. The nominal horizontal resolution is 10 m for aircraft operation at a 10 Hz repetition rate. The backscatter signal level is converted into a 16 level gray scale display line where stronger scattering is indicated by higher brightness on the
Figure 7. Example of OZONE display (100 shots averaged). Refresh cycle is .8 sec. or 4 minutes to calculate the averaged profile real-time. OZONE2 method requires only 2 minutes.
Figure 8. Example of GRYSCL (polaroid shot of CRT).
monitor or a darker dot pattern on the printed version of the display. Sequential gray scale lines are used to construct a real-time picture of the aerosol vertical distribution along the Electra flight path. Each of the gray scale displays can contain 300 individual or integrated aerosol profiles. At a laser pulse repetition rate of 1 or 10 Hz, the 300 individual profiles correspond to a nominal horizontal traverse of 30 or 3 km, respectively. This horizontal scale assumes a nominal ground speed of 100 m/sec for the Electra aircraft. The gray scale format shows the terrain profile, and it clearly identifies the distribution of aerosols in the boundary layer and the free troposphere.

Hard Copy Color-Scale (ACTON)

This option represents the same type of display as described for "GRYSCL"; however, it is done in color on the ACT II printer. When this option is activated, the current banner record and ACTON plotting parameters are printed followed by a 25 shade color scale display of relative aerosol concentrations. The color scale which follows the color spectrum is shown at the top of each plot. White is on the low end of the scale and black is on the high end. The user specifies a minimum value below which all data will appear as white ("WHITE") and a maximum value above which all data will appear as black ("BLACK"). Data shots may be averaged (up to 15 shots) or plotted individually. During real-time operations the computer can plot about one profile a second (either averaged or individual). Time, latitude and longitude are printed at each minute marker (figure 9). The hard copy continues until turned off with the instruction "ACTOFF" or whenever any of the ACTON plotting parameters are changed. The user must re-start the "ACTON" after changing plotting parameters. This allows the new plotting parameters to be printed so that an updated record is always available.

Magnetic Tape Storage and Format

The DIAL data is stored in real-time using one of two Cipher tape drives. This allows for constant recording of data while one unit is rewinding. The data is recorded at 100 ips in "streamer" mode. Streamer mode is the only method we found to record the 4K blocks of DIAL data at 10 Hz operation. The disadvantage of streamer mode is that if the tape unit does not get a new instruction within a small period of time it requires a long repositioning time. The DIAL DAS software was written so that each data transfer from the digitizers is stored in a consecutive block of extended memory -- up to 23 blocks are available. Once transfer to the top block (0000000) is done data transfer continues to the bottom block (0000000). When a request is made to commence recording data, the first available block is transferred to tape as soon as the tape has repositioned. During repositioning time other data blocks will be stored in memory and these are queued as they come along. As soon as the tape is again ready it is given the next queued block.
Figure 9. Example of ACTON (EXPAND = 1 option).
to record. This procedure produces a streaming operation with minimal need to reposition. Tests show that 4k blocks are written to tape at 10 Hz with up to 10 blocks getting queued, at 5 Hz 5 blocks get queued and at 1 Hz no blocks get queued.

Data is written using 1600 bpi PE magnetic tape format on 2400-ft reels of .5 in wide magnetic tape. Each data storage file begins with a 256 word banner record (16 bits per word) with DIAL DAS information as shown on Table 6. The data from each laser shot is packed into one large record on magnetic tape (data from all digitizer units are packed into one single buffer). Each data record begins with a shot header of information required on a shot-by-shot basis. This includes time, shot number, latitude, longitude, altitude, temperature data, and laser energies. The number of words in the header is currently 30 but this number can be changed with the instruction "HDRPTS". Table 7 shows the structure of a typical data record. At the end of the tape or at the end of the information stored on that tape there are 2 file marks (EOF) to denote end of information.

While recording data, if one tape drive reaches an end of tape marker then it will automatically back up two records, write two EOF's, start rewinding the tape, and start recording a new file on the alternate tape drive.

Decoding Information

This section provides information necessary to decode and convert various information in the banner (IBAN) and shot header (IBUF).

DATE

<table>
<thead>
<tr>
<th>bit:</th>
<th>14 10 9 5 4 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>month day year (binary)</td>
</tr>
</tbody>
</table>

To get the actual year, add 1972 to the value in bits 4-0.

TRIGGER MARKERS

The two high order bits indicate the logical operator: less than is signified by a value of 1; equal to by a value of 2; and greater than by a value of 3. The lower 14 bits indicate the magnitude of the comparison to be made.

GAS SPECIES

Radix-50 values are stored, up to three characters per word, by packing them into single numeric values according to the formula:

\[(i \times 50 + j) \times 50 + k\]

where "i", "j", and "k" represent the octal code values:

<table>
<thead>
<tr>
<th>Space</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Z</td>
<td>1-32</td>
</tr>
<tr>
<td>0 - 9</td>
<td>36-47</td>
</tr>
</tbody>
</table>
Table 6. Banner record word assignments (dimensioned 256).

<table>
<thead>
<tr>
<th>Word</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>banner record format</td>
</tr>
<tr>
<td>2</td>
<td>tape #</td>
</tr>
<tr>
<td>3</td>
<td>file #</td>
</tr>
<tr>
<td>4</td>
<td># words in shot header</td>
</tr>
<tr>
<td>5</td>
<td>date</td>
</tr>
<tr>
<td>6</td>
<td>plane altitude (feet)</td>
</tr>
<tr>
<td>7</td>
<td>up/down mode (0=down; 1=up)</td>
</tr>
<tr>
<td>8</td>
<td>sampling frequency (MHz)</td>
</tr>
<tr>
<td>9</td>
<td>laser fire word #</td>
</tr>
<tr>
<td>10</td>
<td>laser rep rate (Hz)</td>
</tr>
<tr>
<td>11</td>
<td>absorption coefficient (mantissa)</td>
</tr>
<tr>
<td>12</td>
<td>absorption coefficient (exponent)</td>
</tr>
<tr>
<td>13-16</td>
<td>spares</td>
</tr>
<tr>
<td>17</td>
<td>words/return unit 1</td>
</tr>
<tr>
<td>18</td>
<td>words/return unit 2</td>
</tr>
<tr>
<td>19</td>
<td>words/return unit 3</td>
</tr>
<tr>
<td>20</td>
<td>words/return unit 4</td>
</tr>
<tr>
<td>21</td>
<td># returns unit 1</td>
</tr>
<tr>
<td>22</td>
<td># returns unit 2</td>
</tr>
<tr>
<td>23</td>
<td># returns unit 3</td>
</tr>
<tr>
<td>24</td>
<td># returns unit 4</td>
</tr>
<tr>
<td>25</td>
<td>starting storage word unit 1</td>
</tr>
<tr>
<td>26</td>
<td>starting storage word unit 2</td>
</tr>
<tr>
<td>27</td>
<td>starting storage word unit 3</td>
</tr>
<tr>
<td>28</td>
<td>starting storage word unit 4</td>
</tr>
<tr>
<td>29</td>
<td>baseline unit 1</td>
</tr>
<tr>
<td>30</td>
<td>baseline unit 2</td>
</tr>
<tr>
<td>31</td>
<td>baseline unit 3</td>
</tr>
<tr>
<td>32</td>
<td>baseline unit 4</td>
</tr>
<tr>
<td>33,34</td>
<td>direction and magnitude of trigger marker unit 1</td>
</tr>
<tr>
<td>35,36</td>
<td>direction and magnitude of trigger marker unit 2</td>
</tr>
<tr>
<td>37,38</td>
<td>direction and magnitude of trigger marker unit 3</td>
</tr>
<tr>
<td>39,40</td>
<td>direction and magnitude of trigger marker unit 4</td>
</tr>
<tr>
<td>41</td>
<td>post-trigger delay (usecs) unit 1</td>
</tr>
<tr>
<td>42</td>
<td>post-trigger delay (usecs) unit 2</td>
</tr>
<tr>
<td>43</td>
<td>post-trigger delay (usecs) unit 3</td>
</tr>
<tr>
<td>44</td>
<td>post-trigger delay (usecs) unit 4</td>
</tr>
<tr>
<td>45</td>
<td>species identifier (RAD50) unit 1</td>
</tr>
<tr>
<td>46</td>
<td>species identifier (RAD50) unit 2</td>
</tr>
<tr>
<td>47</td>
<td>species identifier (RAD50) unit 3</td>
</tr>
<tr>
<td>48</td>
<td>species identifier (RAD50) unit 4</td>
</tr>
<tr>
<td>49</td>
<td>trigger marker delay (words) unit 1</td>
</tr>
<tr>
<td>50</td>
<td>trigger marker delay (words) unit 2</td>
</tr>
<tr>
<td>51</td>
<td>trigger marker delay (words) unit 3</td>
</tr>
<tr>
<td>52</td>
<td>trigger marker delay (words) unit 4</td>
</tr>
<tr>
<td>53-64</td>
<td>spares</td>
</tr>
<tr>
<td>65-104</td>
<td>ALT and TEMP calibration constants for channels 1-10</td>
</tr>
<tr>
<td>105-144</td>
<td>4 words per channel (slope mantissa, slope exponent, intercept mantissa, intercept exponent)</td>
</tr>
<tr>
<td></td>
<td>Energy monitor calibration constants for channels 1-6</td>
</tr>
<tr>
<td></td>
<td>4 words per channel (same as ADV11-C constants above)</td>
</tr>
</tbody>
</table>
Table 7. Data record structure for shot buffers.

<table>
<thead>
<tr>
<th>Word #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>shot number</td>
</tr>
<tr>
<td>2</td>
<td># shots in buffer</td>
</tr>
<tr>
<td>3-4</td>
<td>time of day</td>
</tr>
<tr>
<td>5-6</td>
<td>unused</td>
</tr>
<tr>
<td>7</td>
<td>latitude (low order)</td>
</tr>
<tr>
<td>8</td>
<td>latitude (high order)</td>
</tr>
<tr>
<td>9</td>
<td>longitude (low order)</td>
</tr>
<tr>
<td>10</td>
<td>longitude (high order)</td>
</tr>
<tr>
<td>11</td>
<td>pressure altitude</td>
</tr>
<tr>
<td>12</td>
<td>dew point temperature</td>
</tr>
<tr>
<td>13</td>
<td>temperature</td>
</tr>
<tr>
<td>14</td>
<td>total temperature</td>
</tr>
<tr>
<td>15-20</td>
<td>spare DRV11-C channels</td>
</tr>
<tr>
<td>21</td>
<td>online UV energy</td>
</tr>
<tr>
<td>22</td>
<td>offline UV energy</td>
</tr>
<tr>
<td>23</td>
<td>online IR energy</td>
</tr>
<tr>
<td>24</td>
<td>offline IR energy</td>
</tr>
<tr>
<td>25</td>
<td>visible energy</td>
</tr>
<tr>
<td>26-30</td>
<td>spare energy monitor channels</td>
</tr>
</tbody>
</table>

The above constitutes the existing shot header. After this data the record buffer will contain the data stored from the various digitizers. The banner record whose values were defined in table 6 (IBAN) determines the storage of data:

if \[L = \text{IBAN}(4), M_1 = \text{IBAN}(17), M_2 = \text{IBAN}(18), M_3 = \text{IBAN}(19), M_4 = \text{IBAN}(20) \]
\[N_1 = \text{IBAN}(21), N_2 = \text{IBAN}(22), N_3 = \text{IBAN}(23), N_4 = \text{IBAN}(24) \]

then the data is located in the buffer as follows

<table>
<thead>
<tr>
<th>start word #</th>
<th>end word #</th>
<th>contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>shot header</td>
</tr>
<tr>
<td>L+1</td>
<td>L+M_1*N_1 = K_1</td>
<td>Unit 1 data</td>
</tr>
<tr>
<td>K_1+1</td>
<td>K_1+M_2*N_2 = K_2</td>
<td>Unit 2 data</td>
</tr>
<tr>
<td>K_2+1</td>
<td>K_2+M_3*N_3 = K_3</td>
<td>Unit 3 data</td>
</tr>
<tr>
<td>K_3+1</td>
<td>K_3+M_4*N_4</td>
<td>Unit 4 data</td>
</tr>
</tbody>
</table>
The banner record contains the conversion constants for the DRV11-C channels which are read in on a shot by shot basis and stored in the shot header.

\[
\text{counts} = \text{IBUF}(10+\text{ICH}), \quad \text{where ICH = channel #}
\]

and conversion to desired units is accomplished by:

\[
\text{volts} = \text{counts} \times (\frac{10v}{4095 \text{ counts}})
\]

\[
\text{volts} \times \text{IBAN}(65+14) \times 10^{\text{IBAN}(66+14)} + \text{IBAN}(67+14) \times 10^{\text{IBAN}(68+14)}
\]

where I4 is 4 * (channel # - 1).

ENERGY MONITOR DATA

As in the preceding data, the conversion constants are stored in the banner record and the laser energies are stored on a shot by shot basis in the shot header. The values in the header are 2’s complement binary counts which have been calibrated to read in millivolts. To convert to millijoules:

\[
\text{IBUF}(15+\text{ICH}) \times (\text{IBAN}(105+14) \times \text{IBAN}(106+14)) + \text{IBAN}(107+14) \times 10^{\text{IBAN}(108+14)}
\]

where ICH is the channel and ICH = 4 * (channel # - 1).

NAVIGATION DATA

Latitude and longitude are each 2 16-bit word integers coded in BCD. Bits 7-0 of the low order word are labels (latitude label in hex is 10 and longitude is 90). The information is then stored in bits 15-8 of the low order word and bits 13-0 of the high order word with .1 min resolution. Bits 14 and 15 of the high order word designate east, west, north or south.

Some examples:

<table>
<thead>
<tr>
<th>IBUF(8)</th>
<th>IBUF(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3125.8</td>
<td>0000 1000 0001 0010 0101 1000 0001 0000</td>
</tr>
<tr>
<td>W16637.8</td>
<td>1101 0110 0110 0011 0111 1000 1001 0000</td>
</tr>
<tr>
<td>E07654.1</td>
<td>0000 0111 0110 0101 0100 0001 1001 000</td>
</tr>
</tbody>
</table>
KEYBOARD COMMANDS

After the start-up procedure outlined above, all further keyboard input is interpreted by the program MASTER. A complete set of legal commands are listed on the following pages. A single character of operator input can be erased by means of the BACKSPACE () key. An entire line can be erased using the DEL key. The DIAL DAS OS is brought on-line with predefined option defaults. Data transfer from the digitizers can be initiated immediately if these defaults are suitable by means of the START command. Once START has been entered the program is interrupt-driven by the digitizers and certain parameters should not be changed. Commands that change these parameters are listed in the section "Stop Mode Commands" and can be used only after STOP has been entered. Also included in the "Stop Mode Commands" are those commands which deal with the interaction of the two LSI's. These commands can only be issued in stop mode to prevent the computers from getting out of sync. Error messages are detailed in Appendix III.

In the following list of commands, the variables U1, U2, U3, and U4 are used to refer to input parameters for digitizer units #1, #2, #3, and #4 respectively. The Transiacs can be used in any order which is determined by the command CAMACS whose input parameters list the station numbers of each unit in the sequence in which they are to be read.

Commands which have been changed or added since last year's report are denoted by an asterisk. The two new commands LOLEG and HILEG are used to call up a number of data acquisition and plotting defaults typically used during low altitude passes and high altitude passes, respectively. On a low pass only the up-looking laser is transmitted and therefore all other digitizers are "turned off". Additionally, the default is changed to the aerosol plotting routine for the ACT II to plot the up-looking channel. During the high altitude passes all four digitizers are turned back on and the down-looking IR is plotted on the ACT II. These commands were added as a simple means to switch back and forth between various defaults during high and low passes.

Stop Mode Commands

1. Digitizer Storage Commands:

 POINTS U1,U2,U3,U4 # points/return for each unit
 RETRNS U1,U2,U3,U4 # returns for each unit
 STORE U1,U2,U3,U4 store from this word for each unit
 CAMACS I,J,K;L station # for Transiacs to be used
 * DATAVG U1,U2,U3,U4 # shots to sum before storage
 * LOLEG calls for a number of defaults used during low altitude passes
 * HILEG calls up a number of defaults used during high altitude passes
2. Play-Back Commands:

 PLOT I plot I shots from tape
 if I=-1 plot from memory

 ARCHIV This command causes successive profiles
 being plotted on the ACT II to also be
 written to tape on Cipher #2. Another
 program can then be used to quickly make
 additional copies.

3. LSI #2 Program Control Commands:

 BOOT boot LSI #2 then run program SLAVE
 SLAVE run program SLAVE on LSI #2

Start or Stop Mode Commands

1. Program Control Commands:

 START start data transfer from digitizers
 STOP stop data transfer
 RESTR clears interrupts and issues a macro
 SYNC RESET command which returns all units
 to their status at power-up time
 KILL synchronize the two computers --used
 when monitor display fails to update
 SHTSET kill program MASTER and return to Monitor
 LSTBNR reset shot counter to zero
 LSTPLT print out current banner record
 COPY I copy CRT to Trilog (sizes: I=1-4)
 PRINT plot buffer is printed out on Trilog
 LIST I,J print data buffer from word I to J
 if I<0 print buffer in memory
 if I>0 read buffer from tape

2. Banner Record Input:

 FORMAT I format # (=2 presently)
 TAPE I tape #
 FILE I file #
 HDRPTS I reserve I words in shot header
 UPDOWN I I=0 down-looking; I=1 up-looking
 PULFRE I pulse repetition frequency (Hz)
 SAMFRE I sampling rate (MHz)
 HEIGHT I plane altitude (ft)
 PRETRG I # words stored before trigger marker
 ABSCOF I,J absorption coefficient I*10**J (atm-cm)-1
 TODDY U1, U2, U3, U4 # words offset between marker and
 DELAY U1, U2, U3, U4 actual laser firing
 GASES U1, U2, U3, U4 usecs after trigger to start of return
 BASLIN U1, U2, U3, U4 3-letter gas identifier (AER, 03, H2O)
 base line for returns
3a. Calibration Constants For Met Data:

ADCH1 I, J, K, L altitude slope (I*10**J) and intercept (K*10**L)
ADCH2 " " dewpoint "
ADCH3 " " PRT temp "
ADCH4 " " total temp "

3b. Conversion Constants For Laser Energy Data:

EMCH1 I, J, K, L channel 1 slope (I*10**J) and intercept (K*10**L)
EMCH2 " " channel 2 "
EMCH3 " " channel 3 "
EMCH4 " " channel 4 "
EMCH5 " " channel 5 "
EMCH6 " " channel 6 "

4. Magnetic Tape Commands:

CIPHER I cipher unit # (1 = 1 or 2)
RECORD write banner and start recording
BANNER write banner
ENDFIL write EOF and stop recording
REWIND rewind tape to BOT
SKFEOI skip to 2 consecutive EOF's
FNDFIL I search for file I (forward only)
SKPFIL I skip forward I files
BKFIL I skip backward I files
SKPRJC I skip forward I records
BAKREC I skip backward I records

5. Plotting Options Commands:

PLTMOD I select plot mode I (I=0 for no display)
MODE1 raw data display
MODE2 on/off line overlay display
OZONE ozone concentration display mode
OZONE2 fast ozone concentration display mode
WATER water vapor concentration display mode
PLTGRRY I plot gray scale if I=1
GRYSCL CRT aerosol gray scale display
UNIT1 display unit #1 data only
UNIT2 display unit #2 data only
UNIT3 display unit #3 data only
UNIT4 display unit #4 data only
ONLINE show on-line return only
OFFLINE show off-line return only
BOTH show both on-line and off-line
RETURN U1, U2, U3, U4 plot return # for each unit (both=7)
SCALE I plot scale factor where scale=2**I
YMAX I display range interval (see note #2)
BLOWUP subtract background and blowup to scale=0
LITER causes gray scale to be one scale lighter
DARKER causes gray scale to be one scale darker
OFFSET I offset x-axis by I
CLEAR I clear CRT (0=no clear; I=data only; 15=all)
OVERLAY I overlay data from different units if I=1
BGWORD I start word # for background average
BGWIND I # words to average for background (window)
SUBBAK I subtract background if I=1
RNGCOR I range correct if I=1
SMOOTH I smooth data over I meters (max 105m)
FLTAVG I average I shots in display
INDEX I index of I through data buffer (if I=0 program computes index necessary to fit data on screen)

PIXPNT I I pixels plotted per data point
UPDATE I I = 0 update plot and right screen
I = 1 update plot only
I = 2 update right screen only
RNGCEL I use range cell of I meters
GASEXP I concentrations in parts *10 **I
SHFTOA I shift TOA marker by I words
ATMCOR I if I=1 correct concentrations for altitude change of standard atmosphere (this correction not necessary when the absorption cross-section is changing with altitude as well)
RAYCOR I Rayleigh correction in same units as GASEXP above.

6. ACT II Color-Scale Commands:

ACTON start real-time color scale on Act II
ACTOFF stop real-time color on Act II
EXPAND I zoom factor (default is 3)
WHITE I minimum value of range corrected signal -- when it falls below this value it will be white
BLACK I maximum value of range corrected signal -- when it falls above this value it will be black
* ALTCOR I aligns data such that pressure altitude ground is at third tic mark from bottom
* NORMAL I normalizes return by E0/E where E0 is first shot energy computed for energy monitor channel I and E is the energy of that channel on each shot
* CUTOFF I zero fill data if value greater than I places a solid black line on plot
* MARKER

The following commands are identical in function as those listed in the previous section but the "@" preceding each command directs the action to the gray-scale display on the Act II.
@UNIT1 @UNIT2 @UNIT3 @UNIT4 @RETURN
@BGWORD @BGWIND @INDEX @PLTAVG
Trigger Markers

It has been found that it is extremely important to precisely line up the on and off line returns. Even a one word offset can cause oscillations in the concentration profiles. Therefore, there are several commands available to tell the program how to find a trigger marker. The trigger markers provided by the laser-coherent time base are electronically delayed from the actual laser firing so that any noise due to flash lamp firing will not mask the markers. These markers are the most accurate so they are used for the DIAL type returns. There are no trigger markers available for the one-wavelength returns so either flash lamp noise, or a breakthrough spike as the signal hits the aircraft window, or in the case of the 1.06 return where the diode detector is always on the return itself can be used to line up these returns with the DIAL returns. These types of markers occur at the time of laser firing. The first step is to determine at what word number the actual laser firing occurs. This can be done by looking at any one of the three types mentioned above which are not electronically delayed. The LIST instruction is used to display the word values in computer memory. When the word number of the laser firing has been noted it is entered with the command LASFIR. The next step is to tell the program whether a delayed type marker is to be used or one which occurs at laser firing. This is done with the command TODLY (this delay must be entered for each digitizer unit being used). The laser-coherent markers are presently delayed by 14 words (1.4 usecs) from the laser firing. The final step is to specify the actual level for the trigger with the command TRGLEV. Again, each digitizer unit will have its own trigger marker level. The trigger level is entered as less than (<), greater than (>), or equal to (=) some value (eg. <0, >900, =-2048).

The trigger search routine looks for the trigger marker in the 11 words centered around where it expects to find one as specified by the inputs LASFIR and TODLY. For example, LASFIR is set for 6, TODLY is 14, and TRGLEV is =2048 then the trigger search routine expects to find a value of 2048 between word 15 and word 25 of the online return and between POINTS + 15 and POINTS + 25 for the offline. If a value is found before that window or no value is found at all within the 11 words searched then the data shot is not included in the concentration calculation. MODE2 display does a trigger search on each return so inputs can be checked by displaying MODE2. The valid trigger words are displayed in the lower righthand side of the screen as they are found. Invalid markers are denoted by an asterisk.

One more word of caution. The occurrence of the trigger marker in the data stream can be altered by switch settings on the digitizers as well as by the command STORE. The Transiacks have a pre-trigger dial which increments by 256 words (for 2048 word record length). To allow for an ample window for the trigger marker the Transiack should be set at 1/8 (1892 words stored after the trigger and 256 words before). When the data from the digitizers is transferred into computer memory for storage to magnetic tape, the operator has the option of selecting where to begin storage with the instruction STORE. This command is espe-
cially useful with the Transiacs since so many pre-trigger words need be digitized. It also helps to conserve on storage when the first return in the digitizer is of no interest and only the second return need be saved (such as the visible aerosol measurement). A STORE value of 234 for the Transiac places the laser firing at word 6 in the data stream and the trigger marker at word 20. If only the second laser return were to be saved on a Transiac then a STORE value of 1073 might be used (the extra 839 to skip the first return). Figure 10 shows digitizer memory as compared to computer memory for the keyboard commands as follows:

STORE 234, 234, 1073
POINTS 500, 500, 500
RETRNS 2, 1, 1

The sample dialogue on the following page shows how to start the computer and run the DIAL DAS OS. Lines followed by comments preceded by two hyphens (--) are user inputs. Lines followed by comments in parentheses are computer responses. The use of some of the DIAL DAS OS commands are shown. Those commands with comments marked by ---* need not be entered as the arguments provided are already default values. They have been included for demonstration purposes.

Scaling

The scale factor "I" for MODE1, MODE2 and MODE3 is such that

displayed range interval = 256 * (2.** -I)/(2 ** N-1)

where N = # digitizers in use.

So if a range interval of 4096 is desired with 4 units, the scale factor must be -7. An easier instruction to use is YMAX I which automatically scales the data for you so that your resulting range interval is equal to or the next power of two less than the input value I. For the gray-scales the scale factor must reduce range corrected signals to values between 0 and 15. This scale is typically -8 (i.e. S*R*R * 2 ** -8 < 16). The instructions LITER and DARKER will either increment or decrement the scale factor by one.
Figure 10. Example of digitizer memory as compared to save buffer memory.
Sample DIAL DAS Dialogue. User input are those lines followed by comments marker --. Computer responses are followed by comments in ().

--- BANNER RECORD ---
TAPE = 1 FILE: 0 MEMBER WORDS: 25 DATE: 6/5/86
ALT: 0 UP/DOWN: 0 SNAP FIRE: 10 LASER FILE: 6
REP DATE: 5 ABS COEF: 16E-20
UNIT URS5 ATLAS START BASE TRUE DELAY SPECIES TO DELAY
1 600 2 234 -2040 >1000 5 03 14
2 600 1 234 -2040 >1000 5 IR 0
3 600 1 1073 -2040 >1500 5 D15 0
4 1000 1 1229 2047 < 0 2 IR 0

UNIT 1 = TRANSJAC 2
UNIT 2 = TRANSJAC 5
UNIT 3 = TRANSJAC 10
UNIT 4 = TRANSJAC 14
A/D CONVERSION CONSTANTS
CHAN SLOPE OFFSET
1 6000. -1000.
2 15.0 -75.
3 10.0 -10.
4 20.0 -50.
5 0.0 0.0
PCOMACS 2.4.10.0 -- READ TRANSJAC IN SLOTS 2-4, 5, 6, 7
PTPOINTS 500. 500. 500. 500. -- STORE 500 POINTS/RETURN IN EACH UNIT EXCEPT UNIT 4
PRETURN 2.1.1.0 -- STORE 500 POINTS/RETURN IN EACH UNIT EXCEPT UNIT 4
PDASIN 2047. 2047. 2047. 2047. -- BASE LINE OF EACH DIGITIZER
PDELAY 5.5.5.2 -- GATE TURN ON DELAY (USECS) AFTER LASER FIRE
PLASIN 6 -- LASER FINES AT WIND 6
PTURNL 14.0.14.0 -- UNITS 1 AND 3 USE TO MARKERS WHICH ARE DELAYED BY 14 USECS
PTURNR 50.0.JR.IS.JR.IS -- THERE WILL BE 25 USECS OF SHOT HEADER INFORMATION
PSEQUES 61. 81. 81. 81. 81. 81. 81. -- IDENTIFIES TYPE OF MEASUREMENT FOR EACH UNIT
PSCRF 5174-20 -- ABSTROPTION COEFFICIENT TO BE USED FOR 03 CALCULATIONS
PHEIGHT 13000 -- AIRCRAFT ALTITUDE IN FEET
PSERIES 0 -- DOWN-LOOKING MODE
PARCH 1214. 1214. 1214. 1214. -- SECOND A/D CHANNEL WILL CONVERT BY 15 X VOLTS - 75.
PARCHI +22. +22. +22. +22. -- CHANNEL 1 ENERGY IN RK WILL BE .72 X VOLTS - 2.2
PLASTHR -- LIST OUT MED BANNER RECORD

--- BANNER RECORD ---
TAPE = 1 FILE: 0 MEMBER WORDS: 25 DATE: 6/5/86
ALT: 13000 UP/DOWN: 0 SNAP FIRE: 10 LASER FILE: 6
REP DATE: 5 ABS COEF: 16E-20
UNIT URS5 ATLAS START BASE TRUE DELAY SPECIES TO DELAY
1 500 2 234 2047 >1000 5 03 14
2 500 1 234 2047 >2040 5 10 0
3 500 1 1073 -2040 >1500 5 D15 0

UNIT 1 = TRANSJAC 2
UNIT 2 = TRANSJAC 5
UNIT 3 = TRANSJAC 10
A/D CONVERSION CONSTANTS
CHAN SLOPE OFFSET
1 6000. -1000.
2 15.0 -75.
3 10.0 -10.
4 20.0 -50.
5 0.0 0.0

ENERGY CONVERSIONS
CHAN SLOPE OFFSET
1 0.72E-02 -2.20
2 0.42E-02 -1.12
3 0.125 -47.2
4 0.1226 -7.44
5 0.15E-02 -1.50

ORIGINAL PAGE: IS OF POOR QUALITY
original page is of poor quality
REFERENCES

HARDWARE MANUALS

Chassis

Disk Drive

Interprocessor Link

Magnetic Tape Drive
Model F880 Magnetic Tape Transport, Volume 1, Operation and Maintenance, Cipher Data Products, 1983, P/N 799816-003E.
Magnetic Tape Software Aids and Diagnostics, Distributed Logic Corp., 1982, P/N 30050-0.

Transiace Digitizers
Transiace Model 2012 Waveform Digitizer, Transiace Corp.
Transiace Model 1020 Differential Amplifier, Transiace Corp.
Model 1500 Powered Canac Crate, Kinetic Systems, 1982
Loran Interface

A/D Converter

Line Printer

Teletype

Time
Timing Control Unit TCU-50, Digital Pathways.

Graphic Display
APPENDIX

DIAL DAS ERROR MESSAGES

TTY ERROR

Teletype input error or attempt to use STOP mode command while transferring data.

CAMAC: DMA XFER ERROR

Transiace transfer error -- check to see that triggers and time bases for all units being used are properly connected.

CAMAC: NO-Q NOT SET
CAMAC: LAMS NOT SET
CAMAC: LAMS NOT CLEARED

MT: QUEUE EXCEEDS 22
MT: ILLEGAL COMMAND

Mag tape streamer queue cannot keep up. Occurs if (a) a new instruction is issued before last one has finished, (b) no write ring when told to write, (c) tape unit is off-line or becomes off-line.

MT: END OF FILE
MT: CYCLICAL REDUNDANCY
MT: PARITY ERROR
MT: BUS GRANT LATE
MT: END OF TAPE

If data is being recorded when EOT is detected, an alarm sounds, 2 EOF's are written, the tape starts rewinding, and data is transferred to the second tape drive.

MT: RECORD LENGTH ERROR
MT: BAD TAPE ERROR
MT: NON-EXISTENT MEMORY
MT: ERROR?
MT: TAPE UNIT OFF-LINE
MT: NEED WRITE RING
MT: ACTION COMPLETE

MEMORY SWAP ERROR

This could occur when swapping in extended memory -- but has not so far.

NAV INTERFACE NOT RESPONDING

This usually means that the Loran interface is not hooked up.

170400 (ADV11-C) NOT THERE

This occurs if the ADV11-C board is not resident.