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David M. Nicol 

Institute for Computer Applications in Science and Engineering 

Abstract This paper derives upper bounds on the expected number of search tree nodes visited during 
an m-solution backtracking search, a search which terminates after some pre-selected number m prob
lem solutions are found. The search behavior is assumed to have a general probabilistic structure. Our 
results are stated in terms of node expansion and contraction. A visited search tree node is said to be 
expanding if the mean number of its children visited by the search exceeds I, and is contracting other
wise. We show that if every node expands, or if every node contracts, then the number of search tree 
nodes visited by a search has an upper bound which is linear in the depth of the tree, in the mean 
number of children a node has, and in the number of solutions sought. We also derive bounds linear in 
the depth of the tree in some situations where an upper portion of the tree contracts (expands), while 
the lower portion expands (contracts). While previous analysises of I-solution backtracking have con
cluded that the expected performance is always linear in the tree depth, our model allows super-linear 
expected performance. By generalizing previous work in the expected behavior of backtracking, we 
are better able to identify classes of trees which can be searched in linear expected time. 
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1. Introduction 

Backtracking (or depth-first search) is a powerful tool for quickly finding solutions to certain 

types of problems whose potential solution space is huge. Such a search may tenninate upon finding 

one solution, or may attempt to discover all solutions. We will study m-solution searches, which ter

minate once a preselected number m solutions are discovered (or when it is detennined that fewer than 

m solutions exist). Backtracking is used to solve problems which seek an n-vector <Xl, ...• X,;> 

where each Xi is an element of a finite set Sjo such that some condition C(<XI •... ,x,;» is satisfied. 

For example, backtracking is often used to solve the n-Queen's problem. In this case, each vector 

coordinate position represents a chess board column, Xi = j means that a queen is placed in column i 

and row j, and the condition C is that no queen attacks any other. A backtracking search exploits 

necessary subconditions for a solution. The necessary subconditions {Cj } are chosen so that if 

C,{<XI, ... ,xi» is satisfied, then C;(<XI •... ,xi» is satisfied for i such that 1 ::;; i < j. Given a candi

date partial solution <Xl •... ,x,;>, the search checks condition CJ..<XI •... ,x,;». If that condition is 

satisfied, the partial solution is extended to <Xl •... ,xk+l> for some Xk+l E Sk+lo and the extended 

candidate partial solution is tested against Ck+l . If on the other hand Ci<Xl , ... ,x,;» is not satisfied, 

then an alternate value i k E Sk which has not yet been appended to <Xl •... ,xk-l> (if one exists) is 

chosen, and the partial solution <Xl •... ,xk-l;i~ is-checked against Ck. If all elements of Sk have 

already been appended to <Xl •... ,xk-l> and have failed to satisfy Ck, the algorithm "backtracks" and 

attempts new extensions to <Xl •... ,xk-2>' Most basic algorithm texts discuss the details of back

tracking, for example, see [5]. 

The search space of a backtracking search can be represented by a tree. A tree node is uniquely 

identified by the path between it and the tree root; a path of length j identifies a unique partial solution 

with j coordinate assignments; a node's set of children represent all possible extensions to the partial 

~olution represented by the node. Leaf nodes represent potential full solutions. Viewed in this way, 
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backtracking is a depth first search of the tree with pruning. Pruning occurs if a tested partial solution 

fails to satisfy the appropriate condition: the entire subtree rooted in the failing node is pruned from the 

search space, and the search "backtracks". Backtracking's success lies in this (problem dependent) abil

ity to dynamically prune large portions of the search tree. However, backtracking's worst case perfor

mance is exponential in the size of the problem; nevertheless, many problems do not exhibit this worst 

case performance. A more meaningful measure is the expected performance. The usual method for 

determining the expected or average performance of an algorithm is to assume that problem parameters 

are random, or that the outcome of a decision is random (for examples, see [6]). One way of introduc

ing randomness into backtracking is to suppose that the success or failure of a visited node is random. 

This approach is adopted by [12], and is the one we will explore. While a probabilistic model may not 

describe any particular backtracking search very accurately, it is useful for determining performance as 

a function of general search space characteristics. As pointed out in [7], such a model can also reveal 

the sensitivity of performance to the search space parameters. 

A number of researchers have considered the expected performance of backtracking, or related 

problems. Extensive analysis of branch and bound methods on random search trees is found in [11]. 

That work employs the theory of branching processes [4], which provides a very uniform probability 

structure for the search tree. In [KaPe83], the problem of finding a least cost path in a random binary 

tree is considered; this analysis also employs the theory of branching processes. Backtracking searches 

which seek all solutions to random CNF satisfiability problems are considered in [2]. The randomness 

introduced to the search model there is intimately related to the problem type (CNF satisfiability), 

allowing a tight analysis of that problem. Close approximations for the mean and variance of the 

number of nodes visited in a depth-first search which terminates with one solution are derived in [12], 

Our search model closely resembles theirs, but our approach is quite different. The analysis in [12] 

assumes tharthe search tree is binary, and that the randomness in node evaluation outcomes is uniform 

across the entire tree; every visited node has probability p of being a successful partial solution. The 
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search tree has an extremely uniform structure under these assumptions, allowing [12] to identify 

recurrence relations, and closely approximate their solution. Renewal theory is employed in [13] to 

derive approximate expected bounds on memory requirements for general branch-and-bound methods . 

. All of the research mentioned above introduces randomness in a very uniform way. This is 

accepted practice, and is usually required for analytic tractability. For the purposes of general 

behavioral description, uniform randomness is adequate, unless the model deviates strongly from 

known behavior. For backtracking, this is exactly the case. Intuition suggests that in general, the larger 

the size of the partial solution, the harder it will be to extend that solution. Yet under the assumption 

of uniform randomness, the likelihood of pruning a node and its subtree is the same anywhere in the 

search tree. Furthennore, the assumption of uniform randomness has led to surprising results. Both 

[12] and [11] derive bounds on the expected number of search nodes visited during a I-solution search; 

these bounds are linear in the tree depth regardless of the probability parameter p. Under their model

ing assumptions, we must conclude that the average number of nodes visited by a I-solution search is 

always linear in the depth of the search tree. 

Uniform randomness does not accurately model our expectations about pruning behavior; further

more, its assumption produces results whose strength is counter-intuitive. These observations have led 

us to consider a more general probabilistic model of backtracking's behavior. In doing so, we reaffirm 

much of the strength of the results derived in [12] and [11]. However, unlike the models in [12] and 

[11], our model exposes a class of searches having super-linear complexity in the depth of the search 

tree. By generalizing the probabilities which model searching behavior, we are thus better able to clas

sify searches which will have linear expected performance. We will allow a general probability struc

ture on a tree with depth D, whose nodes have random numbers of children. Defining natural notions 

of node expansion and contraction, we will show that if all nodes expand, or if all nodes contract, then 

there exist linear upper bounds on the number of nodes visited in a backtracking search for m solu-
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tions. These bounds are derived in tenns of the probability structure, the number of solutions sought, 

and the depth of the search tree. We then derive upper bounds for some search trees having both 

expanding and contracting nodes. These bounds are also linear in the depth of the search tree. Finally, 

we give an example of a search with non-zero extension probabilities which has super-linear complex-

ity. 

2. Model Definition 

A backtracking search is a depth-first search, with the provision that it does not traverse any sub-

tree rooted in a failed node. We model the decision to prune by supposing that every explored node 

has an extension probability of representing a successful partial solution. The extension probability for 

a leaf node is the probability that the leaf node represents a full solution. We also assume that a given 

visited node's success is independent of any other node's at the same depth. It is important to observe 

that this probability is conditioned on the event of the node being visited by the search. Given that a 

node is successful, we suppose that it has a random number of children, and that the mean number of 

children is n (this assumption is similar to one in [11]). We allow each node's distribution of children 

to be unique, but assume that each distribution is "new better than used in expectation", or NBUE [to]. 

A nonnegative random variable Y is NBUE if E[Y - a I Y> a] ~ E[y] for all a ~ O. Common exam-

pIes of continuous NBUE distributions are hypo-exponentials, nonnals, and certain classes of gamma 

and Weibull distributions. An appropriately constructed discrete approximation to a continuous NBUE 

random variable will be NBUE, and the degenerate constant random variable is NBUE. We say that a 

node with extension probability p expands if p > lin, because given that the node is visited, the 

expected number of its children which are visited is 

pn + (1 - p)-O > 1. 

We say that a search tree is expanding if each of its nodes expands. Likewise, if p ~ lin, we say that 

the node contracts; we say that the search tree contracts if every one of its nodes contracts. 
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Figures I, 2, and 3 illustrate some of these ideas. Figure I depicts a small search tree, where 

each node is labeled with its extension probability. Figure 2 shows a possible realization of the nodes 

searched, where the entire left subtree is traversed, but the right child of the root fails, so that none of 

its children are visited. Assuming that n = 2, we see that the root's left child is expanding (0.6 > 112) 

while the root's right child is contracting (0.4 < 112). It is important to note that the definitions of 

expanding and contracting nodes are in tenns of the mean value n, not the number of children actually 

realized by a parent. Figure 3 depicts the nodes searched during a I-solution search which discovers 

that the second leaf node visited is a successful full solution. 

We will alternately consider two types of backtracking searches. A full search is one which ter

minates only after all solutions have been found. We let N denote the random number of nodes visited 

during a full search, we also let Nj denote the random number of nodes visited at depth j. For many 

problems, we are satisfied with finding only one solution, and may substantially reduce the number of 

nodes visited by stopping with the first solution. We call a search which tenninates with the first solu

tion (or exhausts the search tree) a I-solution search. Let T denote the random number of nodes visited 

during a I-solution search, and let 1j denote the random number of nodes visited at depth j during a 

I-solution search. Our approach also supports generalization of I-solution searching, an m-solution 

search. An m-solution search might be used in a situation where it is too costly to search for all solu

tions, but a sizable sampling of solutions is desired. The random variables T(m) and ~(m) are the 

immediate m-solution analogs to T and Tj- We will use E[N] and E[T(m)] as measures of 

backtracking's average complexity. As noted in [11] and [12], the average time complexity of search

ing may be larger, being dependent on the complexity of the evaluation of the necessary subconditions. 

Our results are stated in tenns of bounds on the maximal and minimal extension probabilities 

among all search tree nodes. We let pjax denote the maximum extension probability among all nodes 

~t depth j; we similarly define the depth dependent minimum pjin. For every depth J (recall that the 
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tree has depth D) we define 

Pmax = max {plJlax }, 
+1 ISjSl1 Pmin 

+1 = min { min 
ISjSI Pj }, 

max _ { max} min _ • { min} 
PI+ - max Pj' PI+ - mm Pj , 

l<jSD l<jSD 

and finally, pmin = P~1f and pmax = P~lt. Table I summarizes our model definitions. 

Under our model assumptions, it is possible to find extension probabilities which lead to 

exponentially complex I-solution searches. Suppose that the extension probabilities for all nodes at 

depths 1,2, ... , D-l are equal to 1, and that the solution probabilities at depth D are all equal to O. 

The I-solution search will never find a solution, but will visit every node in the search tree. This 

degenerate case clearly has complexity which grows exponentially in the depth of the tree. While this 

example is not likely to represent any interesting problem particularly well, it does illustrate that the 

complexity of a I-solution search can be high. By identifying classes of trees which yield good 

expected complexity, we are better able to identify classes of trees which do not. 

Model Parameters 
Notation Definition 
D Depth of search tree 
N . Number of nodes visited in full search 
m Number of solutions sought 
T(rn) Number of nodes visited in rn-solution search 
n Mean number of children of successful node 
pmax 

+1 Maximum extension probability at depths up to J 
pmin 

+1 Minimum extension probability at depths up to J 
pmax 

1+ Maximum extension probability at depths greater than J 
pmin 

1+ Minimum extension probability at depths greater than J 
pm~ Maximum extension probability among all nodes 
pmID Minimum extension probability among all nodes 

Table I 
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3. Summary of Results 

Our analysis will consider four classes of search trees. We first treat the class of contracting 

trees (prnax ~ lin), and show by Lemma 1 that E[N] ~ nD. We then examine the class of expanding 

trees (prnin> lin), and give in Lemma 2 an upper bound on E[T(m)]. This bound is linear in D, in m, 

and in n. Together, Lemmas 1 and 2 address the model assumptions considered in [12]. While our 

bounds aren't as tight as the results in [12], they are considerably more general. Lemmas 3,4, and 5 

treat trees with mixtures of expanding and contracting nodes. In Lemma 3 we give a bound which is 

marginally linear in D, m, and n for the situation where an upper portion (near the root) of the tree has 

contracting nodes, and the lower portion has expanding nodes. This indication of good performance is 

not surprising; contracting nodes near the root tend to prune large portions of the tree. These results 

serve as analytic vindication of the search rearrangement strategy studied in [1] and [3] (a formal 

analysis of average behavior under this strategy for the CNF satisfiability problem is reported in [9]). 

Search rearrangement strives to reorder the sequence of variable assignments so as to increase the likel

ihood of pruning at shallow levels of the search tree. Finally, Lemmas 4 and 5 treat intuitively appeal

ing situations where it is relatively easier to extend small partial solutions than it is to extend larger 

partial solutions. We can model this phenomenon with search trees having an expanding upper portion, 

and contracting lower portion. When the extent and degree of contraction is bounded independently of 

the tree depth, the bound on E[T(m)] is marginally linear in D, polynomial in n, and exponential in the 

extent of contraction. Thus we see that our general model allows linear performance in a situation we 

expect to encounter in practice, but which is not well described by previous average performance 

analysis. Furthermore, the constraints required to achieve this linearity are a guide towards identifying 

trees which do not have linear expected performance. We discuss that issue further in section 7. 

Our results are stated below. Derivations are given in following sections. 



LEMMA 1 (Contracting Trees) : 

If pmax S lin, then E[N] < nD. 

o 

LEMMA 2 (Expanding Trees) : 

If there is an e > 1 such that pmin 2= £In, then 
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E[T(m)] < neD + m - 1) 
e-l 

o 

LEMMA 3 (Contracting/Expanding Trees) : 

If there is an I 2= 1 and e > 1 such that p~r :5; lin and p~in 2= £In, then 

E[T(m)] < In + neD - I + m - 1) 
e-l 

o 

LEMMA 4 (Expanding/Contracting Trees) : 

If there is a 0 > 1 and J 2= 1 such that P~D-J) S Oln, and P~J}+ S lin, then 

E[N] ,; n[5~~ 1] + nlrP-J
-

1 

o 

LEMMA 5 (Expanding/Contracting Trees) : 

If there are e > 1, and J, C 2= 1 such that P~~J) 2= £In, and lICn S pfk-J}+ S lin then 

E[T(m)] < m(Cnl+
1 + neD - J - 1) + m(Cn)l+lnJ. 
e-l 

o 
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4. Contracting Trees (Lemma 1) 

We first derive an upper bound on E[N], the expected number of nodes visited during a full 

search. Recalling that Nj is the random number of nodes visited at depth j during a full search, note 

that 

D 
E[N] = L E[Nj ). 

pI 

In order to calculate E[Nj ) , observe that if Nj-l = s for a given full search, then 

E[Nj I Nj-l = s) :::; spmaxn. (1) 

This follows because every visited node has an extension probability less than pmax, and a successful 

node has n children on the average. Taking the expectation with respect to Nj-l' 

E[Nj ) :::; E[Nj-dpmaxn. 

In a full search, every node at depth 1 is visited, so E[Nd = n. From inequality (1), 

E[N2) :::; n2pmax, 

and in general, 

E[Nj ) :::; nj(pmaxy-l. (2) 

The expected number of nodes visited during a full search is thus bounded from above by 

D 
E[N] :::; L nj(pmaxy-l. 

j=l 

Recalling the identity [8] 

k L ,j = 1 - ,k+l 
j=1J 1 _ , for, "" 1, 

we see that 

{ 

nD if npmax = 1 
E[N] :::; 1 max D 

n - (np) otherwise 
1 - npmax 

(3) 

It is also clear from equation (2) that our bound is an increasing function of pmax. 
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A contracting search tree is characterized by pmax ::;; lin. Thus Lemma 1 follows from (3) 

above. 

LEMMA 1 : If vnax ::;; lin, then 

E[N] ::;; nD. 

o 

Thus when the extension probabilities are all small enough, the total number of nodes visited in a full 

search (and hence any search) is bounded from above by nD. This bound is marginally linear in nand 

in D. The key reason for this linearity is the high probability of large subtrees being pruned as a result 

of extension failures at shallow depths. 

5. Expanding Trees (Lemma 2) 

We next consider an expanding search tree. Inequality (3) provides an exponentially large upper 

bound on E[N] when npmax > 1; furthermore, this bound is tight if all extension probabilities are identi

cal. However, the number of nodes visited in an m-solution search may be substantially smaller than 

that of a full search. Under the assumption that pmin ~ Eln for some E> 1, we will next show that the 

number of nodes visited by an m-solution search is bounded above by a function which is marginally 

linear in D, in n, and in m. 

The tactic we adopt in deriving this bound is to embed the search tree into an infinitely wide tree, 

and then analyze an m-solution search on the infinite tree from the bottom up. An m-solution search on 

an infinite tree with expanding nodes will always find m solutions; by analyzing a search there we 

avoid having to condition on whether or not m-solutions are discovered in the original search tree. The 

bottom up analysis is supported by two basic 'observations. One is that we can bound E[TD(m)] 

without worrying about the behavior of the search at depths other than D. The second observation is 

~at in an m-solution search of the infinite tree, the knowledge of how many nodes have been visited at 

.. 
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depth j+ 1 allows us to bound the number of nodes which have been visited at depth j. The bound on 

E[T D(m)] allows us to quantify the bound on E[T D-I(m)]; repeating this back-substitution we can quan

tify E[~{m)] for each j, and sum these bounds to bound E[T(m)] . 

Given an expanding search tree, we embed the tree into an infinite tree as follows. Conditioning 

on the number of children the root has (say K), the original tree consists of K major subtrees 

B10 B2, .•• , BK, each being rooted in a child of the tree root. We define a tree with depth D consist

ing of a root and a countably infinite number of children, where the first K children are roots for sub

trees probabilistically identical to B I , ••• , BK, respectively. All of the other children are roots for arbi

trary expanding subtrees. The infinite tree does not correspond to an expansion of a given problem; 

rather, we use its probabilistic properties as a convenient tool. We can couple the behavior of a search 

on the original tree with a search on the infinite tree by requiring the evaluation outcomes in the origi

nal tree to be identical to the infinite tree's outcomes in its first K subtrees. An m-solution search on 

the infinite tree will terminate only by finding m "solutions". It is also clear that for every search, at 

every depth j, the number of nodes visited in the infinite tree at depth j is an upper bound on the 

number of nodes visited by the search in the finite tree. We will therefore bound E[T(m)] by bounding 

the expected number of nodes visited in an m-solution search of the infinite tree. At the risk of abusing 

our notation, we will now let Tim) denote the number of nodes visited at depth j in an m-solution 

search of the infinite tree; T(m) is similarly redefined. Any upper bounds we derive on the infinite tree 

apply equally well to the finite problem tree. Our notational modification is understood to apply only to 

this section. For the remainder of this section, we will refer only to searches of the infinite tree; con

sideration of this tree is also limited to this section. 

We initially consider the behavior of an m-solution search at the tree's deepest level D. Any 

time a leaf node is visited it is found to be a solution with probability no less than pmin, it is otherwise 

found to fail. Because of the independence in leaf node evaluation outcomes, TD(m) is thus bounded 
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from above by an m-fold convolution of a geometric random variable G( pmin) having success proba-

bility pmin. Then 

E[TD(m)] =s; mE[G( pmin)] = m 
pmin 

=s;.!11!!. 
E 

(4) 

We next derive upper bounds on E[~(m)] for each j, bounding E[~(m)] in terms of E[Tfr1 (m)]. 

Following that, we will use (4) to quantify these upper bounds, and sum the bounds over all depths to 

bound E[T(m)]. Our discussion is facilitated by another definition. Let Sim) be the number of success-

jul nodes visited in an m-solution search. We will first bound E[~(m)] in terms of E[Sim)]. Note that 

the last node visited by an m-solution search is always a successful leaf node, implying that the last 

node visited at deptP j by a search is successful (being an ancestor of the last solution). Given that 

Sim) = k, it follows that E[~(m)] =s; klpmin, since the mean number of nodes at depth j visited between 

successful visits at that depth is no greater than lIpmin. It follows immediately that 

E[~(m)] =s; E[SJ(m)] 
pmin 

(5) 

We now bound E[SJ(m)] from above in terms of E[Tjtl(m)]. Call a node activated if its parent 

has been explored and is successful. Note that nodes are activated in groups, the group size being the 

number of children spawned by the parent Furthermore, group sizes are independent random variables, 

each with mean n. If we focus our attention during a search on the activity at depthj+1, we will see a 

succession of groups activated, with group sizes being random variables {Yk }. From this viewpoint, the 

search behavior at depth j+ 1 is very much like a renewal process [10], except that inter-renewal times 

need not have identical distributions. We call this stochastic process a quasi-renewal process. "Time" 

in this process is the number of nodes visited by the search at depth j+ 1, minus 1 (so that time begins 

at 0); a quasi-renewal occurs at "time" t if node t (the t+1st node visited) is the first node in its group 

to be visited (excluding node 0). Now define Sim,t) to be the number of successful nodes visited at 

qepth j by "time" t. As the search progresses, at any given "time" t the number of quasi-renewals 

• 
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which have occurred is exactly the number of parents of depth j+ 1 nodes already visited, minus 1 

Sim,t) - 1. The renewal function R(t) studied by renewal theory is the expected number of renewals 

which occur by time t. Thus for the problem at hand, R(t) = E[S/m,t)] - 1. In [1O,p.275] it is shown 

that the renewal function for a quasi-renewal process with NBUE inter-quasi-renewal times each hav-

ing mean n is bounded from above by the renewal function R(t) = tIn of a Poisson process with mean 

inter-renewal time n. Since the {Yk } 's are NBUE by assumption, it follows that 

t 
E[Sim,t)] ::;; - + 1. 

n 
"Time" stops at value 1j+l (m), when the search terminates. The inequality above then implies that 

E[S/m)] ::;; E[1j+l(m)] + 1. 
n 

By substituting this bound into inequality (5) and noting that pmin ~ £In, we find that 

E[~{m)] ::;; E[1j+l(m)] + E.., 
E E 

which establishes our goal of a bound on E[~{m)] in terms of E[Tjtl(m)]. 

(6) 

Inequality (6) gives us a sequence of bounds as we vary j from D to 2. We quantify these ine-

qualities by employing the bound on E[TD(m)] given by (4), and then repeatedly apply inequality (6) to 

obtain bounds on E[~{m)] for j = D-l, D-2, . : . ,2. We know that 

nm E[TD(m)] ::;; -. 
E 

Substituting this bound for E[TD(m)] into inequality (6) we obtain 

E[TD-l(m)] ::;; .!!!!!. + E.. 
E2 E 

Repeating this process, we find that for 0 ::;; k ::;; D-l 
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nm k [1 J E[TD-im)] ~ --w- + nL -. 
£ j=l £} 

nr - 1 1 
=....!!!E.... £ k 

£k+l + £-1 

We can then bound E[T(m)] by summing the different depths' upper bounds given by (7). 

E[T(m)] 
D-l [ till -1 1 ~ L ~ ? 
1c={J £ k+l + £-1 

= _1 [nm(l - _1 ) + n(D -1) - n[-LJ [1 - _1 J]. 
£-1 eP £-1 £D 

A less strict, but less involved bound follows immediately from the fact that £ > 1: 

LEMMA 2 : If there is an £ > 1 such that prnin ~ £In, then 

o 

E[T(m)] < n(D + m - 1) 
£-1 

(7) 

(8) 

. This bound is marginally linear in n, D, and m. Furthennore, its change with respect to m is 

interesting. Doubling m increases the bound by less than a factor of two. This supports our intuitive 

understanding that after one solution is found, the additional cost of finding a second solution is (in 

expectation) less. The bound given in (8) is very sensitive to £ when £ is close to 1. Yet for £ ~ 1.1, 

E[T(m)] is no greater than lOn(D + m - 1), which seems quite reasonable. 

~ 
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6. Contracting/Expanding Trees (Lemma 3) 

Lemmas 1 and 2 give us means of bounding the expected perfonnance of an m-solution search 

on contracting, and on expanding trees. We next employ these bounds to derive bounds for trees which 

contract at shallow depths, and expand at deep depths. As expected, we obtain these bounds by con-

sidering the expanding and contracting regions separately, and combine the results for an overall 

bound. We derive a bound on E[T(m)] which is linear in n, in D, and in m. 

We suppose there is a depth I such that p~r ::;; lin; and p7!in ~ eJn for some £ > 1. Consider 

the search tree truncated at depth I; Lemma 1 states that the expected number of nodes visited by a full 

search of the truncated tree is no greater than nl, and equation (2) shows that the expected number of 

depth I nodes visited by a full search is bounded by n. It follows that the expected number of success-

ful depth I nodes found in a full search, and hence an m-solution search, is no greater than 1. We can 

bound the expected number of nodes visited by an m-solution search at depths 1+1, ... ,D by consid-

ering the subtrees rooted in successful nodes at depth I. Each such subtree has depth D - I, and exten-

sion probabilities (excluding the subtree root) which all exceed lin. Now consider a total subtree 

search of depths 1+1, ... ,D, which conducts an m-solution search of every subtree rooted in a suc-

cessful node at depth I. Clearly the expected number of nodes visited by such a search is greater than 

the expected number of visited nodes in a usual m-solution search: the usual m-solution search will 

stop with the first m solutions, while the total subtree search will continue on to explore all subtrees 

with successful roots at depth I. The expected number of successful nodes at depth I is no greater than 

1, so that the expected number of nodes at depths greater than I visited by a total subtree search is 

bounded from above by 

n(D-1 + m - 1) 

£-1 
This bound follows from the application of Lemma 2 to one subtree rooted in depth I. We have 

already bounded the number of nodes visited at depths 1, ... J by n1. The expected number of nodes 
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visited in an m-solution search is therefore bounded as described in Lemma 3. 

LEMMA 3 : If there is an I ~ 1 and E> 1 such that pr:r $; lin and p7+in ~ £In, then 

E[T(m)] $; In + n(D -I + m - 1) . 
E-l 

o 

This bound has the same marginal properties in n, D, and m as does the bound given by Lemma 2. 

7. Expanding/Contracting Trees (Lemmas 4,5) 

(9) 

We earlier gave an example of a tree which expanded in all but the last depth, and then con-

tracted completely at the leaf nodes. This tree has the worst possible performance because it searches 

all nodes, but finds no solutions. This tree falls in the class of trees we next consider, trees which 

expand in upper levels, and contract in lower levels. However, we are able to show that if the degree 

and extent of contraction is bounded, then we achieve marginal linear performance in the depth of the 

tree. Our bound is more sensitive to n: it increases as a polynomial in n and in the degree of contrac-

tion. This bound is exponential in the extent of the contracting region. 

We suppose there is a depth D - J such that P#.B-J) ~ €In for some E > I, and 

lin ~ P~J}+ ~ lICn for some C ~ 1. The parameter J describes the extent of the contracting region 

(J depth levels), and C describes the degree of the contraction. We derive two bounds for this case. 

Our bound on E[N] is useful when the extension probabilities are small or when the expanding portion 

of the tree is limited; the other bound is useful if the contracting region is small. 

To bound E[N], we make the additional assumption that pmax $; SIn. By (3), the expected 

number of nodes visited at depths I, . . . ,D-J by a full search is bounded from above by 

[
SO-J - 1] 

n S-1 . 

As a consequence of (2), the expected number of successful nodes at depth D-J is bounded from 
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above by fJD-J-l. By Lemma 1, the expected number of nodes visited in a subtree rooted in a success-

ful depth D-J node is bounded from above by n.l. Lemma 4 combines these obselVations. 

LEMMA 4 : If there is a fJ > 1 and J ~ 1 such that P~~J) ~ fJ/n, and P~.I}i- ~ lin, then 

E[N] ,; n[~~ ~ 1 1 + n!'6D-J-l (10) 

o 

The key parameters in this inequality are fJ and J. When fJ is small, say fJ < 2, the exponential growth 

of (10) in D-J is slow. If D-J is small, then the troublesome expanding portion of the tree is limited, 

and (10) may yield a reasonably small bound. If neither of these cases is satisfied, we should consider 

another bound on E[T(m)], which we derive next. 

The assumption that p($..I}i- ~ lICn bounds the degree to which the search tree contracts. We can 

use this restriction to bound E[T(m)]. The first step is to look at a subtree rooted in a visited depih D-J 

node, and find a lower bound on the probability Ps of finding a solution in that subtree. One potential 

path to discovering a solution in this subtree occurs if the first J+l successive visits in a depth-first 

search of the subtree (we include the root here) each discover successful nodes. The last successful 

node is the full solution. The probability of this occurrence is at least 

_ 1 < 
PL - (Cn)l+1 - Ps· 

This bound holds for every subtree (and hence every probability of finding a solution in a subtree). We 

will say that a depth D-J node is ultimately successful, or u-successful, if it is an ancestor of a suc-

cessful complete solution. PL is a lower bound on the probability of a visited depth D-J node being u-

successful. The behavior of a I-solution search at depths 1,2, ... ,D-J is probabilistically identical to 

the behavior of a I-solution search on a modified tree having depth D-J and the same extension proba-

bilities as the original search tree, except that depth D-J nodes' extension probabilities are replaced by 

their u-success probabilities. Since a subtree rooted in depth D-J may contain multiple solutions, an 
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m-solution search of the original tree will visit fewer nodes at depths 1, ... , D-J than will an m-

solution ~earch of the modified tree. The arguments presented in section 5 establish that the mean 

number of nodes visited at depth D-J by an m-solution search of the modified tree is bounded from 

above by .!!!. = m(Cnl+1
• Then the same type of analysis which leads to equation (8) shows that 

PL 

}! E[~{m)] < m(Cn),+l + neD - J - 1) . 
" 1 E - 1 ]= 

(11) 

Reconsidering the original depth D tree, we use Lemma 1 to see that the expected number of nodes 

visited by a total search of a subtree rooted in depth D-J is bounded from above by nJ. m(Cn)l+lnJ is 

thus an upper bound on the expected number of nodes visited at depths D-J+l, ... , D in an m-solution 

search of the original tree. Summing this bound with the one given by (11), we have 

LEMMA 5 : If there are E > 1, and J, C 2: 1 such that P~D-J) ;;;:: Eln, and lICn =:; p(JJ:..J)+ =:; lin 
then 

E[T(m)] < m(Cnl+
1 

+ neD - J- 1) + m(Cn)J+lnJ. 
E-l 

o 

This bound is reasonably small only if J is small. We can expect marginal linear perfonnance in the 

depth of the tree, provided there are depth independent bounds on the number of tree levels which con-

tract, and the degree to which nodes in that region contract Lemma 5 also hints at the relative sensi-

tivity of performance to changes in the different model parameters. The bound grows as a polynomial 

in n and in C; it grows exponentially in J. 

Reconsider the example of the tree which visited all nodes, and found no solutions. If we slightly 

change the example so that a leaf node has some fixed probability p > 0 of being a solution, then 

Lemma 5 gives us marginal linear perfonnance in the depth of the tree (supporting empirical data 

presented in [StSi85]. ) This is more of an indictment of asymptotic results than it is an indication of 

good perfonnance. If J is fixed and quite large, Lemma 5 can still give us linear perfonnance in D. 

," 

", 
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That does not mean that we can expect to find a solution quickly. 

The example highlighting exponential complexity hinged on having extension probabilities equal 

to zero. There exist trees with all non-zero extension probabilities which have exponential perfor

mance asymptotically. It is not difficult to see (or prove) that as the depth of a contracting tree 

increases, the probability of discovering a solution in that tree approaches zero. Now consider a tree 

which expands in the upper half of its levels and contracts in the lower half. In the limit of increasing 

tree depth, a full search of the tree's upper half occurs because the search is always pruned in the 

lower half before reaching a solution. Since the upper half is expanding, the number of nodes visited 

there increases exponentially in the tree depth. This example re-illustrates the need for extending past 

work in average performance analysis of backtracking. Using uniform probability structures, previous 

performance models conclude that all 1-solution searches have expected linear complexity. The exam

ple above shows that under a general model, there are 1-solution searches with super-linear complexity. 

Our general model is more selective in its identification of trees leading to low complexity, and 

specifically excludes the example outlined above from the class of searches with linear complexity. 

8. Summary 

Previous analysis of the average case performance of 1-solution backtracking searches have 

assumed uniform probability structures, and have subsequently shown that 1-solution backtracking 

always has complexity linear in the depth of the search tree. However, using a more general probabil

ity model, it is possible to construct 1-solution backtracking searches which have expected super-linear 

complexity. This paper investigates the implications of assuming a general probability structure for the 

average case analysis. Using the notions of "expanding" and "contracting" nodes, we have derived 

expected linear complexity bounds on m-solution searches of trees with all nodes contracting, and trees 

with all nodes expanding. We present linear bounds on trees which have an upper portion contracting 

with the lower portion expanding. We also derive bounds on trees with an expanding upper portion 
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and a contracting lower portion. When the size of the contracting region is bounded by a constant, and 

the degree of contraction is bounded by a constant, this last bound is marginally linear in the depth of 

the search tree. By extending previous work in the average complexity of backtracking, we have both 

provided further assurance of good expected performance under appropriate conditions, and indirectly 

shown where classes of searches with high complexity lie. 
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Fig. 1: Search Tree with Extension Probabilities 
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